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Abstract

The aim of this contribution is to provide an adaptive estimation of the long-memory parameter in
the classical semi-parametric framework for Gaussian stationary processes using a wavelet method. In
particular, the choice of a data-driven optimal band of scales is introduced and developed. Moreover,
a central limit theorem for the estimator of the long-memory parameter reaching the minimax rate of
convergence (up to a logarithm factor) is established. Simulations confirm the quality of this estimator.

1 Introduction

Let X = (X})ter be a second order zero mean stationary process and define its covariogram
r(t) =E(Xo - X¢), forteR.

We will assume that X is a long-memory process, that is,

lim r(t) =0 and Z [r(t)] = 0.

|t|—o0 ez
A particular case of such a property is the following form for the covariogram,
r(t) ~C-[t|P  when [t| — oo, (1)

with D €]0, 1] (so-called the long-memory parameter) and C > 0. This property can also be translated in the
spectral domain. Indeed, assume that the spectral density of X, with

FO) =5 Do rh) e,

exists for A € [—m,0)[U]0, w]. Then, from an Abelian theorem, the asymptotic behavior (1) can be written in
spectral terms, i.e.,

fO) ~C" - AP71 when A\ — 0,

with ¢’ > 0 (see Doukhan et al., 2003, for more details on this part). In this paper, two following semi-
parametric frameworks will be considered,

e Assumption Al, X = (Xi):icr is a zero mean stationary Gaussian process with spectral density
FA) = NP1 f5(\) with f*(0) > 0, and f* € H(D',Cp/) where 0 < D’ <2, Cp > 0 and

H(D'.Cp) = {a: [r.7] = B, [g(X) — 9(0)] < O I\ for all A € [, ]},



e Assumption A2, X = (Xi)icr is a zero mean stationary Gaussian process with spectral density
FO) = AP f5()\) with £%(0) > 0, and f* € H'(D’,Cp:,D",Cpr) where 0 < D' < 2, Cpr > 0,
D" >0, Cpr >0 and

(D', Cpr, D", Cpn) = { g [=m,7] = RF, g0 (9(0)+Cpr AP < Cpnl AP 2" for all A € [, 7] }.

Remark 1 In numerous previous works concerning the estimation of the long range parameter in a semi-
parametric framework (see for instance Robinson, 1995, Taqqu and Teverovsky, 1996, Giraitis et al., 1997,
Moulines and Soulier, 2003, Moulines et al., 2006), the assumption on the dependence structure is: f(\) =
|1 — 724 f*(X\) with f* a function such that |f*(\) — f*(0)| < f*(0) - A% and 0 < B < 2, that is equivalent
to Assumption A1, with 2d =1 — D. The Assumption A2 is a necessary condition for studying the following
adaptive estimator of D.

The aim of this article is the semi-parametric estimation of the parameter D using a wavelet analysis. This
method has been introduced by Flandrin (1989) and numerically developed by Abry et al. (1998, 2001) and
Veitch et al. (2003). Asymptotic results are provided in Bardet et al. (2000) and recently in Moulines et al.
(2006). Compared with these papers, two points of our work can be highlighted : first, a central limit theorem
is provided under weaker conditions than in Bardet et al. (2000). Secondly, an auto-driven estimator D, of
D is defined (with a different definition than in Veitch et al., 2003). A central limit theorem followed by D,, is
established and this estimator is proved to be rate optimal up to a logarithm factor (see above). Now, more
details on this estimation method are provided.

Let ¥ be a wavelet satisfying the following assumption, i.e. ¥ has m first vanishing moments :

Assumption W(m) : ¢ : [0,1] — R is a continuously differentiable function satisfying ¥(0) = ¢ (1) =0 and
such that,

1 1
1. it exists m € N\ {0, 1} satisfying, / tPp(t)dt =0 forall p€{0,1,...,m—1} and / [(t)] dt > 0.
0 0

2. it exists m’ > 3/2 such that supycp [N (1 + [A)™ < oo, where th(u) = fol P(t) e~ tdt is the Fourier
transform of .

Remark 2 The function v is a compactly supported function (the interval [0,1] is just for ease of writing
but the following results be easily extended to another interval) with its m first vanishing moments. For
instance, 1 can be a dilated Daubeshies "mother” wavelet of order d with d > 5 to ensure the reqularity of
the function 1. The following theory could also be extended for ”essentially” compactly supported "mother”
wavelet like Lemarié-Meyer wavelet. One can remark that it is not necessary to choose v being a "mother”
wavelet associated to a multiresolution analysis of L?(R). The whole theory can be developed without resorting
to this assumption. The choice of 1 is then very large. However, the recent paper of Moulines et al. (2006) is
developed under weaker conditions on ).

For (a,b) € R% x R, define the wavelet coefficient d(a,b) of the process X for the scale a and the shift b, i.e.

d(a,b) = %/}Rw(é — )X, dt. )

Remark 3 Let us underline that we consider a continuous wavelet transform. However, the case of discrete
wavelet transform where a = 27, that is numerically very interesting (using Mallat’s cascade algorithm) is just
a particular case. The main interest of considering continuous transform will be to offer a larger number of
"scales” for computing the data-driven optimal band of scales (see above).

If X satisfies one of the previous assumptions, the asymptotic behavior of the variance of d(a, b) is a power law
in the scale a. Indeed, under Assumption W (1) on ¢ and Assumption A1l or A2 on the process X, (d(a,b))per
is a Gaussian stationary process and the following expansion can be established (see Section 2) :

E(dQ(‘% 0)) ~ Kwy1-p)- a' P when a — oo,

with a constant Ky 1_p) such that,

Kpa) = / |7,Z(u)|2 Ju|"%u >0 for all a €] — 2,1], (3)

oo



where 15 is the Fourier’s transform of 1 (the existence of Ky o) is proved in the Section 5). The principle
of the wavelet-based estimation of D is linked to this power law in D of a. Indeed, let (Xi,...,Xy) be a
sampled path of X and define S ~(a) a sample variance of d(a,.) obtained from an appropriate choice of shifts
b. Then, when a = a(N) — oo satisfies a(N) = o(N*/(2P'+1)) 4 central limit theorem for log(Sy (a(V))) can
be proved. More precisely one obtains:

~ . a(N
log(Sx(a(N))) = (1~ D) log(a(N)) + log(f* (0)K(p1-p) + /X -2,
with ey Ni> N(O,U%MD)) and 0(2¢7D) > 0. As a consequence, using different scales (a1(N),...,a;(N)) a

linear regression of (log(Sx (a;(N))); on (log(a;(N))); provides an estimator D(ay) that satisfies a central
limit theorem (we suppose that it exists m; € N* such that a;(N) =m;-a(N) i=1,...,£). At this point, our
result is close to Bardet et al. (2000) or Moulines et al. (2006) results, with only different conditions on the
process X and the function 1.

