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Abstract

The semi-classical Bloch-Boltzmann theory is at the heart of our understanding
of conduction in solids, ranging from metals to semi-conductors. Physical systems
that are beyond the range of applicability of this theory are thus of fundamental
interest. This is the case of disordered systems which present quantum interferences
in the diffusive regime, i.e. Anderson localization effects. This is also the case, for
example, of systems that present magnetic or electric breakdown when submitted
to an electromagnetic field. These exceptions, for which a full quantum transport
theory must be developed have been intensively studied in the past and are now
well known.

It appears that in quasicrystals and related complex metallic alloys another type
of breakdown of the semi-classical Bloch-Boltzmann theory operates. This type of
quantum transport is related to the specific propagation mode of electrons in these
systems. Indeed in quasicrystals and related complex phases the quantum diffu-
sion law deviates from the standard ballistic law characteristic of perfect crystals in
two possible ways. In a perfect quasicrystal the large time diffusion law is a power
law instead of a ballistic one in perfect crystals. In a complex crystal the diffusion
law is always ballistic at large time but it can deviate strongly from the ballistic
law at sufficiently small times. We develop a theory of quantum transport that
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applies to a normal ballistic law but also to these specific diffusion laws and we de-
scribe the behavior of conductivity that results from these specific laws. As we show
phenomenological models based on this theory describe correctly the experimental
transport properties. Ab-initio calculations performed on approximants confirm also
the validity of this anomalous quantum diffusion scheme. This provides us with the
first ab-initio model of conductivity in approximants such as the α-AlMnSi phase.

Although the present chapter focuses on electrons in quasicrystals and related
complex metallic alloys the concept that are developed here can be useful for
phonons in these systems. There is also a deep analogy between the type of quan-
tum transport described here and the conduction properties of other systems where
charge carriers are also slow, such as some heavy fermions or polaronic systems.
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1 Introduction

Immediately after the discovery by Shechtman et al. [1] of quasiperiodic in-
termetallics one major question was raised about the physical properties of
phases with this new type of order. In particular, one expected that the elec-
tronic and thermal properties could be deeply affected. Indeed the description
of electrons or phonons in periodic phases rests on the Bloch theorem which
cannot be applied to a quasiperiodic structure. Within a decade a series of new
quasiperiodic phases and approximant were discovered and intensively stud-
ied. These investigations learned us that indeed the electrons and the phonons
properties could be deeply affected by this new type of order.

The first quasiperiodic alloys AlMn where metastable and contained many
structural defects. As a consequence they had conduction properties similar
to those of amorphous metals with resistivities in the range 100–500µΩcm. In
1986 the first stable icosahedral phase was discovered in AlLiCu. This phase
was still defective and although its resistivity was higher (800µΩcm) it was
still comparable to that of amorphous metals. The real breakthrough came
with the discovery of the stable AlCuFe icosahedral phase, having a high
structural order. The resistivity of these very well ordered systems where very
high, of the order of 10 000 µΩcm, which gave a considerable interest in their
conduction properties. Within a few years several important electronic char-
acteristics of these phases were experimentally demonstrated. The density of
states in AlCuFe was smaller than in Al, about one third of that of pure Al,
but still largely metallic. The conductivity presented a set of characteristics
that were either that of semi-conductors or that of normal metals. In par-
ticular weak-localization effects were observed that are typical of amorphous
metals. Yet the conductivity was increasing with the number of defects just as
in semi-conductors. Optical measurements showed that the Drude peak, char-
acteristic of normal metals, was absent. In 1993 another breakthrough was the
discovery of AlPdRe which had resistivities in the range of 106 µΩcm [2,3,4].
This system gave the possibility of studying a metal-insulator transition in
a quasiperiodic phase. There are still many questions concerning electronic
transport in AlPdRe phases. One difficulty concerns the homogeneity and the
quality of samples which are crucial for transport properties but are difficult
to determine exactly.

Since the discovery of Shechtman et al. [1] our view of the role of quasiperiodic
order has evolved. For electronic or phonon properties of most known alloys it
appears that the medium range order, on one or a few nanometers, is the real
length scale that determines properties. This observation has lead the scientific
community to adopt a larger point of view and consider quasicrystals as an
example of a larger class. This new class of Complex Metallic Alloys contains
quasicrystals, approximants and alloys with large and complex unit cells with
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possibly hundreds of atoms in the unit cell.

In this chapter we shall concentrate on “the way electrons propagate” in a
quasicrystal or in a complex metallic alloy. The main objective is to show
that the non standard conduction properties of some quasicrystals and related
complex metallic alloys result from purely quantum effects and cannot be
interpreted through the semi-classical theory of transport. This is of great
importance since the semi-classical Bloch-Boltzmann theory is at the heart
of our understanding of conduction in solids, ranging from metals to semi-
conductors. This new type of quantum transport is related to the specific
propagation mode of electrons in these systems. Indeed in quasicrystals and
related complex phases the quantum diffusion law deviates from the standard
ballistic law characteristic of perfect crystals in two possible ways. In a perfect
quasicrystal the large time diffusion law is a power law instead of a ballistic one
in perfect crystals. In a complex crystal the diffusion law is always ballistic at
large time but it can deviate strongly from the ballistic law at sufficiently small
times. It is this specific character that provides a basis for the interpretation
of the strange conduction properties of AlCuFe, AlPdMn and probably also
for those of AlPdRe.

This chapter is organized as follows. Part 2 is the most technical part but it can
be skipped by readers not interested by mathematical aspects. Part 3 presents
a detailed physical interpretation of anomalous diffusion and low frequency
conductivity laws in crystals and quasicrystals. Part 4 presents evidence of
anomalous diffusion in experimental quasicrystalline and approximant phases.

In part 2 we give some definitions and present the mathematical relations that
exist between the low frequency conductivity, including the dc conductivity,
and quantum diffusion. We consider also the relaxation time approximation
(RTA) that allows to treat the role of disorder on quantum diffusion and
conductivity. We demonstrate general formulas for quantum diffusion and low
frequency conductivity (within the RTA) in periodic and quasiperiodic models
of potential.

In part 3 we focus on the physical interpretation and consequences of the
formulas derived in part 2. On a general ground we discuss the limitations of
the RTA and the possibility of a metal-insulator transition. We apply this to
a general theory of low frequency conductivity and metal-insulator transition
in crystals and quasicrystals.

In part 4 we present briefly the experimental transport properties of phases
such as AlMnSi, AlPdMn and AlCuFe or AlPdRe. These experimental trans-
port properties indicate a conduction mode which is neither metallic nor semi-
conducting. For the α-AlMnSi phase, recent ab-initio computations are pre-
sented, which confirm the existence of an anomalous diffusion and allow for a
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semi-quantitative ab-initio computation of conductivity. Concerning AlCuFe
and related quasiperiodic phases, which cannot be addressed by band struc-
ture calculations, we present a phenomenological model. This model based on
anomalous quantum diffusion provides a coherent interpretation of the strange
electronic transport of these systems.

We conclude by a short summary. We discuss also briefly the link with other
problems such as phonons in quasiperiodic systems or electrons in heavy
Fermions systems or in polaronic systems.

2 Quantum formalism for electronic transport

In this section we give some definitions and recall general properties of the con-
ductivity. We present the mathematical relations that exist between the low
frequency conductivity, including the dc conductivity, and quantum diffusion.
We consider also the relaxation time approximation (RTA) [5] that allows to
treat the role of disorder on quantum diffusion and conductivity. We demon-
strate general formulas for quantum diffusion and low frequency conductivity
(within the RTA) in periodic and quasiperiodic models of potential.

2.1 Impulse response and analytical properties of the conductivity

Let us consider a system, at thermodynamical equilibrium, submitted to an
impulse of electric field

E(t) = Eδ(t) (1)

where δ(t) is the Dirac function. The resulting current density is J(t) (J(t) = 0
for t < 0) and the response j(t) is defined by

j(t) =
J(t)

E
j(t) = 0 for t < 0 (2)

Then the complex conductivity σ(ω) and the response j(t) = J(t)/E are
related through

σ(ω) =

∞
∫

0

eiωtj(t)dt (3)

From (2), (3) one deduces that
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Re σ(ω) = Re σ(−ω) (4)

j(|t|) =
1

π

+∞
∫

−∞
eiωt Re σ(ω) dω (5)

In (3) the integral over the time t runs over (t > 0) only due to causality
(j(t) = 0 for t < 0). This implies that the conductivity σ(ω) is an analytical
function of frequency ω in the upper half of the complex plane. From the
analyticity of σ(ω) the Kramers-Krönig relations, that relate the real part
and the imaginary part of the conductivity, can be deduced

Im σ(ω) =
1

π
PP

∞
∫

−∞

Re σ(u)

ω − u
du (6)

Re σ(ω) = −1

π
PP

∞
∫

−∞

Im σ(u)

ω − u
du (7)

where PP means the principal part of the integral. This implies also the fol-
lowing spectral decomposition for z in the upper half complex plane:

σ(z) =
i

π

+∞
∫

−∞

Re σ(ω′)

z − ω′ dω′ (8)

Finally we recall that the conductivity obeys sum rules. For example the re-
sponse j(t = 0) is independent of the quantum character of electrons. It de-
pends only on their concentration n, mass m and charge e through

j(t = 0) =
ne2

m
(9)

Combining with (4),(5) one get

+∞
∫

0

Re σ(ω) dω =
πne2

2m
(10)

2.2 Relation between low frequency conductivity and quantum diffusion

The quantum diffusion of states having an energy E is defined as ∆X2(E, t):
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∆X2(E, t) =
〈

[X(t) − X(0)]2
〉

E
(11)

where < A >E means an average of the diagonal elements of the operator A
over all states with energy E. X(t) is the position operator along the axis x
expressed in the Heisenberg representation. The velocity operator is defined
as Vx(t) = dX(t)/ dt, its correlation function C(E, t) is defined as

C(E, t) =
〈

Vx(t)Vx(0) + Vx(0)Vx(t)
〉

E
= 2 Re

〈

Vx(t)Vx(0)
〉

E
(12)

and is related to quantum diffusion [6] through

d

dt
∆X2(E, t) =

t
∫

0

C(E, t′) dt′. (13)

As shown in [6], the real part of the low frequency conductivity is related to
quantum diffusion. Indeed from the Kubo-Greenwood formula the real part of
the conductivity is given by

Re σ(ω) =

µ
∫

µ−~ω

dE

~ω
F (E, ω). (14)

where µ is the chemical potential. In (14) the Fermi-Dirac distribution func-
tion is taken equal to its zero temperature value. This is valid provided that
the electronic properties vary smoothly on the thermal energy scale kT . For
finite temperature, the effect of the Fermi-Dirac distribution function on the
transport properties has been studied in the literature [7,8,9,10]. But, the-
ses analyzes could not explain the unconventional conduction of quasicrystals
and related alloys (very high resistivity at low temperature, and conductivity
that increases strongly when defects or temperature increases). Therefore in
the following, the Fermi-Dirac distribution function is taken equal to its zero
temperature value. But the effect of defects and temperature (scattering by
phonons ...) on the diffusivity is taken into account via the relaxation time
approximation (section 2.3). The central quantity F (E, ω) is given by

F (E, ω) =
2π~e2

Ω
Tr
〈

δ(E − H)Vxδ(E + ~ω − H)Vx

〉

(15)

where Ω is the volume of the system and Tr means the Trace of an operator.
Expressing the operator δ(E − H) as the Fourier transform of the evolution
operator e−iHt one shows that
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2F (E, ω)

e2n(E)
=

∞
∫

−∞
dt eiωt

〈

Vx(t)Vx(0)
〉

E
(16)

and

2F (E − ~ω, ω)

e2n(E)
=

∞
∫

−∞
dt eiωt

〈

Vx(0)Vx(t)
〉

E
(17)

where n(E) is density of states per unit volume (summed over up and down
spins which are assumed to have the same transport properties here). Then
one finds

2 Re σ̃(E, ω) = F (E, ω) + F (E − ~ω, ω) (18)

where

σ̃(E, ω) = e2 n(E)

2

∞
∫

0

eiωt C(E, t) dt (19)

Let us note that the function σ̃(E, ω) is analytical in the upper half of the
complex plane. For large ω : σ̃(E, ω) ∝ 1/ω and the Kramers-Krönig relations
are valid. Finally the usual sum rule is valid

∞
∫

0

Re σ̃(E, ω) dω =
πe2n(E)

2
C(E, t = 0) =

πe2n

2m∗ (20)

where m∗ is the effective mass and n the density of conduction electrons.

