
HAL Id: hal-00126316
https://hal.science/hal-00126316

Submitted on 24 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hierarchical watersheds within the Combinatorial
Pyramid framework

Luc Brun, Myriam Mokhtari, Fernand Meyer

To cite this version:
Luc Brun, Myriam Mokhtari, Fernand Meyer. Hierarchical watersheds within the Combinatorial
Pyramid framework. Discrete Geometry for Computer Imagery, Apr 2005, Poitiers, France. pp.34-44.
�hal-00126316�

https://hal.science/hal-00126316
https://hal.archives-ouvertes.fr

Hierarchical watersheds within the

Combinatorial Pyramid framework

Luc Brun†, Myriam Mokhtari† and Fernand Meyer‡

†GreyC CNRS UMR 6072
Équipe Image - ENSICAEN

6, Boulevard du Maréchal Juin
14050 CAEN Cedex - France

‡Centre de Morphologie Mathématique (CMM)
35, rue Saint Honoré

77305 Fontainebleau Cedex - France

†{luc.brun,myriam.brun}@greyc.ensicaen.fr,‡Fernand.Meyer@cmm.ensmp.fr

Abstract. Watershed is one of the most popular tool defined by math-
ematical morphology. The algorithms which implement the watershed
transform generally produce an over segmentation which includes the
right image’s boundaries. Based on this last assumption, the segmen-
tation problem turns out to be equivalent to a proper valuation of the
saliency of each contour. Using such a measure, hierarchical watershed
algorithms use the edge’s saliency conjointly with statistical tests to deci-
mate the initial partition. On the other hand, Irregular Pyramids encode
a stack of successively reduced partitions. Combinatorial Pyramids con-
situte the latest model of this family. Within this framework, each par-
tition is encoded by a combinatorial map which encodes all topological
relationships between regions such as multiple boundaries and inclusion
relationships. Moreover, the combinatorial pyramid framework provides
a direct access to the embedding of the image’s boundaries. We present
in this paper a hierarchical watershed algorithm based on combinatorial
pyramids. Our method overcomes the problems connected to the pres-
ence of noise both within the basins and along the watershed contours.

1 Introduction

Segmentation and contour extraction are important tasks in image analysis.
Among the multitude of methods, the watershed transformation [17, 12, 14, 8, 4]
arises as a popular image segmentation algorithm. This method usually based on
the gradient of the image provides a partition of the image into a set of basins
corresponding to local minima of the gradient and a set of watershed pixels.
These pixels may be roughly understood as the borders of the basins. Using
a flooding process [17] watershed pixels are defined as the places where water
coming from several basins merges. Watershed algorithms presents the main
advantage of providing closed curves leading to a proper definition of regions.

A well known drawback of the watershed algorithms is the over segmentation
often produced by these methods (e.g. [17]). Since the contours appear to be
correct, the over segmentation problem turns out to be equivalent to a proper
valuation of the saliency of each contour. This contour’s saliency is generally
used conjointly with an homogeneity criteria in order to derive a hierarchy of
partitions.

This hierarchy of partitions may be encoded using Irregular Pyramids [13,
10, 3]. These data structures encode each partition as a graph whose nodes
and edges respectively correspond to regions and region’s adjacencies. Usual
Irregular Pyramids [13] are made of a stack of simple graphs (i.e. graphs without
multiple edges nor self-loops). Within this framework several contours between
two regions are encoded by a single edge which thus simply encodes the existence
of at least one contour between the two regions. However, within the hierarchical
watershed framework the contours of the partition play a major role in the
decimation process. The explicit encoding of each contour of the partition by one
edge requires thus to encode an irregular pyramid made of non simple graphs.
Such enriched graphs may be created using the Dual graph reduction scheme [10].
Within this framework, the reduction operation is performed in two steps: First,
the contraction of a set of edges identifies a set of vertices. This operation may
create redundant edges such as empty self-loops or double edges [10]. These
redundant edges are characterized in the dual of the graph and removed by a set
of edge removals. Applied to the watershed transform such a reduction scheme
provides a graph where each vertex encodes a basin and each edge corresponds
to one contour between two basins.

