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Abstract: This paper presents a new method to approximate and to synthesize fractional 
systems represented by an explicit transfer function. We first present the distribution of 
relaxation times function method to approximate this type of function and hopefully to make 
circuit designers more aware of these advantages when designing fractal system circuits and 
fractal filters. Computer simulations of the circuit model by B²SPICE were used to 
demonstrate clearly our derivation results. An analog circuit model of the foster network can 
be synthesized. 
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1. INTRODUCTION 
 

Fractional order systems or fractal systems are 
defined in terms of the shape of their spectra which is 
proportional to reciprocal frequency and which is 
generally called 1/fβ spectra (Mandelbrot, et al., 
1967) and (Mandelbrot, et al., 1983). Such spectra 
have been observed in a tremendous variety of 
dissimilar natural phenomena. 

 
Numerous studies have been made about this 

phenomenon ever since it was pointed out by (Van 
Der Ziel, 1950). Many empirical and mathematical 
models have also been introduced to describe these 
processes with 1/fβ type spectra. During the past 
decade, we have seen tremendous growth of study in 
this subject especially toward the applications in 
meteorology, astronomy, geology, physiology and 
many other fields. Recently, fractal analytical 
techniques and methodologies have been used by 
scientists in different fields in order to explain the 
ubiquitous 1/fβ processes which have been 
characterizing a wide range of natural phenomena, 
see (Dutta P., et al., 1981) and (Sun H. et al., 1984). 
These scientists have found that these processes are 
mediated by the fractal nature of the phenomena 
themselves. Hence, these observations suggest a link 
between fractals and system theory. 

The equation that is commonly used to describe some 
phenomenon has been expressed by an inverse power 
law equation as: 

 
ms

KsF =)(                                 (1) 

Where, k  is a positive constant, s = jw, and m is a 
positive real number. 
 
      Hence many of the complex fractal systems 
which have been represented as the inverse power 
law equation can best be represented by the Cole-
Cole function and described in the Laplace transform 
domain by the explicit transfer function (Cole K. S., 
et al., 1941): 

 
as

ksF m +
=)(exp                         (2) 

 
Where, k and  a   is a positive constant, jws = , and 
m is a positive real number. This type of expression 
gives a much suitable mathematical representation to 
the natural phenomena so that its low frequency 
magnitude is finite instead of infinite. This is usually 
the case for the magnitude of natural phenomena at 
very low frequency. 
 

The analysis of the response to elementary input 
of these fractional order systems shows that they 
posses a remarkable performance as compared to the 
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integer order systems, see (Oustaloup A., et al. 2000) 
(Oustaloup A., et al. 1997), (Charef A., et al., 1992), 
(Sun H., et al., 1990) and (Charef A., et al., 2001).  

 
 In this paper we present a new method to 

approximate the transfer function given by equation 
(2) using the distribution of relaxation times function.  

 
The materials collected in this paper are grouped 

into two main parts: 
Part I summarizes the approximation by a rational 
function  of equation (2) which we found to be the 
basic element for representation  of fractional order 
systems. 
Part II deals with the synthesis with the Foster's 
network of the approximated fractional system. 
 
                    

2. APPROXIMATION 
 

Many of real physical systems can be batter 
represented by an explicit fractional transfer function 
given by the following transfer function (Cole K. S., 
et al., 1941): 
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where ℜ∈m . 
 
Because of their mathematical representation in the 
frequency domain are irrational function, direct 
analysis methods and corresponding time domain 
behavior seems difficult to handle. For the purpose of 
identification, analysis, synthesis and simulation of 
such systems, the need arises for a rational function 
approximation. Two cases were presented here: 
 
Case 1:   0 < m <1  
 
To extend Debye model (Debye, et al., 1929) which 
has only one relaxation time, the distribution of 
relaxation times has also been derived. This concept 
was introduced by Fuross and Kirkwood (Fuross, R., 
et al., 1941) derived a formula to obtain the 
distribution of relaxation times function 

)(τG directly from the original transfer function as 
fellow: 
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K. S. Cole and R. H. Cole applied this method to find 
the distribution function )(τG for the model given in 
equation (3): 
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By sampling the distribution function G(τ) given in 

equation (4) for a limited bandwidth at logarithmically 
equidistant points  iτ ,  for i=1, …, 2N-1 
 we can write: 
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where, ( )( )iN
i

−= λττ 0 , for i=1, 2,…, 2N-1,                 
and 1>λ  is the ratio of time constant to the next one 
or the ratio of a pole to the previous one, where the 
poles are: 

 
iis τ/1= ,   for   i=1, 2,… , 2N-1. 