The main problem is now: how to select the reference scale a(IN) considering the fact that the smaller is
a(N) the faster the convergence rate of D(ay). An optimal choice would be to chose a(N) larger but closer to
NY@D'+1) ‘hut the parameter D’ is supposed to be unknown. In Veitch et al. (2003), an automatic selection
procedure is proposed using a Khi-squared goodness of fit statistic. This procedure is applied successfully on
numerous numerical examples but no theoretical proofs are provided. The method we develop here is close to
this one. Roughly speaking, the ”optimal” choice of scale (a(NV)) is obtained from the "best” linear regression
among all the possible linear regressions of ¢ consecutive points (a,log(Sy(a))), where £ is a fixed integer
number. More formally, a contrast is minimized and the chosen scale a(N) satisfies:

log(a(N))  »_ 1

By this way, the adaptive estimator Dy of D for this scale a(N) is such that :

N - r 9
) (Dy — D) e N(0,05),

with 0123 > 0. As a consequence, the minimax rate of convergence N b’/ (1+2D/), up to a logarithm factor, for
the estimation of the long-memory parameter D in this semi-parametric setting (see Giraitis et al., 1997) is
obtained by Dy.

The paper is organized as follows. In section 2, a central limit theorem for sample variance of wavelet coeffi-
cients is established. In section 3, the automatic selection of the scale is described, the asymptotic behavior
of Dy is studied. Simulations are proposed in section 4 and proofs are given in section 5.

2 A central limit theorem for the sample variance of wavelet coef-
ficients

The first point that explains all that follows is the following asymptotic behavior of the variance of wavelet
coefficients,

Property 1 Under assumption A1 or A2 on X and assumption W (m) on ¢, for a > 0, (d(a,b))per is a zero
mean Gaussian stationary process and it exists M > 0 not depending on a such that

o Under Assumption Al, for alla > 1,

E(d*(a,0)) — f*(0)Ky1-p) -al—D} < M -q'~ (PP, (4)

o Under Assumption A2, for all a > 0,

E(dQ(a,O)) _ f*(())K(w,l—D) cal=P CD’K(w,l—(D-i—D’)) . alf(DJrD’) < M(aflfD + alf(DJrD’JrD/,))' (5)




The proof of this property, like all the other proofs, is in the last section of this paper. The paper of Moulines
et al. (2006) provides the same results under weaker assumptions but for multiresolution wavelet analysis. As
it was said in the introduction, this property allows an estimation of D from a log-log regression, as soon as

a consistant estimator of E(d*(a,0)) is provided from a sample (Xg, X1, ..., Xy) of the time series X. Define
then the normalized wavelet coeflicient such that

. d(a,b

d(a,b) = (a,5) for a > 0 and b € R. (6)

(f*(0)K p1-py - at=P)"/*?

From property 1, it is obvious that under Assumptions Al or A2, it exists M’ > 0 satisfying for all a > 0,

‘E(dQ(a,O)) - 1‘ <M
In view of using this formula for estimating D by a log-log regression, an estimator of the variance of d(a,0)
should be considered. Hence, in the sequel, a sample (X1, ..., Xx) of the process X is supposed to be known,
but the different parameters (D, D', Cp,...) are unknown. Consider the sample variance and the normalized
sample variance of the wavelet coefficient, for 0 < a < N,

1 (7] 3 1 (&)
Sn(a)= ==Y d*(a,k—1) and Sy(a)=—=>» d*(a,k—1). (7)
el [l i

The following proposition specifies a central limit theorem satisfying by log Sn (a), which provides a first step
for obtaining the asymptotic properties of the estimator by log-log regression. More generally, the following
multidimensional central limit theorem for a vector (log Sy(a;)); can be established,

Proposition 1 Let X satisfy Assumption A1 or A2 and ¢ the assumption W (m). Define £ € N\ {0,1} and
(r1,---,r0) € (N*)C. Let (an)nen be such that N/ay oL @ and o(ay) = N/1H2DY) - Thep,

\/g(loggzv(nazv)) 2, Ne(0; T(r1, -+ re, 4, D)), ®)

1<i<¥¢ N—oo

with T'(r1,- -+ ,7e,%, D) = (vij)1<i,j<e the covariance matriz such that
2
1+D o0 _cosA 00
B Q(TiTj) + (J;OO =D d)\) 1,1 w(t)lﬁ(t') N2
%ij = 5 > , sdtdt') . 9)
K(w,lfD)dij e — oo 0 0 |Tit — Tjt =+ d”m|

Remark 4 One remarks that the asymptotic covariance matriz does not depend on the used scales since
theses scales are large enough compared to the length of the sample. It could be interesting to find a function
Y minimizing U for all D. Finally, the expression of I allows its estimation using an estimation of D. This
can be used for constructing a test of long range dependence (see a forthcoming paper).

The CLT (8) implies the following CLT for the vector (log Sy (rian))i,

N « D
e (1og Sn(rian) — (1 — D)log(r;an) — log(f (O)K(w’lfD)))gige e Ne(0; T).
There is still a problem by using wavelet coefficients d(a,b) when X is not a continuous process but a time
series. Indeed, this coefficients can not be exactly computed from a path (Xi,...,Xy) of the process X.
However, they can be approximated by replacing integrals by Riemann sums (roughly speaking, the Mallat’s
cascade algorithm proceeds with such an approximation for a discrete wavelet). This problem was also studied
in Bardet (2002), Bardet and Bertrand (2006) and Moulines et al. (2006) in similar frameworks. Thus, consider
the following approximations of wavelet coefficients and their sample variance, with a € N*|

e(a,b) = %éw(g)){lﬁ-ab (10)

L v/l
and Tn(a) = al ; e(ak —1). (11)

Proposition 2 Under the assumptions of the Proposition 1,

\/E(logTN(riaN) — (1 - D)log(rian) — log(f*(O)K(w,l_D))) LD, Ne(05 T(r1, -+ ,re, 4, D)).

an 1<i<t N—oo



3 Adaptive estimator of long range dependent parameter using
data driven optimal scales

In this section, we consider the approximated wavelet coefficients e(a, b) and their empirical variance T (for a
time series). However, all the sequel is still valuable using the coefficients d(a, b) and their empirical variance
Sn (for instance for a continuous process).

