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Abstract

This work is intended as a contribution to a wavelet-based adaptive estimator of the memory parameter

in the classical semi-parametric framework for Gaussian stationary processes. In particular we introduce

and develop the choice of a data-driven optimal bandwidth. Moreover, we establish a central limit theorem

for the estimator of the memory parameter with the minimax rate of convergence (up to a logarithm factor).

The quality of the estimators are attested by simulations.

1 Introduction

Let X = (Xt)t∈Z be a second-order zero-mean stationary process and its covariogram be defined

r(t) = E(X0 ·Xt), for t ∈ Z.

Assume the spectral density f of X , with

f(λ) =
1

2π
·
∑

k∈Z

r(k) · e−ik,

exists and represents a continuous function on [−π, 0)[∪]0, π]. Consequently, the spectral density of X should

satisfy the asymptotic property,

f(λ) ∼ C · 1

λD
when λ→ 0,

with D < 1 called the ”memory parameter” and C > 0. If D ∈ (0, 1), the process X is a so-called long-memory

process, if not X is called a short memory process (see Doukhan et al., 2003, for more details).
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This paper deals with two semi-parametric frameworks which are:

• Assumption A1: X is a zero mean stationary Gaussian process with spectral density satisfying

f(λ) = |λ|−D · f∗(λ) for all λ ∈ [−π, 0)[∪]0, π],

with f∗(0) > 0 and f∗ ∈ H(D′, CD′) where 0 < D′, 0 < CD′ and

H(D′, CD′) =
{
g : [−π, π] → R

+ such that |g(λ) − g(0)| ≤ CD′ · |λ|D′

for all λ ∈ [−π, π]
}
.

• Assumption A1’: X is a zero-mean stationary Gaussian process with spectral density satisfying

f(λ) = |λ|−D · f∗(λ) for all λ ∈ [−π, 0)[∪]0, π],

with f∗(0) > 0 and f∗ ∈ H′(D′, CD′) where 0 < D′, CD′ > 0 and

H′(D′, CD′) =
{
g : [−π, π] → R

+ such that g(λ) = g(0) + CD′ |λ|D′

+ o
(
|λ|D′)

when λ→ 0
}
.

Remark 1 A great number of earlier works concerning the estimation of the long range parameter in a semi-

parametric framework (see for instance Giraitis et al., 1997, 2000) are based on Assumption A1 or equivalent

assumption on f . Another expression (see Robinson, 1995, Moulines and Soulier, 2003 or Moulines et al.,

2007) is f(λ) = |1− eiλ|−2d · f∗(λ) with f∗ a function such that |f∗(λ)− f∗(0)| ≤ f∗(0) · λβ and 0 < β). It is

obvious that for β ≤ 2 such an assumption corresponds to Assumption A1 with D′ = β. Moreover, following

arguments developed in Giraitis et al., 1997, 2000, if f∗ ∈ H(D′, CD′) with D′ > 2 is such that f∗ is s ∈ N
∗

times differentiable around λ = 0 with f∗(s) satisfying a Lipschitzian condition of degree 0 < ℓ < 1 around

0, then D′ ≤ s + ℓ.So for our purpose, D′ is a more pertinent parameter than s + ℓ (which is often used in

no-parametric literature). Finally, the Assumption A1’ is a necessary condition to study the following adaptive

estimator of D.

We have H′(D′, CD′) ⊂ H(D′, CD′). Fractional Gaussian noises (with D′ = 2) and FARIMA[p,d,q] processes

(with also D′ = 2) represent the first and well known examples of processes satisfying Assumption A1’ (and

therefore Assumption A1).

Remark 2 In Andrews and Sun (2004), an adaptive procedure covers a more general class of functions than

H(D′, CD′), i.e. HAS(D′, CD′) defined by:

HAS(D′, CD′) =
{ g : [−π, π] → R

+ such that, as λ→ 0

g(λ) = g(0) +
∑k

i=0 C
′
iλ

2i + CD′ |λ|D′

+ o
(
|λ|D′

)
with 2k < D′ ≤ 2k + 2

}
.
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Unfortunately, the adaptive wavelet based estimator defined below, as local or global log-periodogram estimators,

is unable to be adapted to such a class (and therefore, when D′ > 2, its convergence rate will be the same than

if the spectral density is included in HAS(2, C2), at the contrary to Andrew and Sun estimator).

This work is to provide a wavelet-based semi-parametric estimation of the parameter D. This method has

been introduced by Flandrin (1989) and numerically developed by Abry et al. (1998, 2001) and Veitch et al.

(2003). Asymptotic results are reported in Bardet et al. (2000) and more recently in Moulines et al. (2007).

Taking into account these papers, two points of our work can be highlighted : first, a central limit theorem

based on conditions which are weaker than those in Bardet et al. (2000). Secondly, we define an auto-driven

estimator D̃n of D (its definition being different than in Veitch et al., 2003). This results in a central limit

theorem followed by D̃n and this estimator is proved rate optimal up to a logarithm factor (see below). Below

we shall develop this point.

Define the usual Sobolev space W̃ (β, L) for β > 0 and L > 0,

W̃ (β, L) =

{
g(λ) =

∑

ℓ∈Z

gℓe
2πiℓλ ∈ L

2([0, 1]) /
∑

ℓ∈Z

(1 + |ℓ|)β |gℓ| <∞ and
∑

ℓ∈Z

|gℓ|2 ≤ L

}
.

Let ψ be a ”mother” wavelet satisfying the following assumption:

Assumption W (∞) : ψ : R 7→ R with [0, 1]-support and such that

1. ψ is included in the Sobolev class W̃ (∞, L) with L > 0;

2.

∫ 1

0

ψ(t) dt = 0 and ψ(0) = ψ(1) = 0.

A consequence of the first point of this Assumption is: for all p > 0, supλ∈R
|ψ̂(λ)|(1 + |λ|)p < ∞, where

ψ̂(u) =
∫ 1

0 ψ(t) e−iutdt is the Fourier transform of ψ. A useful consequence of the second point is ψ̂(u) ∼ C u

for u→ 0 with |C| <∞ a real number not depending on u.

The function ψ is a smooth compactly supported function (the interval [0, 1] is meant for better readabil-

ity, but the following results can be extended to another interval) with its m first vanishing moments. If

D′ ≤ 2 and 0 < D < 1 in Assumptions A1, Assumption W (∞) can be replaced by a weaker assumption:

Assumption W (5/2) : ψ : R 7→ R with [0, 1]-support and such that
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1. ψ is included in the Sobolev class W̃ (5/2, L) with L > 0;

2.

∫ 1

0

ψ(t) dt = 0 and ψ(0) = ψ(1) = 0.

Remark 3 The choice of a wavelet satisfying Assumption W (∞) is quite restricted because of the required

smoothness of ψ. For instance, the function ψ(t) = (t2 − t+ a) exp(−1/t(1 − t)) and a ≃ 0.23087577 satisfies

Assumption W (∞). The class of ”wavelet” checking Assumption W (5/2) is larger. For instance, ψ can be

a dilated Daubechies ”mother” wavelet of order d with d ≥ 6 to ensure the smoothness of the function ψ.It

is also possible to apply the following theory to ”essentially” compactly supported ”mother” wavelet like the

Lemarié-Meyer wavelet. Note that it is not necessary to choose ψ being a ”mother” wavelet associated to a

multi-resolution analysis of L
2(R) as in the recent paper of Moulines et al. (2007). The whole theory can be

developed without this assumption, in which case the choice of ψ is larger.

If Y = (Yt)t∈R is a continuous-time process for (a, b) ∈ R
∗
+ ×R, the ”classical” wavelet coefficient d(a, b) of the

process Y for the scale a and the shift b is

d(a, b) =
1√
a

∫

R

ψ(
t

a
− b)Yt dt. (1)

However, this formula (1) of a wavelet coefficient cannot be computed from a time series. The support of

ψ being [0, 1], let us take the following approximation of formula (1) and define the wavelet coefficients of

X = (Xt)t∈Z by

e(a, b) =
1√
a

a∑

k=1

ψ(
k

a
)Xk+ab, (2)

for (a, b) ∈ N
∗
+ ×Z. Note that this approximation is the same as the wavelet coefficient computed from Mallat

algorithm for an orthogonal discrete wavelet basis (for instance with Daubechies mother wavelet).

Remark 4 Here a continuous wavelet transform is considered. The discrete wavelet transform where a = 2j,

in other words numerically very interesting (using Mallat cascade algorithm) is just a particular case. The main

point in studing a continuous transform is to offer a larger number of ”scales” for computing the data-driven

optimal bandwidth (see below).

Under Assumption A1, for all b ∈ Z, the asymptotic behavior of the variance of e(a, b) is a power law in scale

a (when a → ∞). Indeed, for all a ∈ N
∗, (e(a, b))b∈Z is a Gaussian stationary process and (see Section more

details in 2):

E(e2(a, 0)) ∼ K(ψ,D) · aD when a→ ∞, (3)
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with a constant K(ψ,D) such that,

K(ψ,α) =

∫ ∞

−∞
|ψ̂(u)|2 · |u|−αdu > 0 for all α < 1, (4)

where ψ̂ is the Fourier transform of ψ (the existence of K(ψ,α) is established in Section 5). Note that (3) is

also checked without the Gaussian hypothesis in Assumption A1 (the existence of the second moment order

of X is sufficient).

The principle of the wavelet-based estimation of D is linked to this power law aD. Indeed, let (X1, . . . , XN)

be a sampled path of X and define T̂N (a) a sample variance of e(a, .) obtained from an appropriate choice of

shifts b, i.e.

T̂N(a) =
1

[N/a]

[N/a]∑

k=1

e2(a, k − 1). (5)

Then, when a = aN → ∞ satisfies limN→∞ aN ·N−1/(2D′+1) = ∞, a central limit theorem for log(T̂N (aN ))

can be proved. More precisely we get

log(T̂N (aN )) = D log(aN ) + log(f∗(0)K(ψ,D)) +

√
aN
N

· εN ,

with εN
L−→

N→∞
N (0, σ2

(ψ,D)) and σ2
(ψ,D) > 0. As a consequence, using different scales (r1aN , . . . , rℓaN )) where

(r1, . . . , rℓ) ∈ (N∗)ℓ with aN a ”large enough” scale, a linear regression of (log(T̂N (riaN ))i by (log(riaN ))i

provides an estimator D̂(aN ) which satisfies at the same time a central limit theorem with a convergence rate
√

N
aN

.

But the main problem is : how to select a large enough scale aN considering that the smaller aN , the faster

the convergence rate of D̂(aN ). An optimal solution would be to chose aN larger but closer to N1/(2D′+1),

but the parameter D′ is supposed to be unknown. In Veitch et al. (2003), an automatic selection procedure

is proposed using a chi-squared goodness of fit statistic. This procedure is applied successfully on a large

number of numerical examples without any theoretical proofs however. Our present method is close to the

latter. Roughly speaking, the ”optimal” choice of scale (aN ) is based on the ”best” linear regression among

all the possible linear regressions of ℓ consecutive points (a, log(T̂N (a))), where ℓ is a fixed integer number.

