Jean-Marc Bardet 
email: bardet@univ-paris1.fr
  
Hatem Bibi 
email: hatem.bibi@malix.univ-paris1.fr
  
Abdellatif Jouini 
email: abdellatif.jouini@fst.mu.tn
  
  
Adaptive wavelet based estimator of the memory parameter for stationary Gaussian processes

This work is intended as a contribution to a wavelet-based adaptive estimator of the memory parameter in the classical semi-parametric framework for Gaussian stationary processes. In particular we introduce and develop the choice of a data-driven optimal bandwidth. Moreover, we establish a central limit theorem for the estimator of the memory parameter with the minimax rate of convergence (up to a logarithm factor).

The quality of the estimators are attested by simulations.

Introduction

Let X = (X t ) t∈Z be a second-order zero-mean stationary process and its covariogram be defined

r(t) = E(X 0 • X t ), for t ∈ Z.
Assume the spectral density f of X, with

f (λ) = 1 2π • k∈Z r(k) • e -ik ,
exists and represents a continuous function on [-π, 0)[∪]0, π]. Consequently, the spectral density of X should satisfy the asymptotic property,

f (λ) ∼ C • 1 λ D when λ → 0,
with D < 1 called the "memory parameter" and C > 0. If D ∈ (0, 1), the process X is a so-called long-memory process, if not X is called a short memory process (see [START_REF] Doukhan | Theory and applications of long-range dependence[END_REF], for more details).

This paper deals with two semi-parametric frameworks which are:

• Assumption A1: X is a zero mean stationary Gaussian process with spectral density satisfying

f (λ) = |λ| -D • f * (λ) for all λ ∈ [-π, 0)[∪]0, π],
with f * (0) > 0 and f * ∈ H(D ′ , C D ′ ) where 0 < D ′ , 0 < C D ′ and

H(D ′ , C D ′ ) = g : [-π, π] → R + such that |g(λ) -g(0)| ≤ C D ′ • |λ| D ′ for all λ ∈ [-π, π] .
• Assumption A1': X is a zero-mean stationary Gaussian process with spectral density satisfying

f (λ) = |λ| -D • f * (λ) for all λ ∈ [-π, 0)[∪]0, π],
with f * (0) > 0 and f * ∈ H ′ (D ′ , C D ′ ) where 0 < D ′ , C D ′ > 0 and

H ′ (D ′ , C D ′ ) = g : [-π, π] → R + such that g(λ) = g(0) + C D ′ |λ| D ′ + o |λ| D ′ when λ → 0 .
Remark 1 A great number of earlier works concerning the estimation of the long range parameter in a semiparametric framework (see for instance [START_REF] Giraitis | Rate optimal semi-parametric estimation of the memory parameter of the Gaussian time series with long range dependence[END_REF][START_REF] Giraitis | Adaptive semiparametric estimation of the memory parameter[END_REF] are based on Assumption A1 or equivalent assumption on f . Another expression (see [START_REF] Robinson | Gaussian semiparametric estimation long range dependence[END_REF] times differentiable around λ = 0 with f * (s) satisfying a Lipschitzian condition of degree 0 < ℓ < 1 around 0, then D ′ ≤ s + ℓ.So for our purpose, D ′ is a more pertinent parameter than s + ℓ (which is often used in no-parametric literature). Finally, the Assumption A1' is a necessary condition to study the following adaptive estimator of D.

We have

H ′ (D ′ , C D ′ ) ⊂ H(D ′ , C D ′ ).
Fractional Gaussian noises (with D ′ = 2) and FARIMA[p,d,q] processes (with also D ′ = 2) represent the first and well known examples of processes satisfying Assumption A1' (and therefore Assumption A1).

Remark 2 In [START_REF] Andrews | Adaptive local polynomial Whittle estimation of long-range dependence[END_REF], an adaptive procedure covers a more general class of functions than H(D ′ , C D ′ ), i.e. H AS (D ′ , C D ′ ) defined by:

H AS (D ′ , C D ′ ) = g : [-π, π] → R + such that, as λ → 0 g(λ) = g(0) + k i=0 C ′ i λ 2i + C D ′ |λ| D ′ + o |λ| D ′ with 2k < D ′ ≤ 2k + 2
.

Unfortunately, the adaptive wavelet based estimator defined below, as local or global log-periodogram estimators, is unable to be adapted to such a class (and therefore, when D ′ > 2, its convergence rate will be the same than if the spectral density is included in H AS (2, C 2 ), at the contrary to Andrew and Sun estimator).

This work is to provide a wavelet-based semi-parametric estimation of the parameter D. This method has been introduced by Flandrin (1989) and numerically developed by Abry et al. (1998Abry et al. ( , 2001) ) and [START_REF] Veitch | On the Automatic Selection of the Onset of Scaling[END_REF]. Asymptotic results are reported in [START_REF] Bardet | Wavelet estimator of long range-dependant processes[END_REF] and more recently in [START_REF] Moulines | On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter[END_REF].

Taking into account these papers, two points of our work can be highlighted : first, a central limit theorem based on conditions which are weaker than those in [START_REF] Bardet | Wavelet estimator of long range-dependant processes[END_REF]. Secondly, we define an auto-driven estimator Dn of D (its definition being different than in [START_REF] Veitch | On the Automatic Selection of the Onset of Scaling[END_REF]. This results in a central limit theorem followed by Dn and this estimator is proved rate optimal up to a logarithm factor (see below). Below we shall develop this point.

Define the usual Sobolev space W (β, L) for β > 0 and L > 0,

W (β, L) = g(λ) = ℓ∈Z g ℓ e 2πiℓλ ∈ L 2 ([0, 1]) / ℓ∈Z (1 + |ℓ|) β |g ℓ | < ∞ and ℓ∈Z |g ℓ | 2 ≤ L .
Let ψ be a "mother" wavelet satisfying the following assumption:

Assumption W (∞) : ψ : R → R with [0, 1]-support and such that 1. ψ is included in the Sobolev class W (∞, L) with L > 0;

2. The function ψ is a smooth compactly supported function (the interval [0, 1] is meant for better readability, but the following results can be extended to another interval) with its m first vanishing moments. If D ′ ≤ 2 and 0 < D < 1 in Assumptions A1, Assumption W (∞) can be replaced by a weaker assumption:

Assumption W (5/2) : ψ : R → R with [0, 1]-support and such that 1. ψ is included in the Sobolev class W (5/2, L) with L > 0;

2.

1 0 ψ(t) dt = 0 and ψ(0) = ψ(1) = 0.

Remark 3 The choice of a wavelet satisfying Assumption W (∞) is quite restricted because of the required smoothness of ψ. For instance, the function ψ(t) = (t 2t + a) exp(-1/t(1t)) and a ≃ 0.23087577 satisfies Assumption W (∞). The class of "wavelet" checking Assumption W (5/2) is larger. For instance, ψ can be a dilated Daubechies "mother" wavelet of order d with d ≥ 6 to ensure the smoothness of the function ψ.It is also possible to apply the following theory to "essentially" compactly supported "mother" wavelet like the Lemarié-Meyer wavelet. Note that it is not necessary to choose ψ being a "mother" wavelet associated to a multi-resolution analysis of L 2 (R) as in the recent paper of [START_REF] Moulines | On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter[END_REF]. The whole theory can be developed without this assumption, in which case the choice of ψ is larger.

If Y = (Y t ) t∈R is a continuous-time process for (a, b) ∈ R * + × R, the "classical" wavelet coefficient d(a, b) of the process Y for the scale a and the shift b is d(a, b) = 1 √ a R ψ( t a -b)Y t dt. (1) 
However, this formula (1) of a wavelet coefficient cannot be computed from a time series. The support of ψ being [0, 1], let us take the following approximation of formula (1) and define the wavelet coefficients of

X = (X t ) t∈Z by e(a, b) = 1 √ a a k=1 ψ( k a )X k+ab , (2) 
for (a, b) ∈ N * + × Z. Note that this approximation is the same as the wavelet coefficient computed from Mallat algorithm for an orthogonal discrete wavelet basis (for instance with Daubechies mother wavelet).

Remark 4 Here a continuous wavelet transform is considered. The discrete wavelet transform where a = 2 j , in other words numerically very interesting (using Mallat cascade algorithm) is just a particular case. The main point in studing a continuous transform is to offer a larger number of "scales" for computing the data-driven optimal bandwidth (see below).

Under Assumption A1, for all b ∈ Z, the asymptotic behavior of the variance of e(a, b) is a power law in scale a (when a → ∞). Indeed, for all a ∈ N * , (e(a, b)) b∈Z is a Gaussian stationary process and (see Section more details in 2):

E(e 2 (a, 0)) ∼ K (ψ,D) • a D when a → ∞, (3) 
with a constant K (ψ,D) such that,

K (ψ,α) = ∞ -∞ | ψ(u)| 2 • |u| -α du > 0 for all α < 1, ( 4 
)
where ψ is the Fourier transform of ψ (the existence of K (ψ,α) is established in Section 5). Note that (3) is also checked without the Gaussian hypothesis in Assumption A1 (the existence of the second moment order of X is sufficient).

The principle of the wavelet-based estimation of D is linked to this power law a D . Indeed, let (X 1 , . . . , X N ) be a sampled path of X and define T N (a) a sample variance of e(a, .) obtained from an appropriate choice of shifts b, i.e.

T N (a) = 1 [N/a] [N/a] k=1 e 2 (a, k -1). (5) 
Then, when

a = a N → ∞ satisfies lim N →∞ a N • N -1/(2D ′ +1) = ∞, a central limit theorem for log( T N (a N ))
can be proved. More precisely we get

log( T N (a N )) = D log(a N ) + log(f * (0)K (ψ,D) ) + a N N • ε N , with ε N L -→ N →∞ N (0, σ 2 (ψ,D)
) and σ 2 (ψ,D) > 0. As a consequence, using different scales (r 1 a N , . . . , r ℓ a N )) where (r 1 , . . . , r ℓ ) ∈ (N * ) ℓ with a N a "large enough" scale, a linear regression of (log( T N (r i a N )) i by (log(r i a N )) i provides an estimator D(a N ) which satisfies at the same time a central limit theorem with a convergence rate N aN .