If the variation of F (E, ω) with energy is small in the interval [EF−~ω, EF+~ω]
of values of E, one deduces from the previous set of equations that

Re σ(ω) ≃ e2n(EF)

2
Re

∞
∫

0

eiωt C(EF, t) dt (21)

(21) is valid at sufficiently small values of ω. In particular at zero frequency
the dc conductivity is given by the Einstein relation

σ(0) = e2n(EF)D(EF) (22)

with
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D(EF) = lim
t→∞

1

2

d

dt
∆X2(EF, t) (23)

Finally there is a simple relation between the velocity correlation function at
the Fermi energy and the impulse response j(t). Indeed comparing (21) and
(3) one deduces the following equivalence at large time

j(t) ≃ e2 n(EF)

2
C(EF, t) (24)

2.3 Relaxation time approximation (RTA)

Within the relaxation time approximation one assumes that the response cur-
rents respectively with disorder j(t) and without disorder j0(t) are related
through

j(t) = j0(t) e−|t|/τ (25)

where τ is the relaxation time. So the relaxation time approximation (RTA)
allows to treat the effect of disorder on quantum diffusion and conductivity.
We give the relations satisfied by conductivity and quantum diffusion in this
approximation. The conditions of validity of the RTA are discussed in part 3.

Using (3), and within the RTA, the conductivity with disorder σ(ω, τ) and
without disorder σ0(z) are related by

σ(ω, τ) = σ0

(

ω +
i

τ

)

(26)

The real part of conductivities with defects Re σ(ω, τ) and without defects
Re σ0(ω) are related simply. Using (3), it is straightforward to get

Re σ(ω, τ) =
1

πτ

+∞
∫

−∞

Re σ0(ω
′)

(ω − ω′)2 + 1
τ2

dω′ (27)

which allows to compute the real part of the conductivity with defects.

We discuss now the RTA from the point of view of quantum diffusion. In
all cases we consider that the influence of disorder is much stronger on the
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quantum diffusion than on the density of states. We thus neglect the variation
of n(E) with disorder. From (24) one deduces that, for not too large disorder
i.e. for sufficiently large relaxation time τ the RTA is equivalent to

C(E, t) = C0(E, t) e−|t|/τ (28)

where C(E, t) and C0(E, t) are respectively the velocity correlation functions
with and without disorder. After equation (13) one deduces that the long time
propagation is diffusive with a diffusion coefficient defined as

D(E) =
1

2

+∞
∫

0

C0(E, t) e−|t|/τ dt (29)

which is equivalent to

D(E) =
1

2

d

dt
∆X2(E, t) if t ≫ τ (30)

At zero frequency the diffusivity can be written in the useful form

D(EF, τ) =
L2(EF, τ)

2τ
(31)

Using the t = 0 conditions ∆X2(E, t = 0) = 0 and d
dt

∆X2(E, t = 0) = 0 and
performing two integrations by part one get

L2(EF, τ) =

+∞
∫

0

∆X2
0 (EF, t) e−t/τ dt

+∞
∫

0

e−t/τ dt

=
〈

∆X2(EF, t)
〉

τ
(32)

where
〈

..
〉

τ
is a time average on a time scale τ . ∆X0(E, t) is the spreading of

states of energy E, in the perfect system i.e. without disorder.

More generally at low frequency, using (21) one can define a frequency depen-
dent diffusivity D(EF, ω) such that

Re σ(ω) ≃ e2n(EF) D(EF, ω) (33)
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and:

D(EF, ω) =
1

2
Re

∞
∫

0

eiωt C(EF, t) dt (34)

within the RTA (34) writes

D(EF, ω) =
1

2
Re

+∞
∫

0

e(iω−1/τ)t C0(E, t) dt (35)

It can be convenient to use the equivalent form which expresses the frequency
dependent diffusivity D(EF, ω) in terms of the quantum diffusion without
disorder ∆X2

0 (E, t):

D(EF, ω) =
1

2
Re







(

1

τ
− iω

)2 +∞
∫

0

e(iω−1/τ)t ∆X2
0 (E, t) dt







(36)

2.4 Application to periodic Hamiltonians

In this section we analyze the quantum diffusion in a perfect crystal, then we
derive formulas for the low frequency conductivity within the RTA.

Quantum diffusion

Due to the Bloch theorem an eigenstate of a periodic Hamiltonian is defined
by its wave vector ~k and by its band index n. The diagonal element of the
velocity correlation operator on a state n~k can be decomposed as follows:

C(n~k, t) = 2
∑

m

∣

∣

∣Vn,m(~k)
∣

∣

∣

2
cos

(

(

En(~k) − Em(~k)
) t

~

)

. (37)

where V is the velocity operator (in the chosen direction X) and Vn,m(~k) is

the matrix element between states n~k and m~k.

At small time, t ≪ ~/W where W is a typical bandwidth, using (13), the
quantum diffusion is always ballistic with:

∆X2 = V 2
tott

2 if t ≪ ~

W
(38)
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and

V 2
tot =

〈

∑

m

∣

∣

∣〈n~k|Vx|m~k〉
∣

∣

∣

2
〉

En=EF

(39)

But in general the relevant time scale for electronic conductivity, which is
the scattering time, is much larger than ~/W . The following decomposition is
important.

Using (13) one shows that quite generally the quantum diffusion ∆X2(E, t)
can be decomposed in a ballistic contribution and a bounded part:

∆X2(E, t) = VB(E)2t2 + ∆X2
NB(E, t). (40)

The ballistic term VB(E)2t2 is due to the diagonal elements of the velocity
correlation function (intraband contribution) , whereas ∆X2

NB(E, t) is due to
the off diagonal terms of the velocity correlation function (interband contri-
bution). One has

VB(E)2 =
〈

∣

∣

∣〈n~k|Vx|n~k〉
∣

∣

∣

2
〉

En=E
(41)

and

∆X2
NB(E, t) ≤ 2∆X2

∞NB(E) (42)

An important relation exists between ∆X2
∞NB(E) and the square length of

the unit cell in the chosen direction L2 namely:

∆X2
∞NB(E) ≤

(

L

2

)2

(43)

Indeed one shows easily that

∆X2
NB(EF, t) = 2~

2

〈

∑

m (m6=n)

1 − cos
(

(En − Em) t
~

)

(En − Em)2

∣

∣

∣〈n~k|Vx|m~k〉
∣

∣

∣

2
〉

En=EF

(44)

the above expression is bounded by considering that all cosines are equal to
−1 and we define ∆X2

∞NB(E) as
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∆X2
∞NB(E) = 2~

2

〈

∑

m (m6=n)

∣

∣

∣〈n~k|Vx|m~k〉
∣

∣

∣

2

(En − Em)2

〉

En=E

(45)

From the definition of the velocity operator

VX =
1

i~

[

X, H
]

(46)

and by considering the matrix elements of the position operator:

〈n~k|X|m~k〉 =
∫

Cell

u∗
n~k

(~r)xum~k(~r) d~r (47)

one get

∆X2
∞NB(E) = 2

〈

∑

m (m6=n)

∣

∣

∣〈n~k|X|m~k〉
∣

∣

∣

2
〉

En=E

(48)

Let us define an operator X− that is constant in each unit cell and gives
the average position of each unit cell along the chosen X direction. Since this
operator is constant in each unit cell the orthogonality of m~k and n~k with
(n 6= m), implies:

∫

Cell

u∗
n~k

(~r)x−um~k(~r) d~r = 0 for n 6= m (49)

Thus the operator (X−X−) has the same off diagonal elements as X between

m~k and n~k with (n 6= m)

〈n~k|X|m~k〉 = 〈n~k|X − X−|m~k〉 =
∫

Cell

u∗
n~k

(~r)(x − x−)um~k(~r) d~r (50)

The operator XP = (X−X−) has also well defined diagonal elements 〈n~k|X−
X−|n~k〉 in the basis of Bloch states contrary to the operator X which has not
well defined diagonal elements in this basis.

Thus one can write
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∆X2
∞NB(E) = 2

〈

∑

m (m6=n)

∣

∣

∣〈n~k|XP |m~k〉
∣

∣

∣

2
〉

En=EF

(51)

and

∆X2
∞NB(E) =

〈

〈n~k|X2
P |n~k〉 − 〈n~k|XP |n~k〉2

〉

En=EF

(52)

∆X2
∞NB(E) =

〈

〈n~k|(XP − 〈n~k|XP |n~k〉)2|n~k〉
〉

En=EF

(53)

The above expression depends only on the density probability of the Bloch
wavefunction |Ψn~k(~r)|2. A bound of the above expression is easily established

and according to the equation announced in (43) writes ∆X2
∞NB(E) ≤

(

L
2

)2
.

Low frequency conductivity in the RTA

Let us consider now the low frequency conductivity and diffusivity of a crystal
within the RTA. Using (40) and (36) one has

D(E, τ) =VB(E)2τ +
L2

NB(E, τ)

2τ
(54)

with

VB(E)2 =
〈

|〈n~k|Vx|n~k〉
∣

∣

∣

2
〉

En=E
(55)

and

L2
NB(E, τ) =

+∞
∫

0

∆X2
NB(t) e−t/τ dt

+∞
∫

0

e−t/τ dt

(56)

At low frequency, neglecting any variation of density of states with energy on
a scale ~ω, one can still write

Re σ(EF, ω) = e2n(EF)D(EF, ω) (57)
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where the frequency dependent diffusivity can here also be decomposed in a
Boltzmann and a Non Boltzmann contributions:

D(EF, ω) = DB(EF, ω) + DNB(EF, ω) (58)

with the Boltzmann contribution DB(EF, ω) and the Non Boltzmann contri-
bution DNB(EF, ω) given by

DB(EF, ω) =
1

2
Re







(

1

τ
− iω

)2 +∞
∫

0

e(iω−1/τ)t ∆X2
B(EF, t) dt







(59)

or

DB(EF, ω) =
V 2τ

1 + ω2τ 2
(60)

and

DNB(EF, ω) =
1

2
Re







(

1

τ
− iω

)2 +∞
∫

0

e(iω−1/τ)t ∆X2
NB(EF, t) dt







(61)

or equivalently

DNB(EF, ω) =
1

2
Re







+∞
∫

0

e(iω−1/τ)t CNB(EF, t) dt







(62)

where CNB(EF, t) is the Non Boltzmann contribution to the velocity correla-
tion function i.e. the off diagonal contributions n 6= m in (37).