The previous central limit theorem can also be written as,
log T'v (7 1 ; i<t = A D B
( 0og N(rzaN))lgigg - ( Og(rzaN))lgzgé = AN - K + N/aN (51)1952’

—log(riany) -1 5
with Ay = : : , K =log(f*(0) - K(y,1—p)) and (si)qu P J\Q(O;F(rl,~~~ ,w,w,D)).
—log(rean) -1 - AT

: . : D
Therefore, a log-log regression of (TN(TiaN))KKe on scales (riaN)1<z‘<e provides an estimator ( IA((GN) )

of ( ID( ) such that

( Ig((aN; ) = (A -An)"t- Ay -Ya(fvl"“’”) with Ya(;l"“’”) = (log T (rian) — log(rian))i<i<e,  (12)
an

which satisfies the following central limit theorem,

Proposition 3 Under the assumptions of the Proposition 1,

ﬁ(( D(ax) )7( D )) D N0 (AT A) A T(r, e, D) - A (A A)TY), (13)

an K(GN) K N—oco
log(r1) 1
with A = : : and T'(ry, -+ ,re,%, D) given by (9).
log(r¢) 1

Hence, ﬁ(a ~) Is a semi-parametric estimator of D and its asymptotic mean square error can be minimized with
an appropriate scales sequence (ay) reaching the well-known minimax rate of convergence for the long-range
dependence parameter in this semi-parametric setting (see for instance Giraitis et al., 1997). Indeed,

Proposition 4 Let X satisfy Assumption A1 and i the assumption W(m). Let (an) be a sequence such that

any = N1/(1+2D"), Then, the estimator D(ay) is rate optimal in the minimaz sense, i.e.

limsup sup sup Ni+ao -E[ﬁ(aN) — D)?] < +o0.
N—oo De€]0,1] f*eH(D’',Cpr)

In the previous Propositions 1, 3 and 2, the rate of convergence of scale ay is given by the following condition,
o(ay) = NY/(+2D) for D/ < 2.

Now, for ease of writing, consider that ay = N®. Then, the previous conditions can be written as,
: * * 1
ay = N with > a* and o = ——— (Zg) (14)

Thus an optimal choice, which means the faster convergence rate of the estimator, is obtained when « is larger
but closer to a*. However a* depends on D and D’ that are unknown. For solving this problem, Veitch et al.
(2003) proposed a procedure based on a Khi-squared test (constructed from a distance between the regression
line and the different points (log Tn(r;an),log(r;an)). It seems to be an efficient and interesting numerical
way of estimating D, but no theoretical proofs are provided (instead of the log-periodogram procedure which
is proven to reach the minimax convergence rate, see Moulines and Soulier, 2003).

We propose a new procedure for data-driven selection of optimal scales, i.e. optimal .. Let £ € N\ {0, 1,2} and



for € (0,1), define the vector Yy () = (logTN(i-Na)—log(i-No‘))1<i<e (by this way, (r1,...,7¢) = (1,...,£))
—log(N®) -1
and the matrix Ay («) = : : . Define the contrast,
—log(¢-N%*) -1

@l D, K) = (Yi(@) — An@) (¢ ) (vvte) ~ an(@)- (0 ))

which corresponds to a squared distance between the ¢ points (log(i - N), log Tn (i - N®) — log(i - N®)) and
a line. The aim is to minimize this contrast for the three different parameters. It is obvious that for a fixed
a € (0,1), Q is minimized from the previous least square regression and therefore,

~

Qn(@n, D(an), K (an)) = m

" (@, D)e(0 @n(a, D, K).

in
,1)%,K€R
with (D(ay), K (an)) obtained as in relation (12). However, like @y has to be obtained from numerical
computations, the interval (0,1) can be discretized as follows,

2 3 log[N/{] }

an € Ay = {1ogN7 logN’"""7 logN

Hence, if a € Ay, it exists k € {2,3,...,log[N/{]} such that k = « - log N.

Remark 5 This choice of discretization is implied by the following proof of the consistence of ay. If the
interval (0,1) is stepped in N® points, with 3 > 0, the used proof is not sufficient for proving this consistence.
Finally, this is the same framework than the case of discrete wavelet transform usually considered (see for
instance Veitch et al., 2003) but less restricted because log N can be replaced in the previous expression of An
by any function of N such is negligible compared to all functions N® with 3 > 0 (for instance, (log N)¢ or
d-log N can be used).

As a consequence, define R R R
Qn(a) = Qn(a,D(ay), K(ay)) for a € Ay,

and minimizing Qu for variables (a, D, K) is implied by minimizing @ n for variable a € Ay, that is

~

Qn(@y) = min @N(a).

acAN
From the previous central limit theorem, it can be shown that,

Proposition 5 Let X satisfy Assumption A2 and ¢ the assumption W(m). Then,

N logay » . 1
« = — o = .
N7 log N N—oo 1+ 2D

By this way, an estimator D’ ~ of the parameter D’ can be also proved to be consistent,
Corollary 1 Let X satisfy Assumption A2 and v the assumption W (m). Then,

Dy=v 7,
2(/1\]\[ N —o00

D/

The estimator @ defines the selected scale ay such that ay = N®¥. From a direct application of the proof
of the proposition 5 (see the details in the proof of theorem 1), one obtains a precise information on the
asymptotic behavior of @y, that is,

N - . P
P(7<N“N<N“~1 N“) 2,0, 1

for all positive real numbers A and p such that A > W and p > %. As a consequence, the selected scale

is equal to N up to a logarithm factor.

Finally, the proposition 5 can be used to define an adaptive estimator of D. First, define the straightfor-

ward estimator Dy = D(ay), that should minimize the mean square error using ay. However, providing



asymptotic results for the estimator D N is problematic because Pr(ay < a*) > 0 and we do not know to

prove if E(y/N/an(Dy — D)) = 0 or not. For establishing a central limit theorem satisfied by an adaptive esti-

mator Dy of D, an adaptive scale sequence (ax) = (N%¥) has to be defined to ensure Pr(ay < a*) e 0.
— 00

The following theorem provides the asymptotic behavior of such estimator,
Theorem 1 Let X satisfy Assumption A2. Define,
3 loglog N

any = apy + —

(¢t—2)D'y logN

~ o~ 73,\ ~ o~
, any=N% = NoN. (logN) «-20'n  gnd Dy = D(an).