But the main problem is : how to select a large enough scale a N considering that the smaller a N , the faster the convergence rate of D(a N ). An optimal solution would be to chose a N larger but closer to N 1/(2D ′ +1) , but the parameter D ′ is supposed to be unknown. In [START_REF] Veitch | On the Automatic Selection of the Onset of Scaling[END_REF], an automatic selection procedure is proposed using a chi-squared goodness of fit statistic. This procedure is applied successfully on a large number of numerical examples without any theoretical proofs however. Our present method is close to the latter. Roughly speaking, the "optimal" choice of scale (a N ) is based on the "best" linear regression among all the possible linear regressions of ℓ consecutive points (a, log( T N (a))), where ℓ is a fixed integer number.

Formally speaking, a contrast is minimized and the chosen scale ãN satisfies:

log(ã N ) log N P -→ N →∞ 1 2D ′ + 1 .
Thus, the adaptive estimator DN of D for this scale ãN is such that :

N ãN ( DN -D) L -→ N →∞ N (0, σ 2 D ),
with σ 2 D > 0. Consequently, the minimax rate of convergence N D ′ /(1+2D ′ ) , up to a logarithm factor, for the estimation of the long memory parameter D in this semi-parametric setting (see [START_REF] Giraitis | Rate optimal semi-parametric estimation of the memory parameter of the Gaussian time series with long range dependence[END_REF] is given by DN .

Such a rate of convergence can also be obtained by other adaptive estimators (for more details see below).

However, DN has several "theoretic" advantages: firstly, it can be applied to all D < -1 and D ′ > 0 (which are very general conditions covering long and short memory, in fact larger conditions than those usually required for adaptive log-periodogram or local Whittle estimators) with a nearly optimal convergence rate. Secondly, DN satisfies a central limit theorem and sharp confidence intervals for D can be computed (in such a case, the asymptotic σ 2 D is replaced by σ 2

DN

, for more details see below). Finally, under additive assumptions on ψ (ψ is supposed to have its first m vanishing moments), DN can also be applied to a process with a polynomial trend of degree ≤ m -1.

We then give a several simulations in order to appreciate empirical properties of the adaptive estimator DN .

First, using a benchmark composed of 5 different "test" processes satisfying Assumption A1' (see below), the ondly it is a very robust estimator: it is not sensitive to possible polynomial trends and seems to be consistent in non-Gaussian cases. Finally, the graph of the log-log regression of sample variance of wavelet coefficients is meaningful and may lead us to model data with more general processes like locally fractional Gaussian noise (see [START_REF] Bardet | Identification of the multiscale fractional Brownian motion with biomechanical applications[END_REF].

The central limit theorem for sample variance of wavelet coefficient is subject of section 2.Section 3 is concerned with the automatic selection of the scale as well as the asymptotic behavior of DN . Finally simulations are given in section 4 and proofs in section 5.

A central limit theorem for the sample variance of wavelet coefficients

The following asymptotic behavior of the variance of wavelet coefficients is the basis of all further developments.

The first point that explains all that follows is the Property 1 Under Assumption A1 and Assumption W (∞), for a ∈ N * , (e(a, b)) b∈Z is a zero mean Gaussian stationary process and it exists M > 0 not depending on a such that, for all a ∈ N * ,

E(e 2 (a, 0)) -f * (0)K (ψ,D) • a D ≤ M • a D-D ′ . (6) 
Please see Section 5 for the proofs. The paper of [START_REF] Moulines | On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter[END_REF] gives similar results for multi-resolution wavelet analysis. The special case of long memory process can also be studied with weaker Assumption W (5/2), Property 2 Under Assumption W (5/2) and Assumption A1 with 0 < D < 1 and 0 < D ′ ≤ 2, for a ∈ N * , (e(a, b)) b∈Z is a zero mean Gaussian stationary process and (6) holds.

Two corollaries can be added to both those properties. First, under Assumption A1' a more precise result can be established.

Corollary 1 Under:

• Assumption A1' and Assumption W (∞);

• or Assumption A1' with 0 < D < 1, 0 < D ′ ≤ 2 and Assumption W (5/2);

then (e(a, b)) b∈Z is a zero mean Gaussian stationary process and

E(e 2 (a, 0)) = f * (0) K (ψ,D) • a D + C D ′ K (ψ,D-D ′ ) • a D-D ′ + o a D-D ′ when a → ∞. ( 7 
)
This corollary is key point for the estimation of an appropriated sequence of scale a = (a N ). Indeed, when

f * ∈ H ′ (D ′ , C D ′ ), then f * ∈ H(D ′′ , C D ′′ ) for all D ′′ satisfying 0 < D ′′ ≤ D ′ . Therefore, Assumption A1'
is required for obtaining the optimal choice of a N , i.e. a N ≃ N 1/(2D ′ +1) (see below for more details). The following corollary generalizes the above Properties 1 and 2.

Corollary 2 Properties 1 and 2 are also checked when the Gaussian hypothesis of X is replaced by EX 2 k < ∞ for all k ∈ Z.

Remark 5 In this paper, the Gaussian hypothesis has been taken into account merely to insure the convergence of the sample variance (5) of wavelet coefficients following a central limit theorem (see below). Such a convergence can also be obtained for more general processes using a different proof of the central limit theorem, for instance for linear processes (see a forthcoming work).

As mentioned in the introduction, this property allows an estimation of D from a log-log regression, as soon as a consistant estimator of E(e 2 (a, 0)) is provided from a sample (X 1 , . . . , X N ) of the time series X. Define then the normalized wavelet coefficient such that

ẽ(a, b) = e(a, b) f * (0)K (ψ,D) • a D 1/2 for a ∈ N * and b ∈ Z. (8) 
From property 1, it is obvious that under Assumptions A1 it exists M ′ > 0 satisfying for all a ∈ N * ,

E(ẽ 2 (a, 0)) -1 ≤ M ′ • 1 a D ′ .
To use this formula to estimate D by a log-log regression, an estimator of the variance of e(a, 0) should be considered (let us remember that a sample (X 1 , . . . , X N ) of is supposed to be known, but parameters (D,

D ′ , C D ′ ) are unknown).
Consider the sample variance and the normalized sample variance of the wavelet coefficient, for 1 ≤ a < N ,

T N (a) = 1 [ N a ] [ N a ] k=1 e 2 (a, k -1) and TN (a) = 1 [ N a ] [ N a ] k=1 ẽ2 (a, k -1). (9) 
The following proposition specifies a central limit theorem satisfied by log TN (a), which provides the first step for obtaining the asymptotic properties of the estimator by log-log regression. More generally, the following multidimensional central limit theorem for a vector (log TN (a i )) i can be established.

Proposition 1 Define ℓ ∈ N \ {0, 1} and (r 1 , • • • , r ℓ ) ∈ (N * ) ℓ . Let (a n ) n∈N be such that N/a N -→ N →∞ ∞ and a N • N -1/(1+2D ′ ) -→ N →∞ ∞. Under Assumption A1 and Assumption W (∞), N a N log TN (r i a N ) 1≤i≤ℓ D -→ N →∞ N ℓ 0 ; Γ(r 1 , • • • , r ℓ , ψ, D) , (10) 
with

Γ(r 1 , • • • , r ℓ , ψ, D) = (γ ij ) 1≤i,j≤ℓ the covariance matrix such that γ ij = 8(r i r j ) 2-D K 2 (ψ,D) d ij ∞ m=-∞ ∞ 0 ψ(ur i ) ψ(ur j ) u D cos(u d ij m) du 2 . ( 11 
)
The same result under weaker assumptions on ψ can be also established when X is a long memory process.

Proposition 2 Define ℓ ∈ N \ {0, 1} and (r 1 , • • • , r ℓ ) ∈ (N * ) ℓ . Let (a n ) n∈N be such that N/a N -→ N →∞
∞ and

a N • N -1/(1+2D ′ ) -→ N →∞
∞. Under Assumption W (5/2) and Assumption A1 with D ∈ (0, 1) and D ′ ∈ (0, 2), the CLT (10) holds.

These results can be easily generalized for processes with polynomial trends if ψ is considered having its first m vanishing moments. i.e, Corollary 3 Given the same hypothesis as in Proposition 1 or 2 and if ψ is such that m ∈ N \ {0, 1} is satisfying, t p ψ(t) dt = 0 for all p ∈ {0, 1, . . . , m -1} the CLT (10) also holds for any process

X ′ = (X ′ t ) t∈Z such that for all t ∈ Z, EX ′ t = P m (t) with P m (t) = a 0 + a 1 t + • • • + a m-1 t m-1 is a polynomial function and
(a i ) 0≤i≤m-1 are real numbers.

3 Adaptive estimator of memory parameter using data driven optimal scales

The CLT [START_REF] Bhansali | Estimation of the memory parameter by fitting fractionally-differenced autoregressive models[END_REF] implies the following CLT for the vector (log

T N (r i a N )) i , N a N log T N (r i a N ) -D log(r i a N ) -log(f * (0)K (ψ,D) ) 1≤i≤ℓ D -→ N →∞ N ℓ 0 ; Γ(r 1 , • • • , r ℓ , ψ, D) .
and therefore, log

T N (r i a N ) 1≤i≤ℓ = A N •    D K    + 1 N/a N ε i 1≤i≤ℓ , with A N =        log(r 1 a N ) 1 : : log(r ℓ a N ) 1        , K = -log(f * (0) • K (ψ,D) ) and ε i 1≤i≤ℓ D -→ N →∞ N ℓ 0 ; Γ(r 1 , • • • , r ℓ , ψ, D) .
Therefore, a log-log regression of T N (r i a N ) 1≤i≤ℓ on scales r i a N 1≤i≤ℓ provides an estimator

D(a N ) K(a N ) of D K such that D(a N ) K(a N ) = (A ′ N • A N ) -1 • A ′ N • Y (r1,...,r ℓ ) aN with Y (r1,...,r ℓ ) aN = log T N (r i a N )) 1≤i≤ℓ , (12) 
which satisfies the following CLT, Proposition 3 Under the Assumptions of the Proposition 1,

N a N D(a N ) K(a N ) - D K D -→ N →∞ N 2 (0 ; (A ′ • A) -1 • A ′ • Γ(r 1 , • • • , r ℓ , ψ, D) • A • (A ′ • A) -1 ), ( 13 
)
with A =        log(r 1 ) 1 : : log(r ℓ ) 1        and Γ(r 1 , • • • , r ℓ , ψ, D)
given by [START_REF] Devore | Constructive approximations[END_REF].