2.5 Application to quasiperiodic Hamiltonians

In this section we describe briefly the nature of states in a perfect quasiperi-
odic system and the associated anomalous diffusion mode. Then we derive
expressions of the conductivity within the RTA.

Critical eigenstates in quasiperiodic Hamiltonians

A first point is to define what a quasiperiodic Hamiltonian is [11,14]. Here we
refer to the construction by the method of the acceptance zone in a crystal
of higher dimension with a cut by a space with irrational slopes. We assume
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also that the basic pattern, in the crystal of higher dimension, does not con-
nect different unit cells as it is the case for some incommensurate phases. An
important consequence is that a local environment of size L must be repeated
exactly within a distance of order L.

Consider a general one dimensional tight-binding Hamiltonian H of the form

H =
∑

〈i,j〉
t|i〉〈j| +

∑

i

ǫi|i〉〈i| (63)

where the first part corresponds to hopping between nearest neighbors 〈i, j〉
and the second part to on-site energies ǫi. For the Fibonacci chain:

ǫi =V [iϕ] (64)

V (x) =V0 for − ϕ < x ≤ ϕ3 (65)

V (x) =V1 for − ϕ3 < x ≤ ϕ2 (66)

where ϕ is the Golden mean. For this Hamiltonian all states are critical. A
critical state is intermediate between spatially extended and exponentially lo-
calized. Its envelopp presents an algebraic decay with distance [12,13,14,15,16].

It is interesting to compare the eigenstates of the Fibonacci chain with those
of two classical models: the 1D Anderson Hamiltonian and the Harper Hamil-
tonian. For the Anderson Hamiltonian the on-site energies ǫi are chosen ran-
domly between two values [−W, +W ]. In that case all states are exponentially
localized with distance from some point. The localization length L depends
on the energy and on disorder (through the parameter W/t) and decreases
when W/t increases. For the Harper Hamiltonian the on-site energies are of
the form

ǫi = λ cos(2πωi) (67)

For ω rational the structure is periodic and the eigenstates are Bloch states.
For ω irrational the structure is aperiodic. Depending on the parameter λ the
states are either extended (λ < 2), critical (λ = 2) or exponentially localized
(λ > 2).

A remarkable difference between the Harper and the Fibonacci model is that
in the second model the states are critical for any values of the parameters. It
is clear that the exact repetition of a given environment has a strong influence
on the long range correlations of eigenstates. Indeed in the Fibonacci model
a given sequence of length L is repeated exactly within a distance of order L
whereas in the Harper model (or in the Anderson model) this exact repetition
does not exist.
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Fig. 1. Critical eigenstate in a decagonal model. The wavefunction density prob-
ability is small on white spots and strong on black spots. From T. Fujiwara [17].

A major question is whether the critical states persist in higher dimension.
Although there could be exceptions it seems that in general states are critical
in 2 or 3 dimensions. There have been numerical studies of spectra in more
than one dimension and figure 1 presents a state calculated for a large 2-
dimensional model by T. Fujiwara et al. [17].

An argument proposed by C. Sire [18] is the following. If a wavefunction ΨL0

is mainly localized in a region of extension L0 then it should live also on
any similar environment. After Conway theorem, identical environments are
located at a distance 2L0 at most. Introducing a tunneling factor z between
the two local environments we write

Ψ2L0
= zΨL0

and Ψ2nL0
= znΨL0

(68)

Introducing L = 2nL0, we can write equivalently

ΨL =
(

L0

L

)α

ΨL0
with α =

log z

log 2
(69)

This qualitative argument points out the importance of the exact repetition of
an environment within a distance comparable to the size of this environment,
which is typical of a quasicrystal.

Band scaling and anomalous diffusion
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The critical states are associated to a fractal energy spectrum in quasicrys-
tal. The nature of this spectrum can be understood by considering a series
of approximants with unit cell of increasing size L. When going from one ap-
proximant to the following, the bands are broken into smaller pieces which
gives a fractal spectrum for the quasiperiodic system.

Typically the width ∆E of a band varies like

∆E ≃ B

Lγ
(70)

where L is the length of the unit cell of the system. The exponent γ is greater
than one due to the effect of the quasiperiodic potential. γ depends on the
energy of the wavepacket and of course on the parameters of the Hamiltonian.
This scaling law reflects also the critical character of eigenstates and their
algebraic decrease with distance.

The band scaling has a direct consequence for the propagation of waves in
quasiperiodic media. The spreading L(t) of a wavepacket is neither ballistic
(i.e. proportional to time t) as in crystals nor diffusive (i.e. proportional to
the square root of time) as in disordered metals. In general it follows a power
law and one can write after a time t:

L(t) ≃ Atβ (71)

β depends on the hamiltonian and on the energy of the wavepacket [19]. Indeed
for an approximant with unit cell of size L the characteristic velocity v(L) is
given by

v(L) ∝ 1

~

dE(~k)

d~k
∝ L∆E

~
∝ B

Lγ−1
(72)

~k is a wave vector in reciprocal space. When the magnitude of ∆~k is of order
1/L (i.e. the size of the Brillouin zone) the magnitude of the energy variation
is of order ∆E (i.e. the width of a band). The last equality in (72) is then
obtained through equation (71). Since γ > 1 the typical velocity tends to zero
when L increases.

Using the relation between the spreading of the wavepacket and the velocity
at length scale L:

dL

dt
= v(L) ∝ B

Lγ−1
(73)
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One integrates straightforwardly the above differential equation and obtains:

L(t) ≃ Atβ with β =
1

γ
< 1 (74)

Thus in a quasiperiodic system the asymptotic diffusion law is at sufficiently
large t:

∆X2
0 (t) ≃ At2β (75)

but let us recall that at small time the propagation is necessarily ballistic.
Indeed after (13) and (12) one has

∆X2(E, t) ≃
〈

Vx(t = 0)2
〉

E
t2 (76)

There is numerical evidence of anomalous diffusion in 1- or 2-dimensional
systems (see figures 2, 3). It should be noted that these law are numerically
approximate because in practice there is always fluctuations. As a rule, one
expects that the fluctuations are less important when the dimensionality of
the system increases.

Associated to this anomalous diffusion one observes also an anomalous trans-
mission of waves through a finite part of a quasiperiodic tiling of length L.
The transmission coefficient varies like a power law of the length L. There is
also a power law variation of the resistance of a stripe of length L.

It is interesting to consider the propagation law ∆X2
0 (L, t) in an approximant

of unit cell size L, in the limit of large L, and to relate it to the propagation
in the quasicrystal ∆X2

0 (t).

In the periodic approximant of unit cell size L after equation (40):

∆X2
0 (L, t) = V (L)2t2 + ∆X2

NB(L, t) (77)

or equivalently

∆X2
NB(L, t) = ∆X2

0 (L, t) − V (L)2t2 (78)

Since the velocity V (L) tends to zero at large L one gets
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Fig. 2. Behaviour of R2
0(E, t) = ∆X2(E, t)+∆Y 2(E, t)+∆Z2(E, t) for three energies

in the 2- (left) and the 3-dimensional (right) generalized Rauzy tiling. From [20].

Fig. 3. Normalized density of states (lower curves) and diffusion exponents (upper
curve) of the 2- (left) and the 3-dimensional (right) generalized Rauzy tiling. From
[20].

lim
L→∞

∆X2
NB(L, t) = lim

L→∞
∆X2

0 (L, t) = ∆X2
0 (t) (79)

Thus at a given time t the Non Boltzmann contribution to the spreading
∆X2

NB(L, t), for an approximant of unit cell size L, tends to the anomalous
diffusion law of quasicrystals ∆X2

0 (t) in the limit of large L.

Low frequency conductivity in the RTA
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According to the anomalous law derived above and exemplified by numerical
simulations we assume that at sufficiently large time t → ∞ the diffusion law
for a perfect quasicrystals is

∆X0(E, t)2 ≃ A(E)t2β(E) (80)

Let us recall that at small time t the diffusion law is ballistic (76). According to
the general expression relating frequency dependent diffusivity and quantum
diffusion (36) one has in the RTA:

Re σ(EF, ω) =
e2n(EF)

2
Re







(

1

τ
− iω

)2 +∞
∫

0

e(iω−1/τ)t ∆X2
0 (E, t) dt







(81)

If the asymptotic law (80) is applicable on the time scales τ and 1/ω (which
means a limit of small disorder and small frequency) then one can write

Re σ(EF, ω) = Re σ̃(EF, ω) (82)

with

σ̃(EF, ω) =
e2n(EF)

2
AΓ(2β + 1)

(

τ

1 − iωτ

)2β−1

(83)

where Γ is the Euler Gamma function. The formula (82), (83) is a generalized
Drude formula. Indeed if one considers the case β = 1 then one recovers
exactly the Drude formula.

The generalized Drude formula is established for a given β in the limit of
infinite scattering time τ → ∞ and low frequency ω → 0. Thus this formula
cannot be applied for a given τ in the limit β → 0. In order to treat the case
of small β, for a fixed τ , we proceed in the following way. We start from the
low frequency form (84) for the perfect system and treat the effect of disorder
within the RTA. For the perfect system we assume the conductivity satisfies:

Re σ0(ω) = σ0

(

|ω|
ω1

)1−2β

for |ω| < ω1 (84)

After (3), (25) the conductivity σ(ω, τ) of the system with defects satisfies:

σ(ω, τ) ≃ σ0

(

ω +
i

τ

)

(85)
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thus σ(ω, τ) is determined once σ0(z) is known for z = ω + i/τ . In the limit of
low frequency and long scattering time we need σ0(z) for small values of |z|.

Consider the two functions that are analytical in the upper half of the complex
plane:

σ̃(z) =
σ0

sin(βπ)

(

z

iω1

)1−2β

(86)

σx(z) =
ix

ix + z
σ̃(z) for x > 0 (87)

In (86), we choose the following determination for the power of a complex
number. For a complex number X = |X|eiθ with −π < θ ≤ π we define
Xα = |X|αeiαθ. From (84,86), Reσ0(ω) = Re σ̃(ω) for |ω| < ω1.