Combinatorial Pyramids inherit all the useful properties from the dual graph
pyramids with several additional advantages: Firstly, within the combinatorial
pyramid framework the dual graph may be implicitly encoded and thus updated.
This property allows to decrease both the memory and computational time re-
quirements. Secondly, combinatorial pyramids preserve the local orientation of
edges around vertices and faces. This last property is used to retrieve efficiently
the set of points encoding a contour.

The aim of this paper is to present one implementation of a hierarchical
watershed algorithm within the combinatorial pyramid framework.The paper is
thus organized as follows: We first present the main features of combinatorial
pyramids (Section 2). Then, the specific advantages of this model within this
framework are illustrated by a new hierarchical watershed construction scheme
using specific features of combinatorial pyramids (Section 3).

2 Combinatorial Pyramids

A combinatorial pyramid corresponds to a stack of successively reduced com-
binatorial maps where the initial combinatorial map G0 usually encodes a 4
connected planar sampling grid. A combinatorial map G = (D, σ, α) may be un-
derstood as an encoding of a planar graph. The construction of a combinatorial
map from a plane graph is as follows: first edges are split into a set of half-edges

called darts, the set of darts being denoted by D. Two darts sharing the same
edge are connected by the involution α which maps each of the two darts to the
other one. The vertices of the graph are encoded by the permutation σ whose
cycles correspond to the sequence of darts encountered when turning counter-
clockwise around each vertex. Each vertex of the graph is thus encoded by one
cycle of the permutation σ. In the same way each edge of the graph is encoded
by one cycle of α. In what follows, the cycles of σ and α containing a dart d will
be respectively denoted by α∗(d) and σ∗(d). An introduction to combinatorial
maps and Combinatorial Pyramids may be found in [2, 3].

As in the dual graph pyramid scheme [10] (Section 1) the two operations used
to reduce combinatorial maps within the pyramid are the contraction and the
removal. In order to preserve the number of connected components of the initial
combinatorial map, we forbid the removal of bridges and the contraction of self-
loops. Such contractions may be avoided by using a contraction kernel defined as
a forest of the initial combinatorial map. As mentioned in the introduction of this
paper the contraction operation may create redundant edges such as empty self
loops and double edges. A contraction kernel is thus followed by a removal kernel
removing the eventual empty-self loops and double edges. A reduction step in
the pyramid involves thus the application of 2 kernels : One contraction kernel
and one removal kernel. Note that, while a contraction kernel is application
dependent, the removal kernel is automatically defined from one combinatorial
map. Indeed, within our reduction scheme a contraction kernel specifies a set of
regions to be merged while the removal kernel is restrained to the removal of
redundant edges.

Given an initial combinatorial map G0 encoding the 4 connected planar
sampling grid and a sequence of contraction or removal kernels K1, . . . ,Kn

each reduced combinatorial map Gi = (Di, σi, αi) may be build from Gi−1 =
(Di−1, σi−1, αi−1) and the kernel Ki [3]. Note that we have Di = Di−1 −Ki.
The set of darts of any reduced combinatorial map is thus included in the ini-
tial set of darts D0. The resulting pyramid is usually stored explicitly as a
sequence of successively reduced combinatorial maps (G1, . . . , Gn). However, we
have shown [2, 3] that within the combinatorial pyramid framework all the ker-
nels and all the reduced combinatorial maps may be encoded efficiently by stor-
ing for each initial dart in G0, the maximal level where this dart survives in the
pyramid and the operation applied at each level. This implicit encoding may be
performed by :

1. one function state from {1, . . . , n} to the 2 states {Contracted, Removed}
which specifies the type of each kernel.

2. one function level defined for all darts in D0 such that level(d) is equal to
the maximal level where d survives:

∀d ∈ D0 level(d) = Max{i ∈ {1, . . . , n+ 1} |d ∈ Di−1}

a dart d surviving up to the top level has thus a level equal to n+ 1.