Moreover, under Assumption A1' and if D ∈ (-1, 1), D(a N ) is a semi-parametric estimator of D and its asymptotic mean square error can be minimized with an appropriate scales sequence (a N ) reaching the wellknown minimax rate of convergence for memory parameter D in this semi-parametric setting (see for instance [START_REF] Giraitis | Rate optimal semi-parametric estimation of the memory parameter of the Gaussian time series with long range dependence[END_REF][START_REF] Bardet | Testing for the presence of self-similarity of Gaussian time series having stationary increments[END_REF]. Indeed,

Proposition 4 Let X satisfy Assumption A1' with D ∈ (-1, 1) and ψ the assumption W (∞). Let (a N ) be a sequence such that a N = [N 1/(1+2D ′ ) ].
Then, the estimator D(a N ) is rate optimal in the minimax sense, i.e. lim sup

N →∞ sup D∈(-1,1) sup f * ∈H(D ′ ,C D ′ ) N 2D ′ 1+2D ′ • E[ D(a N ) -D) 2 ] < +∞.
Remark 6 As far as we know, there are no theoretic results of optimality in case of D ≤ -1, but according to the usual following non-parametric theory, such minimax results can also be obtained. Moreover, in case of long-memory processes (if D ∈ (0, 1)), under Assumption A1' for X and Assumption W (5/2) for ψ, the estimator D(a N ) is also rate optimal in the minimax sense.

In the previous Propositions 1 and 3, the rate of convergence of scale a N obeys to the following condition,

N a N -→ N →∞ ∞ and a N N 1/(1+2D ′ ) -→ N →∞ ∞ with D ′ ∈ (0, ∞).
Now, for better readability, take a N = N α . Then, the above condition goes as follow:

a N = N α with α * < α < 1 and α * = 1 1 + 2D ′ . ( 14 
)
Thus an optimal choice (leading to a faster convergence rate of the estimator) is obtained for 

α = α * + ε with ε → 0+. But α * depends
(log T N (r i a N ), log(r i a N ))
. It seems to be an efficient and interesting numerical way to estimate D, but without theoretical proofs (contrary to global or local log-periodogram procedures which are proved to reach the minimax convergence rate, see for instance [START_REF] Moulines | Semiparametric spectral estimation for fractionnal processes[END_REF].

We suggest a new procedure for the data-driven selection of optimal scales, i.e. optimal α. Let us consider an important parameter, the number of considered scales ℓ ∈ N \ {0, 1, 2} and set (r 1 , . . . , r ℓ ) = (1, . . . , ℓ).

For α ∈ (0, 1), define also

• the vector Y N (α) = log T N (i • N α ) 1≤i≤ℓ ; • the matrix A N (α) =        log(N α ) 1 : : log(ℓ • N α ) 1        ; • the contrast, Q N (α, D, K) = Y N (α) -A N (α) • D K ′ • Y N (α) -A N (α) • D K . Q N (α, D, K) corresponds to a squared distance between the ℓ points log(i • N α ) , log T N (i • N α ) i and a line.
The point is to minimize this contrast for these three parameters. It is obvious that for a fixed α ∈ (0, 1) Q is minimized from the previous least square regression and therefore,

Q N ( α N , D(a N ), K(a N )) = min α∈(0,1),D<1,K∈R Q N (α, D, K).
with ( D(a N ), K(a N )) obtained as in relation [START_REF] Doukhan | Theory and applications of long-range dependence[END_REF]. However, since α N has to be obtained from numerical computations, the interval (0, 1) can be discretized as follows, Consequently, take

α N ∈ A N = 2 log N , 3 log N , . . . , log[N/ℓ] log N . Hence, if α ∈ A N , it exists k ∈ {2, 3, . . . , log[N/ℓ]} such that k = α • log N .
Q N (α) = Q N (α, D(a N ), K(a N )); then, minimize Q N for variables (α, D, K) is equivalent to minimize Q N for variable α ∈ A N , that is Q N ( α N ) = min α∈AN Q N (α).
From this central limit theorem derives Proposition 5 Let X satisfy Assumption A1' and ψ Assumption W (∞) (or Assumption W (5/2) if 0 < D < 1 and 0 < D ′ ≤ 2). Then,

α N = log a N log N P -→ N →∞ α * = 1 1 + 2D ′ .
This proves also the consistency of an estimator D ′ N of the parameter D ′ , Corollary 4 Taking the hypothesis of Proposition 5, we have

D ′ N = 1 -α N 2 α N P -→ N →∞ D ′ .
The estimator α N defines the selected scale a N such that a N = N αN . From a straightforward application of the proof of Proposition 5 (see the details in the proof of Theorem 1), the asymptotic behavior of a N can be specified, that is,

Pr N α * (log N ) λ ≤ N αN ≤ N α * • (log N ) µ P -→ N →∞ 1, (15) 
for all positive real numbers λ and µ such that λ > 

αN = α N + 3 (ℓ -2) D ′ N • log log N log N , ãN = N αN = N αN • log N 3 (ℓ-2) D ′ N and DN = D(ã N ). Then, with σ 2 D = (1 0) • (A ′ • A) -1 • A ′ • Γ(1, • • • , ℓ, ψ, D) • A • (A ′ • A) -1 • (1 0) ′ , N N αN DN -D D -→ N →∞ N (0 ; σ 2 D ) and ∀ρ > 2(1 + 3D ′ ) (ℓ -2)D ′ , N D ′ 1+2D ′ (log N ) ρ • DN -D P -→ N →∞ 0. ( 16 
)
Remark 8 Both the adaptive estimators D N and DN converge to D with a rate of convergence rate equal to the minimax rate of convergence N D ′ 1+2D ′ up to a logarithm factor (this result being classical within this semi-parametric framework). Unfortunately, our method cannot prove that the mean square error of both these estimators reaches the optimal rate and therefore to be oracles.

To conclude this theoretic approach, the main properties satisfied by the estimators D N and DN can be summarized as follows:

1. Both the adaptive estimators D N and DN converge at D with a rate of convergence rate equal to the minimax rate of convergence N D ′ 1+2D ′ up to a logarithm factor for all D < -1 and D ′ > 0 (this being very general conditions covering long and short memory, even larger than usual conditions required for adaptive log-periodogram or local Whittle estimators) whith X considered a Gaussian process.

2. The estimator DN satisfies the CLT ( 16) and therefore sharp confidence intervals for D can be computed (in which case, the asymptotic matrix Γ(1, . . . , ℓ, ψ, D) is replaced by Γ(1, . . . , ℓ, ψ, D N )). This is not applicable to an adaptive log-periodogram or local Whittle estimators.

3. The main Property 1 is also satisfied without the Gaussian hypothesis. Therefore, adaptive estimators D N and DN can also be interesting estimators of D for non-Gaussian processes like linear or more general processes (but a CLT similar to Theorem 1 has to be established...).

4. Under additive assumptions on ψ (ψ is supposed to have its first m vanishing moments), both estimators D N and DN can also be used for a process X with a polynomial trend of degree ≤ m -1, which again cannot be yielded with an adaptive log-periodogram or local Whittle estimators.

Simulations

The adaptive wavelet basis estimators D N and DN are new estimators of the memory parameter D in the semi-parametric frame. Different estimators of this kind are also reported in other research works to have proved optimal. In this paper, some theoretic advantages of adaptive wavelet basis estimators have been highlighted. But what about concrete procedure and results of such estimators applied to an observed sample?

The following simulations will help to answer this question.

First, the properties (consistency, robustness, choice of the parameter ℓ and mother wavelet function ψ) of D N and DN are investigated. Secondly, in cases of Gaussian long-memory processes (with D ∈ (0, 1) and

D ′ ≤ 2)
, the simulation results of the estimator D N are compared to those obtained with the best known semi-parametric long-memory estimators.

To begin with, the simulations conditions have to be specified. The results are obtained from 100 generated independent samples of each process belonging to the following "benchmark". The concrete procedures of generation of these processes are obtained from the circulant matrix method, as detailed in Doukhan et al. 3. the Gaussian stationary process X (D,D ′ ) , such that its spectral density is

f 3 (λ) = 1 λ D (1 + λ D ′ ) for λ ∈ [-π, π], (17) 
with D ∈ (-∞, 1) and

D ′ ∈ (0, ∞). Therefore f * 3 = 1 + λ D ′ ∈ H(D ′ , 1) with D ′ ∈ (0, ∞).
In the long memory frame, a "benchmark" of processes is considered for D = 0.1, 0.3, 0.5, 0.7, 0.9:

• fGn processes with parameters H = (D + 1)/2 and σ 2 = 1;

• FARIMA[0,d,0] processes with d = D/2 and standard Gaussian innovations;

• • X (D,D ′ ) Gaussian processes with D ′ = 1.

Properties of adaptive wavelet basis estimators from simulations

Below, we give the different properties of the adaptive wavelet based method.