For a function f(z) which is analytical in the upper half of the complex plane,
and which modulus tends to zero at large z one has

f(z) =
i

π

+∞
∫

−∞

Re f(ω)

z − ω
dω (88)

The spectral representation (88) applies to both σ0(z) because it is the con-
ductivity of a real system and to σx(z) because of the factor ix/(ix + z) which
guarantees that the function σx(z) is analytical in the upper half complex
plane (x > 0) and decreases sufficiently quickly at large z. So

σ0(z) = σx(z) +
i

π

+∞
∫

−∞

Re σ0(ω) − Re σx(ω)

z − ω
dω (89)

Since Re σ0(ω) and Re σx(ω) are pair functions of ω one can add together
contributions of ω and −ω in (89). Using Re σ0(ω) = Re σ̃(ω) for |ω| < ω1 and
taking the limit x → +∞ one gets

σ0(z) = σ̃(z) − 2zi

π

+∞
∫

ω1

Reσ0(ω) − Re σ̃(ω)

ω2(1 − z2/ω2)
dω (90)

Developping the integral in a power series of z and keeping only the term
proportionnal to z one gets

σ0(z) = σ̃(z) +
izσ0

πω1β
− 2izασ0

πω1

+ O

(

(

z

ω1

)3
)

(91)
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α =
ω1

σ0

+∞
∫

ω1

Re σ0(ω)

ω2
dω (92)

For a given β 6= 0 the first term in the right member of (91) dominates in the
limit z = 0. In this limit, one recovers, as expected, the Generalized Drude
formula (82), (83) and [6].

Yet it is interesting to look at the limit of β → 0 for a given τ or given
frequency ω i.e. for a given value of z = ω + i/τ . In this limit, not considered
in [6], one gets from (91), (82) and (83):

σ0(z) =
2σ1z

iπω1

[

α − log
(

z

iω1

)]

+ O
(

(z/ω1)
3
)

(93)

In (93) log(X) = log |X| + iθ for X = |X| eiθ with −π < θ ≤ π. Introducing
A = 2σ0/πω1 the dissipative part of conductivity, up to terms of order (z/ω1)

3,
is given by

Re σ ≃ A

τ



α + log





ω1τ
√

1 + (ωτ)2



+ ωτArctg(ωτ)



 (94)

Finally we note that the quantum diffusion associated to the conductivity
law (94) is logarithmic. Indeed the zero frequency diffusivity is given by D ∝
A
τ
(α + log(ω1τ)) and after (31) the mean free path is L2(τ) ∝ (α + log(ω1τ)).

Physically the mean free path represents the diffusion length between two
scattering events in the perfect system.

3 Anomalous quantum diffusion and conductivity in periodic and

quasiperiodic systems

In this part 3 we discuss first the limitations of the RTA and the possibility
of a metal-insulator transition. Then we focus on the physical interpretation
and consequences of the formulas derived in part 2. We apply this to a general
theory of low frequency conductivity and metal-insulator transition in crystals
and quasicrystals.

Let us recall first the main formulas derived in part 2 to treat low frequency
conductivity.

In the impulse response formalism one considers the response of a system to
an impulse of electric field E(t) = Eδ(t) where δ(t) is the Dirac function. The
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resulting current density is J(t) (J(t) = 0 for t < 0) and the response j(t) is
defined by j(t) = J(t)/E. The complex conductivity σ(ω) and the response
j(t) are related through

σ(ω) =

∞
∫

0

eiωt j(t) dt (95)

The quantum diffusion of states of energy E is measured by the quantity
∆X2(E, t):

∆X2(E, t) =
〈

[X(t) − X(0)]2
〉

E
(96)

where < A >E means an average of the diagonal elements of the operator A
over all states with energy E. X(t) is the position operator along the x axis in
the Heisenberg representation. The velocity operator Vx(t) = dX(t)/ dt has a
correlation function C(E, t) defined as

C(E, t) =
〈

Vx(t)Vx(0) + Vx(0)Vx(t)
〉

E
= 2 Re

〈

Vx(t)Vx(0)
〉

E
(97)

and is related to quantum diffusion through

d

dt
∆X2(E, t) =

t
∫

0

C(E, t′) dt′. (98)

The low frequency conductivity satisfies

Re σ(ω) ≃ e2n(EF) D(EF, ω) (99)

with n(E) the total density of states and

D(EF, ω) =
1

2
Re

+∞
∫

0

e(iω)t C(EF, t) dt (100)

In the limit of large time j(t) and C(EF, t) are related by
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j(t) ≃ e2 n(EF)

2
C(EF, t) (101)

where EF is the Fermi energy and n(EF) the density of states at the Fermi
energy (summed over spin up and down).

Within the relaxation time approximation (RTA) one assumes that j(t) and
C(E, t) with disorder are related to j0(t) and C0(E, t) without disorder through

j(t) = j0(t) e−|t|/τ (102)

C(E, t) = C0(E, t) e−|t|/τ (103)

Here the Fermi-Dirac distribution function is taken equal to its zero tempera-
ture value. This is valid provided that the electronic properties vary smoothly
on the thermal energy scale kT . But in the RTA, the effect of defects and
temperature (scattering by phonons ...) is taken into account through the re-
laxation time τ . The diffusivity is given by

D(EF, ω) =
1

2
Re

+∞
∫

0

e(iω−1/τ)t C0(EF, t) dt (104)

It can be convenient to use the following equivalent form which expresses the
frequency dependent diffusivity D(EF, ω) in term of the quantum diffusion in
the systemwithout disorder ∆X2

0 (E, t)

D(EF, ω) =
1

2
Re







(

1

τ
− iω

)2 +∞
∫

0

e(iω−1/τ)t ∆X2
0 (EF, t) dt







(105)

Note that (100), (105) are valid at sufficiently small frequency. The condition
is that the conductivity varies only slowly with EF on the energy scale ~ω. If
this is not the case it is still possible to define an average of the conductivity
over a range of values of the energy EF. In that case the above formulas are
applicable to the conductivity averaged on a scale of Fermi energies greater
than ~ω.

At zero frequency the above formula (105) is exact within the RTA and can
be written as
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Fig. 4. Interference between a path (solid line) and its time reversal image (dashed
line) for an electron which diffuses through a static disordered potential. The in-
terference that occurs between two different paths after several scattering events
cannot be described by the RTA.

D =
L2(EF, τ)

2τ
(106)

with the mean free path L(EF, τ) given by

L2(EF, τ) =
1

τ

+∞
∫

0

e−t/τ ∆X2
0 (EF, t) dt (107)

3.1 Validity of the RTA and Anderson transition

Let us discuss now the conditions of validity of the RTA. We consider first
the role of elastic scattering i.e. diffusion by a static potential. From the def-
inition of the RTA it is clear that j(t) = j0(t) exp (−|t|/τ) is essentially zero
beyond the the relation time t > τ . However this is not the case in many disor-
dered systems which present elastic scattering. For example in the case of free
electrons scattered by static defects at random in a three dimensional system
there are interferences between several scattering paths. This is represented
in figure 4. As a consequence of these interferences the long time behavior of
the response current j(t), in the absence of a magnetic field, is

j(t) = −At−3/2 with A > 0 (108)

Thus interferences effects in the diffusive regime cannot be in general described
properly by the RTA. Indeed in the RTA all quantum correlations are lost
beyond the scattering time scale τ . Figure 4 shows a type of interference that
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occurs on a time scale greater than the scattering time τ and thus cannot be
described in the RTA.

Ultimately these interferences can lead to a localization of the states, provided
that the disorder is sufficiently strong. This Anderson localization is schemat-
ically represented in figure 5. Of course a correct theory of the Anderson
localization is also beyond the RTA.

For a 3-dimensional system the importance of quantum interferences depends
on the ratio between the dc-conductivity of the system σdc and the Mott
value σMott ≃ 600 (Ωcm)−1/Λ where Λ is the mean-free path expressed in
Angströms. If R = σdc/σMott ≫ 1 the effect of the quantum interferences on
σdc is small. In that case the quantum interferences in the diffusive regime
change only slightly the value of the conductivity and the RTA can describe
the role of elastic scattering. If the ratio R is closer to one then the RTA
cannot be used to describe the role of elastic scattering.

The case of inelastic scattering is different. It is generally assumed that in-
elastic scattering with a scattering time τin destroys quantum interferences
on a time scale t > τin. So the relaxation time approximation is expected to
be valid in the case of inelastic scattering. Yet a condition is that the system
contains a sufficiently large number of states so that the electron can find a
state to scatter into close to the scattering event.

For this reason the hopping regime between localized states (either short range
hopping or variable long range hopping) is not described by the relaxation time
approximation. Indeed each hopping process requires an exchange of energy
with phonons that provides to the electron the difference in energy between
the initial and final localized states.

General case according to the scaling theory

We discuss now the case where there is both elastic scattering (characterized by
τel) and inelastic scattering scattering (characterized by τin) and assume that
τin > τel. This often happens since τin diverges at low temperature whereas τel

is temperature independent at sufficiently low temperature. In the case where
τin < τel the elastic scattering is expected to have a minor effect on transport,
and one is back to the case of pure inelastic scattering.

Let us define t(L) the time needed for a wavepacket to spread on a length
scale L and D(L) = L2/2t(L) the diffusivity D(L) at length scale L. Let us
define also Lin which is such that τin = t(Lin).

According to the scaling theory the diffusivity depends on the length scale
due to the quantum interferences in the diffusive regime. One can distinguish
three steps.
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Density of states

Extended states

Localized
states

Energy

Fig. 5. Schematic band structure of an Anderson insulator, with increasing disorder
from bottom to top. At zero temperature the system is metallic if the Fermi energy
is in the extended states region. The system is insulating if the Fermi energy is in
the localized states region.

1) Define the diffusivity at the length scale of the elastic mean free path. This
can be done by using the RTA with a relaxation time equal to the elastic
scattering time. This is valid because the quantum interferences do not act on
length scales smaller than the elastic mean free path.

2) Consider the conductance g(L) of a cube with size L.

g(L) = e2 n(E)

2

L3

t(L)
= e2n(E)D(L)L (109)

and apply the scaling relation on length scales L such that Lin > L > Le.

d log(g)

d log(L)
= β(g) (110)

beta(g) is represented schematically in figure 6. The relation (110) defines
entirely the quantum diffusion and thus the velocity correlation function as a
function of the length scale L or also as a function of time scale t(L). Thus it
allows to compute Cscaling(E, t) where Cscaling(E, t) is the velocity correlation
function corresponding to the purely elastic scattering.

3) One stops the renormalization procedure at the length scale Lin = L(τin),
which means that the macroscopic diffusivity is simply D = D(Lin). Equiva-
lently the role of inelastic scattering is simply to destroy the velocity correla-
tion on the time scale τin i.e. one has
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β(g) =sLog(g/g )c

d = 3

d = 1

d = 2

β(g)

β(g)= 1 − 1/π2g

0 gc

−1

Log(g)

1

Weak localisation regime

Fig. 6. Schematic representation of the β(g) function for systems of dimension d.

C(E, t) = Cscaling(E, t) e−t/τin (111)

The renormalization procedure determines entirely Cscaling(E, t) and thus through
(111) determines entirely the quantum diffusion of the system with inelastic
scattering.

3.2 Phenomenon of backscattering

Let us consider the response j(t) to an electric field Eδ(t) applied to a system.
During the impulsion the dynamics is dominated by the effect of the electric
field. This implies that j(0) is independent of the atomic forces applied to the
electrons and is given by the classical response j(0) = ne2/m. In particular
j(0) is positive. In the classical Drude model j(t) = j(0) exp (−t/τ) tends to
zero at larger times but is always positive. This is illustrated by figure 7.

Quantum effects can lead to a counter intuitive situation where j(t) becomes
negative in some time interval. This is the phenomenon of backscattering. This
phenomenon occurs in a recurrent manner in the physics of quasicrystals and
related complex intermetallics. So we give here an account of its characteristics
and its consequences on conductivity.