Given the function level, each kernel Ki may be efficiently retrieved as the set of
darts whose level equals to i. Moreover, any reduced combinatorial map may be

retrieved from this implicit encoding in a time proportional to the total length
of the boundaries encoded by this combinatorial map [2, 3].

The explicit encoding of the pyramid (G0, . . . , Gn) may thus be replaced
by (G0, level, sate). Moreover, if the initial combinatorial map G0 encodes a
planar sampling grid, the permutations σ0 and α0 may be implicitly encoded
using any convention on the numbering of darts. The pyramid may thus be
simply encoded by (D0, level, state). On the other hand, the current top level
combinatorial map is frequently accessed during the construction of the pyramid.
We thus decided to store additionally a combinatorial map encoding the top
level of the pyramid. This combinatorial is updated at each level during the
construction of the pyramid. Our encoding of the pyramid is thus defined by
(Gn,D0, level, state) where Gn denotes the current top level combinatorial map.
This choice allows an efficient construction scheme of the pyramid while avoiding
the explicit encoding of all the intermediate combinatorial maps.

Moreover, we have shown [2] that using the two functions level and state

we can associate to each edge α∗
i (d) an ordered sequence of 1-cells [18] (also

denoted cracks or linels) which encodes the embedding of the edge, i.e. the
boundary between the two regions associated to the vertices σ∗

i (d) and σ∗
i (αi(d)).

The sequence of linels of one contour is retrieved in a time proportional to its
length [2].

The construction of a combinatorial pyramid is performed by successive sim-
plifications of the top level combinatorial map. From this point of view, combi-
natorial pyramids may be compared to other topological data structures [6, 9].
However, combinatorial pyramids differ from these alternative encodings on two
points : Firstly, the implicit encoding provided by the function level allows us
to encode the whole sequence of reduced combinatorial maps rather than the
top level one. Secondly, alternative data structures [6, 9] encode the geometry
of the partition thanks to an additional geometrical model cooperating with
the topological one in order to provide a full description of the partition. Using
combinatorial pyramids, the geometrical embedding of the partition is provided
without additional memory requirements by the function level.

3 Hierarchical watersheds with Combinatorial Pyramids

Within the combinatorial pyramid framework, the initial combinatorial map is
usually associated to the 4 connected sampling grid. Given a m × n grey level
image, we build an initial combinatorial map G0 encoding the m × n sampling
grid and we store within each vertex the grey value (or altitude) of the associated
pixel. This vertex’s altitude is the basic feature used to compute the watershed
transform on G0.

3.1 Building the initial watershed partition

Several methods [17, 5, 8] have been proposed to build the basins of a graph. The
topological watershed method designed by Bertrand and Couprie [5] produces

a grey level image W whose minima encode the basins. The construction of
a contraction kernel from such an image may be performed by computing a
spanning tree [10] which covers each basin. The union of all trees forms the
contraction kernel. Using Meyer’s [12] or Vincent [17] algorithms the basins are
built iteratively using a flooding process. The main property satisfied by these
algorithms are :

1. the assignment of a vertex to a label (watershed or basin) is performed only
once,

2. each vertex marked as belonging to a basin is adjacent to at least one vertex
already aggregated to this basin.

Starting from an empty kernel, condition 2 insures that for each vertex ad-
jacent to a basin we can find one edge connecting it to this basin. We can thus
add this edge to the contraction kernel. Moreover, the contraction kernel may
contain a loop only if one vertex is aggregated twice to a same basin which is
refused by condition 1. The contraction kernel can thus, in this case, be built in
parallel with the watershed transform.

Using any of the above methods we can thus build a contraction kernel K1

whose trees span each basin of G0. The contraction of K1 contracts each of these
trees into a single vertex. Since each vertex of G0 contains the altitude of the
associated pixel, we can compute during the contraction process the minimal
altitude of each tree and store the resulting value within the contracted vertex.
Each vertex of G1 associated to a basin stores thus the minimal altitude of this
basin.