Formally speaking, a contrast is minimized and the chosen scale ãN satisfies:

log(ãN )

logN

P−→
N→∞

1

2D′ + 1
.

Thus, the adaptive estimator D̃N of D for this scale ãN is such that :

√
N

ãN
(D̃N −D)

L−→
N→∞

N (0, σ2
D),
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with σ2
D > 0. Consequently, the minimax rate of convergence ND′/(1+2D′), up to a logarithm factor, for the

estimation of the long memory parameter D in this semi-parametric setting (see Giraitis et al., 1997) is given

by D̃N .

Such a rate of convergence can also be obtained by other adaptive estimators (for more details see below).

However, D̃N has several ”theoretic” advantages: firstly, it can be applied to all D < −1 and D′ > 0 (which are

very general conditions covering long and short memory, in fact larger conditions than those usually required

for adaptive log-periodogram or local Whittle estimators) with a nearly optimal convergence rate. Secondly,

D̃N satisfies a central limit theorem and sharp confidence intervals for D can be computed (in such a case, the

asymptotic σ2
D is replaced by σ2

D̃N
, for more details see below). Finally, under additive assumptions on ψ (ψ

is supposed to have its first m vanishing moments), D̃N can also be applied to a process with a polynomial

trend of degree ≤ m− 1.

We then give a several simulations in order to appreciate empirical properties of the adaptive estimator D̃N .

First, using a benchmark composed of 5 different ”test” processes satisfying Assumption A1’ (see below), the

central limit theorem satisfied by D̃N is empirically checked. The empirical choice of the parameter ℓ is also

studied. Moreover, the robustness of D̃N is successfully tested. Finally, the adaptive wavelet-based estimator

is compared with several existing adaptive estimators of the memory parameter from generated paths of the 5

different ”test” processes (Giraitis-Robinson-Samarov adaptive local log-periodogram, Moulines-Soulier adap-

tive global log-periodogram, Robinson local Whittle, Abry-Taqqu-Veitch data-driven wavelet based, Bhansali-

Giraitis-Kokoszka FAR estimators). The simulations results of D̃N are convincing. The convergence rate of

D̃N is often ranges among the best of the 5 test processes (however the Robinson local Whittle estimator D̂R

provides more uniformly accurate estimations of D). Three other numerical advantages are offered by the

adaptive wavelet-based estimator (and not by D̂R). Firstly, it is a very low consuming time estimator. Sec-

ondly it is a very robust estimator: it is not sensitive to possible polynomial trends and seems to be consistent

in non-Gaussian cases. Finally, the graph of the log-log regression of sample variance of wavelet coefficients is

meaningful and may lead us to model data with more general processes like locally fractional Gaussian noise

(see Bardet and Bertrand, 2007).

The central limit theorem for sample variance of wavelet coefficient is subject of section 2.Section 3 is concerned

with the automatic selection of the scale as well as the asymptotic behavior of D̃N . Finally simulations are
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given in section 4 and proofs in section 5.

2 A central limit theorem for the sample variance of wavelet coef-

ficients

The following asymptotic behavior of the variance of wavelet coefficients is the basis of all further developments.

The first point that explains all that follows is the

Property 1 Under Assumption A1 and Assumption W (∞), for a ∈ N
∗, (e(a, b))b∈Z is a zero mean Gaussian

stationary process and it exists M > 0 not depending on a such that, for all a ∈ N
∗,

∣∣∣E(e2(a, 0)) − f∗(0)K(ψ,D) · aD
∣∣∣ ≤M · aD−D′

. (6)

Please see Section 5 for the proofs. The paper of Moulines et al. (2007) gives similar results for multi-resolution

wavelet analysis. The special case of long memory process can also be studied with weaker AssumptionW (5/2),

Property 2 Under Assumption W (5/2) and Assumption A1 with 0 < D < 1 and 0 < D′ ≤ 2, for a ∈ N
∗,

(e(a, b))b∈Z is a zero mean Gaussian stationary process and (6) holds.

Two corollaries can be added to both those properties. First, under Assumption A1’ a more precise result can

be established.

Corollary 1 Under:

• Assumption A1’ and Assumption W (∞);

• or Assumption A1’ with 0 < D < 1, 0 < D′ ≤ 2 and Assumption W (5/2);

then (e(a, b))b∈Z is a zero mean Gaussian stationary process and

E(e2(a, 0)) = f∗(0)
(
K(ψ,D) · aD + CD′K(ψ,D−D′) · aD−D′

)
+ o
(
aD−D′)

when a→ ∞. (7)

This corollary is key point for the estimation of an appropriated sequence of scale a = (aN ). Indeed, when

f∗ ∈ H′(D′, CD′), then f∗ ∈ H(D′′, CD′′) for all D′′ satisfying 0 < D′′ ≤ D′. Therefore, Assumption A1’

is required for obtaining the optimal choice of aN , i.e. aN ≃ N1/(2D′+1) (see below for more details). The

following corollary generalizes the above Properties 1 and 2.

Corollary 2 Properties 1 and 2 are also checked when the Gaussian hypothesis of X is replaced by EX2
k <∞

for all k ∈ Z.
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Remark 5 In this paper, the Gaussian hypothesis has been taken into account merely to insure the conver-

gence of the sample variance (5) of wavelet coefficients following a central limit theorem (see below). Such a

convergence can also be obtained for more general processes using a different proof of the central limit theorem,

for instance for linear processes (see a forthcoming work).

As mentioned in the introduction, this property allows an estimation of D from a log-log regression, as soon

as a consistant estimator of E(e2(a, 0)) is provided from a sample (X1, . . . , XN) of the time series X . Define

then the normalized wavelet coefficient such that

ẽ(a, b) =
e(a, b)

(
f∗(0)K(ψ,D) · aD

)1/2 for a ∈ N
∗ and b ∈ Z. (8)

From property 1, it is obvious that under Assumptions A1 it exists M ′ > 0 satisfying for all a ∈ N
∗,

∣∣∣E(ẽ2(a, 0)) − 1
∣∣∣ ≤M ′ · 1

aD′
.

To use this formula to estimate D by a log-log regression, an estimator of the variance of e(a, 0) should be

considered (let us remember that a sample (X1, . . . , XN ) of is supposed to be known, but parameters (D,

D′, CD′) are unknown). Consider the sample variance and the normalized sample variance of the wavelet

coefficient, for 1 ≤ a < N ,

T̂N(a) =
1

[Na ]

[ N
a ]∑

k=1

e2(a, k − 1) and T̃N(a) =
1

[Na ]

[ N
a ]∑

k=1

ẽ2(a, k − 1). (9)

The following proposition specifies a central limit theorem satisfied by log T̃N(a), which provides the first step

for obtaining the asymptotic properties of the estimator by log-log regression. More generally, the following

multidimensional central limit theorem for a vector (log T̃N(ai))i can be established.

Proposition 1 Define ℓ ∈ N \ {0, 1} and (r1, · · · , rℓ) ∈ (N∗)ℓ. Let (an)n∈N be such that N/aN −→
N→∞

∞ and

aN ·N−1/(1+2D′) −→
N→∞

∞. Under Assumption A1 and Assumption W (∞),

√
N

aN

(
log T̃N(riaN)

)
1≤i≤ℓ

D−→
N→∞

Nℓ

(
0 ; Γ(r1, · · · , rℓ, ψ,D)

)
, (10)

with Γ(r1, · · · , rℓ, ψ,D) = (γij)1≤i,j≤ℓ the covariance matrix such that

γij =
8(rirj)

2−D

K2
(ψ,D)dij

∞∑

m=−∞

( ∫ ∞

0

ψ̂(uri)ψ̂(urj)

uD
cos(u dijm) du

)2

. (11)

The same result under weaker assumptions on ψ can be also established when X is a long memory process.

Proposition 2 Define ℓ ∈ N \ {0, 1} and (r1, · · · , rℓ) ∈ (N∗)ℓ. Let (an)n∈N be such that N/aN −→
N→∞

∞ and

aN ·N−1/(1+2D′) −→
N→∞

∞. Under Assumption W (5/2) and Assumption A1 with D ∈ (0, 1) and D′ ∈ (0, 2),

the CLT (10) holds.

8



These results can be easily generalized for processes with polynomial trends if ψ is considered having its first

m vanishing moments. i.e,

Corollary 3 Given the same hypothesis as in Proposition 1 or 2 and if ψ is such that m ∈ N \ {0, 1} is

satisfying,

∫
tpψ(t) dt = 0 for all p ∈ {0, 1, . . . ,m− 1} the CLT (10) also holds for any process X ′ = (X ′

t)t∈Z

such that for all t ∈ Z, EX ′
t = Pm(t) with Pm(t) = a0 + a1t + · · · + am−1t

m−1 is a polynomial function and

(ai)0≤i≤m−1 are real numbers.

3 Adaptive estimator of memory parameter using data driven op-

timal scales

The CLT (10) implies the following CLT for the vector (log T̂N (riaN ))i,

√
N

aN

(
log T̂N(riaN ) −D log(riaN ) − log(f∗(0)K(ψ,D))

)
1≤i≤ℓ

D−→
N→∞

Nℓ

(
0 ; Γ(r1, · · · , rℓ, ψ,D)

)
.

and therefore,

(
log T̂N(riaN )

)
1≤i≤ℓ = AN ·




D

K


+

1√
N/aN

(
εi
)
1≤i≤ℓ,

with AN =




log(r1aN ) 1

: :

log(rℓaN ) 1




, K = − log(f∗(0) · K(ψ,D)) and
(
εi
)
1≤i≤ℓ

D−→
N→∞

Nℓ

(
0 ; Γ(r1, · · · , rℓ, ψ,D)

)
.

Therefore, a log-log regression of
(
T̂N(riaN )

)
1≤i≤ℓ on scales

(
riaN

)
1≤i≤ℓ provides an estimator

( D̂(aN )

K̂(aN )

)

of
( D

K

)
such that

( D̂(aN )

K̂(aN )

)
= (A′

N · AN )−1 ·A′
N · Y (r1,...,rℓ)

aN
with Y (r1,...,rℓ)

aN
=
(
log T̂N (riaN ))1≤i≤ℓ, (12)

which satisfies the following CLT,

Proposition 3 Under the Assumptions of the Proposition 1,

√
N

aN

(( D̂(aN )

K̂(aN )

)
−
( D

K

))
D−→

N→∞
N2(0 ; (A′ · A)−1 · A′ · Γ(r1, · · · , rℓ, ψ,D) · A · (A′ · A)−1), (13)
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with A =




log(r1) 1

: :

log(rℓ) 1




and Γ(r1, · · · , rℓ, ψ,D) given by (11).

Moreover, under Assumption A1’ and if D ∈ (−1, 1), D̂(aN ) is a semi-parametric estimator of D and its

asymptotic mean square error can be minimized with an appropriate scales sequence (aN ) reaching the well-

known minimax rate of convergence for memory parameter D in this semi-parametric setting (see for instance

Giraitis et al., 1997 and 2000). Indeed,

Proposition 4 Let X satisfy Assumption A1’ with D ∈ (−1, 1) and ψ the assumption W (∞). Let (aN ) be a

sequence such that aN = [N1/(1+2D′)]. Then, the estimator D̂(aN ) is rate optimal in the minimax sense, i.e.

lim sup
N→∞

sup
D∈(−1,1)

sup
f∗∈H(D′,CD′ )

N
2D′

1+2D′ · E[D̂(aN ) −D)2] < +∞.