We illustrate first the phenomenon of backscattering in two cases concerning
disordered systems: the weak-localization and the strong localization regimes.

Inelastic scattering in the weak localization regime
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Fig. 7. Response current j(t) within the Drude model. Without disorder (solid line)
the response is constant j = ne2/m. With disorder (dashed line) the response decays
exponentially on the time scale τ .
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Fig. 8. Response function j(t) in a disordered system with weak-localization effect,
and thus backscattering at large time. Without inelastic scattering (solid line) and
with inelastic scattering (dashed line).

We assume that the elastic scattering time τe is much shorter than the inelastic
scattering time τin. On the time scale τe < t < τin the interferences are
insensitive to inelastic scattering and j(t) = −At−3/2 (for a 3-dimensional
system), but on the time scale t > τin the interferences are destroyed. Thus a
general expression of j(t) for t > τel is (figure 8):

j(t) = −At−3/2 e−t/τin with A > 0 (112)

In that case using equation (95) one finds for the dc conductivity:

σdc =

∞
∫

0

j(t) dt = σ0 +
2A

√
π√

τin
(113)

where σ0 is the dc-conductivity in the absence of inelastic scattering. That is
inelastic scattering tends to increase the conductivity. This paradoxal result
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Fig. 9. Response function j(t) for an insulator. Beyond a characteristic time
(Tc ≃ 2 here) the response j0(t) is essentially zero. Without inelastic scatter-

ing (solid line) the conductivity is zero and the integral σdc =
∞
∫

0

j0(t) dt = 0.

With inelastic scattering (dashed lines) the system is conducting and the integral

σdc =
∞
∫

0

j0(t) e−t/τin dt > 0.

is directly related to the backscattering phenomena that occurs with static
disorder. Indeed in the integral (113) with j(t) = −At−3/2 e−t/τin , τin can be
considered as a cut-off which supresses the negative contributions of j(t) =
−At−3/2 at t > τin.

The role of a small frequency ω is comparable to that of inelastic scattering
at a time scale τin ≃ 1/ω. It acts also as a cut-off. For example in the case of
the weak localization one has for τin → ∞:

Re σ(ω) = σ0 + A
√

2πω (114)

This means that Re σ(ω, τ) increases with frequency at small frequencies. This
is at the opposite of the standard behavior of metals, where the low frequency
conductivity is dominated by the Drude peak.

The role of frequency can also be deduced from the relation (27) between
the real parts of conductivity with scattering and without scattering. Indeed
this relation (27) shows that σdc is the average of Re σ0(ω) by a Lorentzian
of width 1/τ centered at zero frequency. σdc can increase with 1/τ only if
Re σ0(ω) increases with ω.

Inelastic scattering for localized states : the Thouless regime

Let us consider a system that it is an insulator. In that case the zero frequency
conductivity is zero:
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σ(ω = 0) =

∞
∫

0

j(t) dt = 0 (115)

Since the integral is zero, and since the small time response j(t) > 0 it means
that there are times interval where j(t) < 0. Thus in an insulating system the
backscattering phenomenon necessarily occurs. For Anderson localization one
expects that j(t) > 0 at small times and j(t) < 0 at large time. Beyond a
characteristic time Tc, the response j(t) is essentially zero (see figure 9).

Provided that the RTA is applicable one get

σ(ω = 0, τ) =

∞
∫

0

j0(t) e−t/τ dt = 0 (116)

If τ > Tc then the exponential differs significantly from 1 only in the large
time region t > Tc. In that case one can replace exp(−t/τ) by 1 − t/τ in the
range (t < Tc) where j(t) 6= 0. This gives

σ(ω = 0, τ) = −1

τ

∞
∫

0

j0(t)t dt = 0 (117)

Although
∞
∫

0
j0(t) dt = 0 the integral

∞
∫

0
j0(t)t dt in (117) is negative because

j0(t) is negative at large times and positive at small times.

The regime described here correspond to the Thouless regime, that can be
described by analyzing the quantum diffusion. In the Thouless regime, the
physical picture is that of electrons spreading during a time τin between two
inelastic scattering events and then loosing completely their phase at each
inelastic scattering event. According to the Thouless scenario, in the limit of
large inelastic scattering time τin, the spreading of the electron wavefunction
between two inelastic scattering events is bounded by the localization length
ξE. Since the electron must wait till the next inelastic scattering event to loose
phase memory and spread again the diffusivity is given by

DThouless(E) =
ξ2
E

2τin
(118)

Within the RTA the diffusivity which is the square of the spreading during τin

divided by τin is given by
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D(E) =
L2(E, τin)

2τin

(119)

with the mean free path L2(E, τin) given by (107) which is equivalent to

L2(E, τin) =
∑

E′ 6=E

(E − E ′)2

(E − E ′)2 + (~/τin)2 X2
E,E′ (120)

with

XE,E′ = 〈E|X|E ′〉 (121)

At large inelastic scattering time τin one gets L2(E) = limτin→∞ L2(E, τin)
which can be written as

L2(E) = 〈E|(X − 〈E|X|E〉)2|E〉 = ξ2
E (122)

where ξE is the localization length of the state of energy E. After (119) the
diffusivity is D(E) = ξ2

E/2τin, in agreement with the argument of Thouless.

One thus recovers the typical dependence on the scattering time τ i.e. σdc ∝
1/τ that was deduced from the analysis of the response j(t) and the backscat-
tering.

3.3 Anomalous quantum diffusion and conductivity of periodic systems

Conductivity within the RTA

The semi-classical theory of conduction in crystals is based on the concept of
a charge carrier wave-packet propagating at a velocity V = (1/~)∂En(k)/∂k,
where “En(k)” is the dispersion relation for band n and wavevector k. The
validity of the wave-packet concept requires that the extension Lwp of the
wave-packet of the charge carrier is smaller than the distance V τ of traveling
on the time scale τ . On the contrary, if V τ < Lwp, the semi-classical model
breaks down. The quantum formalism presented here allows to treat on the
same footing the standard regime where the semi-classical approach is valid
and the small time regime V τ < Lwp. As shown in part 2 the spreading of
states with energy E in crystals is given by

∆X2
0 (EF, t) = V 2t2 + ∆X2

NB(EF, t) (123)
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The first term in the right hand side of (123), V 2t2, corresponds to the Boltz-
mann contribution. This term dominates at large times and describes the in-
tercell ballistic propagation of wavepackets on long time scale in crystals. The
physical origin of this term is the coupling between successive unit cell that al-
lows the electron to travel in the whole crystal. The second term ∆X2

NB(EF, t)
is the Non-Boltzmann contribution. It describes the intracell spreading of the
electron. Indeed as shown in part 2 this spreading is bounded by a term of the
order of the square of the unit cell size. In a standard crystal the Boltzmann
term dominates at the time scale relevant for transport, i.e. the scattering time
due to disorder In approximants of quasicrystals the Non Boltzmann term can
dominate.

Let us anticipate on the ab-initio calculations which show that ∆X2
NB(EF, t)

is nearly constant ∆X2
NB(EF, t) ≃ ∆X2

NB except at very small times t ≪ τ .
Then the equation (105) leads to

D(EF, ω) ≃ V 2τ

1 + ω2τ 2
+

∆X2
NB

2τ
(124)

Thus the frequency dependent diffusivity D(EF, ω) is the sum of a Drude like
contribution (first term on the right hand side of (124)) and a contribution
independent of frequency which increases with disorder. As we show from ab-
initio calculations (see below) the Drude like contribution can be small in some
periodic approximants of quasicrystals. This explains why in these systems
the optical conductivity presents no Drude peak and why the dc-conductivity
increases with disorder.

We define τ ∗ as the time for which the Boltzmann and Non Boltzmann con-
tributions to the dc-diffusivity are equal. Thus:

τ ∗ =
∆XNB

V
√

2
(125)

In that case the dc-diffusivity can be represented as in figure 10. The ac-
diffusivity is represented in figure 11.

Backscattering

The Non-Boltzmann contribution to the diffusivity DNB = ∆X2
NB/(2τ) is

formally similar to the Thouless expression for localized states DThouless =
ξ2
E/(2τ). Indeed in the Thouless regime the quantum diffusion between two

inelastic scattering events is limited by the localization length ξE. For crystals
it is the Non-Boltzmann contribution to quantum diffusion which tends to
∆XNB. Let us recall that ∆XNB is itself limited by a term of the order of the
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unit cell size.

As discussed previously (see section 3.2) the increase of conductivity with
disorder is a direct consequence of the backscattering. Indeed we shall find in
part 4 that ab-initio calculations prove the existence of backscattering.

Finally we emphasize an important difference with the Thouless regime. In
the Thouless regime it is the inelastic scattering that destroys the localization
produced by the elastic scattering. Here, provided that the RTA is valid, it
is either the elastic or the inelastic scattering that destroys the localization
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induced by the periodic potential.

Metal-Insulator transition

Let us discuss now the role of quantum interferences according to the scaling
theory of localization. As explained in part 3.1, the central quantity is the
conductance of a cube with a size equal to the elastic mean free path L(EF, τ).

g ≃ e2n(EF)D(EF, τ)L(EF, τ) (126)

Since the quantum interferences effect have not the possibility to operate at
smaller length scale than L(EF, τ) then this quantity can be computed with
the RTA according to (107).

We still assume that ∆XNB(EF, t) is nearly constant equal to ∆XNB except
at the smallest time (see below the ab-inito results on an approximant of
α-AlMnSi).

Thus the typical propagation length L(EF, τ) on a time scale τ , i.e. the mean-
free path, is

L2(EF, τ) = ∆X2
NB + 2V 2τ 2 (127)

Let us introduce g0, which is characteristic of the perfect crystal and is defined
by

g0 = e2n(EF)∆X2
NBV (128)

Let us introduce an adimensional value τ̃ of the scattering time τ defined by

τ̃ =
V τ

∆XNB
=

τ√
2τ ∗ (129)

Let us define also the function f(x):

f(x) =
(

1

2x
+ x

)

√

(1 + 2x2) (130)

Then one has
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Fig. 12. Metal-Insulator phase diagram as a function of the two parameters g0/gc

and 1/τ̃ =
√

2τ
τ∗ . The insert represents the limit of a normal metal i.e. for fixed τ

and V the limit of a small ∆XNB. After (128) and (129) this limit is in the region
of the phase diagram at small g0/gc and small 1/τ̃ .

g = g0f(τ̃) (131)

After the scaling theory a three dimensional system is insulating (metallic,
respectively) if g < gc (resp. g > gc) where gc is the value of the universal
critical conductance in the scaling theory. Using g = g0f(τ̃) it is equivalent
to say that the system is insulator if g0/gc < 1/f(τ̃) and metallic if g0/gc >
1/f(τ̃). This is illustrated in figure 12. Note that g0/gc is characteristic of
the perfect crystal whereas 1/τ̃ measures the scattering rate 1/τ in units of
V/∆XNB.

A first remarkable property of this phase diagram is that if g0 > Rgc with
R = (2/3)3/2 ≃ 0.54 then the system is always metallic whatever the value
of the scattering rate (phase (a) in figure 13). This is not the case for normal
metals that always become insulating at sufficiently small scattering time τ
(i.e. at sufficiently large disorder).