Choice of the mother wavelet ψ: For short memory processes (D ≤ 0), let the wavelet ψ SM be such

that ψ SM (t) = (t 2 -t + a) exp(-1/t(1 -t)) with a ≃ 0.23087577. It satisfies Assumption W (∞). Lemarié-
Meyer wavelets can be also investigated but this will lead to quite different theoretic studies since its support is not bounded (but "essentially" compact).

For long memory processes (0 < D < 1), let the mother wavelet ψ LM be such that ψ LM (t) = 100 • t 2 (t -1) 2 (t 2t + 3/14)I 0≤t≤1 which satisfies Assumption W (5/2). Note that Daubechies mother wavelet or ψ SM lead to "similar" results (but not as good).

Choice of the parameter ℓ: This parameter is very important to estimate the "beginning" of the linear part of the graph drawn by points (log(a i ), log T (a i )) i . On the one hand, if ℓ is a too small a number (for instance ℓ = 3), another small linear part of this graph (even before the "true" beginning N α * ) may be chosen; consequently, the √ M SE (square root of the mean square error) of α N and therefore of D N or DN will be too large. On the other hand, if ℓ is a too large a number (for instance ℓ = 50 for N = 1000), the estimator α N will certainly satisfy α N < α * since it will not be possible to consider ℓ different scales larger than N α * (if D ′ = 1 therefore α ′ = 1/3, then a N has to satisfy: N/(50a N ) = 20/a N is a large number and (a N > N 1/3 = 10; this is not really possible). Moreover, it is possible that a "good" choice of ℓ depends on the "flatness" of the spectral density f , i.e. on D ′ . We have proceeded to simulations for each different values of ℓ (and N and D). Only √ M SE of estimators are presented. The results are specified in Table 1.

In Table 1, two phenomena can be distinguished: the detection of α * and the estimation of D:

• To estimate α * , ℓ has to be small enough, especially because of "D ′ close to 0" and so "α ′ close to 1" is possible. However, our simulations indicate that ℓ must not be too small (for instance ℓ = 5 leads to an important MSE for α N implying an important MSE for D N ) and seems to be independent of N (cases N = 1000 and N = 10000 are quite similar). Hence, our choice is ℓ 1 = 15 to estimate α * for any N .

• To estimate D, once α * is estimated, a second value ℓ 2 of ℓ can be chosen. We use an adaptive procedure which, roughly speaking, consists in determining the "end" of the acceptable linear zone. Firstly, we use again the same procedure than for estimating a N but with scales (a N /i) 1≤i≤ℓ1 and ℓ 1 = 15. It provides an estimator b N corresponding to the maximum of acceptable (for a linear regression) scales.

Secondly, the adaptive number of scales ℓ 2 is computed from the formula

ℓ 2 = ℓ = [ b N / a N ].
The simulations carried out with such values of ℓ 1 and ℓ 2 are detailed in Table 1.

As it may be seen in Table 1, the choice of parameters (ℓ 1 = 15, ℓ 2 = ℓ) provides the best results for estimating D, almost uniformly for all processes.

Consistency of the estimators α N and αN : the previous numerical results (here we consider ℓ 1 = 15)

show that α N and αN converge (very slowly) to the optimal rate α * , that is 0.2 for the first four processes and 1/3 for the fifth. Figure 1 illustrates the evolution with N of the log-log plotting and the choice of the onset of scaling.

Figure 1 shows that log T N (i • N α ) is not a linear function of the logarithm of the scales log(i • N α ) when N increases and α < α * (a consequence of Property 1: it means there is a bias). Moreover, if α > α * and α increases, a linear model appears with an increasing error variance.

Consistency and distribution of the estimators D N and DN : The results of Table 1 show the consistency with N of D N and DN only by using ℓ 1 = 15. Figure 2 Consistency in case of short memory: The following Table 2 provides the behavior of D N and DN if D ≤ 0 and D ′ > 0. Two processes are considered in such a frame: a FARIMA(0, d, 0) process with -0.5 < d < 0 and therefore -1 < D ≤ 0 (always with D ′ = 2) and a process X (D,D ′ ) and D < 0 and D ′ > 0.

The results are displayed in Table 4.1 (here N = 1000, N = 10000 and N = 100000, ℓ 1 = 15 and ℓ 2 = [5 N 0.1 ]) for different choices of D and D ′ . Thus it appears that D N and DN can be successively applied to short memory processes as well. Moreover, the larger D ′ , the faster their convergence rates.

Robustness of D N , DN : To conclude with the numerical properties of the estimators, four different processes not satisfying Assumption A1 ′ are considered:

• a FARIMA(0, d, 0) process (denoted P 1) with innovations satisfying a uniform law (and EX 2 i < ∞);

• a FARIMA(0, d, 0) process (denoted P 2) with innovations satisfying a distribution with density w.r.t.

Lebesgue measure f (x) = 3/4 * (1 + |x|) -5/2 for x ∈ R (and therefore

E|X i | 2 = ∞ but E|X i | < ∞);
• a FARIMA(0, d, 0) process (denoted P 3) with innovations satisfying a Cauchy distribution (and

E|X i | = ∞);
• a Gaussian stationary process (denoted P 4) with a spectral density f (λ) = (|λ|π/2) -1/2 for all λ ∈ [-π, π] \ {-π/2, π/2}. The local behavior of f in 0 is f (|λ|) ∼ π/2 |λ| D with D = 0, but the smoothness condition for f in Assumption A1 is not satisfied.

For the first 3 processes, D is varies in {0.1, 0.3, 0.5, 0.7, 0.9} and 100 independent replications are taken into account. The results of these simulations are given in Table 3.

As outlined in the theoretical part of this paper, the estimators D N and DN seem also to be accurate for L 2 -linear processes. For L α -linear processes with 1 ≤ α < 2, they are also convergent with a slower rate of convergence. Despite the spectral density of process P 4 does not satisfies the smoothness hypothesis requires in Assumptions A1 or A1', the convergence rates of D N and DN are still convincing. These results confirm the robustness of wavelet based estimators.

Comparisons with other semi-parametric long-memory parameter estimators from simulations

Here we consider only long-memory Gaussian processes (D ∈ (0, 1)) based on the usual hypothesis 0 < D ′ ≤ 2.

More precisely, the "benchmark" is: 100 generated independent samples of each process with length N = 10 3

and N = 10 4.

Comments on the results of Table 4: These simulations allow to distinguish four "clusters" of estimators.

• D BGK is obtained from a BIC-criterium hierarchical model selection (from 2 to 11 parameters, corresponding to the length of the approximation of the Fourier expansion of the spectral density) using Whittle estimation. For these simulations, the BIC criterion is generally minimal for 5 to 7 parameters to be estimated. Simulation results are not very satisfactory except for D = 0.1 (close to the short memory). Moreover, this procedure is rather time-consuming.

• D GRS offers good results for fGn and FARIMA(0, d, 0). However, this estimator does not converge fast enough for the other processes.

• Estimators D MS and D R have similar properties. They (especially D R ) are very interesting because they offer the same fairly good rates of convergence for all processes of the benchmark.

• Being built on similar principles, estimators D AT V and D N have similar behavior as well. Their convergence rates are the fastest for fGn and FARIMA(0, d, 0) and are almost close to fast ones for the other processes. Their times of computing, especially for D AT V for which the computations of wavelet coefficients with that the Mallat algorithm, are the shortest.

Conclusion:

Which estimator among those studied above has to be chosen in a practical frame, i.e. an observed time series? We propose the following procedure for estimating an eventual long memory parameter:

1. Firstly, since this procedure is very low time consuming and applicable to processes with smooth trends, draw the log-log regression of wavelet coefficients' variances onto scales. If a linear zone appears in this graph, consider the estimator D N (or D AT V ) of D.

2. If a linear zone appears in the previous graph and if the observed time series seems to be without a trend, compute D R .

3. Compare both the estimated value of D from confidence intervals (available for D N or D AT V and D R ).

Proofs

Proof (

). First, for a ∈ N * , E(e 2 (a, 0)) = 1 a a k=1 a k ′ =1 ψ(k/a)ψ(k ′ /a)E(X k X k ′ ) = 1 a a k=1 a k ′ =1 ψ(k/a)ψ(k ′ /a)r(k -k ′ ) = 1 a a k=1 a k ′ =1 ψ(k/a)ψ(k ′ /a) π -π f (λ)e iλ(k-k ′ ) dλ = aπ -aπ f u a × 1 a 2 a k=1 a k ′ =1 ψ k a ψ k ′ a e iu k a -k ′ a du = aπ -aπ f u a × 1 a a k=1 ψ k a cos k a u 2 + 1 a a k=1 ψ k a sin k a u 2 du (18) 2007 
Now, it is well known that if ψ ∈ W (β, L) the Sobolev space with parameters β > 1/2 and L > 0, then

sup |u|≤aπ ∆ a (u) ≤ C β,L 1 a β-1/2 with ∆ a (u) := 1 a a k=1 ψ k a e -iu k a - 1 0 ψ(t)e -iut dt , (19) 
with C β,L > 0 only depending on β and L (see for instance [START_REF] Devore | Constructive approximations[END_REF]. Therefore if ψ satisfies Assumption W (∞) and X Assumption A1, for all

β > 1/2, since sup u∈R | ψ(u)| < ∞, E(e 2 (a, 0)) - aπ -aπ f u a × | ψ(u)| 2 du ≤ 2C β,L 2 a β-3/2 aπ 0 f u a | ψ(u)| du + C 2 β,L 2 a 2β-2 aπ 0 f u a du ≤ 2 • C 2 β,L 2 a 2β-3 π 0 f (v) dv, (20) 
since sup u∈R (1 + u n )| ψ(u)| < ∞ for all n ∈ N. Consequently, if ψ satisfies Assumption W (∞), for all n > 0,
for all a ∈ N * , there exists C(n) > 0 not depending on a such that

E(e 2 (a, 0)) - aπ -aπ f u a × | ψ(u)| 2 du ≤ C(n) 1 a n . ( 21 
)
But from Assumption W (∞), for all c < 1,