Remark 6 As far as we know, there are no theoretic results of optimality in case of D ≤ −1, but according

to the usual following non-parametric theory, such minimax results can also be obtained. Moreover, in case

of long-memory processes (if D ∈ (0, 1)), under Assumption A1’ for X and Assumption W (5/2) for ψ, the

estimator D̂(aN ) is also rate optimal in the minimax sense.

In the previous Propositions 1 and 3, the rate of convergence of scale aN obeys to the following condition,

N

aN
−→
N→∞

∞ and
aN

N1/(1+2D′)
−→
N→∞

∞ with D′ ∈ (0,∞).

Now, for better readability, take aN = Nα. Then, the above condition goes as follow:

aN = Nα with α∗ < α < 1 and α∗ =
1

1 + 2D′ . (14)

Thus an optimal choice (leading to a faster convergence rate of the estimator) is obtained for α = α∗ + ε

with ε → 0+. But α∗ depends on D′ which is unknown. To solve this problem, Veitch et al. (2003) sug-

gest a chi-square-based test (constructed from a distance between the regression line and the different points

(log T̂N (riaN ), log(riaN )). It seems to be an efficient and interesting numerical way to estimate D, but with-

out theoretical proofs (contrary to global or local log-periodogram procedures which are proved to reach the

minimax convergence rate, see for instance Moulines and Soulier, 2003).

We suggest a new procedure for the data-driven selection of optimal scales, i.e. optimal α. Let us con-

sider an important parameter, the number of considered scales ℓ ∈ N\{0, 1, 2} and set (r1, . . . , rℓ) = (1, . . . , ℓ).

For α ∈ (0, 1), define also

10



• the vector YN (α) =
(
log T̂N(i ·Nα)

)
1≤i≤ℓ;

• the matrix AN (α) =




log(Nα) 1

: :

log(ℓ ·Nα) 1




;

• the contrast, QN(α,D,K) =
(
YN (α) −AN (α) ·

( D

K

))′
·
(
YN (α) − AN (α) ·

( D

K

))
.

QN (α,D,K) corresponds to a squared distance between the ℓ points
(
log(i ·Nα) , logTN (i ·Nα)

)
i
and a line.

The point is to minimize this contrast for these three parameters. It is obvious that for a fixed α ∈ (0, 1) Q is

minimized from the previous least square regression and therefore,

QN (α̂N , D̂(aN ), K̂(aN )) = min
α∈(0,1),D<1,K∈R

QN (α,D,K).

with (D̂(aN ), K̂(aN )) obtained as in relation (12). However, since α̂N has to be obtained from numerical

computations, the interval (0, 1) can be discretized as follows,

α̂N ∈ AN =
{ 2

logN
,

3

logN
, . . . ,

log[N/ℓ]

logN

}
.

Hence, if α ∈ AN , it exists k ∈ {2, 3, . . . , log[N/ℓ]} such that k = α · logN .

Remark 7 This choice of discretization is implied by the following proof of the consistency of α̂N . If the

interval (0, 1) is stepped in Nβ points, with β > 0, the used proof cannot attest this consistency. Finally,

it is the same framework as the usual discrete wavelet transform (see for instance Veitch et al., 2003) but

less restricted since logN may be replaced in the previous expression of AN by any negligible function of N

compared to functions Nβ with β > 0 (for instance, (logN)d or d logN can be used).

Consequently, take

Q̂N(α) = QN (α, D̂(aN ), K̂(aN ));

then, minimize QN for variables (α,D,K) is equivalent to minimize Q̂N for variable α ∈ AN , that is

Q̂N (α̂N ) = min
α∈AN

Q̂N(α).

From this central limit theorem derives

Proposition 5 Let X satisfy Assumption A1’ and ψ Assumption W (∞) (or Assumption W (5/2) if 0 < D < 1

and 0 < D′ ≤ 2). Then,

α̂N =
log âN
logN

P−→
N→∞

α∗ =
1

1 + 2D′ .

11



This proves also the consistency of an estimator D̂′
N of the parameter D′,

Corollary 4 Taking the hypothesis of Proposition 5, we have

D̂′
N =

1 − α̂N
2α̂N

P−→
N→∞

D′.

The estimator α̂N defines the selected scale âN such that âN = N α̂N . From a straightforward application of

the proof of Proposition 5 (see the details in the proof of Theorem 1), the asymptotic behavior of âN can be

specified, that is,

Pr
( Nα∗

(logN)λ
≤ N α̂N ≤ Nα∗ · (logN)µ

)
P−→

N→∞
1, (15)

for all positive real numbers λ and µ such that λ > 2
(ℓ−2)D′

and µ > 12
ℓ−2 . Consequently, the selected scale is

asymptotically equal to Nα∗

up to a logarithm factor.

Finally, Proposition 5 can be used to define an adaptive estimator of D. First, define the straightforward

estimator

̂̂
DN = D̂(âN ),

which should minimize the mean square error using âN . However, the estimator
̂̂
DN does not attest a CLT

since Pr(α̂N ≤ α∗) > 0 and therefore it can not be asserted that E(
√
N/âN(

̂̂
DN−D)) = 0. To establish a CLT

satisfied by an adaptive estimator D̃N of D, an adaptive scale sequence (ãN ) = (N α̃N ) has to be defined to

ensure Pr(α̃N ≤ α∗) −→
N→∞

0. The following theorem provides the asymptotic behavior of such an estimator,

Theorem 1 Let X satisfy Assumption A1’ and ψ Assumption W (∞) (or Assumption W (5/2) if 0 < D < 1

and 0 < D′ ≤ 2). Define,

α̃N = α̂N +
3

(ℓ− 2)D̂′
N

· log logN

logN
, ãN = N α̃N = N α̂N ·

(
logN

) 3

(ℓ−2)D̂′
N and D̃N = D̂(ãN ).

Then, with σ2
D = (1 0) · (A′ ·A)−1 · A′ · Γ(1, · · · , ℓ, ψ,D) ·A · (A′ ·A)−1 · (1 0)′,

√
N

N α̃N

(
D̃N −D

) D−→
N→∞

N (0 ; σ2
D) and ∀ρ > 2(1 + 3D′)

(ℓ − 2)D′ ,
N

D′

1+2D′

(logN)ρ
·
∣∣D̃N −D

∣∣ P−→
N→∞

0. (16)

Remark 8 Both the adaptive estimators
̂̂
DN and D̃N converge to D with a rate of convergence rate equal

to the minimax rate of convergence N
D′

1+2D′ up to a logarithm factor (this result being classical within this

semi-parametric framework). Unfortunately, our method cannot prove that the mean square error of both these

estimators reaches the optimal rate and therefore to be oracles.

To conclude this theoretic approach, the main properties satisfied by the estimators
̂̂
DN and D̃N can be

summarized as follows:

12



1. Both the adaptive estimators
̂̂
DN and D̃N converge at D with a rate of convergence rate equal to the

minimax rate of convergence N
D′

1+2D′ up to a logarithm factor for all D < −1 and D′ > 0 (this being

very general conditions covering long and short memory, even larger than usual conditions required for

adaptive log-periodogram or local Whittle estimators) whith X considered a Gaussian process.

2. The estimator D̃N satisfies the CLT (16) and therefore sharp confidence intervals for D can be computed

(in which case, the asymptotic matrix Γ(1, . . . , ℓ, ψ,D) is replaced by Γ(1, . . . , ℓ, ψ, D̂N)). This is not

applicable to an adaptive log-periodogram or local Whittle estimators.

3. The main Property 1 is also satisfied without the Gaussian hypothesis. Therefore, adaptive estimators

̂̂
DN and D̃N can also be interesting estimators of D for non-Gaussian processes like linear or more general

processes (but a CLT similar to Theorem 1 has to be established...).

4. Under additive assumptions on ψ (ψ is supposed to have its first m vanishing moments), both estimators

̂̂
DN and D̃N can also be used for a process X with a polynomial trend of degree ≤ m− 1, which again

cannot be yielded with an adaptive log-periodogram or local Whittle estimators.

4 Simulations

The adaptive wavelet basis estimators
̂̂
DN and D̃N are new estimators of the memory parameter D in the

semi-parametric frame. Different estimators of this kind are also reported in other research works to have

proved optimal. In this paper, some theoretic advantages of adaptive wavelet basis estimators have been high-

lighted. But what about concrete procedure and results of such estimators applied to an observed sample?

The following simulations will help to answer this question.

First, the properties (consistency, robustness, choice of the parameter ℓ and mother wavelet function ψ) of

̂̂
DN and D̃N are investigated. Secondly, in cases of Gaussian long-memory processes (with D ∈ (0, 1) and

D′ ≤ 2), the simulation results of the estimator
̂̂
DN are compared to those obtained with the best known

semi-parametric long-memory estimators.

To begin with, the simulations conditions have to be specified. The results are obtained from 100 gener-

ated independent samples of each process belonging to the following ”benchmark”. The concrete procedures

of generation of these processes are obtained from the circulant matrix method, as detailed in Doukhan et al.

(2003). The simulations are realized for different values of D, N and processes which satisfy Assumption A1’

and therefore Assumption A1 (the article of Moulines et al., 2007, gives a lot of details on this point):

13



1. the fractional Gaussian noise (fGn) of parameter H = (D + 1)/2 (for −1 < D < 1) and σ2 = 1. The

spectral density ffGn of a fGn is such that f∗
fGn is included in H(2, C2) (thus D′ = 2);

2. the FARIMA[p,d,q] process with parameter d such that d = D/2 ∈ (−0.5, 0.5) (therefore −1 < D < 1),

the innovation variance σ2 satisfying σ2 = 1 and p, q ∈ N. The spectral density fFARIMA of such a

process is such that f∗
FARIMA is included in the set H(2, C2) (thus D′ = 2);

3. the Gaussian stationary process X(D,D′), such that its spectral density is

f3(λ) =
1

λD
(1 + λD

′

) for λ ∈ [−π, π], (17)

with D ∈ (−∞, 1) and D′ ∈ (0,∞). Therefore f∗
3 = 1 + λD

′ ∈ H(D′, 1) with D′ ∈ (0,∞).

In the long memory frame, a ”benchmark” of processes is considered for D = 0.1, 0.3, 0.5, 0.7, 0.9:

• fGn processes with parameters H = (D + 1)/2 and σ2 = 1;

• FARIMA[0,d,0] processes with d = D/2 and standard Gaussian innovations;

• FARIMA[1,d,0] processes with d = D/2, standard Gaussian innovations and AR coefficient φ = 0.95;

• FARIMA[1,d,1] processes with d = D/2, standard Gaussian innovations and AR coefficient φ = −0.3

and MA coefficient φ = 0.7;

• X(D,D′) Gaussian processes with D′ = 1.

4.1 Properties of adaptive wavelet basis estimators from simulations

Below, we give the different properties of the adaptive wavelet based method.