Then, with 0% = (10)-(A"- A~ - A -.T-A-(A-A)~' (10,

D/
N ~ D 9 2(1 + 3D/) N 1+207 ~ P
—(Dny — D : -|\Dny — D . 1
NaN ( N ) N—oo N(0;op) and Vp> (¢—2)D""  (logN)~ ’ N ’ Noo 0 (16)

Remark 6 Both the adaptive estimators BN and Dy converge to D with a rate of convergence rate equal

D/
to the minimaz rate of convergence N1+2D” up to a logarithm factor (this result is a classical result in this
semi-parametric framework). Unfortunately, the used method does not allow to prove that the mean square
errors of both those estimators reach the optimal rate and therefore to know if there are oracles.

4 Simulations

The different previous estimators are computed from sample of different processes satisfying Assumption A2.
The results are obtained from 100 generated independent samples of each process. The concrete procedure of
generation of these Gaussian processes are obtained from circulant matrix method and is detailed in Doukhan
et al. (2003).

The simulations are realized for five different values of D, D = 0.1, 0.3, 0.5, 0.7, 0.9, for three different
values of N, N = 103, 10%, 10° of four different Gaussian processes processes which satisfy Assumption A2
and therefore Assumption A1l (the article of Moulines et al., 2006, gives a lot of details on this point):

1. the fractional Gaussian noise (fGn) of parameter H = 2 — 2D and o2 = 1. The spectral density frgn of
a fGn is included in H(2,Cp/) (thus D' = 2);

2. the FARIMA[0,d,0] with Gaussian innovations and parameter d such that d = (1 — D)/2 €]0,0.5]. The
spectral density frarraa of such a process is included in the set H(2,Cp/) (thus D’ = 2);

3. the FARIMA[1,d,1] with Gaussian innovations and parameter d such that d = (1 — D)/2 €]0,0.5[ and
¢ = —0.3, 6 = —0.7 where ¢ denotes the AR coefficient and 6 the MA coefficient. The spectral density
frarima of such a process is included in the set H(2,Cps) (thus D’ = 2);

4. the Gaussian stationary processes X (D/), such that its spectral density is

fa(\) = »L_Da + AP for A € [-m, 7, (17)

with D €]0,1[ and D’ €]0, 2]. The following simulations are realized for D’ = 1 a therefore f, € H(1,Cp).

The different parameters of the method of estimation are:

e A mother wavelet ¢ such that ¢(t) = 100-t>(t —1)2(¢t*> —t + 3/14)lp<¢<1. Hence, m = 1 and the different
conditions of assumption W (1) are satisfied. Choose m > 1 or different kind of function ¢ (like dilated
Daubeshies mother wavelet) leads to ”similar” results (except for the bias of Dy and Dy). However,
if m =0 or if ¥(0) # 0 or if 15 has not a fast decreasing rate to oo, then the MSE of the estimation is
larger (in particular, ay > a*...).

e A number ¢ of points used for the log-log-regression such that m = 15. Several simulations realized with
¢ =5,¢ =10 or £ = 20 lead to few different results (the larger N and ¢ or the smaller N and ¢ the
smaller the MSE of the estimator). A better choice could be to consider ¢ as an increasing function of
N, but the theoretic expression of such a function requires new technical computations... An adaptive
choice of ¢ could be also developed as it is in Giraitis et al. (2000).



e As it was specified in Remark 5, log N is replaced by 5 - log N in the expression of Axs.

For each process, the cases D = 0.1, 0.3, 0.5, 0.7 and 0.9 are investigated for 100 independent replications of
samples with length varying from 1000 to 100000. The results are presented in the following table 1:

| | | D=01 | D=03 | D=05 | D=07 | D=0.9 |
fGn (H = 2 — 2D) mean Dy, Dy 0.04, 0.08 0.29, 0.37 0.50, 0.55 0.72, 0.76 0.94, 0.95
std Dy, Dy 0.14, 0.17 0.12, 0.21 0.12, 0.15 0.12, 0.18 0.12, 0.14
mean ay, &y 0.20, 0.24 0.23, 0.28 0.23, 0.28 0.23, 0.28 | 0.24, 0.29
std &y, dpy 0.04, 0.04 0.04, 0.04 0.05, 0.04 0.05, 0.05 0.05, 0.06
FARIMA(0, 252 ,0) | mean Dy, Dy 0.10, 0.11 0.34, 0.36 0.57, 0.57 0.76, 0.79 0.96, 0.98
std Dy, Dy 0.16, 0.17 0.14, 0.16 0.13, 0.15 0.12, 0.17 0.13, 0.14
3 mean &N, &N 0.21, 0.24 0.22, 0.27 0.23, 0.28 0.23, 0.28 0.23, 0.28
N =10° — std &y, dpy 0.05, 0.07 0.04, 0.04 0.05, 0.04 0.05, 0.04 0.04, 0.03
FARIMA(1, 252 1) | mean Dy. Dy | -0.31,-0.30 | -0.23, -0.22 | -0.10,-0.08 | 0.21, 0.26 0.52, 0.65
std Dy, Dy 0.12, 0.15 0.18, 0.21 0.24, 0.30 0.31, 0.36 0.28, 0.38
mean ay, &y 0.19, 0.21 0.19, 0.20 0.20, 0.21 0.24, 0.27 0.27, 0.31
std &y, dpy 0.05, 0.07 0.05, 0.07 0.06, 0.08 0.07, 0.09 0.08, 0.09
7 — ~
x(PY) p’ =1 mean Dy, Dy 0.59, 0.54 0.79, 0.74 0.98, 0.93 1.19, 1.14 1.41, 1.38
std Dy, Dy 0.16, 0.21 0.16, 0.17 0.17, 0.19 0.17, 0.18 0.19, 0.18
mean &N, &N 0.23, 0.28 0.24, 0.28 0.25, 0.29 0.24, 0.29 0.24, 0.29
std &, ap 0.04, 0.04 0.04, 0.04 0.05, 0.05 0.05, 0.05 0.05, 0.04
| | D =0.1 D =0.3 D =0.5 D= 0.7 D =0.9
fGn (H = 2 — 2D) mean Dy, Dy | 0.07,0.08 | 0.26, 0.27 | 0.48, 0.48 0.69, 0.69 0.91, 0.91
std Dy, Dy 0.04, 0.04 | 0.04, 0.04 | 0.04, 0.03 | 0.04, 0.04 0.04, 0.04
Tean an, &N 0.18, 0.18 0.18, 0.18 | 0.17, 0.18 | 0.18, 0.10 | 0.18, 0.18
std &y, & 0.04, 0.05 0.04, 0.05 0.03, 0.05 0.04, 0.05 0.04, 0.05
FARIMA(0, 152 0) | mean Dy, Dy | 0.14,0.14 0.34, 0.34 | 0.53, 0.53 0.74, 0.73 0.93, 0.93
std Dy, Dy 0.06, 0.06 0.04, 0.05 0.05, 0.05 0.05, 0.05 0.04, 0.04
4 mean an, &N 0.19, 0.20 0.18, 0.10 | 0.18, 0.20 0.18, 0.10 | 0.18, 0.20
N =10 — std &, G 0.04, 0.05 0.03, 0.04 | 0.03, 0.04 0.04, 0.05 0.04, 0.05
FARIMA(1, 252 1) | mean Dy, Dy | -0.02,0.02 | 0.01, 0.0 0.36, 0.39 0.57, 0.63 0.76, 0.81
std Dy, Dn 0.12, 0.14 0.24, 0.27 0.20, 0.20 0.12, 0.15 0.13, 0.14
mean ay, &N 0.30, 0.33 0.24, 0.26 | 0.30, 0.34 0.30, 0.34 0.31, 0.34
std &y, & 0.04, 0.05 0.09, 0.11 0.06, 0.08 0.04, 0.05 0.04, 0.05
x(P) p’=1 mean D, Dy 0.49, 0.45 0.66, 0.63 0.87, 0.83 1.08, 1.05 1.29, 1.26
std Dy, Dn 0.14, 0.13 0.12, 0.12 0.13, 0.11 0.13, 0.11 0.15, 0.13
mean an, &N 0.22, 0.24 0.23, 0.25 | 0.23, 0.25 | 0.22, 0.24 | 0.22, 0.24
std &y, & 0.05, 0.06 0.05, 0.06_| 0.05, 0.06 0.05, 0.06 0.05, 0.06
| | | D=01 | D=03 | D=05 | D=0.7 | =09 |
fGn (H = 2 — 2D) mean Dy, Dy | 0.07,0.07 | 0.27, 0.27 | 0.47, 0.48 0.68, 0.69 0.93, 0.90
std Dy, Dy 0.01, 0.02 | 0.01, 0.01 | 0.01, 0.01 | 0.01, 0.02 0.01, 0.01
mean &N, apn 0.14, 0.15 0.14, 0.15 0.14, 0.15 0.15, 0.16 0.14, 0.15
std &y, & 0.04, 0.04 0.03, 0.04 | 0.03, 0.04 0.03, 0.04 0.03, 0.04
FARIMA(0, 152 ,0) | mean Dy, Dy | 0.12,0.11 0.31, 0.31 0.51, 0.51 0.71, 0.71 0.91, 0.91
std Dy, Dy 0.02, 0.02 0.02, 0.02 0.02, 0.02 0.02, 0.02 0.02, 0.02
S mean an, &N 0.18, 0.20 0.18, 0.20 | 0.18, 0.10 0.18, 0.20 | 0.17, 0.18
N =10% —— std &y, & 0.02, 0.03 0.03, 0.03 | 0.03, 0.03 0.03, 0.04 0.03, 0.03
FARIMA(1, 152 1) | mean Dy, Dy | 0.06, 0.08 0.26, 0.28 0.45, 0.48 0.65, 0.67 | 0.86, 0.89
std Dy, Dy 0.04, 0.04 | 0.03,0.04 | 0.03, 0.03 0.04, 0.04 0.04, 0.04
mean ay, &N 0.29, 0.32 0.30, 0.33 0.29, 0.32 0.29, 0.32 0.30, 0.33
std &y, & 0.03, 0.04 0.03, 0.04 | 0.03, 0.04 0.03, 0.04 0.03, 0.03
x(P), pr =1 mean Dy, Dy | 0.28, 0.25 0.48, 0.45 0.67, 0.64 0.87, 0.83 1.07, 1.03
std Dy, Dy 0.10, 0.20 0.10, 0.24 | 0.13, 0.30 0.14, 0.42 0.13, 0.51
mean ay, &N 0.27, 0.30 0.27, 0.30 | 0.28, 0.31 | 0.28, 0.31 | 0.29, 0.32
std &, & 0.05, 0.05 0.04, 0.05 0.05, 0.06 0.04, 0.05 0.05, 0.06

Table 1: Estimation of the different parameters from 100 independent samples of the different processes.

Comments on the estimation of D: These numerical results nearly follow the theoretic results. An
important point is that the numerical convergence rate of the estimation of D does not depend on the value
of parameter D (even if D is close to 0). Another point is that there is still an important bias for N = 103 or
N =10* for the FARIMA(1,d,1) or the process X(P") (but for N = 10° the bias is quite reasonable). Another
choice of mother wavelet ¢ (Daubeshies 5) with m > 1 leads to better results in this particular case.

Automatic estimation of the onset of scaling: The previous numerical results show that ay and ay
converge (very slowly) to the optimal rate a*, that is 0.2 for the three first processes and 1/3 for the fourth
one. Two remarks: first, for {Gn and FARIMAJ0,d,0] the estimators ay and ay decrease with N and finally
overestimate 0.2 when N = 10°. The choice of £ = 15, for which the length of the scale band nearly corresponds
to N'/4 (for N = 10°) may explain this behavior. Moreover, other simulations show that ay and ay are
larger for N = 106 than for N = 10° and are close to 0.17. A second point the slow convergence rate of this
estimation for FARIMA(1,d,1) and for X®@) with D' = 1. The following graphs exhibit the evolution with N



of the log-log plotting and the choice of the onset of scaling:
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Figure 1: Log-log graphs for different samples of X@P) with D =0.5and D' =1 when N = 103 (up and left,
Dy =1.04), N = 10* (up and right, Dy = 0.66), N = 10° (down and left, Dy = 0.62) and N = 10° (down

N

and right, Dy = 0.54).

In Figure 1, it can be seen that that logTn (i - N®) is not a linear function of the logarithm of the scale
log(i - N*) when N increases and o < o (it is exactly a consequence of Property 1: a bias exists in such a
case). Moreover, if a > o* and « increases, a linear model appears with an error variance that increases.

Distr;ibution of the estimators BN and bN: the following Figure 2 exhibits the histograms of BN
and Dy for 100 independent samples of the process FARIMA(1,d,1) with D = 0.5:

0

0
04 045 05 055 03 0.35 04 045 05 0.55 0.6

Figure 2: Histograms of Dy and Dy for 100 samples of the process FARIMA(1,d,1) with D = 0.5 for N = 10°.



Both these histograms are similar to Gaussian law histograms. It is not surprising for Dy because Theo-

rem 1 shows that the asymptotic law of Dy is a Gaussian law with D mean. The asymptotic law of Dy seems
to be also close to a Gaussian law. A Cramer-von Mises test of normality indicates that both the distributions

of BN and Dy can be considered like Gaussian law (respectively W ~ 0.07, p — value ~ 0.24 and W ~ 0.05,
p — value ~ 0.54).