The kernel K1 is followed by a removal kernel K2 in order to remove redun-
dant edges(Section 2). Let us denote by G2 the combinatorial map obtained from
the successive applications of K1 and K2. Since the kernel K2 does not imply
any merge of vertices, the vertice’s values computed during the contraction step
remain unchanged. Moreover, since the trees of K1 span only the basin of G0

the vertices of G2 correspond either to basins or to watershed pixels.

3.2 Building a partition into basins

Hierarchical watershed algorithms are generally based on a partition of the im-
age into a set of basins. However, watershed algorithms produce a partition of
the image into a set of basins and a set of watershed pixels each of these pixels
being encoded by one vertex in G2. The explicit encoding of watershed vertices
induces two types of problems within this framework: First of all if two basins
are separated by a thin watershed line the adjacency between the two basins is
not encoded by a single edge but by a sequence of two edges encoding for each
watershed vertex its adjacency to the two basins. Secondly, watershed vertices
may form thick connected components [17, 14] where many watershed vertices
are incident to 0 or 1 basin. In such a case, the adjacency between the basins
surrounding such a component and thus the existence and location of the con-
tours between the basins is relative to a labeling of the watershed vertices to the
different basins.

Two recent algorithms [11, 9] have been proposed to encode an image par-
tition defined by pixel’s boundaries. These two approaches encode a sequence
of pixels defining a boundary between two basins by a single edge. However,
each approach suffers of different drawbacks. The method presented by Mar-
chadier [11] must pre-process the boundary pixels in order to avoid some con-
figurations. This last step modifies the partition without taking into account
the image’s content. The method present by Köethe [9] may violate some basic
topological properties by contracting basins into single points. Finally, using ei-
ther of these methods boundary pixels do not belong to any basin. Some well
known properties of an image partition into 4 or 8 connected regions may thus
be violated. For example, the method presented by Köethe encodes 4 connected
basins but may produce partitions with more the 4 basins incident to a same
point.

To overcome these drawbacks we designed [4] an algorithm which aggregates
the watershed vertices to the basins using a flooding process. This algorithm
ensures that each watershed vertex aggregated to a basin may be connected
to the minimum of this basin by an always descending path. Moreover, this
algorithm satisfies the same conditions than Meyer’s and Vincent’s algorithms
(conditions 1 and 2 Section 3.1). We can thus build a contraction kernel K3

during the aggregation process. As previously the contraction kernel is followed
by a removal kernel K4. The final combinatorial map is denoted by G4.

The above method is similar to the minima extension presented by Bertrand [1].
However, both methods differ on the following point: Roughly speaking, the
greedy algorithm presented by Bertrand preserves the minimal altitude one as
to climb to connect two adjacent basins. This method allows to attach a global
pass value value to each couple of adjacent basins. Our method [4] preserves the
minimal altitude one has to climb to connect two adjacent basins while passing
by one watershed pixel. The aim of this method is to attach one pass value to
each elementary element of the border between two adjacent basins (see below).

3.3 From watershed values to linel’s pass values

The combinatorial map G4 encodes a partition of the image into a set of basins.
Each edge between two vertices of G4 encodes a contour between two basins and
may be associated to a sequence of linels encoding the embedding of the asso-
ciated boundary (Section 2). Each linel along the contour separates two pixels
belonging to each basin. Moreover, since each basin is initially surrounded by
watershed pixels, at least one of these two pixels was initially marked as a wa-
tershed. Let us consider a linel l between two basins B1 and B2 of G4 separating
two pixels P and Q belonging respectively to B1 and B2. If P and Q were both
initially marked as watershed pixels, there is by construction [4](Section 3.2) two
descending paths from P to the minimum of B1 and from Q to the minimum
of B2. If one of the two pixels, say P , was not initially marked as a watershed
we can induce from the construction scheme of the basins [14] that P is con-
nected to the minimum of B1 by an always descending path. The maximum of
the altitudes h(P) and h(Q) represents thus the minimal altitude one has to

reach to connect the minima of B1 and B2 while passing by P and Q. This value
is associated to each linel and called a linel’s pass value. These valuated linels
correspond intuitively to the values of the watershed pixels along the contours.
However the aggregation of the watershed vertices to the basins and the transfer
of the watershed pixels altitudes to the linel’s pass values allows us to overcome
the two drawbacks mentioned in Section 3.2.