If g0 < Rgc the system is metallic at large and small scattering rates and
insulator in an intermediate zone (phase (b) in figure 13). This means that
if the system is in the large 1/τ̃ metallic region it will become insulating by
decreasing 1/τ̃ that is by decreasing disorder! This is just the opposite of the
standard conditions for the occurrence of the Anderson localization transition.
The other insulator-metal transition is normal in the sense that the metallic
state is obtained by decreasing disorder.

Note that the case of a normal metal corresponds to the limit ∆XNB → 0. In
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Metal-Insulator transition that occurs at the highest value of 1/τ̃ is unconventional
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that case one uses the asymptotic form of the function f(τ̃) for large τ̃ namely
f(τ̃) ≃

√
2τ̃ 2. One then recovers the standard criterion for free-like electrons.

3.4 Anomalous quantum diffusion and conductivity of quasiperiodic systems

Conductivity within the RTA

A generalized Drude formula (82,83) for the low frequency conductivity is
derived in part 2.5. Yet it is interesting to derive it from simple physical argu-
ments. One notes first that at zero frequency the dependence on the scattering
time is easy to establish. Indeed the diffusivity is

D(EF, τ) =
L2(EF, τ)

2τ
(132)

where L2(EF, τ) is the mean free path i.e. a typical distance of propagation in
the perfect structure during the scattering time τ . Assuming that in the perfect
quasiperiodic structure the spreading of a wavepacket is ∆X2(t) ≃ At2β one
gets
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L2(EF, τ) ≃ Aτ 2β (133)

and

D(τ) ≃ L2(EF, τ)

2τ
≃ A

2
τ 2β−1 (134)

One notes also that the conductivity depends on scattering time and frequency
only through the combination τ/(1 − iωτ). This stems directly from the RTA
formula (105) which is expressed as a Fourier-Laplace integral with ( 1

τ
− iω) =

(1 − iωτ)/τ . Thus the frequency dependent diffusivity is

D(ω, τ) ≃ A

2
Re

(

τ

1 − iωτ

)2β−1

(135)

Except for a numerical factor Γ(2β + 1) this formula is equivalent to the
Generalized Drude formula (82), (83) which we recall here:

Re σ(EF, ω) = Re σ̃(EF, ω) (136)

with

σ̃(EF, ω) =
e2n(EF)

2
AΓ(2β + 1)

(

τ

1 − iωτ

)2β−1

(137)
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The behavior of the conductivity depends on the value of β compared to
0.5. The frequency dependence is represented in figure 14. If β > 0.5 the
behavior is similar to that of a normal metal. The dc-conductivity decreases
when disorder increases and the low frequency conductivity presents a peak at
low frequency, somewhat similar to the Drude peak. If β < 0.5 the behavior
is not that of a metal. In the absence of disorder the system is insulating, and
the dc-conductivity increases when disorder increases [24]. The real part of
the conductivity increases when frequency increases. Instead of a Drude peak
there is a dip.

One notes also that even in the absence of scattering i.e. for τ → ∞ the
real part of the conductivity is non zero in the limit of small frequency. This
means that there is absorption of electromagnetic energy by the system. This
is not the case in a normal metallic crystal. Here the absorption of energy can
be understood by considering approximants with large unit cell. In perfect
approximants the absorption of energy is made through interband transitions.
For a given frequency the absorption of energy by interband transition can
occur with sufficiently large unit cell because the bands become very narrow
and very close in energy allowing for interband transitions.

Backscattering

For β < 0.5 the behavior of conductivity with frequency and disorder is not
that of a metal. This can be attributed to the phenomenon of backscatter-
ing. Indeed after the relation (98) between quantum diffusion and velocity
correlation one gets

C0(E, t) =
d2∆X2

0 (E, t)

dt2
≃ A2β(2β − 1)t2β−2 (138)

if the quantum diffusion law is ∆X2
0 (E, t) ≃ At2β in the perfect quasiperiodic

system. From (138) it appears that the velocity correlation function is neg-
ative at large time if β < 0.5. The response j(t) is then also negative. The
phenomenon of backscattering then implies that the conductivity increases
with disorder or with frequency, as discussed for weak-localization regime or
for the Thouless regime (see figure 15).

Metal-Insulator transition

Let us discuss now the role of quantum interferences according to the scaling
theory of localization. As explained in part 3.1 the central quantity is the
conductance of a cube with a size equal to the elastic mean free path L(EF, τ).

g ≃ e2n(EF)D(EF, τ)L(EF, τ) (139)
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Since the quantum interferences effect have not the possibility to operate at
smaller length scale than L(EF, τ) then this quantity can be computed with
the RTA.

We assume that ∆X2
0 (EF, t) is nearly equal to the asymptotic form At2β then

the typical propagation length L(EF, τ) on a time scale τ is of the order of:

L2(EF, τ) ≃ Aτ 2β (140)

and the diffusivity is after (105) of the order of:

D(EF, τ) ≃ A

2
τ 2β−1 (141)

From this one deduces that the conductance of a cube of size L(EF, τ) is given
approximately by

g ≃ e2 n(EF)

2
A3/2τ 3β−1 (142)

From this expression one concludes that if β < 1/3 the conductance tends
to zero at large τ . This means that the system becomes insulating when the
disorder decreases. This is what happens in the case of crystals if the Non
Boltzmann contribution to transport dominates (see part 3.3).

Yet one must note that due to the Guarneri inequality [6] the spectrum be-
comes singular continuous for a three dimensional system with β < 1/3. In
that case the density of states cannot be considered as a constant in the per-
fect system. Thus we have to assume that the density of states is sufficiently
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smooth when averaged on the energy scale given by the inverse scattering time
1/τ .

4 Evidence of anomalous quantum diffusion in quasicrystals and

approximants

In this part we present briefly the experimental transport properties of phases
such as AlMnSi, AlPdMn and AlCuFe or AlPdRe. These experimental trans-
port properties indicate a conduction mode which is neither metallic nor semi-
conducting. For the α-AlMnSi phase, recent ab-initio computations are pre-
sented, which confirm the existence of an anomalous diffusion and allow for a
semi-quantitative ab-initio computation of conductivity. Concerning AlCuFe
and related quasiperiodic phases, which cannot be addressed by band struc-
ture calculations, we present a phenomenological model. This model based on
anomalous quantum diffusion provides a coherent interpretation of the strange
electronic transport of these systems.

4.1 Experimental transport properties of icosahedral and related approximant
phases

Quasicrystals of high structural quality reveal unusual transport properties
[21,22,23,25] (figure 16). For instance, one of the main features is the low
conductivity σ4K = 100 − 200 Ωcm−1 for icosahedral AlPdMn and AlCuFe
and σ4K < 1 Ωcm−1 for AlPdRe [2,3,4,26,27,28,29], although the DOS still
has a metallic character. This means that the high resistivity is due mainly to
a small diffusivity of electrons.

Experimental measurements show that approximants phases like α-AlMnSi [23],
1/1 AlCuFeSi [30], R-AlCuFe [23], 1/1 AlReSi [31,32] etc., have transport
properties similar to those of quasicrystals AlPdMn and AlCuFe. This sug-
gests that the local atomic order on the length scale of the unit cell, i.e.
10−30 Å, determines their transport properties. As atomic medium-range or-
der of quasicrystals and approximants are similar, it should also be important
in the understanding of transport properties of quasicrystals. This remark is
confirmed by the fact that AlTM crystals with a small unit cell (typically
less than 50 atoms in a unit cell) does not exhibit such particular transport
properties.

The resistivity, ρ = 1/σ, of crystals with a small unit cell increases as temper-
ature T increases and generally follows the Mathiessen rule:

ρ(T ) = ρ0 + ∆ρ(T ), (143)
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By contrast, the resistivity of some quasicrystals and approximants (AlPdMn,
AlCuFe) decreases when temperature increases , and their conductivity follows
approximatively an “inverse Mathiessen rule” [33,23]:

σ(T ) = σ0 + ∆σ(T ). (144)

Besides, after annealing sample, with a consequent reduction of the structural
defects, the resistivity of quasicrystals and approximants increases. The re-
lation between the particular transport properties of these phases and their
structure is still debated. For AlPdMn quasicrystals, J.J. Préjean et al. [34]
found that local defects might be related with the occurrence of Mn atoms with
localized magnetic moment. Thus, magnetic properties, transport properties
and structural quality are intimately linked for those complex phases.

Another remarkable experimental result is the linear energy dependence of the
optical conductivity of AlCuFe and the absence of Drude peak [35,36].

The icosahedral AlPdRe is the most resistive known quasicrystalline material
[27,28]. This material displays a strong decrease of the conductivity when the
temperature is reduced and the conductivity value can fall below 1 (Ωcm)−1

at 4K. Although the behavior depends strongly on the composition and the
preparation of the sample, many authors [2,3,4,26,27,28,29] have reported that
AlPdRe quasicrystal are very close to the metal-insulator transition. Three
successive regimes are revealed [28] as the temperature is increased to room
temperature: a low temperature variable range hopping-like behavior, followed
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by a Thouless regime and a high temperature critical regime.

Experimentally a low density of states (DOS) at the Fermi energy EF is usually
measured in quasicrystals and their crystalline approximants. For instance, a
density of states at EF reduced by ∼ 1/3 from its free electrons value is
measured in i-AlCuLi and R-AlLiCu approximant [22,37,38,39]. The presence
of the pseudogap in these phases is confirmed by photo-emission measure-
ments [40] and NMR experiments [41].

For icosahedral phases containing transition metal (TM) elements, specific
heat measurement indicate a DOS at EF of ∼ 1/3 of the free electron value
for i-AlCuFe and ∼ 1/10 for i-AlCuRu [42] and i-AlPdRe [43]. From photo-
emission spectroscopy the pseudogap in the DOS is confirmed for many icosa-
hedral quasicrystals in the systems: AlMn (metastable) [44], AlMnSi [44,45],
AlCuFe [46,47,48,49,50,51], AlCuFeCr [49], AlPdMn [52,53,54,55], AlCuRu [56],
AlPdRe [54]. The pseudogap has been also measured in many approximants of
quasicrystals. For instance R-AlCuFe [41,23], 1/1 AlCuFeSi [30] α-AlMnSi [23,45],
1/1 AlCuRuSi [57,58], 1/1 AlReSi [32] have a DOS at EF reduced by a similar
factor as in i-AlCuTM and i-AlPdMn. A pseudogap near EF has been also
confirmed by ab-initio calculations of the electronic structure in many icosa-
hedral approximants (figure 17, see below and see also the chapter by Ishii
and Fujiwara in this book).

It has also been shown experimentally that transition metal elements have a
important role on the unusual transport properties of quasicrystals and related
phases [59,60,61,62,63,64].

4.2 Ab-initio electronic structure and quantum diffusion in perfect approxi-
mants

Density of states

Electronic structure determinations have been performed in the frame-work of
density functional formalism in the local density approximation (LDA) by us-
ing the self-consistent Tight-Binding (TB) Linear Muffin Tin Orbital (LMTO)
method in the Atomic Sphere Approximation (ASA) [65].