5 Proofs

Proof [Property 1] First, it is obvious from the same arguments than in Abry et al. (1998) or Moulines et al.
(2006) that,

E(d*(a,0)) = //1/1 (Xt Xqp)dtdt

[0,1)2
= [{/w (a(t —t'))dtdt’
_ [{1/ [ wtu(e) Fe = aa ax

| 1B du

< [p(w)?
K(w,c) = /_ |u|c du < o0,

because when u — 0, the hypothesis 1. of Assumption W (m) implies that |1$(u)| = O(|u|™) and when u — oo,
the hypothesis 2. of Assumption W(m) implies that [¢(u)[?u|~¢ < |u|"2™~¢ and 2m’ + ¢ > 3. Moreover,

[ (u /°° [ (u)?
- K - 9 At B
‘/ |’U,|C (1h,e) an uc du
> Jah(u)|?
C- /a7r py du

1
a2m’+cfl ?

But for 1 < ¢ < 3,

IN

< -

with C' > 0 and C’ > 0 not depending on a. As a consequence, under Assumption Al,

}E(dQ(a,o))—f*(o)-/oo |1|L%|1 5 du ‘ 2f*(0)-/oo (:f() C dut O _M 7|u||fp(gl[),) du

— ‘E(dQ(a,O)) - f*(O)K(w,l—D) .a 7D‘ < < C/f*(o) . a172m’ + CD/K(qp,l—(D-i-D')) . alf(DJrD’)_

IN

Under Assumption A2, from the same kind of inequalities, one obtains,
‘E(dQ(a, 0)) — f*(O)K(w,l—D) . alfD — CD’K(w,l—(D—i-D’)) . alf(DJrD/)

< C/(f*(o) + CD/) . al*Qm’ + CD//K(w71—(D+D/+D”)) . alf(DJrD’JrD/,),

and this finishes the proof of this property. O

Proof [Proposition 1] This proof can be decomposed in three steps Step 1, Step 2 and Step 3.

N _ _

Step 1. In this part, 1/— - Cov(Sn(r:), Sn(rj))1<i,j<¢ is proved to converge to a covariance matrix I'.
an ==

First, for all (4,5) € {1,...,¢}?,

~ ~ 1 1
Cov(Sn(ri), Sn(r;)) = 2[N/ria1v] [N/rjan]

(COV(J(Tia/N,p), d(rjan, q))2a (18)

p=1 g=1

10



because X is a Gaussian process. Therefore, by considering only ¢ = j and p = ¢, for N and ay large enough,

1 N

COV(SN(Ti),gN(Tj)) > —— (19)
T aN
Now, for (p,q) € {1,...,[N/rian]} x {1,...,[N/ran]} such that |r;p — rjq| > 2(r; +rj),
~ aN riri)P/? ,
Cov( (rlaN, ),d(rjaN,q)) = / / P(t) yr(an (rit —rjt’) + an(rip — rjq)) dt dt’.
f*(0)K (y,1-D)

Now, the covariogram can be bounded from the expression of the spectral density under Assumption Al.
Indeed, for a > 0,

r(a) = L. /M e flu/a)du

—aTm

.  cos A  cos A 1 4T cos A 1
= ‘T(a) —2f (0)(/0 N-D dA = /M N-D d)‘) D‘ < 2Cp /0 \L-D-D’ d)“ " 4D+D’

2f*(0) [ cosA 1 1
= Jr@) - =5 AAFNNSMWa%ﬂF%

 cos A 2
/M T dA| < o and

A
’/ AlcoDs = d)\’ < M’ -max(1; a®+P~1) for all @ > 0 (a constant real number M’ > 0 not depending

with a constant real number M > 0 not depending on a, and because

ona

Using this inequality, if (p, ¢) are such that |r;p — rjq| > 2(r; +r;), on can write,

= = aR (rir;)P/? rit —rit' =D
Cov(d(rian,p),d(rjan,q n( z] / / P (t) rip —riq) (1 + ———— ‘ dt dt’
|Cov(dirian ) dirjax.a)) = Figrct (rp =) (14 =)
D D/2 rit — it — min(D+D’,1)
<2M fN(mJ / / [ih(t) |’(IN rip —15q) (1 + 7”)‘ dt
[*(0)K, (¥,1—D) TP —Tiq
< (2M- l0l%, (riry) D/2 (_)*mm(DJrD 11)) 1. L 1 -
N [*(0)K (y,1-p) 2 |rip — rjq|min(P+D%D) a%m(D/’lfD)

In another hand, from a Taylor expansion,

‘/01 /O1 Y(t)(t') (‘(np —riq)(1+ 7::;_:?;;)‘ — |rip —riq| 7" Qilb (r? — qu)j

<|rip — Tj(JI_D_QmH?/)IIio(H + 7’;‘)2’"17(277% D)v

with b(0, D) =1 and b(s + 1, D) D)b(s D) for s € N. Thanks to Assumption W (m) satisfied by v, for
t/
all s € {0,1,...,2m — 1}, / / Y(t) it LA ——2)%dtdt’ = 0. As a consequence,
sz —Tiq
rit —rt'\ 7P —D—2m|,(2 2m
\ w )| = ryq) (14 10| — rjal P2 s ) Pb(2m, D),
Tip — T4
and therefore, it exists K; > 0, such that for all (i,5) € {1,...,£}%, and for (p,q) € {1,...,[N/rian]} X

{1,...,[N/rian]} satistying |r;p — r;q| > 2(r; +15),

~ ~ 1 1 1
Cov(d(r;an,p),d(rjan,q) ‘ < K; . — ——— + . (20)
‘ ( J ) |rip _ rqumm(D-‘,-D ,1) a%m(D ,1-D) |7’1p _ qu|D+2m

Moreover, from Property 1, for ay large enough and (p,q) € {1,...,[N/ran]|} x {1,...,[N/r;an]} satisfying
[rip — 59| < 2(ri +15),

‘Cov(ci(riazv,p),cZ(rjaN,q))‘ < (E(JQ(riaN,p)) -E(JQ(riaN,p))) 2 < 2. (21)

11



Thanks to (20) and (21), it exists a constant Ko > 0 (not depending on N or ay) such that the relation (18)
becomes the inequality,
rirsa% [N/rian] [N/rjan] —2m1n(D 1-D) 1

N2 2 [T PO T [rp = g

Cov(Sn(ri), Sn(rj)) < Ko-

But, from the theorem of comparison between sums and integrals, for 0 < o < 1, N and ay large enough,