3.4 From linel’s pass values to edge’s pass values

Given an edge α∗
4
(d) of G4 let us consider the function Pv(t) which encodes the

sequence of linel’s pass values encountered along the contour associated to α∗
4
(d).

The symbol t may be understood as the rank of the linel along the contour while
Pv(t) represents the pass value of the associated linel. The value usually deter-
mined from the function Pv within the hierarchical watershed framework [14] is
its minimum. Such a value may be associated to each edge of the combinatorial
map G4. However, the minimal linel’s pass value along a contour is sensitive to
the noise which may be present along it. Moreover, this choice does not take into
account the distribution of Pv and thus the saliency of the minimum.

In order to overcome this last drawbacks we propose to measure the saliency
of the different minima of the function Pv using the following decomposition: If
the function Pv contains less then a given number (fixed to 5 in our experiments)
of samples we consider that no reliable values on the saliency of the minima may
be defined and we fix the edge’s pass value to the minimum of the function Pv.
Otherwise, we use the volumic filters defined by Vachier [16] to compute the
saliency of the different minima as follows:

Given an edge α∗
i (d) of the current top level combinatorial map Gi, we con-

sider the function Pv associated to α∗
i (d) as a 1D relief which is progressively

flooded. When two 1D basins b1 and b2 merge along a maxima m the volume of
b1 and b2 are computed by:

∀j ∈ {1, 2} vol(bj) =
∑

t∈bj

m− Pv(t) (1)

The two basins b1 and b2 are then filled up to the altitude m and the process
continues on the updated signal. This process stops when the signal has only one
minimum left. Note that our method is based on a family of leveling functions.
Indeed, the signal used at step i of our algorithm is defined as Pvi(t) = ψi(Pv(t))
where ψi is the ith iteration of the leveling operator [16] ψ which merges the
basins separated by the lowest maxima and fills them up to the altitude of this
maxima.

Given the set {b1, . . . , bn} of 1D basins merged by our method we define the
global pass value of the contour as the minimal altitude of the basins with the
greatest volume:

pass value(α∗
i (d)) = Min

j∈{1,...,n}
{Depth(bj) |V ol(bj) = max

k∈{1,...,n}
V ol(bk)} (2)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90

signal 1
signal 2

selected minima

(a) edge’s pass value

a

dyn(a)

2

3

6
1

4 5

(b) edge’s dy-
namic

(c) merg-
ing

Fig. 1. (a) Two different signals with a same edge’s pass value. (b) Computation of
the dynamic of the edge a on a 1D example. (c) Enlargement of a contour.

where Depth(bi) and V ol(bi) denote respectively the minimal altitude of bi and
its volume (equation 1).

Intuitively, this choice corresponds to a measure of the saliency of each min-
imum by the volume of the associated basin and a selection of the minimum of
greatest volume. Note that, in practical applications, the basin of maximal vol-
ume is generally uniquely defined and the Min operator in equation 2 becomes
useless.

Fig. 1(a) shows two signals with a same pass value. The signal 1 which has
only one minimum is valuated by the value of this minimum. On the other
hand, the small gaps at the beginning of signal 2 are not selected since the last
minimum has a higher altitude but a maximal volume.

3.5 From edge’s pass values to edge’s dynamics

The computation of the edge’s pass values allows us to reduce the influence of
noise along the contour by affecting to each contour its more significant min-
imum. However, the contrast between two basins is relative both to the pass
values of their common contours and to the minima of the two basins. In order
to reduce the influence of noise inside the basins which may induce the presence
of many non significant basins, we use the contour’s dynamic introduced by Na-
jman [15]. Intuitively, the dynamic of a contour is defined by a flooding process
which progressively merges all basins. The dynamic of each edge is then defined
as the maximal difference between the edge’s pass value and the depth of the
two basins which merge along the contour. An illustration of the computation
of the edge’s dynamics on a 1D signal is provided in Fig. 1(b). Our algorithm
floods thus progressively the current combinatorial map by merging at each step
the two basins separated by the edge with the lowest pass value. The dynamic of
the edge is then computed and we store within the basin with the higher altitude
a pointer to the remaining basin. For example, in Fig. 1, before the flooding of
edge a, the basins 3 and 4 points respectively towards the basins 2 and 5. After

the merge of edge a, basin 5 points to the basin 2. These pointers allows us to
retrieve for each basin the deeper basin to which it has been merged in order
to compute the edge dynamic. This set of pointers defines a forest within the
set of basins, the root of each tree being retrieved in almost constant time using
union-find operations [7].