K (ψ,c) = ∞ -∞ | ψ(u)| 2 |u| c du < ∞, because Assumption W (∞) implies that | ψ(u)| = O(|u|) when u → 0 and there exists p > 1 -c such that sup u∈R | ψ(u)| 2 (1 + |u|) p < ∞. Moreover, for all p > 1 -c, aπ -aπ | ψ(u)| 2 |u| c du -K (ψ,c) = 2 ∞ aπ | ψ(u)| 2 u c du ≤ C • ∞ aπ 1 u p+c du ≤ C ′ • 1 a p+c-1 ,
with C > 0 and C ′ > 0 not depending on a. As a consequence, under Assumption A1, for all p > 1 -D, all n ∈ N and all a ∈ N * ,

E(e 2 (a, 0)) -f * (0) • ∞ -∞ | ψ(u)| 2 |u/a| D du ≤ 2f * (0)a D ∞ aπ | ψ(u)| 2 u D du + C D ′ a D-D ′ aπ -aπ | ψ(u)| 2 |u| D-D ′ du + C(n) 1 a n =⇒ E(e 2 (a, 0)) -f * (0)K (ψ,D) • a D ≤ C ′ f * (0) • a 1-p + C D ′ K (ψ,D-D ′ ) • a D-D ′ .
Now, by choosing p such that 1p < D -D ′ , the inequality (6) is obtained. 2

Proof [Property 2] Using the proof of previous Property 1, with Assumption W (5/2), ψ is included in a Sobolev space W (5/2, L), inequality ( 19) is checked with β = 5/2 and (20) is replaced by

E(e 2 (a, 0)) -a aπ -aπ f u a × | ψ(u)| 2 du ≤ 2 • C 2 5/2,L 2 a 2 π 0 f (v) dv, (22) 
since sup u∈R (1 + u 3/2 )| ψ(u)| < ∞. Therefore, inequality (21) is replaced by E(e 2 (a, 0)) -a aπ -aπ f u a × | ψ(u)| 2 du ≤ C(2) 1 a 2 .
The end of the proof is similar to the end of the previous proof, but now K (ψ,c) exists for -2 < c < 1 and

aπ -aπ | ψ(u)| 2 |u| c du -K (ψ,c) ≤ C ′ • 1 a 2+c . Finally, under Assumption A1', for all a ∈ N * , since -2 < D -D ′ < 1, E(e 2 (a, 0)) -f * (0)K (ψ,D) • a D ≤ C D ′ K (ψ,D-D ′ ) • a D-D ′ + C ′ 1 a 2 ,
which achieves the proof. 2

Proof [Corollary 1] Both these proofs provide main arguments to establish [START_REF] Bardet | Statistical Study of the Wavelet Analysis of Fractional Brownian Motion[END_REF]. For better readability , we will consider only Assumption A1' and Assumption W (∞) (the long memory process being similar). The main difference consists in specifying the asymptotic behavior of

aπ -aπ f u a × | ψ(u)| 2 du. But, aπ -aπ f u a × | ψ(u)| 2 du = √ a - √ a f u a × | ψ(u)| 2 du + 2 aπ √ a f u a × | ψ(u)| 2 du. (23) 
The asymptotic behavior of ψ(u) when u → ∞ (ψ is considered to satisfy Assumption W (∞)), this behavior

induces that aπ √ a f u a × | ψ(u)| 2 du ≤ Ca D ∞ √ a u -D × | ψ(u)| 2 du ≤ C(n) a n , (24) 
for all n ∈ N. Moreover,

√ a - √ a f u a | ψ(u)| 2 du = f * (0) √ a - √ a u a -D + C D ′ u a D ′ -D | ψ(u)| 2 du + √ a - √ a f u a -f * (0) u a -D + C D ′ u a D ′ -D | ψ(u)| 2 du. ( 25 
)
From computations of previous proofs,

√ a - √ a u a -D + C D ′ u a D ′ -D | ψ(u)| 2 du = K (ψ,D) • a D + C D ′ K (ψ,D-D ′ ) • a D-D ′ + Λ(a), (26) 
and

|Λ(a)| ≤ C(n) a n . Finally, using f (λ) = f * (0) |λ| -D + C D ′ |λ| D ′ -D + o |λ| D ′ -D when λ → 0, we obtain √ a - √ a f u a -f * (0) u a -D + C D ′ u a D ′ -D | ψ(u)| 2 du = √ a - √ a u a D-D ′ f u a -f * (0) u a -D + C D ′ u a D ′ -D | ψ(u)| 2 u a D ′ -D du = a D-D ′ √ a - √ a g(u, a)| ψ(u)| 2 |u| D ′ -D du,
with for all u ∈ [-√ a, √ a], g(u, a) → 0 when a → ∞. Therefore, from Lebesgue Theorem (checked from the asymptotic behavior of ψ),

lim a→∞ a D-D ′ √ a - √ a f u a -f * (0) u a -D + C D ′ u a D ′ -D | ψ(u)| 2 du = 0. ( 27 
)
As a consequence, from (23), ( 24), ( 25), ( 26) and ( 27), the corollary is proven. 2

Proof [Proposition 1] This proof can be decomposed into three steps :Step 1, Step 2 and Step 3.

Step 1. In this part, N a N • Cov( TN (r i a N ), TN (r j a N )) 1≤i,j≤ℓ is proven to converge at an asymptotic covariance matrix Γ. First, for all (i, j) ∈ {1, . . . , ℓ}

i a N ), TN (r j a N )) = 2 1 [N/r i a N ] 1 [N/r j a N ] [N/riaN ] p=1 [N/rjaN ] q=1 Cov(ẽ(r i a N , p), ẽ(r j a N , q) 2 , 2 , Cov( TN (r 
because X is a Gaussian process. Therefore, by considering only i = j and p = q, for N and a N large enough,

Cov( TN (r i a N ), TN (r i a N )) ≥ 1 r i N a N . (29) 
Now, for (p, q) ∈ {1, . . . ,

[N/r i a N ]} × {1, . . . , [N/r i a N ]}, Cov ẽ(r i a N , p), ẽ(r j a N , q) = a 1-D N (r i r j ) (1-D)/2 f * (0)K (ψ,D) 1 r i a N 1 r j a N riaN k=1 rj aN k ′ =1 ψ k r i a N ψ k ′ r j a N r k -k ′ + a N (r i p -r j q) = a 1-D N (r i r j ) (1-D)/2 f * (0)K (ψ,D) 1 r i a N 1 r j a N riaN k=1 rj aN k ′ =1 ψ k r i a N ψ k ′ r j a N π -π dλ f (λ)e -iλ(k-k ′ +aN (rip-rj q)) = (r i r j ) (1-D)/2 a D N f * (0)K (ψ,D) 1 r i a N 1 r j a N riaN k=1 rj aN k ′ =1 ψ k r i a N ψ k ′ r j a N πaN -πaN du f u a N e -iu( k a N -k ′ a N +rip-rj q) .
Using the same expansion as in (21), under Assumption W (∞) the previous equality becomes, for all n ∈ N * , Cov ẽ(r i a N , p), ẽ(r j a N , q) -

(r i r j ) (1-D)/2 a D N f * (0)K (ψ,D) πaN -πaN du ψ(ur i ) ψ(ur j )f u a N e -iu(rip-rj q) ≤ C(n) a n+D N πaN -πaN du ψ(ur i ) ψ(ur j )f u a N ≤ C ′ (n) a n N ∞ -∞ du |u| -D ψ(ur i ) ψ(ur j ) ≤ C ′′ (n) a n N , (30) 
with C(n), C ′ (n), C ′′ (n) > 0 not depending on a N and due the asymptotic behaviors of ψ(u) when u → 0 and

u → ∞. Now, under Assumption A1, πaN -πaN du ψ(ur i ) ψ(ur j )f u a N e -iu(rip-rj q) -a N f * (0) π -π du ψ(ur i a N ) ψ(ur j a N ) |u| D e -iuaN (rip-rj q) ≤ a D-D ′ N f * (0)C D ′ πaN -πaN du ψ(ur i ) ψ(ur j ) |u| D-D ′ ≤ a D-D ′ N f * (0)C D ′ ∞ -∞ du ψ(ur i ) ψ(ur j ) |u| D-D ′ , (31) since ∞ 
-∞ du ψ(ur i ) ψ(ur j ) |u| D-D ′ < ∞ from Assumption W (∞).
Finally, from (30) and (31), we have C > 0 not

depending on N such that for all a N ∈ N * , Cov ẽ(r i a N , p), ẽ(r j a N , q) - a 1-D N (r i r j ) (1-D)/2 K (ψ,D) π -π du ψ(ur i a N ) ψ(ur j a N ) |u| D e -iuaN (rip-rj q) ≤ C a -D ′ N . (32) 
It remains to evaluate

a 1-D N π -π du ψ(ur i a N ) ψ(ur j a N ) |u| D e -iuaN (rip-rj q) = πaN -πaN du ψ(ur i ) ψ(ur j )
|u| D e -iu(rip-rj q) . Thus, if |r i pr j q| ≥ 1, using an integration by parts,

πaN -πaN du ψ(ur i ) ψ(ur j ) |u| D e -iu(rip-rj q) = 1 -i(r i p -r j q) ψ(ur i ) ψ(ur j ) u D e -iu(rip-rj q) πaN -πaN + 1 i(r i p -r j q) πaN -πaN du ∂ ∂u ψ(ur i ) ψ(ur j ) u D e -iu(rip-rj q) ≤ 1 |r i p -r j q| ∞ -∞ D |u| D+1 ψ(ur i ) ψ(ur j ) + 1 |u| D ∂ ∂u ψ(ur i ) ψ(ur j ) du ≤ C 1 |r i p -r j q| (33) 
with C < ∞ not depending on N , since:

• ψ(πr i a N ) ψ(πr j a N ) = ψ(-πr i a N ) ψ(-πr j a N ) and sin(πa N (r i pr j q)) = 0;