[N/rian] [N/rjan]

N/’l“iaN N/rjaN dl‘dy
(L +[rip —rja) ™~ / /
2, X (e o e

N/aN N/aN dudv
TiT; / / 1+|ufv|)

_/N/aN (N/any — w) dw

rir; Jo (1+w)e

9 1 N 9w
()Y if0<a<1
rir; (1—a)(2—a) ‘an

—) log (ﬂ) ifa=1

riTj AN an

In the same way, for a > 1,

[N/rian] [N/rjan]

> Y (el B —
14+ |mp—riq)™ / /
p=1 q=1 ’ Tty (1+ |u —vl)e

IN

< 2 /N/GNN/aNdw

— rmri Jo (14 w)e
2 N

<

(@ —1)rr; an

As a consequence, with m > 1, one obtains the following bound for N and ay large enough,

Ny N\ (N a1 ﬁ—lé)
o) o () % (o) prrl e 20D  (22)

COV(SN(TiaN), Sn(rjan)) < K3((

with K3 > 0 and not depending on N or ay. Finally, from (19) and (22), if the sequence (a,) is such that

olan) = 1Og(N)N(172(D+Dl))/(172D)]I2(D+D’)§1 +Iy(p4pry>1, then,

N -
lim —(cov(sN(mN) SN(rjaN)))1<_ _,=" (23)
2V A

N—oo AN

with I = (vi;)1<i,j<¢ @ non null symmetric matrix that can be specified. Indeed, from the previous inequalities,

[N/rian] N/T]aN D/2 , .
2r; t A 2
v = lim MJ“N Z Z / / O (t) Ddtdt’/ %d)\)
N=oe = K(wl D) Imf*wt +rip— ;7| oo A
y 2(rﬁj)1+D(f°° e d)\) [N/difﬂ—l ( / / Y(t) dtdt/)Q
= 1m
N=oo (w,l—D)N m=—[N/diyan]+1 dUaN |rit — rjt +di;m|P
2
2(7“i7”j)1+D(ffooo ‘fﬁsf\p d)\) t/)
= 5 / / — Ddtdt) :
K(w,l_D)dij = |7’zt77’]t + di;m|

with d;; = GCD(r; ; rj). Therefore, the matrix I' is only depending on ry,--- ,re, %, D

Step 2. In a general frame, the previous result is not sufficient for obtaining the central limit theorem,

\/E(S’N(riazv) —E(JQ(riaN,O)) £, Ne(0,T(ry, - -+ ,re,%, D)). (24)
an

1<i<t¢ N—oo

12



However, each S n(rian) is a quadratic form of Gaussian process. Mutatis mutandis, it is exactly the same
framework (i.e. a Lindeberg central limit theorem) as that of the Proposition 2.1 in Bardet (2000), and (24)
is checked. Moreover, if (a,), is such that o(ay) = NY*2P" when D + D’ < 1 (which implies o(ay) =
log(N)N(1=2(P+D")/(1-2D) iy the particular case 2(D + D') < 1), then,

N '
—2 -D
(aN tay ) > 0.
As a consequence, under those assumptions,

ﬁ(SN(H@N) —1) £, Ne(0,T(rq, -+ 7,9, D)). (25)

anN 1<i<¢ N—o0
Step 3. The logarithm function (z1, .., z¢) €]0, +-o00[f— (logz1, ..,log x,,) is C% on ]0, +oo[’. As a consequence,

using the Delta-method, the central limit theorem (8) for the vector (1og Sy(ra N)) , follows with the same
1<i<

asymptotical covariance matrix I'(r1,--- 7,1, D) (because the Jacobian matrix of the function in (1,..,1) is
the identity matrix). O

Proof [Proposition 2] Since the variables d = d(a,k) and e = e(a, k) are Gaussian, the variables d* — €2

have finite second order moment and Jensen’s inequality implies

1 [N/a] , ,
E|SN(G’) _TN(a)| = E [N/a] ; (d (a’k) —e (a’k))

[N/a]

N/a Z\/]E d2(a, k) — e2(a, k))?

From the same computations than in Bardet and Bertrand (2006), one obtains,

V6 [N/a]
E[Sn(a) —Tn(a)] < N/d] Z VEe2(a, k) x /E [4d2(a, k) + £2(a, k)]. (26)
k=1

But

2

Ee?(a,b)

N
ISEN
/—\g

,_.
h
~
[~} ?T‘
+
=
@
S~—
I
=
+
=
\
<
—
<
El
+
2
>
N—
o
N———

Q

1 [« [FD/ F2)
< —< O/ \/0)(1/1@)1/)(5))) ,

with 7(t) = r(0) for all ¢ € [0,1[. The function 1) is supposed to be a C! function. As a consequence, a Taylor

expansion implies,
2
(k+1)/a
)1 (Z/k -~ dt>

ORI

Ee?(a, b)

IN

IN

Thus, for a large enough, it exists K > 0 such that,
\/_6 L
IE|SN(G) - 7N(G)| < (—2 r(o) . HWHOO) a~! D/2

Therefore, if o(ay) = N2 then,

N
lim /— X E|Sn(an) —In(an)| = 0.
N—o0 an

13



From central limit theorem (2), this implies the convergence of the finite-dimensional distribution,

N
_(TN(”‘INHC'C(w,d) : (TiaN)l_D) L. Ny (0;T).

an 1<i<t N—oo

Now the Delta-method can be applied and this finishes the proof. O

Proof [Proposition 5] Let € > 0 be a fixed positive real number, such that o* + & < 1.

I. First, a bound of Pr(ay < o* 4 ¢) is provided. Indeed,

Pr(ax<o’+c) > Pr(Qx(e’ /< min  Qu(o)
> lfPr( U Qn(a* +¢/2) > @N(O‘))
a>a*+e and acAy
log[N/£] N R k
> 1- Y P (QN(Q*+5/2) >QN(1ogN))' (27)

k=[(a*+¢€)log N]

But, for a > o* + 1,
Pr (Qn(a* +2/2) > Qn(0)) = Pr ([[Prla” +2/2) Yu(a® + E/Q)H2 > [P YN(a)HQ)

with Py () = Iy — An(a) - (A () AN(oz))f1 -An(a) for all @ € (0,1), i.e. Py(c) is the matrix of orthogonal
projection on the orthogonal subspace (in RY) generated by Ay (a) (and Iy is the identity matrix in RY). From
the expression of Ay («), it is obvious that for all « € (0, 1),