 
Then, the transfer function of equation (3) can be 
approximated by: 
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Using MATLAB Optimization Toolbox, The values 
of the ratio λ  are calculated according to the 
following criterion:  
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 in the frequency band of interest  [ ]66 10,10−∈w  rd/s 
for different values of N and m .  The values of this 
ratio for four different values of m and four different 
values of N are given in table (Tab.1). 
 
Tab.1: The optimal values of the ratioλ , the maximum 
magnitude error ( egmax ) and the maximum phase error 

ephmax  for different values of  m  and  N, with 10 =τ . 

 
            N         
m 

10 20 30 40 

λ  10.434 3.040 2.650 2.711 

egmax  8.851 2.776 0.200 0.026 0.2

ephmax  3.880 4.197 0.890 0.100 
λ  7.126 2.716 2.718 2.719 

egmax  6.520 0.395 0.010 0.003 0.4

ephmax
 4.260 4.031 0.040 0.006 

λ  4.727 2.717 2.721 2.721 

egmax  4.630 0.023 0.010 0.010 0.7

ephmax  9.170 0.340 0.080 0.090 
λ  4.250 3.844 3.844 3.844 

egmax  2.370 1.550 1.550 1.550 0.9

ephmax  5.650 4.200 4.190 4.190 
 
 

As an illustration example, we have chosen a 
fractional order system which is represented by the 
following function: 

        4.01
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The figures (1) and (2) show the Bode plots of the 
original function and that of its rational 
approximation function with N=30 and 718.2=λ . 
The figures show that the two curves are overlapping.  



 
Fig.1. Magnitude plot of  )()( sandFsF N  

 

 
Fig.2. Phase plot of  )()( sandFsF N  

 
      Using direct method time domain simulation, see  
(Oustaloup A., 1995), the step response of the 
original system and that of the approximated one 
were presented in figure (3), the figure shows that the 
two curves are superimposed.  
 

 
Fig.3 Step response of the considered system and its 

approximation  
 
 
Case 2:    1 < m <2 
 
Based in frequency behavior of the considered 
system at low frequency, at 0/1 τ=w and at high 
frequency the approximation of )s(F  can be 
expressed as follows: 
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where  e  is given by the following equation 
 

           ))2/(cos1(2 2 πme −=                            (9) 
 
It can be easily shown that: 
 
for 0/1 τ<<w , 0/1 τ=w  and 0/1 τ>>w  
              )()( jwFjwF a=  
 
Tab.2 shows the optimal values of e  which minimize 
the maximum gain error given as follow:  
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in the frequency band of interest   [ ]66 10,10−∈w  rd/s 
for different values of  m and 10 =τ . 
 

Tab.2. The optimal values of e in terms of m, 10 =τ   
 

m eop )(
max

dBeg  

1.1 1.98 0.1 
1.2 1.89 0.4 
1.3 1.83 0.8 
1.4 1.79 1.3 
1.5 1.75 1.9 
1.6 1.49 2.7 
1.7 1.29 3.5 
1.8 0.92 4.4 
1.9 0.45 5.3 

 

       The function )(sFa can be represented by the 
following equation: 
  
                         )()()( 21 sFsFsFa =                       
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is a second order  ordinary function,  and the 
function: 

( )( ) 1)( 2
02 += −mssF τ                      (11) 

 
is a fractional transfer, which has the same form of 
the inverse of the function in equation (3), where, 
1<m<2. 
 
As an illustrative example, we choose a fractional 
order system which is represented by the following 
function: 

           
4.11
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Figure (4) and figure (5) show the Bode plot of the 
original function and that of its approximation 
with 79.1=e and 30=N ; the figures show that the 
two curves are overlapping with a small difference in 
phase responses due to the approximation error. 
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Fig.4. Magnitude plot of  )()( sandFsF a  

 
Fig. 5 Phase plot of  )()( sandFsF a  

 
 

3. SYNTHESIS 
 

Each element of the equation (7) can be easily 
replaced by a respective driving point impedance of 
the following RC circuit type: 
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Fig. 6 Elementary RC circuit 

 
Where, Ri= G( iτ ) and Ci = )(/ ii G ττ  
for i = 1, 2, …, 2N-1.   
Thus, the Cole-Cole function of equation (2) can be 
synthesized by cascaded RC cells as: 
 

 
 

Fig. 7 Cascade RC cells 
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4. CONCLUSION 

 
The results obtained in this paper validate the link 

between non integer derivation and the distributed 
parameter systems. To approximate the Cole-Cole 
function by a first-order time-varying differential 
equation whose solution is also the inverse Laplace-
Transform of the original fractional system, the 
distribution of relaxation times was used. By doing 
this transformation, the singularity function method 
for the explicit fractional system was used. The 
circuit representation consisted in a cascade of RC 
circuits of the singularity function.   
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