The LMTO DOS of an α-AlMn idealized approximant (Elser-Henley model
[66,67]) has been first calculated by T. Fujiwara [69,70]. This original work
shows the presence of a Hume-Rothery pseudo-gap near the Fermi energy,
EF, in agreement with experimental results [22,23] (see also figure 17). The
role of the transition metal (TM) element in the pseudo-gap formation has
been shown from ab-initio calculations [74] and experiments [63]. Indeed the
formation of the pseudo-gap results from a strong sp–d coupling associated
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Fig. 17. LMTO total DOS of Al6Mn [63] and α-Al69.6Si13.0Mn17.4.

to an ordered sub-lattice of TM atoms. Just as for Hume-Rothery phases a
description of the band energy can be made in terms of pair interactions.
It has been shown that a medium-range Mn–Mn interaction mediated by
the sp(Al)–d(Mn) hybridization plays a determinant role in the occurrence
of the pseudo-gap [68,69,70,71,72,73,74,75,76,77]. It is thus essential to take
into account the chemical nature of the elements to analyze the electronic
properties of approximants. The electronic structures of simpler crystals such
as orthorhombic Al6Mn, cubic Al12Mn, present [74] also a pseudo-gap near
EF which is less pronounced than in complex approximants phases. E.S. Zijl-
stra and S.K. Bose [80] show that Si atoms are in substitution with some Al
atoms in the α-phase. The main effect of Si is to shift EF in the pseudo-gap
in agreement with the Hume-Rothery mechanism that minimizes the band
energy.

Role of clusters

As for the local atomic order, one of the characteristics of the quasicrystals
and approximants, is the occurrence of atomic clusters on a scale of 10–30
Å [81]. Nevertheless the clusters are not well defined because some of them
overlap, and in addition there are a lot of glue atoms. The role of clusters
has been much debated in particular by C. Janot [84] and G. Trambly de
Laissardière [85]. C. Janot considers as a reference clusters that are isolated
in vacuum but it is more realistic to consider a model of clusters that are not
isolated but are embedded in metallic medium. The model [85,86] is based on a
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standard description of intermetallic alloys. Considering the cluster embedded
in a metallic medium, the variation ∆n(E) of the DOS due to the cluster is
calculated. For electrons, which have energy in the vicinity of the Fermi level,
transition atoms (such as Mn and Fe) are strong scatters whereas Al atoms
are weak scatters. Then, following a standard approximation, the potential of
Al atoms was neglected in reference [85].

In the figure 18, ∆n(E) due to different clusters are shown. The Mn icosa-
hedron is the actual Mn icosahedron of the α-AlMnSi approximant. As an
example of a larger cluster, we consider one icosahedron of Mn icosahedra,
which appeared in the structural model proposed by C. Janot [84].

∆n(E) of clusters exhibits strong deviations from the Virtual Bound States
(1 Mn atom) [87,88]. Indeed several peaks and shoulders appear. The width
of the most narrow peaks (50− 100meV) are comparable to the fine peaks of
the calculated DOS in the approximants. Each peak indicates a resonance due
to the scattering by the cluster. These peaks correspond to states “localized”
by the icosahedron or the icosahedron of icosahedra. They are not eigenstate,
they have finite lifetime of the order of ~/δE, where δE is the width of the
peak. Therefore, the stronger the effect of the localization by cluster is, the
narrower is the peak. A large lifetime is the proof of a localization, but in
the real space these states have a quite large extension on length scale of the
cluster or the cluster of clusters.
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The physical origin of these states can be understood as follows. Let us con-
sider incident electrons, with energy E closed to EF, scattered by the cluster.
In AlMn alloys EF ≃ Ed, where Ed is the energy of the d-orbital. In this
energy range, the potential of the Mn atom is strong and the Mn atoms can
roughly be considered as hard spheres with radius of the order of the d-orbital
size (∼ 0.5 Å). By an effect similar to that of a Faraday cage, electrons can
by confined by the cluster provided that their wavelength λ satisfies λ & l,
where l is the distance between two hard spheres. In the case of α-AlMnSi
approximant, λ ≃ 3.6 Å (if we assume a free electron band and EF = 10.33
eV) and the distance l is about 3.8 Å. Consequently, we expect to observe such
a confinement. This effect is a multiple scattering effect, and it is not due to
an overlap between d-orbitals because Mn atoms are not first neighbor. We
have also shown that these resonances are very sensitive to the geometry of
the cluster [86]. For instance, they disappear quickly when the radius of the
Mn icosahedron increases.

Quantum diffusion in perfect crystals

In the following we present calculation of the quantum diffusion in perfect
crystalline systems. Some works have already been done from ab-initio cal-
culation and give indication of none ballistic diffusion [17,89,90]. We consider
the α-AlMnSi approximant and compare it with simpler crystals orthorhom-
bic Al6Mn, and cubic Al12Mn [91,92,93]. For the α-AlMnSi phase, we use the
experimental atomic structure [94] and the Si positions proposed by Ref. [80]
with composition: α-Al69.6Si13.0Mn17.4. In figure 19, the total DOS n of the
α-AlMnSi phase is presented versus the energy. The total density of states is
characterized [69] by a pseudogap near the Fermi energy EF. Following the
Hume-Rothery condition, it is expected that the most realistic value of EF

in the actual α-phase corresponds to the minimum of the pseudo-gap, i.e.
EF − EF(LMTO) = −0.163 eV for our calculation.

We compute the velocity correlation function C(E, t) for crystals (complex
approximants and simple crystals). In equations (12), (37), the average is

obtained by taking the eigenstates for each ~k vector with and energy En(~k)
such as

E − 1

2
∆E < En(~k) < E +

1

2
∆E. (145)

∆E is the energy resolution of the calculation. The calculated C(E, t) is sen-

sitive to the number Nk of ~k vectors in the first Brillouin zone when Nk is too
small. Therefore Nk is increased until C(E, t) does not depend significantly
on Nk. For Al, Al12Mn and α-Al69.6Si13.0Mn17.4, ∆E is equal to 0.272, 0.272,
and 0.0272 eV, respectively, and Nk is equal to 1203, 403 and 323, respectively.
C(EF, t) for the cubic approximant α-AlMnSi is shown in figure 20.
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After (12) and (37), C(EF, t) is the sum of a constant Boltzmann term CB(E, t)
and a non Boltzmann term containing oscillating terms that average to zero
on long time scale:

C(E, t) = CB(E, t) + CNB(E, t) (146)

CB(E, t) = 2
〈

V 2
x

〉

E
(147)

lim
τ→∞

∞
∫

0

CNB(E, t) e−t/τ dt = 0 (148)

where V 2
x is the square of Boltzmann velocity (intra-band velocity) along the X

direction at the Fermi energy: vF = 9.4 107, 3.6 107, and 2.7 106 cm.s−1, for Al,
Al12Mn and α-Al69.6Si13.0Mn17.4, respectively. This last result is very similar
to the original work of T. Fujiwara et al. for the α-Al114Mn24 (with the atomic
structure model of Elser-Henley) [70], for a model of icosahedral approximant
AlCuFe [82]. The strong reduction of vF in the approximant phase with respect
to simple crystal phases shows the importance of a quasiperiodic medium-
range order (up to distances equal to 12–20 Å). This leads to a very small
Boltzmann conductivity for approximants [70,82]. In the case of a decagonal
approximant AlCuCo, a strong anisotropy has been found between vF in the
“pseudo” quasiperiodic directions and vF in the periodic direction [83].

On small time scale t (figure 21), C(EF, t) and CB(EF, t) differ, and there is
a new difference between approximant and simple crystal. In the case of Al
(f.c.c.) phase, C(EF, t) is always positive, and the Boltzmann value is reached
rapidly when t increases. But for some t values the velocity correlation function
C(EF, t) is negative for Al12Mn and α-Al114Mn24. That means that at these
times the phenomenon of backscattering occurs.

The transport properties depend on the average value of C(EF, t) on a time
scale equals to the scattering time τ [6,97] (see for instance equation (29)). A
realistic value of τ has been estimated to about 10−14 s [33]. For the simple crys-
tals Al12Mn, C(EF, t) is mainly positive when t > 2 10−15 s. But for the com-
plex approximant α-Al114Mn24, a lot of t values correspond to C(EF, t) < 0,
even when t is close to τ or larger (figure 20). Therefore, in the case of Al12Mn,
the backscattering (negative value of C(EF, t)) should have a negligible effect
on the transport properties, whereas this effect must be determinant for the
approximant.

As discussed in part 3 the phenomenon of backscattering is associated to
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unusual quantum diffusion. It is illustrated on the plot of the average spreading
of states ∆X2 versus time t (figure 22). After (40), ∆X2 results in two term:

∆X2(E, t) = VB(E)2t2 + ∆X2
NB(E, t), (149)

A Boltzmann term VB(E)2t2 and a non-Boltzmann term. The non-Boltzmann
contribution, ∆X2

NB, which comes from the non-diagonal matrix element (44),
increases very rapidly and saturates to a maximum value of the order of the
square size of the unit cell. In the α-approximant, at small time t, ∆X2

B is
smaller than in Al due to a very small velocity VF of the electron with energy
EF. The calculated VF is equal to 2.7 107 cm.s−1, which is about 30 times
smaller than aluminum values. Thus α-AlMnSi is a non-conventional metal at
these time scale i.e. when the scattering time is τ < τ ∗ where τ ∗ ≃ 3 10−14 s. In
a normal crystal, the ∆X2

NB(t) term is negligible with respect to the Boltzmann
term ∆X2

B(t). On the contrary, in the approximant both terms have the same
magnitude at the realistic scattering times scale, typically a fews 10−14 s.
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4.3 Ab-initio RTA model for the conductivity of approximants

Within a relaxation time approximation the diffusivity D(E, ω) is calculated.
At low frequency one gets

Re σ(E, ω) = e2 n(E)D(E, ω) (150)

D(E, ω) = DB(E, ω) + DNB(E, ω) (151)

DB(E, ω) =
V 2τ

1 + ω2τ 2
(152)

and

DNB(E, ω) =
1

2
Re







(
1

τ
− iω)2

+∞
∫

0

e(iω−1/τ)t ∆X2
NB(E, t) dt







(153)

The DB values for α-Al69.6Si13.0Mn17.4 (figure 19) are similar in magnitude
to those obtained by T. Fujiwara et al. [69] for the idealized approximant α-
Al114Mn24 approximant. DNB is almost independent on E, whereas the DB

values depend strongly on E and is particularly small in the pseudo-gap.