Choice of the mother wavelet ψ: For short memory processes (D ≤ 0), let the wavelet ψSM be such

that ψSM(t) = (t2 − t + a) exp(−1/t(1 − t)) with a ≃ 0.23087577. It satisfies Assumption W (∞). Lemarié-

Meyer wavelets can be also investigated but this will lead to quite different theoretic studies since its support

is not bounded (but ”essentially” compact).

For long memory processes (0 < D < 1), let the mother wavelet ψLM be such that ψLM (t) = 100 · t2(t −

1)2(t2 − t + 3/14)I0≤t≤1 which satisfies Assumption W (5/2). Note that Daubechies mother wavelet or ψSM

lead to ”similar” results (but not as good).

14



Choice of the parameter ℓ: This parameter is very important to estimate the ”beginning” of the lin-

ear part of the graph drawn by points (log(ai), log T̂ (ai))i. On the one hand, if ℓ is a too small a number

(for instance ℓ = 3), another small linear part of this graph (even before the ”true” beginning Nα∗

) may be

chosen; consequently, the
√
MSE (square root of the mean square error) of α̂N and therefore of

̂̂
DN or D̃N

will be too large. On the other hand, if ℓ is a too large a number (for instance ℓ = 50 for N = 1000), the

estimator α̂N will certainly satisfy α̂N < α∗ since it will not be possible to consider ℓ different scales larger

than Nα∗

(if D′ = 1 therefore α′ = 1/3, then aN has to satisfy: N/(50aN) = 20/aN is a large number and

(aN > N1/3 = 10; this is not really possible). Moreover, it is possible that a ”good” choice of ℓ depends on

the ”flatness” of the spectral density f , i.e. on D′. We have proceeded to simulations for each different values

of ℓ (and N and D). Only
√
MSE of estimators are presented. The results are specified in Table 1.

In Table 1, two phenomena can be distinguished: the detection of α∗ and the estimation of D:

• To estimate α∗, ℓ has to be small enough, especially because of ”D′ close to 0” and so ”α′ close to 1” is

possible. However, our simulations indicate that ℓ must not be too small (for instance ℓ = 5 leads to an

important MSE for α̂N implying an important MSE for
̂̂
DN ) and seems to be independent of N (cases

N = 1000 and N = 10000 are quite similar). Hence, our choice is ℓ1 = 15 to estimate α∗ for any N .

• To estimate D, once α∗ is estimated, a second value ℓ2 of ℓ can be chosen. We use an adaptive procedure

which, roughly speaking, consists in determining the “end” of the acceptable linear zone. Firstly, we

use again the same procedure than for estimating âN but with scales (aN/i)1≤i≤ℓ1 and ℓ1 = 15. It

provides an estimator b̂N corresponding to the maximum of acceptable (for a linear regression) scales.

Secondly, the adaptive number of scales ℓ2 is computed from the formula ℓ2 = ℓ̂ = [̂bN/âN ].

The simulations carried out with such values of ℓ1 and ℓ2 are detailed in Table 1.

As it may be seen in Table 1, the choice of parameters (ℓ1 = 15, ℓ2 = ℓ̂) provides the best results for estimating

D, almost uniformly for all processes.

Consistency of the estimators α̂N and α̃N : the previous numerical results (here we consider ℓ1 = 15)

show that α̂N and α̃N converge (very slowly) to the optimal rate α∗, that is 0.2 for the first four processes and

1/3 for the fifth. Figure 1 illustrates the evolution with N of the log-log plotting and the choice of the onset

of scaling.

Figure 1 shows that logTN(i ·Nα) is not a linear function of the logarithm of the scales log(i ·Nα) when N

increases and α < α∗ (a consequence of Property 1: it means there is a bias). Moreover, if α > α∗ and α
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Figure 1: Log-log graphs for different samples of X(D,D′) with D = 0.5 and D′ = 1 when N = 103 (up and

left,
̂̂
DN ≃ 1.04), N = 104 (up and right,

̂̂
DN ≃ 0.66), N = 105 (down and left,

̂̂
DN ≃ 0.62) and N = 106

(down and right,
̂̂
DN ≃ 0.54).

increases, a linear model appears with an increasing error variance.

Consistency and distribution of the estimators
̂̂
DN and D̃N : The results of Table 1 show the consis-

tency with N of
̂̂
DN and D̃N only by using ℓ1 = 15. Figure 2 provides the histograms of

̂̂
DN and D̃N for 100

independent samples of FARIMA(1, d, 1) processes with D = 0.5 and N = 105. Both the histograms of Figure

2 are similar to Gaussian distribution histograms. It is not surprising for D̃N since Theorem 1 shows that the

asymptotic distribution of D̃N is a Gaussian distribution with mean equal to D. The asymptotic distribution

of
̂̂
DN and the Gaussian distribution seem also to be similar. A Cramer-von Mises test of normality indicates

that both distributions of
̂̂
DN and D̃N can be considered a Gaussian distribution (respectively W ≃ 0.07,

p− value ≃ 0.24 and W ≃ 0.05, p− value ≃ 0.54).
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Figure 2: Histograms of
̂̂
DN and D̃N for 100 samples of FARIMA(1, d, 1) with D = 0.5 for N = 105.

Consistency in case of short memory: The following Table 2 provides the behavior of
̂̂
DN and D̃N

if D ≤ 0 and D′ > 0. Two processes are considered in such a frame: a FARIMA(0, d, 0) process with

−0.5 < d < 0 and therefore −1 < D ≤ 0 (always with D′ = 2) and a process X(D,D′) and D < 0 and D′ > 0.

The results are displayed in Table 4.1 (here N = 1000, N = 10000 and N = 100000, ℓ1 = 15 and ℓ2 = [5N0.1])

for different choices of D and D′. Thus it appears that
̂̂
DN and D̃N can be successively applied to short

memory processes as well. Moreover, the larger D′, the faster their convergence rates.

Robustness of
̂̂
DN , D̃N : To conclude with the numerical properties of the estimators, four different processes

not satisfying Assumption A1′ are considered:

• a FARIMA(0, d, 0) process (denoted P1) with innovations satisfying a uniform law (and EX2
i <∞);

• a FARIMA(0, d, 0) process (denoted P2) with innovations satisfying a distribution with density w.r.t.

Lebesgue measure f(x) = 3/4 ∗ (1 + |x|)−5/2 for x ∈ R (and therefore E|Xi|2 = ∞ but E|Xi| <∞);

• a FARIMA(0, d, 0) process (denoted P3) with innovations satisfying a Cauchy distribution (and E|Xi| =

∞);

• a Gaussian stationary process (denoted P4) with a spectral density f(λ) = (|λ| − π/2)−1/2 for all

λ ∈ [−π, π] \ {−π/2, π/2}. The local behavior of f in 0 is f(|λ|) ∼
√
π/2 |λ|D with D = 0, but the

smoothness condition for f in Assumption A1 is not satisfied.

For the first 3 processes, D is varies in {0.1, 0.3, 0.5, 0.7, 0.9} and 100 independent replications are taken into

account. The results of these simulations are given in Table 3.

17



As outlined in the theoretical part of this paper, the estimators
̂̂
DN and D̃N seem also to be accurate for

L
2-linear processes. For L

α-linear processes with 1 ≤ α < 2, they are also convergent with a slower rate of

convergence. Despite the spectral density of process P4 does not satisfies the smoothness hypothesis requires

in Assumptions A1 or A1’, the convergence rates of
̂̂
DN and D̃N are still convincing. These results confirm

the robustness of wavelet based estimators.

4.2 Comparisons with other semi-parametric long-memory parameter estimators

from simulations

Here we consider only long-memory Gaussian processes (D ∈ (0, 1)) based on the usual hypothesis 0 < D′ ≤ 2.

More precisely, the ”benchmark” is: 100 generated independent samples of each process with length N = 103

andN = 104 and different values ofD, D = 0.1, 0.3, 0.5, 0.7, 0.9. Several different semi-parametric estimators

of D are considered:

• D̂BGK is an ”optimal” parametric Whittle estimator obtained from a BIC criterium model selection

of fractionally differenced autoregressive models (introduced by Bhansali it et al., 2006). The required

confidence interval of the estimation D̂BGK is [D̂R − 2/N1/4 , D̂R − 2/N1/4];

• D̂GRS is an adaptive local periodogram estimator introduced by Giraitis et al (2000). It requires two

parameters: a bandwidth parameter m, with a procedure of determination provided in this article, and

a number of low trimmed frequencies l (satisfying different conditions but without being fixed in this

paper; after a number of simulations, l = max(m1/3, 10) is chosen);

• D̂MS is an adaptive global periodogram estimator introduced by Moulines and Soulier (1998, 2003), also

called FEXP estimator, with bias-variance balance parameter κ = 2;

• D̂R is a local Whittle estimator introduced by Robinson (1995). The trimming parameter is m = N/30;

• D̂ATV is an adaptive wavelet based estimator introduced by Veitch et al. (2003) using a Db4 wavelet

(and described above);

• ̂̂
DN defined previously with ℓ1 = 15 and ℓ2 = N1−α̂N /10 and a mother wavelet ψ(t) = 100 ·t2(t−1)2(t2−

t+ 3/14)I0≤t≤1 satisfying assumption W (5/2).

Softwares (using Matlab language) for computing some of these estimators are available on Internet (see the

website of D. Veitch http://wwww.cubinlab.ee.mu.oz.au/∼darryl/ for D̂ATV and the homepage of E.

Moulines http://www.tsi.enst.fr/∼moulines/ for D̂MS and D̂R). The other softwares are available on
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http://samos.univ-paris1.fr/spip/-Jean-Marc-Bardet. Simulation results are reported in Table 4.

Comments on the results of Table 4: These simulations allow to distinguish four ”clusters” of estimators.

• D̂BGK is obtained from a BIC-criterium hierarchical model selection (from 2 to 11 parameters, cor-

responding to the length of the approximation of the Fourier expansion of the spectral density) using

Whittle estimation. For these simulations, the BIC criterion is generally minimal for 5 to 7 parameters

to be estimated. Simulation results are not very satisfactory except for D = 0.1 (close to the short

memory). Moreover, this procedure is rather time-consuming.

• D̂GRS offers good results for fGn and FARIMA(0, d, 0). However, this estimator does not converge fast

enough for the other processes.

• Estimators D̂MS and D̂R have similar properties. They (especially D̂R) are very interesting because

they offer the same fairly good rates of convergence for all processes of the benchmark.

• Being built on similar principles, estimators D̂ATV and
̂̂
DN have similar behavior as well. Their con-

vergence rates are the fastest for fGn and FARIMA(0, d, 0) and are almost close to fast ones for the

other processes. Their times of computing, especially for D̂ATV for which the computations of wavelet

coefficients with that the Mallat algorithm, are the shortest.

Conclusion: Which estimator among those studied above has to be chosen in a practical frame, i.e. an

observed time series? We propose the following procedure for estimating an eventual long memory parameter:

1. Firstly, since this procedure is very low time consuming and applicable to processes with smooth trends,

draw the log-log regression of wavelet coefficients’ variances onto scales. If a linear zone appears in this

graph, consider the estimator
̂̂
DN (or D̂ATV ) of D.