• from Assumption W (∞), lim sup u→0 u -1 | ψ(u)| < ∞, lim sup u→0 ∂ ∂u ψ(u) < ∞ =⇒ lim sup u→0 u -1 ∂ ∂u ψ(ur i ) ψ(ur j ) < ∞; • from Assumption W (∞), for all n ∈ N, sup u∈R (1 + |u|) n | ψ(u)| < ∞ and sup u∈R (1 + |u|) n ∂ ∂u ψ(u) < ∞.
Moreover, if |r i pr j q| = 0, from Cauchy-Schwartz Inequality and Property 1, for a N large enough Cov ẽ(r i a N , p), ẽ(r j a N , q) ≤ E(ẽ 2 (r i a N , p)) • E( d2 (r j a N , q))

1/2 ≤ 2. ( 34 
)
Therefore, using (32), (33) and (34) and the inequality (x + y) 2 ≤ 2(x 2 + y 2 ) for all (x, y) ∈ R 2 , we have C > 0 such that for a N large enough,

Cov 2 ẽ(r i a N , p), ẽ(r j a N , q) ≤ C 1 (1 + |r i p -r j q|) 2 + 1 a 2D ′ N (35)
Hence, with (28),

Cov( TN (r i a N ), TN (r j a N )) ≤ C 1 [N/r i a N ] 1 [N/r j a N ] [N/riaN ] p=1 [N/rj aN ] q=1 1 (1 + |r i p -r j q|) 2 + 1 a 2D ′ N
But, from the theorem of comparison between sums and integrals,

[N/riaN ] p=1 [N/rjaN ] q=1 (1 + |r i p -r j q|) -2 ≤ 1 r i r j N/aN 0 N/aN 0 du dv (1 + |u -v|) 2 ≤ 2 r i r j N/aN 0 N/a N dw (1 + w) 2 ≤ 2 r i r j • N a N .
As a consequence, if a N is such that lim sup

N →∞ N a N 1 a 2D ′ N < ∞ then lim sup N →∞ N a N Cov( TN (r i a N ), TN (r j a N )) < ∞.
More precisely, since this covariance is a sum of positive terms, if lim sup

N →∞ N a N 1 a 2D ′ N = 0, lim N →∞ N a N Cov( SN (r i a N ), SN (r j a N )) 1≤i,j≤ℓ = Γ(r 1 , • • • , r ℓ , ψ, D), (36) 
a non null (from (29)) symmetric matrix with Γ(r 1 , • • • , r ℓ , ψ, D) = (γ ij ) 1≤i,j≤ℓ that can be specified. Indeed, from the previous computations, if lim sup

N →∞ N a N 1 a 2D ′ N = 0, γ ij = lim N →∞ 8r i r j a N N [N/riaN ] p=1 [N/rjaN ] q=1 (r i r j ) (1-D)/2 K (ψ,D) ∞ 0 du ψ(ur i ) ψ(ur j ) u D cos(u(r i p -r j q)) 2 = lim N →∞ 8(r i r j ) 2-D a N K 2 (ψ,D) N [N/dijaN ]-1 m=-[N/dijaN ]+1 ( N d ij a N -|m| ∞ 0 du ψ(ur i ) ψ(ur j ) u D cos(u d ij m) 2 = 8(r i r j ) 2-D K 2 (ψ,D) d ij ∞ m=-∞ ∞ 0 ψ(ur i ) ψ(ur j ) u D cos(u d ij m) du 2 ,
with d ij = GCD(r i ; r j ). Therefore, the matrix Γ depends only on on r 1 , • • • , r ℓ , ψ, D.

Step 2.Generaly speaking, the above result is not sufficient to obtain the central limit theorem,

N a N TN (r i a N ) -E(ẽ 2 (r i a N , 0) 1≤i≤ℓ L -→ N →∞ N ℓ (0, Γ(r 1 , • • • , r ℓ , ψ, D)). (37) 
However, each TN (r i a N ) is a quadratic form of a Gaussian process. Mutatis mutandis, it is exactly the same framework (i.e. a Lindeberg central limit theorem) as that of Proposition 2.1 in [START_REF] Bardet | Testing for the presence of self-similarity of Gaussian time series having stationary increments[END_REF], and (37) is checked. Moreover, if (a n ) n is such that lim sup

N →∞ N a 1+2D ′ N = 0 then using the asymptotic behavior of E(ẽ 2 (r i a N , 0) provided in Property 1, N a N E(ẽ 2 (r i a N , 0) -→ N →∞ 0.
As a consequence, under those assumptions,

N a N TN (r i a N ) -1 1≤i≤ℓ L -→ N →∞ N ℓ (0, Γ(r 1 , • • • , r ℓ , ψ, D)). (38) 
Step 3. The logarithm function (x 1 , .., x ℓ ) ∈ (0, +∞) ℓ → (log x 1 , .., log x m ) is C 2 on (0, +∞) ℓ . As a consequence, using the Delta-method, the central limit theorem [START_REF] Bhansali | Estimation of the memory parameter by fitting fractionally-differenced autoregressive models[END_REF] for the vector log TN (r i a N ) 1≤i≤ℓ follows with the same asymptotical covariance matrix Γ(r 1 , • • • , r ℓ , ψ, D) (because the Jacobian matrix of the function in (1, .., 1) is the identity matrix). 2

Proof [Proposition 2]

There is a perfect identity between this proof and that of Proposition 1, both of which are based on the approximations of Fourier transforms provided in the proof of Property 2. 2

Proof [Corollary 3] It is clear that X ′ t = X t + P m (t) for all t ∈ Z, with X = (X t ) t satisfying Proposition 1 and 2. But, any wavelet coefficient of (P m (t)) t is obviously null from the assumption on ψ. Therefore the statistic T N is the same for X and X ′ . 2

Proof [Proposition 5] Let ε > 0 be a fixed positive real number, such that α * + ε < 1.

I. First, a bound of Pr( α N ≤ α * + ε) is provided. Indeed, Pr α N ≤ α * + ε ≥ Pr Q N (α * + ε/2) ≤ min α≥α * +ε and α∈AN Q N (α) ≥ 1 -Pr α≥α * +ε and α∈AN Q N (α * + ε/2) > Q N (α) ≥ 1 - log[N/ℓ] k=[(α * +ε) log N ] Pr Q N (α * + ε/2) > Q N k log N . (39) 
But, for α ≥ α * + 1,

Pr Q N (α * + ε/2) > Q N (α) = Pr P N (α * + ε/2) • Y N (α * + ε/2) 2 > P N (α) • Y N (α) 2 with P N (α) = I ℓ -A N (α) • A ′ N (α) • A N (α) -1 • A N (α)
for all α ∈ (0, 1), i.e. P N (α) is the matrix of an orthogonal projection on the orthogonal subspace (in R ℓ ) generated by A N (α) (and I ℓ is the identity matrix in R ℓ ). From the expression of A N (α), it is obvious that for all α ∈ (0, 1),

P N (α) = P = I ℓ -A • A ′ • A -1 • A, with the matrix A =        log(r 1 ) 1 : : log(r ℓ ) 1       
as in Proposition 3. Thereby,

Pr Q N (α * + ε/2) > Q N (α) = Pr P • Y N (α * + ε/2) 2 > P • Y N (α) 2 = Pr P • N N α * +ε/2 Y N (α * + ε/2) 2 > N α-(α * +ε/2) P • N N α Y N (α) 2 ≤ Pr V N (α * + ε/2) > N (α-(α * +ε/2))/2 + Pr V N (α) ≤ N -(α-(α * +ε/2))/2 with V N (α) = P • N N α Y N (α) 2 
for all α ∈ (0, 1). From Proposition 1, for all α > α * , the asymptotic law of P • N N α Y N (α) is a Gaussian law with covariance matrix P • Γ • P ′ . Moreover, the rank of the matrix is

P • Γ • P ′ is ℓ -2 (
this is the rank of P ) and we have 0 < λ -, not depending on N ) such that P • Γ • P ′λ -P • P ′ is a non-negative matrix (0 < λ -< min{λ ∈ Sp(Γ)}). As a consequence, for a large enough N ,

Pr V N (α) ≤ N -(α-(α * +ε/2))/2 ≤ 2 • Pr V -≤ N -(α-(α * +ε/2))/2 ≤ 1 2 ℓ/2-2 Γ(ℓ/2) • N λ - -( ℓ 2 -1) (α-(α * +ε/2)) 2 , with V -∼ λ -• χ 2 (ℓ -2). Moreover, from Markov inequality, Pr V N (α * + ε/2) > N (α-(α * +ε/2))/2 ≤ 2 • Pr exp( V + ) > exp N (α-(α * +ε/2))/4 ≤ 2 • E(exp( V + )) • exp -N (α-(α * +ε/2))/4 with V + ∼ λ + • χ 2 (ℓ -2) and λ + > max{λ ∈ Sp(Γ)} > 0. Like E(exp( V + )) < ∞ does not depend on N , we obtain that M 1 > 0 not depending on N , such that for large enough N , Pr Q N (α * + ε/2) > Q N (α) ≤ M 1 • N -( ℓ 2 -1) (α-(α * +ε/2)) 2 ,
and therefore, the inequality (39) becomes, for N large enough,

Pr α N ≤ α * + ε ≥ 1 -M 1 • log[N/ℓ] k=[(α * +ε) log N ] N -(ℓ-2) 4 k log N -(α * +ε/2) ≥ 1 -M 1 • log N • N -(ℓ-2) 12 ε . (40) 
II. Secondly, a bound of Pr( α N ≥ α *ε) is provided. Following the above arguments and notations ,

Pr α N ≥ α * -ε ≥ Pr Q N (α * + 1 -α * 2α * ε) ≤ min α≤α * -ε and α∈AN Q N (α) ≥ 1 - [(α * -ε) log N ]+1 k=2 Pr Q N (α * + 1 -α * 2α * ε) > Q N k log N , (41) 
and as above,