The predicted static conductivity (dc conductivity) of the α-AlMnSi phase,
assuming the value of the Fermi energy given above i.e. EF − EF(LMTO) =
−0.163 eV, is shown figures 23 and 24 versus the inverse scattering time. Two
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sus inverse scattering time.

regimes appear clearly: the metallic regime (Boltzmann regime) at large scat-
tering time, τ > τ ∗, and the insulating like regime (non Boltzmann regime)
at small scattering time, τ < τ ∗. τ ∗ = 3.07 10−14 s is defined as the time
for which the Boltzmann and non-Boltzmann contributions are equal. As ex-
pected from our model, σNB is almost proportional to 1/τ . Therefore, in the
non Boltzmann regime, the conductivity increases with disorder as observed
experimentally. For realistic τ values, τ < τ ∗ [33], σNB dominates and σ in-
creases when 1/τ increases i.e. when defects or temperature increases. σ varies
from 250 (Ω cm)−1 for τ = 3.3 10−14 s, to 2000 (Ω cm)−1 for τ = 10−15 s. This
is consistent with experimental results in α-AlMnSi: σ(4 K) ≃ 200 (Ω cm)−1

and σ(900 K) ≃ 2000 (Ω cm)−1 and with standard estimates for the scatter-
ing time in these systems [23]. Furthermore for τ equal to a few 10−14 s, i.e.
when the Boltzmann term is negligible, the mean free path is given by the
square root of the saturation value of ∆X2

NB and is of the order of 15 Å. This
is in agreement with estimates in the literature [23]. As discussed in part 3
this means also that the systems is far from the Anderson transition despite
its low conductivity. From the ab-initio calculations the estimated value of
the ratio g0/gc for the α-AlMnSi phase is about 2 − 3. This means that this
system is always metallic as discussed in part 3.3. According to figure 13 the
α-AlMnSi phase is a phase of type (a).

Optical conductivity

Within the relaxation time approximation used here, the optical conductivity
σ(ω) is the sum of two terms. The Boltzmann contribution (σB(ω), diagonal
elements of the velocity operator) gives rise to the so-called Drude peak and
the non Boltzmann conductivity gives rise to a nearly frequency independent
contribution. This is a consequence of the fact that ∆X2

NB(E, t) is nearly
constant on the time scale of τ (see part 3).
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T. Fujiwara et al. [70] has also estimated the optical conductivity from the
LMTO band dispersion of a α-Al114Mn24 (figure 25). This calculation repro-
duces the linearity and the peak position observed experimentally. Our ab-
initio calculation (figure 26) confirms that a Drude peak can be identified in
the Boltzmann regime, τ > τ ∗, whereas in the non Boltzmann regime, τ < τ ∗,
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the Drude peak disappears.

The role of transition metal elements (TM= Fe, Mn, Co, Pd, Re) in the elec-
tronic structure of quasicrystals and related phases as been often discussed
in the literature [68,69,70,71,72,73,74,75,76,77,78,79]. Because of their strong
scattering potential with respect to Al(Si) atoms, TM elements play a cru-
cial role in the formation of the Hume-Rothery pseudogap that contributes
to the stability of these phases. This effect is related to an effective medium
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Fig. 27. Ab-initio dc conductivity σ in an hypothetical cubic approximant
α-Al69.6Si13.0Cu17.4 versus inverse scattering time.

range interaction between TM atoms mediated by a strong sp(Al)-d(TM) hy-
bridization [74]. TM elements have also a very important role on the transport
properties. As an example, it is shown in the previous paragraph how a Mn-
cluster can “localize” electrons [85,86].

To evaluate the effect of TM elements on the conductivity calculation in the
RTA, we have considered an hypothetical α-Al69.6Si13.0Cu17.4 constructed by
putting Cu atoms in place of Mn atoms in the actual α-Al69.6Si13.0Mn17.4

structure. Cu atoms have almost the same number of sp electrons as Mn
atoms, but their d DOS is very small at EF. Therefore in α-Al69.6Si13.0Cu17.4,
the effect of sp(Al)-d(TM) hybridization on electronic states with energy near
EF is very small. As a result, the pseudogap disappears in total DOS, and the
dc-conductivity is now ballistic (metallic) as shown on figure 27.

4.4 Phenomenological model for the low frequency conductivity of AlCuFe
quasicrystals

The ab-initio calculations which rest on the Bloch theorem are applicable to
approximants only. Here we present a phenomenological model of the optical
conductivity of AlCuFe QCs, which should be approximately valid also for
the related QC phases AlPdMn or AlFeCr [95,96]. This anomalous diffusion
model allows to derive an analytical expression for the conductivity that fits
experiments very well. In particular the model explains quantitatively the
main experimental facts:

- the increase of conductivity with disorder

- the ”inverse Mathiessen rule” [23,34] that is the fact that the increases of
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conductivity due to different sources of scattering are additive

- the absence of the Drude peak

One needs first a model of conductivity of the perfect system at all frequencies.
For low frequencies, according to the discussion in part 2 we assume:

Re σ0(ω) = σ0

(

|ω|
ω1

)1−2β

for |ω| < ω1 (154)

A small value of β (β ≪ 1 ) is imposed by the nearly linear experimental vari-
ation of Re σ(ω) at ω < 8000 cm−1 (see figure 28). This means that the system
without defects would be insulating. In (154) we take β = 0, ω1 ≃ 8000 cm−1

and σ0 ≃ 6000 (Ωcm)−1. At higher frequencies one uses other analytical ex-
pressions. For 8000 cm−1 < ω < 25 000 cm−1 a polynomial of ω reproduces
the experimental value. For ω > 25 000 cm−1, we take the Drude expression
according to [35]. Let us note that the experimental uncertainty on the high
frequency conductivity [35] has essentially no effect on the results presented
here.

Within the RTA (3,25) one has for the optical conductivity:

Re σ(ω, τ) =

+∞
∫

−∞

Reσ0(ω − ω′)

πτ(ω′2 + 1/τ 2)
dω′ (155)

i.e. the real part Re σ(ω, τ) of the conductivity of the system with defects is
the convolution of Re σ0(ω) of the perfect system and of a Lorentzian of width
1/τ .

As shown in part 2 for ω < ω1 the conductivity is well represented by

Re σ ≃ A

τ



α + log





ω1τ
√

1 + (ωτ)2



+ ωτArctg(ωτ)



 (156)

where A = 2σ0/πω1The analytical expression (94) with α ≃ 0.7, ~ω1 ≃ 1 eV
and σ1 ≃ 6000 (Ωcm)−1 describes well the electronic conductivity in figures
28, 29.

Let us focus on the low frequency conductivity (ω < ω1) which is the real test
of the model (155,154,156). Figure 28 gives a comparison of the experimental
Re σexp(ω) for AlCuFe [35] with the theoretical Reσ(ω, τ). The scattering time
τ is chosen to reproduce the experimental dc-conductivity σdc ≃ 350 (Ωcm)−1.
One finds τ ≃ 3 10−14 s which is rather long, in agreement with the high
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Fig. 28. Real part of the conductivity as a function of the frequency for differ-
ent cases. Line with circles: experimental conductivity of an AlCuFe QC [9]. Thin
line: conductivity of the model without defect Re σ0(ω) = σ1(|ω|/ω1). Thick line:
conductivity of the model with defect, for τ = 310−14s. From [97].

structural quality of these systems. The fit is good except for the peak in the
experimental curve around 200 cm−1. This peak is attributed to the conduc-
tivity of phonons [35] which is not incorporated in the model. The mean-free
path Λ is related to the scattering time τ and to the diffusivity D through
D = Λ2/3τ . One estimates [23,34] D ≥ 0.2 cm2/s and since τ ≃ 3 10−14 s, one
has Λ ≥ 15− 20 Å. From (155) and (156) one gets the dc-conductivity σdc(τ)
as a function of the relaxation time τ (see figure 29). σdc(τ) increases with
1/τ and varies nearly linearly with 1/τ on a large range of values of σdc(τ)
i.e. σdc ≃ A + B/τ . For two independent sources of scattering characterized
by scattering times τ1 and τ2 it is common that the inverse relaxation times
add. Then 1/τ ≃ 1/τ1 + 1/τ2 and σdc ≃ A + B/τ ≃ A + B/τ1 + B/τ2. Thus
each source of disorder gives its contribution to the conductivity in agreement
with the “inverse Mathiessen rule” [23].

The present phenomenological model treats the disorder within the relaxation
time approximation (RTA). Indeed, as shown now, the RTA is applicable to
AlCuFe QCs, at least for T ≤ 200− 300 K. A first indication is that quantum
interferences have been found for T ≤ 200−300 K [23]. They indicate that the
main scattering sources are elastic in this temperature range. Indeed, if the
dominant scattering were inelastic the coherence of the electron wavefunction
would be lost at each scattering event. In that case there would be no inter-
ferences in the diffusive regime. In addition the experimental fits [23,34] show
that the quantum interferences and the electron-electron interaction give only
a correction to the conductivity. Therefore, as the elastic scattering dominates
and as quantum interferences are weak, the RTA is a good approximation for
the AlCuFe QC studied in [35] at least at T ≤ 200 − 300K. In particular
a scenario of hopping between localized critical states, such as proposed by
Janot [84] is not consistent with the present analysis.
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Fig. 29. Thick line: Variation of σdc with x = 1000/ω1τ . τ is given by
τ = (6.6/x) 10−13 s. The straight thin line shows that σdc varies nearly linearly
with 1/τ in the range σdc = 150 −−700 (Ωcm)−1. From [97].
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Fig. 30. Value of j(t) deduced from the experimental conductivity. The negative
value of j(t) at large times indicates backscattering. From [97].

Note that the model is consistent with the observed weak-localization effects.
Indeed in the context of the scaling theory of localization [98] the importance
of quantum interferences depends on the ratio between the dc-conductivity
of the system σdc and the Mott value σMott ≃ 600 (Ωcm)−1/Λ where Λ is the
mean-free path expressed in Angströms. If R = σdc/σMott ≫ 1 the effect of
the quantum interferences on σdc is small. Here R = σdc/σMott ≃ 5 − 10 and
the localization effects are only corrections.

To conclude, the dynamics of electrons in AlCuFe quaiscrystals and related
systems such as AlPdMn [95], AlCrFe [96] quasicrystals is not free electron
like. The minimum of optical conductivity at low frequency and the increase
of dc-conductivity with disorder (in the RTA scheme) are intimately related
to the backscattering (figure 30) or equivalently to an anomalous diffusion
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law with β < 0.5 (Ref. [6]). The low value of β implies a slow anomalous
diffusion L(t) ∝ tβ , which suggests the proximity to a localized state. This
value β ≃ 0 is consistent with the results on approximant phases. Indeed the
Non Boltzmann term in the quantum diffusion ∆X2

NB(t) which saturates very
quickly is analogous to a quantum diffusion with β ≃ 0.

5 Conclusion

In this chapter we concentrated on quantum diffusion and electronic conduc-
tion properties in quasiperiodic and periodic systems. We found that devi-
ations from the standard ballistic propagation exist either in quasiperiodic
or even in periodic systems. This anomalous diffusion mode has deep conse-
quences on the conduction properties at zero and low frequency.

The anomalous diffusion mode is related to a tendency to localization and to a
phenomenon of backscattering which is well known in disordered systems. The
phenomenon of backscattering is the fact that an impulse of electric field cre-
ates a current density J(t) which is opposite to the electric field at large time.
Backscattering is associated with an increase of conductivity with frequency
and disorder.

The physics of phonons in quasicrystals could be affected by the anomalous
diffusion phenomenon. In particular it has been argued that the heat conduc-
tivity could be sensitive to this effect [99].

The concepts developed here open also a new insight in the physics of cor-
related systems. Indeed recent studies of some heavy fermions or polaronic
systems [100,101,102], where charge carriers are also slow, show that their
conduction properties present a deep analogy with those described here. In
particular a transition from a metallic like regime at low temperature where
scattering is weak to an insulating like regime at higher temperature with a
stronger scattering is observed.
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