2. If a linear zone appears in the previous graph and if the observed time series seems to be without a

trend, compute D̂R.

3. Compare both the estimated value of D from confidence intervals (available for
̂̂
DN or D̂ATV and D̂R).

5 Proofs

Proof [Property 1] The arguments of this proof are similar to those of Abry et al. (1998) or Moulines et al.
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(2007). First, for a ∈ N
∗,

E(e2(a, 0)) =
1

a

a∑

k=1

a∑

k′=1

ψ(k/a)ψ(k′/a)E(XkXk′)

=
1

a

a∑

k=1

a∑

k′=1

ψ(k/a)ψ(k′/a)r(k − k′)

=
1

a

a∑

k=1

a∑

k′=1

ψ(k/a)ψ(k′/a)

∫ π

−π
f(λ)eiλ(k−k′)dλ

=

∫ aπ

−aπ
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a

)
× 1

a2

a∑

k=1
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ψ
(k
a

)
ψ
(k′
a

)
eiu
(

k
a− k′

a

)
du

=
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−aπ
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a

)
×
{(1
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a∑
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ψ
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)
cos
(k
a
u
))2

+
(1

a

a∑

k=1

ψ
(k
a

)
sin
(k
a
u
))2
}
du (18)

Now, it is well known that if ψ ∈ W̃ (β, L) the Sobolev space with parameters β > 1/2 and L > 0, then

sup
|u|≤aπ

∆a(u) ≤ Cβ,L
1

aβ−1/2
with ∆a(u) :=

∣∣∣1
a

a∑

k=1

ψ
(k
a

)
e−iu

k
a −

∫ 1

0

ψ(t)e−iutdt
∣∣∣, (19)

with Cβ,L > 0 only depending on β and L (see for instance Devore and Lorentz, 1993). Therefore if ψ satisfies

Assumption W (∞) and X Assumption A1, for all β > 1/2, since supu∈R
|ψ̂(u)| <∞,

∣∣∣E(e2(a, 0)) −
∫ aπ

−aπ
f
(u
a

)
× |ψ̂(u)|2 du

∣∣∣ ≤ 2Cβ,L
2

aβ−3/2

∫ aπ

0

f
(u
a

)
|ψ̂(u)| du+ C2

β,L

2

a2β−2

∫ aπ

0

f
(u
a

)
du

≤ 2 · C2
β,L

2

a2β−3

∫ π

0

f(v) dv, (20)

since supu∈R(1 + un)|ψ̂(u)| < ∞ for all n ∈ N. Consequently, if ψ satisfies Assumption W (∞), for all n > 0,

for all a ∈ N
∗, there exists C(n) > 0 not depending on a such that

∣∣∣E(e2(a, 0)) −
∫ aπ

−aπ
f
(u
a

)
× |ψ̂(u)|2 du

∣∣∣ ≤ C(n)
1

an
. (21)

But from Assumption W (∞), for all c < 1,

K(ψ,c) =

∫ ∞

−∞

|ψ̂(u)|2
|u|c du <∞,

because Assumption W (∞) implies that |ψ̂(u)| = O(|u|) when u → 0 and there exists p > 1 − c such that

supu∈R
|ψ̂(u)|2(1 + |u|)p <∞. Moreover, for all p > 1 − c,

∣∣∣
∫ aπ

−aπ

|ψ̂(u)|2
|u|c du−K(ψ,c)

∣∣∣ = 2

∫ ∞

aπ

|ψ̂(u)|2
uc

du

≤ C ·
∫ ∞

aπ

1

up+c
du

≤ C′ · 1

ap+c−1
,

with C > 0 and C′ > 0 not depending on a. As a consequence, under Assumption A1, for all p > 1 −D, all

n ∈ N and all a ∈ N
∗,

∣∣∣E(e2(a, 0)) − f∗(0) ·
∫ ∞

−∞

|ψ̂(u)|2
|u/a|D du

∣∣∣ ≤ 2f∗(0)aD
∫ ∞

aπ

|ψ̂(u)|2
uD

du + CD′aD−D′

∫ aπ

−aπ

|ψ̂(u)|2
|u|D−D′

du+ C(n)
1

an

=⇒
∣∣∣E(e2(a, 0)) − f∗(0)K(ψ,D) · aD

∣∣∣ ≤ C′f∗(0) · a1−p + CD′K(ψ,D−D′) · aD−D′

.
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Now, by choosing p such that 1 − p < D −D′, the inequality (6) is obtained. 2

Proof [Property 2] Using the proof of previous Property 1, with Assumption W (5/2), ψ is included in a

Sobolev space W̃ (5/2, L), inequality (19) is checked with β = 5/2 and (20) is replaced by

∣∣∣E(e2(a, 0)) − a

∫ aπ

−aπ
f
(u
a

)
× |ψ̂(u)|2 du

∣∣∣ ≤ 2 · C2
5/2,L

2

a2

∫ π

0

f(v) dv, (22)

since supu∈R(1 + u3/2)|ψ̂(u)| <∞. Therefore, inequality (21) is replaced by

∣∣∣E(e2(a, 0)) − a

∫ aπ

−aπ
f
(u
a

)
× |ψ̂(u)|2 du

∣∣∣ ≤ C(2)
1

a2
.

The end of the proof is similar to the end of the previous proof, but now K(ψ,c) exists for −2 < c < 1 and

∣∣∣
∫ aπ

−aπ

|ψ̂(u)|2
|u|c du−K(ψ,c)

∣∣∣ ≤ C′ · 1

a2+c
.

Finally, under Assumption A1’, for all a ∈ N
∗, since −2 < D −D′ < 1,

∣∣∣E(e2(a, 0)) − f∗(0)K(ψ,D) · aD
∣∣∣ ≤ CD′K(ψ,D−D′) · aD−D′

+ C′ 1

a2
,

which achieves the proof. 2

Proof [Corollary 1] Both these proofs provide main arguments to establish (7). For better readability ,

we will consider only Assumption A1’ and Assumption W (∞) (the long memory process being similar). The

main difference consists in specifying the asymptotic behavior of

∫ aπ

−aπ
f
(u
a

)
× |ψ̂(u)|2 du. But,

∫ aπ

−aπ
f
(u
a

)
× |ψ̂(u)|2 du =

∫ √
a

−√
a

f
(u
a

)
× |ψ̂(u)|2 du + 2

∫ aπ

√
a

f
(u
a

)
× |ψ̂(u)|2 du. (23)

The asymptotic behavior of ψ̂(u) when u → ∞ (ψ is considered to satisfy Assumption W (∞)), this behavior

induces that

∫ aπ

√
a

f
(u
a

)
× |ψ̂(u)|2 du ≤ CaD

∫ ∞

√
a

u−D × |ψ̂(u)|2 du ≤ C(n)

an
, (24)

for all n ∈ N. Moreover,

∫ √
a

−√
a

f
(u
a

)
|ψ̂(u)|2 du = f∗(0)

∫ √
a

−√
a

(∣∣∣u
a

∣∣∣
−D

+ CD′

∣∣∣u
a

∣∣∣
D′−D)

|ψ̂(u)|2 du

+

∫ √
a

−√
a

(
f
(u
a

)
− f∗(0)

(∣∣∣u
a

∣∣∣
−D

+ CD′

∣∣∣u
a

∣∣∣
D′−D))

|ψ̂(u)|2 du. (25)

From computations of previous proofs,

∫ √
a

−√
a

(∣∣∣u
a

∣∣∣
−D

+ CD′

∣∣∣u
a

∣∣∣
D′−D)

|ψ̂(u)|2 du = K(ψ,D) · aD + CD′K(ψ,D−D′) · aD−D′

+ Λ(a), (26)

21



and |Λ(a)| ≤ C(n)

an
. Finally, using f(λ) = f∗(0)

(
|λ|−D + CD′ |λ|D′−D)+ o

(
|λ|D′−D) when λ→ 0, we obtain

∫ √
a

−√
a

(
f
(u
a

)
− f∗(0)

(∣∣∣u
a

∣∣∣
−D

+ CD′

∣∣∣u
a

∣∣∣
D′−D))

|ψ̂(u)|2 du

=

∫ √
a

−√
a

∣∣∣u
a

∣∣∣
D−D′(

f
(u
a

)
− f∗(0)

(∣∣∣u
a

∣∣∣
−D

+ CD′

∣∣∣u
a

∣∣∣
D′−D))

|ψ̂(u)|2
∣∣∣u
a

∣∣∣
D′−D

du

= aD−D′

∫ √
a

−√
a

g(u, a)|ψ̂(u)|2|u|D′−Ddu,

with for all u ∈ [−√
a,
√
a], g(u, a) → 0 when a → ∞. Therefore, from Lebesgue Theorem (checked from the

asymptotic behavior of ψ̂),

lim
a→∞

aD−D′

∫ √
a

−√
a

(
f
(u
a

)
− f∗(0)

(∣∣∣u
a

∣∣∣
−D

+ CD′

∣∣∣u
a

∣∣∣
D′−D))

|ψ̂(u)|2 du = 0. (27)

As a consequence, from (23), (24), (25), (26) and (27), the corollary is proven. 2

Proof [Proposition 1] This proof can be decomposed into three steps :Step 1, Step 2 and Step 3.

Step 1. In this part,
N

aN
· Cov(T̃N (riaN ), T̃N(rjaN ))1≤i,j≤ℓ is proven to converge at an asymptotic covariance

matrix Γ. First, for all (i, j) ∈ {1, . . . , ℓ}2,

Cov(T̃N (riaN ), T̃N (rjaN )) = 2
1

[N/riaN ]

1

[N/rjaN ]

[N/riaN ]∑

p=1

[N/rjaN ]∑

q=1

(
Cov(ẽ(riaN , p), ẽ(rjaN , q)

)2

, (28)

because X is a Gaussian process. Therefore, by considering only i = j and p = q, for N and aN large enough,

Cov(T̃N (riaN ), T̃N (riaN )) ≥ 1

ri

N

aN
. (29)

Now, for (p, q) ∈ {1, . . . , [N/riaN ]} × {1, . . . , [N/riaN ]},

Cov
(
ẽ(riaN , p), ẽ(rjaN , q)

)
=
a1−D
N (rirj)

(1−D)/2

f∗(0)K(ψ,D)

1

riaN

1

rjaN

riaN∑

k=1

rjaN∑

k′=1

ψ
( k

riaN

)
ψ
( k′

rjaN

)
r
(
k − k′ + aN (rip− rjq)

)

=
a1−D
N (rirj)

(1−D)/2

f∗(0)K(ψ,D)

1

riaN

1

rjaN

riaN∑

k=1

rjaN∑

k′=1

ψ
( k

riaN

)
ψ
( k′

rjaN

) ∫ π

−π
dλ f(λ)e−iλ(k−k′+aN (rip−rjq))

=
(rirj)

(1−D)/2

aDNf
∗(0)K(ψ,D)

1

riaN

1

rjaN

riaN∑

k=1

rjaN∑

k′=1

ψ
( k

riaN

)
ψ
( k′

rjaN

) ∫ πaN

−πaN

du f
( u
aN

)
e
−iu( k

aN
− k′

aN
+rip−rjq).