Pr Q N (α * + 1 -α * 2α * ε) > Q N (α) = Pr P • N N α * + 1-α * 2α * ε Y N (α * + 1 -α * 2α * ε) 2 > N α-(α * + 1-α * 2α * ε) P • N N α Y N (α) 2 . (42) 
Now, in the case a N = N α with α ≤ α * , the sample variance of wavelet coefficients is biased. In this case, from the relation of Corollary 1 under Assumption A1',

Y N (α) 1≤i≤ℓ = C D ′ K (ψ,D-D ′ )) f * (0)K (ψ,D) (iN α ) -D ′ (1 + o i (1)) 1≤i≤ℓ + N α N • ε N (α) 1≤i≤ℓ ,
with o i (1) → 0 when N → ∞ for all i and E(Z N (α)) = 0. As a consequence, for large enough N ,

P • N N α Y N (α) 2 = P • ε N (α) 2 + N α * -α α * P • C D ′ K (ψ,D-D ′ )) f * (0)K (ψ,D) i -D ′ (1 + o i (1)) 1≤i≤ℓ 2 ≥ D • N α * -α α * ,
with D > 0, because the vector (i -D ′ ) 1≤i≤ℓ not in the orthogonal subspace of the subspace generated by the matrix A. Then, the relation (42) becomes,

Pr Q N (α * + 1 -α * 2α * ε) > Q N (α) ≤ Pr P • N N α * + 1-α * 2α * ε Y N (α * + 1 -α * 2α * ε) 2 ≥ D • N α-(α * + 1-α * 2α * ε) • N α * -α α * ≤ Pr V + ≥ D • N 1-α * 2α * (2(α * -α)-ε) ≤ M 2 • N -( ℓ 2 -1) 1-α * 2α * ε , with M 2 > 0, because V + ∼ λ + • χ 2 (ℓ -2) and 1 -α * 2α * (2(α * -α) -ε) ≥ 1 -α * 2α * ε for all α ≤ α * -ε. Hence,
from the inequality (41), for large enough N ,

Pr α N ≥ α * -ε ≥ 1 -M 2 • log N • N -( ℓ 2 -1) 1-α * 2α * ε . (43) 
The inequalities (40) and (43) imply that Pr

| α N -α| ≥ ε -→ N →∞ 0. 2 
Proof [Theorem 1] The central limit theorem of ( 16) can be established from the following arguments. First,

Pr(α N > α * ) -→ N →∞
1. Following the previous proof, there is for all ε > 0, FARIMA(0, -0.25, 0) X (-1,1) X (-1,3) X (-3,1) X (-3,3) N = 10 

Pr α N ≥ α * -ε ≥ 1 -M 2 • log N • N -( ℓ 2 -1) 1-α * 2α * ε . Consequently, if ε N = λ • log log N log N with λ > 2 (ℓ -2)D ′ then, Pr α N ≥ α * -ε N ≥ 1 -M 2 • log N • N -λ (ℓ-2)D ′ 2 • log log N log N ≥ 1 -M 2 • log N 1-λ (ℓ-2)D ′ 2 =⇒ Pr α N + ε N ≥ α * -→ N →∞ 1. N = 10 3 √ MSE ℓ = 5 ℓ = 10 ℓ = 15 ℓ = 20 ℓ = 25      ℓ1 = 15 ℓ2 = ℓ fGn = D+1 2 ) DN ,

,

  [START_REF] Moulines | Semiparametric spectral estimation for fractionnal processes[END_REF] or[START_REF] Moulines | On the spectral density of the wavelet coefficients of long memory time series with application to the log-regression estimation of the memory parameter[END_REF] is f (λ) = |1e iλ | -2d • f * (λ) with f * a function such that |f * (λ)f * (0)| ≤ f * (0) • λ β and 0 < β).It is obvious that for β ≤ 2 such an assumption corresponds to Assumption A1 with D ′ = β. Moreover, following arguments developed in[START_REF] Giraitis | Rate optimal semi-parametric estimation of the memory parameter of the Gaussian time series with long range dependence[END_REF][START_REF] Giraitis | Adaptive semiparametric estimation of the memory parameter[END_REF], if f * ∈ H(D ′ , C D ′ ) with D ′ > 2 is such that f * is s ∈ N *

1 0ψ 1 0

 11 (t) dt = 0 and ψ(0) = ψ(1) = 0. A consequence of the first point of this Assumption is: for all p > 0, sup λ∈R | ψ(λ)|(1 + |λ|) p < ∞, where ψ(u) = ψ(t) e -iut dt is the Fourier transform of ψ. A useful consequence of the second point is ψ(u) ∼ C u for u → 0 with |C| < ∞ a real number not depending on u.

  central limit theorem satisfied by DN is empirically checked. The empirical choice of the parameter ℓ is also studied. Moreover, the robustness of DN is successfully tested. Finally, the adaptive wavelet-based estimator is compared with several existing adaptive estimators of the memory parameter from generated paths of the 5 different "test" processes (Giraitis-Robinson-Samarov adaptive local log-periodogram, Moulines-Soulier adaptive global log-periodogram, Robinson local Whittle, Abry-Taqqu-Veitch data-driven wavelet based, Bhansali-Giraitis-Kokoszka FAR estimators). The simulations results of DN are convincing. The convergence rate of DN is often ranges among the best of the 5 test processes (however the Robinson local Whittle estimator D R provides more uniformly accurate estimations of D). Three other numerical advantages are offered by the adaptive wavelet-based estimator (and not by D R ). Firstly, it is a very low consuming time estimator. Sec-

  on D ′ which is unknown. To solve this problem, Veitch et al. (2003) suggest a chi-square-based test (constructed from a distance between the regression line and the different points

Remark 7

 7 This choice of discretization is implied by the following proof of the consistency of α N . If the interval (0, 1) is stepped in N β points, with β > 0, the used proof cannot attest this consistency. Finally, it is the same framework as the usual discrete wavelet transform (see for instance[START_REF] Veitch | On the Automatic Selection of the Onset of Scaling[END_REF] but less restricted since log N may be replaced in the previous expression of A N by any negligible function of N compared to functions N β with β > 0 (for instance, (log N ) d or d log N can be used).

2 (

 2 ℓ-2)D ′ and µ > 12 ℓ-2 . Consequently, the selected scale is asymptotically equal to N α * up to a logarithm factor. Finally, Proposition 5 can be used to define an adaptive estimator of D. First, define the straightforward estimator D N = D( a N ), which should minimize the mean square error using a N . However, the estimator D N does not attest a CLT since Pr( α N ≤ α * ) > 0 and therefore it can not be asserted that E( N/ a N ( D N -D)) = 0. To establish a CLT satisfied by an adaptive estimator DN of D, an adaptive scale sequence (ã N ) = (N αN ) has to be defined to ensure Pr(α N ≤ α * ) -→ N →∞ 0. The following theorem provides the asymptotic behavior of such an estimator, Theorem 1 Let X satisfy Assumption A1' and ψ Assumption W (∞) (or Assumption W (5/2) if 0 < D < 1 and 0 < D ′ ≤ 2). Define,

(

  2003). The simulations are realized for different values of D, N and processes which satisfy Assumption A1' and therefore Assumption A1 (the article of Moulines et al., 2007, gives a lot of details on this point):1. the fractional Gaussian noise (fGn) of parameter H = (D + 1)/2 (for -1 < D < 1) and σ 2 = 1. The spectral density f f Gn of a fGn is such that f* f Gn is included in H(2, C 2 ) (thus D ′ = 2);2. the FARIMA[p,d,q] process with parameter d such that d = D/2 ∈ (-0.5, 0.5) (therefore -1 < D < 1), the innovation variance σ 2 satisfying σ 2 = 1 and p, q ∈ N. The spectral density f F ARIMA of such a process is such that f * F ARIMA is included in the set H(2, C 2 ) (thus D ′ = 2);

FARIMA[ 1

 1 ,d,0] processes with d = D/2, standard Gaussian innovations and AR coefficient φ = 0.95; • FARIMA[1,d,1] processes with d = D/2, standard Gaussian innovations and AR coefficient φ = -0.3 and MA coefficient φ = 0.7;

Figure 1 :

 1 Figure 1: Log-log graphs for different samples of X (D,D ′ ) with D = 0.5 and D ′ = 1 when N = 10 3 (up and left, D N ≃ 1.04), N = 10 4 (up and right, D N ≃ 0.66), N = 10 5 (down and left, D N ≃ 0.62) and N = 10 6 (down and right, D N ≃ 0.54).

  provides the histograms of D N and DN for 100 independent samples of FARIMA(1, d, 1) processes with D = 0.5 and N = 10 5 . Both the histograms of Figure 2 are similar to Gaussian distribution histograms. It is not surprising for DN since Theorem 1 shows that the asymptotic distribution of DN is a Gaussian distribution with mean equal to D. The asymptotic distribution of D N and the Gaussian distribution seem also to be similar. A Cramer-von Mises test of normality indicates that both distributions of D N and DN can be considered a Gaussian distribution (respectively W ≃ 0.07, pvalue ≃ 0.24 and W ≃ 0.05, pvalue ≃ 0.54).