Note that the computation of the dynamics is based on the edge’s pass value
(Section 3.4) rather than the minimum of each contour. This difference influence
both the computation of the dynamic at each step and the flooding process which
is based on the edge values. The edge’s dynamics computed by our algorithm
are thus different from the ones computed using the contour’s minima.

3.6 From edge’s dynamic to hierarchical segmentation

Within the hierarchical watershed framework, the edge’s dynamics are usually
computed once and combined with an other homogeneity criteria to merge pro-
gressively the different basins. This approach suffers from two main drawbacks:
First of all, as mentioned in Section 1 the edge’s dynamics are often used to
reduce the over segmentation of the image produced by watershed algorithms.
Due to the over segmentation, many contours of the partition are initially com-
posed of a small number of linels (e.g. 4 or 5). The reliability of a global value
from a such reduced sample of data is difficult to state (Section 3.4). Secondly,
the edge’s dynamics are not updated according to the updates of the partition
and may thus contain unreliable values all along the reduction process. However,
after each sequence of merge operations, the removal of redundant edges (Sec-
tion 2) either removes a contour or enlarges it by a concatenation with other
contours (Fig. 1(c)). Therefore, the length of a contour in the pyramid is an
increasing function of the level and the problems connected with the presence of
very short contours tends to disappear as we go up in the hierarchy. In order to
overcome the drawbacks connected with the poor reliability of the edge’s dynam-
ics at the first levels of the pyramid our method update the edge’s pass values
and edge’s dynamics after each sequence of contraction and removal operations.
More precisely, our method iterates the following steps:

1. Initialization step: Compute the edge’s pass value and goto step 3,
2. Update the pass value of edges adjacent to a merged region,
3. Compute edge’s dynamics,
4. Build a contraction kernel containing the edges with the lowest dynamic ;

apply the contraction kernel and remove redundant edges. If more than one
region left goto step 2.

Step 2 corresponds to a lazy programming. Indeed, since the computation
of an edge’s pass value requires only features of the associated contour, we can
ensure that an edge not adjacent to a region merged at the previous step keeps
its pass value. Step 3 performs the operations described in Section 3.5. Note
that, after the first iteration some vertices do not encode a single basin but a
set of merged basins. In this case, the minimal altitude of the vertex is defined

(a) original image (b) minimum (c) max. volume

Fig. 2. Two segmentations using different edge’s pass values

as the minimal altitude of the merged basins. Step 4 builds a contraction kernel
from the set of edges with a low pass value. Note that this set of edges may
defines loops in the current combinatorial map. In this case one of the edge of
each loop is not added to the kernel in order to respect the forest requirement of
a contraction kernel(Section 2). However, this case is rare in practical cases and
the contraction kernel generally include all the edges with the lowest dynamic.

Fig. 2(b) and (c) shows two levels of two pyramids built by valuating edges
respectively with the minimal value of the contour and the edge pass value as
defined in Section 3.4. The levels in each pyramid have been selected such as the
white bar on the left of Fig. 2(a) forms only one region at the level above. Much
more meaningful details are preserved in Fig. 2(c) which thus better fit to the
intuitive notion of contour’s saliency. This phenomena is due to the edge’s pass
value which do not take into account minima with a small volume within the
profile of the contours. Note that the operations used to obtain Fig. 2(b) may be
performed without our hierarchical data structure (using e.g. [15]) while Fig. 2(c)
is obtained using both the geometrical and topological features of Combinatorial
Pyramids.