-1

Py(a)=P=T—A-(A-A)7". 4

3

log(ry) 1
with the matrix A = : : like in Proposition 3. By this way,

log(re) 1

Pr (HP Y(a* +5/2)H2 > HP - YN(a)H2)

N * 2 a—(a* N 2
- PY<HP'\/WYN(Q +5/2)H > No—( +E/2)HP~1/WYN(Q)H>

< Pr (VN(a* 1e/2)> N(af(a*+s/2))/2) L Pr (VN(a) < Nf(a,(awrs/z))/z)

Pr (@N(a* te/2) > @N(a))

N 2
with Vy () = HP Na YN(Q)H for all @ € (0,1). From Proposition 2, for all « > «o*, the asymptotic law
N

of P- o Yn(a) is a Gaussian law with covariance matrix P -I' - P/. Moreover, the rank of the matrix is

P-T- P’ is £—2 (this is the rank of P) and it exists 0 < A_, not depending on N) such that P-T"-P'—A_P-P’
is a non-negative matrix (0 < A_ < min{\ € Sp(T")}). As a consequence, for N large enough,

Pr (VN(a) < N—(a—(a*+6/2))/2) < 2.Pr (V_ < N—(a—(a*+a/2))/2)
1 N _(é_l)(a*(ﬂ’;+i/2))
< - . [—
- 202721 (0)2) ()\_) ’
with V_ ~ A_ - x%(¢ — 2). Moreover, from Markov inequality,
Pr (Vi(a® +2/2) > NO202) < 2. Pr (exp(y/T5) > exp (Wt +2/20/1))

< 2 B(exp(\/V5)) - exp ( — Nl +e/2)/4)

14



with Vi ~ Ay - x2(¢ —2) and A\ > max{\ € Sp(I')} > 0. Like E(exp(y/V4)) < oo is not depending on N, one
obtains that it exists M7 > 0 not depending on N, such that for NV large enough,

1) (e=(a® +e/2))

Pr (@N(a* +e/2) > @N(a)) <M, N-G-
and therefore, the inequality (27) becomes, for N large enough,

G () eren)

k=[(a*+¢) log N]
(t-2)

> 1-M;-logN -N~ 1 ¢ (28)

Pr(aNSO(*—f—E) Z 1—M1-

II. Secondly, a bound of Pr(ay > a* —¢) is provided. From the same arguments and notations than previously,

N 1—a* N
Pr (@NZa*—E) > Pr (QN(a*—l— a g) < min QN(a))
20 ala*—¢ and acAy

[(a*—¢) log N]+1 "
1-—a

~ ~ k
> 1- P ( * ), 2
> ; r(Qn(e" + —5e) > Qn () (29)
and like previously,
~ 1—a* ~
Pr(Qu(a” + —==2) > Qn(a))
«
N 1—a* 2 « l-a* N 2
_ . * a—(a"+555¢) X
" <HP Na*-l-l;aa**a Yo+ 2a* E)H >N ’ P N YN(a)“ ) (30)

Now, in the case ay = N® with a < o, the sample variance of wavelet coefficients is biased. In such a case,
from the relation of Property 1 under Assumption A2,
Cp Ky,1-(p+D1) / Ne
W), = (T N o)+ (T @)
(@), = (F oo N A roW) __+ (YT ev@)

with 0;(1) — 0 when N — oo for all i and E(Zn(«)) = 0. As a consequence, for N large enough,

N 2 Cp Ky1-+D1) ._pr ?
|7y 5w o] P “aram)

[*(0)K(y1-D)
with D > 0, because the vector (i~ ,)1934 is not in the orthogonal subspace of the subspace generated by
the matrix A. Then, the relation (30) becomes,

af—a

2
fo-evtl 5

a*fa
P
)

> D-N

N 1—a*
pe(p [t s 0
No*+gaxe 2a*

1-—a*

2a*

1—

IN

Pr (@N(a* + g) > @N(a))

< Pr (V+ >D- ngaﬁ* (2(a*_a)—a))

< My N-G-DiRFe
1—af 1—a*
a 2@ —a)—¢)> a

with My > 0, because Vi ~ A; - x?(¢ — 2) and
from the inequality (29), for N large enough,

—¢ for all « < o* — . Hence,
«

Pr (@NZa*—E) > 1—M2-10gN-N_(§_1)127a%*5. (31)
The inequalities (28) and (31) imply that Pr(jay —a| >¢) — 0.0

N —o0

Proof [Theorem 1] The central limit theorem of (16) can be established from the following arguments. First,
Pr(any > a*) Je 1. Indeed, thanks to the previous proof, for all ¢ > 0,

Pr(an >a*—¢) >1— My-logN- N~(-D'5 <,
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*
a

2 * a* —
E)H > D. Ne—(@+55e) | NoaF

a

)



loglog N

2
Consequently, if ey = A - with A > ————— then,

log N (¢—-2)D
N " Y (£=2)D’ loglog N
Pr(aNza —EN) > 1—Ms-logN-N 2 Tog N
_y(=2)D’
> 1-M,-(logN)'™"
- Pr(aN—i—sNZa*) — 1.
N—oo
Now, from Corollary 1 D'n 25 D'. Therefore, Pr (b\’N < éD’) —— 1. Thus, with A > 9
’ ’ N—oo ’ -3 N—oo ’ - 4([ — 2)1)’7
3 loglog N
Pr (dN + (EN — — 08 08 ) > a*) — 1 which implies Pr(ay > o*) — 1.
(67 2)D/N 10gN N—oo N—o0
Secondly, for x €g,
. N ~ . N o ~ *
J\}EnooPr< N&N(DNfD)S:E) = A}gn(ﬁPr( N&N(DN—D)gzﬂaN>o¢)

. N = - X
+ lim Pr(y/ 525 (Dy = D) 2w <o)
1

. N =

— I\}Enoo a*Pr(\/m(DN—D)§x)faN(a)da
1

= Nlim Pr(ZFS:E)~/ fay (@) da
= Pr(Zpgsc),

with fa, () the probability density function of ax and Zr ~ N(0; (A’ - A)~71- A" T - A. (A" - A)71).

For proving the second part of (16), one first deduces from above that

3 loglog N loglog N
Pr(a*<dN<a*+ — L0808 %) — 1,
((—2)D'x log N log N N—oo
with g > %. Therefore, it exists v < W + %,

Pr (N“* < N&v < No©. (1ogN)V) 1

N—o0

Now, this inequality and the previous central limit theorem provides that for all p > /2, and € > 0,

D’

Nivep? . Nz@n—a") N .
PI’(W‘DN_D‘>E) = PI'( (logN)P . N&N‘DN_D‘>E)

— 0.0

N—o0
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