Figure 2 :

 2 Figure 2: Histograms of D N and DN for 100 samples of FARIMA(1, d, 1) with D = 0.5 for N = 10 5 .

4

 4 and different values of D, D = 0.1, 0.3, 0.5, 0.7, 0.9. Several different semi-parametric estimators of D are considered: • D BGK is an "optimal" parametric Whittle estimator obtained from a BIC criterium model selection of fractionally differenced autoregressive models (introduced by Bhansali it et al., 2006). The required confidence interval of the estimationD BGK is [ D R -2/N 1/4 , D R -2/N 1/4 ]; • D GRS isan adaptive local periodogram estimator introduced by Giraitis et al (2000). It requires two parameters: a bandwidth parameter m, with a procedure of determination provided in this article, and a number of low trimmed frequencies l (satisfying different conditions but without being fixed in this paper; after a number of simulations, l = max(m 1/3 , 10) is chosen); • D MS is an adaptive global periodogram estimator introduced by Moulines and Soulier (1998, 2003), also called FEXP estimator, with bias-variance balance parameter κ = 2; • D R is a local Whittle estimator introduced by Robinson (1995). The trimming parameter is m = N/30; • D AT V is an adaptive wavelet based estimator introduced by Veitch et al. (2003) using a Db4 wavelet (and described above); • D N defined previously with ℓ 1 = 15 and ℓ 2 = N 1-αN /10 and a mother wavelet ψ(t) = 100 •t

[Property 1 ]

 1 The arguments of this proof are similar to those of Abry et al. (1998) or Moulines et al.

4 and 10 5 )

 5 , of D (0.1, 0.3, 0.5, 0.7 and 0.9) and ℓ (5, 10, 15, 20, 25 and (15, ℓ)), 100 independent samples of each process are generated. The √ M SE of each estimator is obtained from a mean of √ M SE obtained for the different values of D.

Table 1 :

 1 Consistency of estimators D N , DN , α N , αN following ℓ from simulations of the different long-memory processes of the benchmark. For each value of N (10 3 , 10

			DN	0.16, 0.75	0.14, 0.19	0.13, 0.17	0.14, 0.15	0.14, 0.15	0.15, 0.18
		αN , αN	0.12, 0.32	0.07, 0.13	0.05, 0.08	0.04, 0.05	0.04, 0.04	0.05, 0.08
	FARIMA(0, D 2 , 0)	DN , DN	0.21, 0.81	0.15, 0.20	0.14, 0.17	0.15, 0.15	0.15, 0.15	0.15, 0.19
		αN , αN	0.14, 0.34	0.07, 0.13	0.05, 0.09	0.05, 0.06	0.04, 0.04	0.05, 0.09
	FARIMA(1, D 2 , 0)	DN , DN	0.30, 0.96	0.28, 0.35	0.27, 0.29	0.29, 0.27	0.30, 0.30	0.31, 0.35
		αN , αN	0.19, 0.44	0.15, 0.24	0.12, 0.17	0.11, 0.15	0.11, 0.12	0.12, 0.17
	FARIMA(1, D 2 , 1)	DN , DN	0.60, 0.92	0.43, 0.41	0.39, 0.35	0.36, 0.35	0.32, 0.33	0.21, 0.20
		αN , αN	0.17, 0.38	0.11, 0.18	0.09, 0.12	0.07, 0.09	0.06, 0.07	0.09, 0.12
	X (D,D ′ ) , D ′ = 1	DN , DN	0.33, 0.68	0.29, 0.28	0.27, 0.26	0.26, 0.27	0.25, 0.25	0.29, 0.30
		αN , αN	0.10, 0.22	0.10, 0.07	0.11, 0.07	0.12, 0.12	0.13, 0.13	0.11, 0.07
		√ MSE	ℓ = 5	ℓ = 10	ℓ = 15	ℓ = 20	ℓ = 25	    	ℓ1 = 15 ℓ2 = ℓ
	fGn (H = D+1 2 )	DN , DN	0.08, 0.26	0.05, 0.05	0.05, 0.05	0.04, 0.04	0.04, 0.04	0.04, 0.04
		αN , αN	0.08, 0.22	0.05, 0.06	0.04, 0.05	0.04, 0.05	0.05, 0.05	0.04, 0.05
	FARIMA(0, D 2 , 0)	DN , DN	0.08, 0.31	0.06, 0.06	0.05, 0.05	0.05, 0.05	0.05, 0.05	0.05, 0.05
	N = 10 4	αN , αN	0.09, 0.24	0.05, 0.07	0.04, 0.05	0.04, 0.05	0.05, 0.05	0.04, 0.05
	FARIMA(1, D 2 , 0)	DN , DN	0.13, 0.57	0.10, 0.10	0.09, 0.08	0.09, 0.08	0.09, 0.09	0.09, 0.08
		αN , αN	0.15, 0.36	0.09, 0.16	0.08, 0.11	0.07, 0.09	0.06, 0.08	0.08, 0.11
	FARIMA(1, D 2 , 1)	DN , DN	0.22, 0.63	0.17, 0.15	0.16, 0.13	0.15, 0.14	0.15, 0.14	0.09 , 0.09
		αN , αN	0.16, 0.38	0.11, 0.17	0.08, 0.11	0.07, 0.09	0.06, 0.07	0.08, 0.11
	X (D,D ′ ) , D ′ = 1	DN , DN	0.23, 0.36	0.19, 0.15	0.18, 0.17	0.17, 0.17	0.15, 0.14	0.15, 0.14
		αN , αN	0.10, 0.18	0.12, 0.08	0.13, 0.12	0.14, 0.14	0.15, 0.15	0.13, 0.12
		√	MSE	ℓ = 5	ℓ = 10	ℓ = 15	ℓ = 20	ℓ = 25	    	ℓ1 = 15 ℓ2 = ℓ
	fGn (H = D+1 2 )	DN , DN	0.04, 0.09	0.03, 0.03	0.02, 0.03	0.02, 0.02	0.02, 0.02	0.02, 0.02
		αN , αN	0.07, 0.16	0.06, 0.04	0.06, 0.06	0.07, 0.07	0.07, 0.07	0.06, 0.06
	FARIMA(0, D 2 , 0)	DN , DN	0.03, 0.13	0.02, 0.02	0.02, 0.02	0.02, 0.02	0.02, 0.02	0.02, 0.02
	N = 10 5	αN , αN	0.07, 0.18	0.04, 0.05	0.04, 0.03	0.04, 0.04	0.05, 0.05	0.04, 0.03
	FARIMA(1, D 2 , 0)	DN , DN	0.05, 0.25	0.05, 0.04	0.04, 0.03	0.04, 0.03	0.04, 0.04	0.03, 0.02
		αN , αN	0.12, 0.30	0.07, 0.12	0.05, 0.07	0.04, 0.06	0.04, 0.05	0.05, 0.07
	FARIMA(1, D 2 , 1)	DN , DN	0.08, 0.30	0.06, 0.04	0.05, 0.04	0.05, 0.04	0.05, 0.05	0.04, 0.03
		αN , αN	0.13, 0.33	0.09, 0.15	0.08, 0.11	0.07, 0.09	0.06, 0.08	0.08, 0.11
	X (D,D ′ ) , D ′ = 1	DN , DN	0.13, 0.19	0.11, 0.08	0.10, 0.08	0.09, 0.09	0.09, 0.09	0.08, 0.07
		αN , αN	0.09, 0.15	0.10, 0.07	0.11, 0.09	0.12, 0.11	0.13, 0.13	0.11, 0.09

Table 2 :

 2 Estimation of the memory parameter from 100 independent samples in case of short memory (D ≤ 0).

	3	√ MSE DN , DN	0.15, 0.20	0.30, 0.30	0.38, 0.37	0.36, 0.37	0.39, 0.38
	N = 10 4	√ MSE DN DN	0.04, 0.04	0.15, 0.14	0.08, 0.08	0.13, 0.14	0.13, 0.13
	N = 10 5	√ MSE DN , DN	0.03, 0.03	0.06, 0.05	0.04, 0.03	0.04, 0.04	0.03, 0.03

Table 3 :

 3 Estimation of the long-memory parameter from 100 independent samples in case of processes P 1 -4 defined above.

			D = 0.1	D = 0.3	D = 0.5	D = 0.7	D = 0.9
	fGn (H = (D + 1)/2)	DBGK	0.089	0.171	0.259	0.341	0.369
		DGRS	0.114	0.132	0.147	0.155	0.175
		DMS	0.163	0.169	0.181	0.195	0.191
		DR	0.211	0.220	0.215	0.218	0.128
		DAT V	0.176	0.153	0.156	0.164	0.162
		DN	0.139	0.147	0.133	0.140	0.150
	FARIMA(0, D 2 , 0)	DBGK	0.094	0.138	0.239	0.326	0.413
		DGRS	0.131	0.139	0.150	0.150	0.162
		DMS	0.172	0.167	0.174	0.197	0.188
		DR	0.246	0.189	0.223	0.234	0.181
		DAT V	0.128	0.107	0.081	0.074	0.065
		DN	0.161	0.146	0.149	0.149	0.161
	FARIMA(1, D 2 , 0)	DBGK	0.146	0.203	0.239	0.236	0.212
		DGRS	0.519	0.545	0.588	0.585	0.830
	N = 10 3 -→	DMS	0.235	0.258	0.256	0.252	0.249
		DR	0.242	0.241	0.234	0.202	0.144
		DAT V	0.248	0.267	0.280	0.268	0.375
		DN	0.340	0.319	0.314	0.315	0.334
	FARIMA(1, D 2 , 1)	DBGK	0.204	0.253	0.342	0.363	0.384
		DGRS	0.901	0.894	0.866	0.870	0.893
		DMS	0.181	0.175	0.180	0.185	0.181
		DR	0.204	0.200	0.200	0.191	0.130
		DAT V	0.392	0.380	0.371	0.343	0.355
		DN	0.170	0.218	0.225	0.226	0.213
	X (D,D ′ ) , D ′ = 1	DBGK	0.090	0.139	0.261	0.328	0.388
		DGRS	0.342	0.339	0.331	0.300	0.315
		DMS	0.176	0.178	0.182	0.166	0.177
		DR	0.219	0.232	0.231	0.173	0.167
		DAT V	0.153	0.161	0.168	0.176	0.176
		DN	0.284	0.294	0.293	0.292	0.288

Table 4 :

 4 Comparison of the different log-memory parameter estimators for processes of the benchmark. For each process and value of D and N , √ M SE are computed from 100 independent generated samples.
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Now, from Corollary 4,

Secondly, for x ∈ R , lim

To prove the second part of ( 16), we infer deduces from above that

This inequality and the previous central limit theorem result in : for all ρ > ν/2, and ε > 0,