Using the same expansion as in (21), under Assumption W (∞) the previous equality becomes, for all n ∈ N
∗,

∣∣∣∣Cov
(
ẽ(riaN , p), ẽ(rjaN , q)

)
− (rirj)

(1−D)/2

aDNf
∗(0)K(ψ,D)

∫ πaN

−πaN

du ψ̂(uri)ψ̂(urj)f
( u
aN

)
e−iu(rip−rjq)

∣∣∣∣

≤ C(n)

an+D
N

∫ πaN

−πaN

du
∣∣ψ̂(uri)ψ̂(urj)f

( u
aN

)∣∣

≤ C′(n)

anN

∫ ∞

−∞
du |u|−D

∣∣ψ̂(uri)ψ̂(urj)
∣∣

≤ C′′(n)

anN
, (30)
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with C(n), C′(n), C′′(n) > 0 not depending on aN and due the asymptotic behaviors of ψ̂(u) when u→ 0 and

u→ ∞. Now, under Assumption A1,

∣∣∣∣∣

∫ πaN

−πaN

du ψ̂(uri)ψ̂(urj)f
( u
aN

)
e−iu(rip−rjq) − aNf

∗(0)

∫ π

−π
du

ψ̂(uriaN )ψ̂(urjaN )

|u|D e−iuaN (rip−rjq)

∣∣∣∣∣

≤ aD−D′

N f∗(0)CD′

∫ πaN

−πaN

du

∣∣ψ̂(uri)ψ̂(urj)
∣∣

|u|D−D′

≤ aD−D′

N f∗(0)CD′

∫ ∞

−∞
du

∣∣ψ̂(uri)ψ̂(urj)
∣∣

|u|D−D′
, (31)

since

∫ ∞

−∞
du

∣∣ψ̂(uri)ψ̂(urj)
∣∣

|u|D−D′
< ∞ from Assumption W (∞). Finally, from (30) and (31), we have C > 0 not

depending on N such that for all aN ∈ N
∗,

∣∣∣∣∣Cov
(
ẽ(riaN , p), ẽ(rjaN , q)

)
− a1−D

N (rirj)
(1−D)/2

K(ψ,D)

∫ π

−π
du

ψ̂(uriaN )ψ̂(urjaN )

|u|D e−iuaN (rip−rjq)

∣∣∣∣∣ ≤ C a−D
′

N . (32)

It remains to evaluate a1−D
N

∫ π

−π
du

ψ̂(uriaN )ψ̂(urjaN )

|u|D e−iuaN (rip−rjq) =

∫ πaN

−πaN

du
ψ̂(uri)ψ̂(urj)

|u|D e−iu(rip−rjq). Thus,

if |rip− rjq| ≥ 1, using an integration by parts,

∣∣∣∣∣

∫ πaN

−πaN

du
ψ̂(uri)ψ̂(urj)

|u|D e−iu(rip−rjq)

∣∣∣∣∣ =

∣∣∣∣∣∣
1

−i(rip− rjq)

[
ψ̂(uri)ψ̂(urj)

uD
e−iu(rip−rjq)

]πaN

−πaN

+
1

i(rip− rjq)

∫ πaN

−πaN

du
∂

∂u

( ψ̂(uri)ψ̂(urj)

uD

)
e−iu(rip−rjq)

∣∣∣∣∣

≤ 1

|rip− rjq|

∫ ∞

−∞

(
D

|u|D+1

∣∣ψ̂(uri)ψ̂(urj)
∣∣+ 1

|u|D
∣∣∣ ∂
∂u

(
ψ̂(uri)ψ̂(urj)

)∣∣∣
)
du

≤ C
1

|rip− rjq|
(33)

with C <∞ not depending on N , since:

• ψ̂(πriaN )ψ̂(πrjaN) = ψ̂(−πriaN )ψ̂(−πrjaN ) and sin(πaN (rip− rjq)) = 0;

• from Assumption W (∞), lim supu→0 u
−1 |ψ̂(u)| <∞, lim supu→0

∣∣ ∂
∂u ψ̂(u)

∣∣ <∞

=⇒ lim sup
u→0

u−1
∣∣∣ ∂
∂u

(
ψ̂(uri)ψ̂(urj)

)∣∣∣ <∞;

• from Assumption W (∞), for all n ∈ N, supu∈R(1+ |u|)n |ψ̂(u)| <∞ and supu∈R(1+ |u|)n
∣∣ ∂
∂u ψ̂(u)

∣∣ <∞.

Moreover, if |rip− rjq| = 0, from Cauchy-Schwartz Inequality and Property 1, for aN large enough

∣∣∣Cov
(
ẽ(riaN , p), ẽ(rjaN , q)

)∣∣∣ ≤
(

E(ẽ2(riaN , p)) · E(d̃2(rjaN , q))
)1/2

≤ 2. (34)

Therefore, using (32), (33) and (34) and the inequality (x+ y)2 ≤ 2(x2 + y2) for all (x, y) ∈ R
2, we have C > 0

such that for aN large enough,

Cov2
(
ẽ(riaN , p), ẽ(rjaN , q)

)
≤ C

( 1

(1 + |rip− rjq|)2
+

1

a2D′

N

)
(35)
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Hence, with (28),

∣∣∣Cov(T̃N(riaN ), T̃N(rjaN ))
∣∣∣ ≤ C

1

[N/riaN ]

1

[N/rjaN ]

[N/riaN ]∑

p=1

[N/rjaN ]∑

q=1

( 1

(1 + |rip− rjq|)2
+

1

a2D′

N

)

But, from the theorem of comparison between sums and integrals,

[N/riaN ]∑

p=1

[N/rjaN ]∑

q=1

(1 + |rip− rjq|)−2 ≤ 1

rirj

∫ N/aN

0

∫ N/aN

0

du dv

(1 + |u− v|)2

≤ 2

rirj

∫ N/aN

0

N/aN dw

(1 + w)2

≤ 2

rirj
· N
aN

.

As a consequence, if aN is such that lim sup
N→∞

N

aN

1

a2D′

N

< ∞ then lim sup
N→∞

N

aN

∣∣∣Cov(T̃N (riaN), T̃N (rjaN ))
∣∣∣ < ∞.

More precisely, since this covariance is a sum of positive terms, if lim sup
N→∞

N

aN

1

a2D′

N

= 0,

lim
N→∞

N

aN

(
Cov(S̃N (riaN), S̃N (rjaN ))

)
1≤i,j≤ℓ

= Γ(r1, · · · , rℓ, ψ,D), (36)

a non null (from (29)) symmetric matrix with Γ(r1, · · · , rℓ, ψ,D) = (γij)1≤i,j≤ℓ that can be specified. Indeed,

from the previous computations, if lim sup
N→∞

N

aN

1

a2D′

N

= 0,

γij = lim
N→∞

8rirjaN
N

[N/riaN ]∑

p=1

[N/rjaN ]∑

q=1

((rirj)
(1−D)/2

K(ψ,D)

∫ ∞

0

du
ψ̂(uri)ψ̂(urj)

uD
cos(u(rip− rjq))

)2

= lim
N→∞

8(rirj)
2−DaN

K2
(ψ,D)N

[N/dijaN ]−1∑

m=−[N/dijaN ]+1

(
N

dijaN
− |m|

)(∫ ∞

0

du
ψ̂(uri)ψ̂(urj)

uD
cos(u dijm)

)2

=
8(rirj)

2−D

K2
(ψ,D)dij

∞∑

m=−∞

( ∫ ∞

0

ψ̂(uri)ψ̂(urj)

uD
cos(u dijm) du

)2

,

with dij = GCD(ri ; rj). Therefore, the matrix Γ depends only on on r1, · · · , rℓ, ψ,D.

Step 2.Generaly speaking, the above result is not sufficient to obtain the central limit theorem,

√
N

aN

(
T̃N (riaN ) − E(ẽ2(riaN , 0)

)
1≤i≤ℓ

L−→
N→∞

Nℓ(0,Γ(r1, · · · , rℓ, ψ,D)). (37)

However, each T̃N (riaN ) is a quadratic form of a Gaussian process. Mutatis mutandis, it is exactly the same

framework (i.e. a Lindeberg central limit theorem) as that of Proposition 2.1 in Bardet (2000), and (37) is

checked. Moreover, if (an)n is such that lim sup
N→∞

N

a1+2D′

N

= 0 then using the asymptotic behavior of E(ẽ2(riaN , 0)

provided in Property 1, √
N

aN

(
E(ẽ2(riaN , 0)

)
−→
N→∞

0.

As a consequence, under those assumptions,

√
N

aN

(
T̃N(riaN ) − 1

)
1≤i≤ℓ

L−→
N→∞

Nℓ(0,Γ(r1, · · · , rℓ, ψ,D)). (38)
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Step 3. The logarithm function (x1, .., xℓ) ∈ (0,+∞)ℓ 7→ (log x1, .., log xm) is C2 on (0,+∞)ℓ. As a conse-

quence, using the Delta-method, the central limit theorem (10) for the vector
(
log T̃N (riaN )

)
1≤i≤ℓ

follows

with the same asymptotical covariance matrix Γ(r1, · · · , rℓ, ψ,D) (because the Jacobian matrix of the function

in (1, .., 1) is the identity matrix). 2

Proof [Proposition 2] There is a perfect identity between this proof and that of Proposition 1, both of

which are based on the approximations of Fourier transforms provided in the proof of Property 2. 2

Proof [Corollary 3] It is clear that X ′
t = Xt + Pm(t) for all t ∈ Z, with X = (Xt)t satisfying Proposi-

tion 1 and 2. But, any wavelet coefficient of (Pm(t))t is obviously null from the assumption on ψ. Therefore

the statistic T̂N is the same for X and X ′. 2

Proof [Proposition 5] Let ε > 0 be a fixed positive real number, such that α∗ + ε < 1.