4 Conclusion

We have presented in this paper a new hierarchical watershed method based on
the edge’s dynamic. The different partitions of the hierarchy are encoded within
the combinatorial pyramid framework. The main advantages of combinatorial
pyramids within this framework are the encoding of each contour by one edge
and the efficient retrieval of each contour’s embedding as a sequence of linels.
We used these properties to define a new edge’s pass value which allows us to
overcome the noise which may be present within the contours. The presence of
noise within the basins is corrected using edge’s dynamics based on the edge’s
pass values previously computed. In future studies we are planing to combine the
edge’s dynamic with statistical tests on the content of the regions. More studies
should also be undertaken on the valuation of the minimal value of a contour.

References

[1] G. Bertrand. Some properties of topological greyscale watersheds. In procs. SPIE
Vision Geometry XII, volume 5300, pages 182–191, 2004.

[2] L. Brun. Traitement d’images couleur et pyramides combinatoires. Habilitation à
diriger des recherches, Université de Reims, 2002.

[3] L. Brun and W. Kropatsch. Combinatorial pyramids. In Suvisoft, editor, IEEE
International conference on Image Processing (ICIP), volume II, pages 33–37,
Barcelona, September 2003. IEEE.

[4] L. Brun, P. Vautrot, and F. Meyer. Hierarchical watersheds with inter-pixel
boundaries. In Image Analysis and Recognition: International Conference ICIAR
2004, Part I, pages 840–847, Proto (Portugal), 2004. Springer Verlag Heidelberg
(LNCS).

[5] M. Couprie and G. Bertrand. Topological grayscale watershed transformation. In
SPIE Vision Geometry VI Proceedings, volume 3168, pages 136–146, 1997.

[6] G. Damiand. Définition et étude d’un modèle topologique minimal de
représentation d’images 2d et 3d. PhD thesis, Université des Sciences et Tech-
niques du Languedoc, Décembre 2001.

[7] C. Fiorio and J. Gustedt. Two linear time Union-Find strategies for image pro-
cessing. Theoretical Computer Science, 154(2):165–181, 5 Feb. 1996.

[8] R. Glantz and W. Kropatsch. Plane embedding of dually contracted graphs. In
Discrete Geometry for Computer Imager DGCI’2000, Lecture Notes in Computer
Science. Springer, Berlin Heidelberg, New York, 2000. In Press.

[9] U. Köthe. Deriving topological representations from edge images. In Geome-
try, Morphology, and Computational Imaging, 11th Intl. Workshop on Theoreti-
cal Foundations of Computer Vision, LNCS, Springer Verlag, volume 2616, pages
320–334, 2003.

[10] W. G. Kropatsch and H. Macho. Finding the structure of connected components
using dual irregular pyramids. In Cinquième Colloque DGCI, pages 147–158.
LLAIC1, Université d’Auvergne, ISBN 2-87663-040-0, September 1995.

[11] J. Marchadier, D. Arquès, and S. Michelin. Thinning grayscale well-composed
images. Pattern Recognition Letters, 25:581–590, 2004.

[12] F. Meyer. Topographic distance and watershed lines. Signal Processing, (38):113–
125, 1994.

[13] A. Montanvert, P. Meer, and A. Rosenfeld. Hierarchical image analysis using
irregular tessellations. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 13(4):307–316, APRIL 1991.

[14] L. Najman and M. Couprie. Watershed algorithms and contrast preservation.
In Discrete geometry for computer imagery, volume 2886, pages 62–71. LNCS,
Springer Verlag, 2003.

[15] L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierar-
chical segmentation. IEEETPAMI, 18(2):1163–1173, December 1996.

[16] C. Vachier and F. Meyer. A morphological scale-space approach to image segmen-
tation based on connected operators. In Workshop on Mathematics and Image
applications, Paris, September 2000.

[17] L. Vincent and P. Soille. Watersheds in digital spaces : an efficient algorithm
based on immersion simulations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(6):583–598, 1991.

[18] J. Webster. Cell complexes, oriented matroids and digital geometry. Theoretical
Computer Science, 305(1–3):491–502, Aug. 2003.