I. First, a bound of Pr(α̂N ≤ α∗ + ε) is provided. Indeed,

Pr
(
α̂N ≤ α∗ + ε

)
≥ Pr

(
Q̂N (α∗ + ε/2) ≤ min

α≥α∗+ε and α∈AN

Q̂N(α)
)

≥ 1 − Pr
( ⋃

α≥α∗+ε and α∈AN

Q̂N(α∗ + ε/2) > Q̂N(α)
)

≥ 1 −
log[N/ℓ]∑

k=[(α∗+ε) logN ]

Pr
(
Q̂N(α∗ + ε/2) > Q̂N

( k

logN

))
. (39)

But, for α ≥ α∗ + 1,

Pr
(
Q̂N (α∗ + ε/2) > Q̂N(α)

)
= Pr

(∥∥∥PN (α∗ + ε/2) · YN (α∗ + ε/2)
∥∥∥

2

>
∥∥∥PN (α) · YN (α)

∥∥∥
2)

with PN (α) = Iℓ − AN (α) ·
(
A′
N (α) · AN (α)

)−1 · AN (α) for all α ∈ (0, 1), i.e. PN (α) is the matrix of an

orthogonal projection on the orthogonal subspace (in R
ℓ) generated by AN (α) (and Iℓ is the identity matrix

in R
ℓ). From the expression of AN (α), it is obvious that for all α ∈ (0, 1),

PN (α) = P = Iℓ −A ·
(
A′ · A

)−1 ·A,
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with the matrix A =




log(r1) 1

: :

log(rℓ) 1




as in Proposition 3. Thereby,

Pr
(
Q̂N (α∗ + ε/2) > Q̂N (α)

)
= Pr

(∥∥∥P · YN (α∗ + ε/2)
∥∥∥

2

>
∥∥∥P · YN (α)

∥∥∥
2)

= Pr

(∥∥∥P ·
√

N

Nα∗+ε/2
YN (α∗ + ε/2)

∥∥∥
2

> Nα−(α∗+ε/2)
∥∥∥P ·

√
N

Nα
YN (α)

∥∥∥
2
)

≤ Pr
(
VN (α∗ + ε/2) > N (α−(α∗+ε/2))/2

)
+ Pr

(
VN (α) ≤ N−(α−(α∗+ε/2))/2

)

with VN (α) =
∥∥∥P ·

√
N

Nα
YN (α)

∥∥∥
2

for all α ∈ (0, 1). From Proposition 1, for all α > α∗, the asymptotic law

of P ·
√

N

Nα
YN (α) is a Gaussian law with covariance matrix P · Γ · P ′. Moreover, the rank of the matrix is

P · Γ · P ′ is ℓ− 2 (this is the rank of P ) and we have

0 < λ−, not depending on N) such that P · Γ · P ′ − λ−P · P ′ is a non-negative matrix (0 < λ− < min{λ ∈

Sp(Γ)}). As a consequence, for a large enough N ,

Pr
(
VN (α) ≤ N−(α−(α∗+ε/2))/2

)
≤ 2 · Pr

(
V− ≤ N−(α−(α∗+ε/2))/2

)

≤ 1

2ℓ/2−2Γ(ℓ/2)
·
( N
λ−

)−( ℓ
2−1) (α−(α∗+ε/2))

2

,

with V− ∼ λ− · χ2(ℓ− 2). Moreover, from Markov inequality,

Pr
(
VN (α∗ + ε/2) > N (α−(α∗+ε/2))/2

)
≤ 2 · Pr

(
exp(

√
V+) > exp

(
N (α−(α∗+ε/2))/4

))

≤ 2 · E(exp(
√
V+)) · exp

(
−N (α−(α∗+ε/2))/4

)

with V+ ∼ λ+ · χ2(ℓ− 2) and λ+ > max{λ ∈ Sp(Γ)} > 0. Like E(exp(
√
V+)) <∞ does not depend on N , we

obtain that M1 > 0 not depending on N , such that for large enough N ,

Pr
(
Q̂N (α∗ + ε/2) > Q̂N (α)

)
≤M1 ·N−( ℓ

2−1) (α−(α∗+ε/2))
2 ,

and therefore, the inequality (39) becomes, for N large enough,

Pr
(
α̂N ≤ α∗ + ε

)
≥ 1 −M1 ·

log[N/ℓ]∑

k=[(α∗+ε) logN ]

N
− (ℓ−2)

4

((
k

log N

)
−(α∗+ε/2)

)

≥ 1 −M1 · logN ·N− (ℓ−2)
12 ε. (40)

II. Secondly, a bound of Pr(α̂N ≥ α∗ − ε) is provided. Following the above arguments and notations ,

Pr
(
α̂N ≥ α∗ − ε

)
≥ Pr

(
Q̂N (α∗ +

1 − α∗

2α∗ ε) ≤ min
α≤α∗−ε and α∈AN

Q̂N(α)
)

≥ 1 −
[(α∗−ε) logN ]+1∑

k=2

Pr
(
Q̂N(α∗ +

1 − α∗

2α∗ ε) > Q̂N
( k

logN

))
, (41)
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and as above,

Pr
(
Q̂N (α∗ +

1 − α∗

2α∗ ε) > Q̂N(α)
)

= Pr

(∥∥∥P ·
√

N

Nα∗+ 1−α∗

2α∗ ε
YN (α∗ +

1 − α∗

2α∗ ε)
∥∥∥

2

> Nα−(α∗+ 1−α∗

2α∗ ε)
∥∥∥P ·

√
N

Nα
YN (α)

∥∥∥
2
)
. (42)

Now, in the case aN = Nα with α ≤ α∗, the sample variance of wavelet coefficients is biased. In this case,

from the relation of Corollary 1 under Assumption A1’,

(
YN (α)

)
1≤i≤ℓ

=
(CD′K(ψ,D−D′))

f∗(0)K(ψ,D)
(iNα)−D

′

(1 + oi(1))
)

1≤i≤ℓ
+
(√Nα

N
· εN (α)

)
1≤i≤ℓ

,

with oi(1) → 0 when N → ∞ for all i and E(ZN (α)) = 0. As a consequence, for large enough N ,

∥∥∥P ·
√

N

Nα
YN (α)

∥∥∥
2

=
∥∥∥P · εN (α)

∥∥∥
2

+N
α∗

−α
α∗

∥∥∥P ·
(CD′K(ψ,D−D′))

f∗(0)K(ψ,D)
i−D

′

(1 + oi(1))
)

1≤i≤ℓ

∥∥∥
2

≥ D ·N α∗
−α

α∗ ,

with D > 0, because the vector (i−D
′

)1≤i≤ℓ is not in the orthogonal subspace of the subspace generated by

the matrix A. Then, the relation (42) becomes,

Pr
(
Q̂N (α∗ +

1 − α∗

2α∗ ε) > Q̂N(α)
)

≤ Pr
(∥∥∥P ·

√
N

Nα∗+ 1−α∗

2α∗ ε
YN (α∗ +

1 − α∗

2α∗ ε)
∥∥∥

2

≥ D ·Nα−(α∗+ 1−α∗

2α∗ ε) ·N α∗
−α

α∗

)

≤ Pr
(
V+ ≥ D ·N 1−α∗

2α∗ (2(α∗−α)−ε)
)

≤ M2 ·N−( ℓ
2−1) 1−α∗

2α∗ ε,

with M2 > 0, because V+ ∼ λ+ · χ2(ℓ − 2) and
1 − α∗

2α∗ (2(α∗ − α) − ε) ≥ 1 − α∗

2α∗ ε for all α ≤ α∗ − ε. Hence,

from the inequality (41), for large enough N ,

Pr
(
α̂N ≥ α∗ − ε

)
≥ 1 −M2 · logN ·N−( ℓ

2−1) 1−α∗

2α∗ ε. (43)

The inequalities (40) and (43) imply that Pr
(
|α̂N − α| ≥ ε

)
−→
N→∞

0. 2

Proof [Theorem 1] The central limit theorem of (16) can be established from the following arguments. First,

Pr(α̃N > α∗) −→
N→∞

1. Following the previous proof, there is for all ε > 0,

Pr
(
α̂N ≥ α∗ − ε

)
≥ 1 −M2 · logN ·N−( ℓ

2−1) 1−α∗

2α∗ ε.

Consequently, if εN = λ · log logN

logN
with λ >

2

(ℓ − 2)D′ then,

Pr
(
α̂N ≥ α∗ − εN

)
≥ 1 −M2 · logN ·N−λ (ℓ−2)D′

2 · log log N
log N

≥ 1 −M2 ·
(
logN

)1−λ (ℓ−2)D′

2

=⇒ Pr
(
α̂N + εN ≥ α∗) −→

N→∞
1.
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Now, from Corollary 4, D̂′
N

P−→
N→∞

D′. Therefore, Pr
(
D̂′

N ≤ 4

3
D′) −→

N→∞
1. Thus, with λ ≥ 9

4(ℓ− 2)D′ ,

Pr
(
α̃N +

(
εN − 3

(ℓ− 2)D̂′
N

· log logN

logN

)
≥ α∗) −→

N→∞
1 which implies Pr(α̃N > α∗) −→

N→∞
1.

Secondly, for x ∈R,

lim
N→∞

Pr
(√ N

N α̃N

(
D̃N −D

)
≤ x

)
= lim

N→∞
Pr
(√ N

N α̃N

(
D̃N −D

)
≤ x

⋂
α̃N > α∗

)

+ lim
N→∞

Pr
(√ N

N α̃N

(
D̃N −D

)
≤ x

⋂
α̃N ≤ α∗

)

= lim
N→∞

∫ 1

α∗

Pr
(√ N

Nα

(
D̃N −D

)
≤ x

)
fα̂N

(α) dα

= lim
N→∞

Pr
(
ZΓ ≤ x

)
·
∫ 1

α∗

fα̂N
(α) dα

= Pr
(
ZΓ ≤ x

)
,

with fα̂N
(α) the probability density function of α̂N and ZΓ ∼ N (0 ; (A′ ·A)−1 · A′ · Γ ·A · (A′ ·A)−1).

To prove the second part of (16), we infer deduces from above that

Pr
(
α∗ < α̃N < α∗ +

3

(ℓ− 2)D̂′
N

· log logN

logN
+ µ · log logN

logN

)
−→
N→∞

1,

with µ > 12
ℓ−2 . Therefore, ν < 4

(ℓ−2)D′
+ 12

ℓ−2 ,

Pr
(
Nα∗

< N α̃N < Nα∗ · (logN)ν
)

−→
N→∞

1.

This inequality and the previous central limit theorem result in : for all ρ > ν/2, and ε > 0,

Pr
( N D′

1+2D′

(logN)ρ
·
∣∣D̃N −D

∣∣ > ε
)

= Pr
(N 1

2 (α̂N−α∗)

(logN)ρ
·
√

N

N α̃N

∣∣D̃N −D
∣∣ > ε

)

−→
N→∞

0. 2
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N = 103

√
MSE ℓ = 5 ℓ = 10 ℓ = 15 ℓ = 20 ℓ = 25





ℓ1 = 15

ℓ2 = ℓ̂

fGn (H = D+1
2 )

̂̂
DN , D̃N 0.16, 0.75 0.14, 0.19 0.13, 0.17 0.14, 0.15 0.14, 0.15 0.15, 0.18

α̂N , α̃N 0.12, 0.32 0.07, 0.13 0.05, 0.08 0.04, 0.05 0.04, 0.04 0.05, 0.08

FARIMA(0, D
2
, 0)

̂̂
DN , D̃N 0.21, 0.81 0.15, 0.20 0.14, 0.17 0.15, 0.15 0.15, 0.15 0.15, 0.19

α̂N , α̃N 0.14, 0.34 0.07, 0.13 0.05, 0.09 0.05, 0.06 0.04, 0.04 0.05, 0.09

FARIMA(1, D
2 , 0)

̂̂
DN , D̃N 0.30, 0.96 0.28, 0.35 0.27, 0.29 0.29, 0.27 0.30, 0.30 0.31, 0.35

α̂N , α̃N 0.19, 0.44 0.15, 0.24 0.12, 0.17 0.11, 0.15 0.11, 0.12 0.12, 0.17

FARIMA(1, D
2 , 1)

̂̂
DN , D̃N 0.60, 0.92 0.43, 0.41 0.39, 0.35 0.36, 0.35 0.32, 0.33 0.21, 0.20

α̂N , α̃N 0.17, 0.38 0.11, 0.18 0.09, 0.12 0.07, 0.09 0.06, 0.07 0.09, 0.12

X(D,D′), D′ = 1
̂̂
DN , D̃N 0.33, 0.68 0.29, 0.28 0.27, 0.26 0.26, 0.27 0.25, 0.25 0.29, 0.30

α̂N , α̃N 0.10, 0.22 0.10, 0.07 0.11, 0.07 0.12, 0.12 0.13, 0.13 0.11, 0.07

N = 104

√
MSE ℓ = 5 ℓ = 10 ℓ = 15 ℓ = 20 ℓ = 25





ℓ1 = 15

ℓ2 = ℓ̂

fGn (H = D+1
2 )

̂̂
DN , D̃N 0.08, 0.26 0.05, 0.05 0.05, 0.05 0.04, 0.04 0.04, 0.04 0.04, 0.04

α̂N , α̃N 0.08, 0.22 0.05, 0.06 0.04, 0.05 0.04, 0.05 0.05, 0.05 0.04, 0.05

FARIMA(0, D
2 , 0)

̂̂
DN , D̃N 0.08, 0.31 0.06, 0.06 0.05, 0.05 0.05, 0.05 0.05, 0.05 0.05, 0.05

α̂N , α̃N 0.09, 0.24 0.05, 0.07 0.04, 0.05 0.04, 0.05 0.05, 0.05 0.04, 0.05

FARIMA(1, D
2 , 0)

̂̂
DN , D̃N 0.13, 0.57 0.10, 0.10 0.09, 0.08 0.09, 0.08 0.09, 0.09 0.09, 0.08

α̂N , α̃N 0.15, 0.36 0.09, 0.16 0.08, 0.11 0.07, 0.09 0.06, 0.08 0.08, 0.11

FARIMA(1, D
2 , 1)

̂̂
DN , D̃N 0.22, 0.63 0.17, 0.15 0.16, 0.13 0.15, 0.14 0.15, 0.14 0.09 , 0.09

α̂N , α̃N 0.16, 0.38 0.11, 0.17 0.08, 0.11 0.07, 0.09 0.06, 0.07 0.08, 0.11

X(D,D′), D′ = 1
̂̂
DN , D̃N 0.23, 0.36 0.19, 0.15 0.18, 0.17 0.17, 0.17 0.15, 0.14 0.15, 0.14

α̂N , α̃N 0.10, 0.18 0.12, 0.08 0.13, 0.12 0.14, 0.14 0.15, 0.15 0.13, 0.12

N = 105

√
MSE ℓ = 5 ℓ = 10 ℓ = 15 ℓ = 20 ℓ = 25





ℓ1 = 15

ℓ2 = ℓ̂

fGn (H = D+1
2 )

̂̂
DN , D̃N 0.04, 0.09 0.03, 0.03 0.02, 0.03 0.02, 0.02 0.02, 0.02 0.02, 0.02

α̂N , α̃N 0.07, 0.16 0.06, 0.04 0.06, 0.06 0.07, 0.07 0.07, 0.07 0.06, 0.06

FARIMA(0, D
2 , 0)

̂̂
DN , D̃N 0.03, 0.13 0.02, 0.02 0.02, 0.02 0.02, 0.02 0.02, 0.02 0.02, 0.02

α̂N , α̃N 0.07, 0.18 0.04, 0.05 0.04, 0.03 0.04, 0.04 0.05, 0.05 0.04, 0.03

FARIMA(1, D
2 , 0)

̂̂
DN , D̃N 0.05, 0.25 0.05, 0.04 0.04, 0.03 0.04, 0.03 0.04, 0.04 0.03, 0.02

α̂N , α̃N 0.12, 0.30 0.07, 0.12 0.05, 0.07 0.04, 0.06 0.04, 0.05 0.05, 0.07

FARIMA(1, D
2 , 1)

̂̂
DN , D̃N 0.08, 0.30 0.06, 0.04 0.05, 0.04 0.05, 0.04 0.05, 0.05 0.04, 0.03

α̂N , α̃N 0.13, 0.33 0.09, 0.15 0.08, 0.11 0.07, 0.09 0.06, 0.08 0.08, 0.11

X(D,D′), D′ = 1
̂̂
DN , D̃N 0.13, 0.19 0.11, 0.08 0.10, 0.08 0.09, 0.09 0.09, 0.09 0.08, 0.07

α̂N , α̃N 0.09, 0.15 0.10, 0.07 0.11, 0.09 0.12, 0.11 0.13, 0.13 0.11, 0.09

Table 1: Consistency of estimators
̂̂
DN , D̃N , α̂N , α̃N following ℓ from simulations of the different long-memory

processes of the benchmark. For each value of N (103, 104 and 105), of D (0.1, 0.3, 0.5, 0.7 and 0.9) and ℓ

(5, 10, 15, 20, 25 and (15, ℓ̂)), 100 independent samples of each process are generated. The
√
MSE of each

estimator is obtained from a mean of
√
MSE obtained for the different values of D.

31



FARIMA(0,−0.25, 0) X(−1,1) X(−1,3) X(−3,1) X(−3,3)

N = 103
√
MSE

̂̂
DN , D̃N 0.15, 0.20 0.30, 0.30 0.38, 0.37 0.36, 0.37 0.39, 0.38

N = 104
√
MSE

̂̂
DN , D̃N 0.04, 0.04 0.15, 0.14 0.08, 0.08 0.13, 0.14 0.13, 0.13

N = 105
√
MSE

̂̂
DN , D̃N 0.03, 0.03 0.06, 0.05 0.04, 0.03 0.04, 0.04 0.03, 0.03

Table 2: Estimation of the memory parameter from 100 independent samples in case of short memory (D ≤ 0).

P1 P2 P3 P4

N = 103
√
MSE

̂̂
DN , D̃N 0.22, 0.23 0.32, 0.41 0.47, 0.76 0.40, 0.41

N = 104
√
MSE

̂̂
DN , D̃N 0.06, 0.06 0.18, 0.28 0.24, 0.65 0.13, 0.13

N = 105
√
MSE

̂̂
DN , D̃N 0.02, 0.02 0.02, 0.02 0.14, 0.47 0.03, 0.04

Table 3: Estimation of the long-memory parameter from 100 independent samples in case of processes P1− 4

defined above.
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N = 103 −→

D = 0.1 D = 0.3 D = 0.5 D = 0.7 D = 0.9

fGn (H = (D + 1)/2) D̂BGK 0.089 0.171 0.259 0.341 0.369

D̂GRS 0.114 0.132 0.147 0.155 0.175

D̂MS 0.163 0.169 0.181 0.195 0.191

D̂R 0.211 0.220 0.215 0.218 0.128

D̂AT V 0.176 0.153 0.156 0.164 0.162

̂̂
DN 0.139 0.147 0.133 0.140 0.150

FARIMA(0, D
2 , 0) D̂BGK 0.094 0.138 0.239 0.326 0.413

D̂GRS 0.131 0.139 0.150 0.150 0.162

D̂MS 0.172 0.167 0.174 0.197 0.188

D̂R 0.246 0.189 0.223 0.234 0.181

D̂AT V 0.128 0.107 0.081 0.074 0.065

̂̂
DN 0.161 0.146 0.149 0.149 0.161

FARIMA(1, D
2 , 0) D̂BGK 0.146 0.203 0.239 0.236 0.212

D̂GRS 0.519 0.545 0.588 0.585 0.830

D̂MS 0.235 0.258 0.256 0.252 0.249

D̂R 0.242 0.241 0.234 0.202 0.144

D̂AT V 0.248 0.267 0.280 0.268 0.375

̂̂
DN 0.340 0.319 0.314 0.315 0.334

FARIMA(1, D
2 , 1) D̂BGK 0.204 0.253 0.342 0.363 0.384

D̂GRS 0.901 0.894 0.866 0.870 0.893

D̂MS 0.181 0.175 0.180 0.185 0.181

D̂R 0.204 0.200 0.200 0.191 0.130

D̂AT V 0.392 0.380 0.371 0.343 0.355

̂̂
DN 0.170 0.218 0.225 0.226 0.213

X(D,D′), D′ = 1 D̂BGK 0.090 0.139 0.261 0.328 0.388

D̂GRS 0.342 0.339 0.331 0.300 0.315

D̂MS 0.176 0.178 0.182 0.166 0.177

D̂R 0.219 0.232 0.231 0.173 0.167

D̂AT V 0.153 0.161 0.168 0.176 0.176

̂̂
DN 0.284 0.294 0.293 0.292 0.288
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N = 104 −→

D = 0.1 D = 0.3 D = 0.5 D = 0.7 D = 0.9

fGn (H = (D + 1)/2) D̂BGK 0.062 0.143 0.182 0.171 0.182

D̂GRS 0.040 0.047 0.054 0.068 0.066

D̂MS 0.069 0.064 0.061 0.071 0.063

D̂R 0.063 0.055 0.058 0.063 0.052

D̂AT V 0.036 0.042 0.041 0.047 0.045

̂̂
DN 0.050 0.040 0.041 0.039 0.040

FARIMA(0, D
2 , 0) D̂BGK 0.059 0.141 0.195 0.187 0.178

D̂GRS 0.042 0.048 0.050 0.046 0.057

D̂MS 0.072 0.055 0.066 0.059 0.065

D̂R 0.073 0.053 0.064 0.057 0.059

D̂AT V 0.026 0.038 0.039 0.032 0.022

̂̂
DN 0.053 0.050 0.056 0.055 0.044

FARIMA(1, D
2 , 0) D̂BGK 0.085 0.148 0.146 0.164 0.120

D̂GRS 0.179 0.175 0.182 0.192 0.190

D̂MS 0.109 0.105 0.099 0.100 0.094

D̂R 0.063 0.059 0.057 0.054 0.054

D̂AT V 0.118 0.101 0.088 0.120 0.081

̂̂
DN 0.095 0.085 0.093 0.081 0.097

FARIMA(1, D
2 , 1) D̂BGK 0.111 0.201 0.189 0.202 0.181

D̂GRS 0.308 0.321 0.306 0.314 0.311

D̂MS 0.070 0.064 0.065 0.064 0.069

D̂R 0.063 0.057 0.060 0.064 0.052

D̂AT V 0.114 0.118 0.103 0.102 0.093

̂̂
DN 0.095 0.099 0.087 0.101 0.090

X(D,D′), D′ = 1 D̂BGK 0.069 0.110 0.204 0.190 0.197

D̂GRS 0.192 0.185 0.172 0.177 0.190

D̂MS 0.083 0.059 0.071 0.066 0.068

D̂R 0.066 0.057 0.068 0.054 0.064

D̂AT V 0.124 0.131 0.139 0.147 0.153

̂̂
DN 0.158 0.143 0.152 0.158 0.155

Table 4: Comparison of the different log-memory parameter estimators for processes of the benchmark. For

each process and value of D and N ,
√
MSE are computed from 100 independent generated samples.
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