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Abstract  

Variability, in general, has a deteriorating effect on the performance of stochastic inventory 

systems. In particular, previous results indicate that demand variability causes a performance 

degradation in terms of inventory related costs when production capacity is unlimited. In 

order to investigate the effects of demand variability in capacitated production settings, we 

analyse a make-to-stock queue with general demand arrival times operated according to a 

base-stock policy. We show that when demand inter-arrival distributions are ordered in a 

stochastic sense, increased arrival time variability indeed leads to an augmentation of optimal 

base-stock levels and to a corresponding increase in optimal inventory related costs. We 

quantify these effects through several numerical examples. 

 (Production/Inventory, Make-to-Stock; Base stock; Stochastic comparisons; GI/M/1)  

1. Introduction 

 

We consider a single item, single stage production/inventory system operating in a make-to-

stock mode. A plausible production control policy in this setting is a base stock policy which 

drives the inventories to a predetermined base-stock (target inventory) level. Policy 

optimization, in order to minimize inventory holding and backordering costs for example, 

then reduces to the optimization of the base-stock level. Depending on the complexity of the 

underlying modeling assumptions, this optimization can be performed analytically, 

numerically or through simulation. While simulation or numerical analysis may enable a case-

by-case comparison of different systems in terms of their optimal performance (inventory 

levels, costs etc.), it is impossible to state general structural properties through these 

approaches. In this paper, we pursue an analytical approach that leads to a structural 

comparison related to the variability of the demand inter-arrival times.  

It is known that variability, in general, has a deteriorating effect on the performance of 

stochastic inventory systems. There are, however, relatively few papers that investigate 
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variability from an analytical point of view. Most of this research has focused on 

uncapacitated systems (exogenous lead times). Gerchak and Mossman [4] showed that, in a 

single-period newsvendor setting, the optimal replenishment quantity and the optimal cost are 

both increasing (under reasonable conditions) in the demand variability when demand is 

transformed using a mean-preserving transformation. Ridder, Van Der Laan and Solomon 

[10] presented comparison results based on demand variability in the identical setting 

emphasizing at the same time that depending on the definition of variability, some counter-

examples can be found. For a continuous review single-item inventory system with exogenous 

lead times, Song [12], [13] proved that increased lead time variability causes an increase in 

the optimal base stock levels and the optimal costs. It is important to underline that all of 

these previous results hold under precise definitions of variability and that simple measures of 

variability such as "the coefficient of variation of lead time demand" may not suffice for an 

ordering of optimal base stock levels or optimal costs. 

Inter-arrival time variability has a negative effect on the performance of queueing systems as 

well (see for example, Buzacott and Shanthikumar [1] for some analytical evidence through 

approximations and Karaesmen and Gupta [8] for a numerical investigation).  There are also 

some supporting numerical results for this negative effect on capacitated inventory systems -

also called “production/inventory systems”- (e.g. for instance in Karaesmen, Buzacott and 

Dallery [9]).   On the other hand, there are few purely analytical results on the effects of 

variability in capacitated systems.  Such a result is presented in Güllü [6] where a single item, 

periodic-review production/inventory problem under a base stock policy is investigated and 

appropriate conditions on the demand distribution under which the optimal performance 

measures can be ordered are presented.  

In this paper, we study a continuous review single-item single-stage make-to-stock type 

production system where demand inter-arrival times and processing times are random. 

Production capacity is explicitly modeled as a limited resource represented as the server of a 

queue (a detailed treatment of such models can be found in Buzacott and Shanthikumar [1]). 

Unlike [6], our underlying system is a continuous-review capacitated production/inventory 

system. In order to capture some the effects of variability on the two key performance 

measures (base-stock levels and costs), the arrival process is modeled by a general renewal 

process. The system lends itself to almost-explicit analysis when processing times are 

exponentially distributed. The resulting model is a GI/M/1 make-to-stock queue.  
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Our contributions can be summarized as follows: we compare the optimal base stock levels 

and optimal costs of two GI/M/1 make-to-stock queues with identical demand arrival and 

processing rates. We show that, if the demand inter-arrival times are ordered according to the 

(stochastic) convex order, then the optimal base stock levels and the optimal average costs are 

ordered in the same direction. At the same time, our analysis indicates that, in either case, the 

convex order is essential for the results, and that weaker comparisons of variability (such as 

the Coefficient of Variation) do not suffice in general. Finally, we complement the theoretical 

results with a numerical investigation which enables us to quantify the effects of inter-arrival 

time variability.  

The paper is structured as follows. In Section 2, we introduce the model, the employed 

notation, and some definitions that will be used later. Section 3 presents our main results on 

the effects of variability on optimal base stock levels and optimal costs in GI/M/1 make-to-

stock queues. A short numerical investigation is presented in Section 4 and the concluding 

remarks in Section 5. 

2. Model and preliminaries 

2.1 The Model and Notations 

We consider a single stage production system where demands arrive in single units (we 

discuss a special case related to batch-arrivals later). Demand inter-arrival times are 

independent and identically distributed random variables. The production stage is modeled by 

a single server whose processing times are exponentially distributed. We denote by T the 

demand inter-arrival time, λ=1/E[T] the demand arrival rate, µ the (exponential) processing 

rate of the server and  define ρ = λ/µ .  

The production system is controlled according to a base stock policy with a base stock (or 

target inventory) level S (see Buzacott, Price and Shanthikumar [2] for a detailed description 

in the context of production/inventory systems). The server produces whenever the inventory 

level is under the target level S and stops when the inventory level reaches S. We assume that 

demand is backlogged whenever inventory is not available and assume the standard cost 

structure: h is the inventory holding cost per part per unit time and b is the backorder cost per 

backorder per unit time. Let X(t) denote the inventory level at time t,  X be the corresponding 

stationary random variable and let px=Probability{X=x}. Under the above cost structure, the 
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optimization problem is to select the base stock parameter S which minimizes the expected 

average cost: 
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Let us now define N(t)=S-X(t), the shortfall with respect to the base stock level S at time t.  

N(t) is the underlying queueing process in the production stage. In particular with general 

demand inter-arrival times and exponential processing times, the process N(t) is equivalent to 

the number of customers at time t in a GI/M/1 queue. The analysis of the 

production/inventory system can then be performed through the corresponding queueing 

system. To this end, let pn =Probability{N=n}, be the stationary probability that there are n 

customers in this queue. The objective function (1) can then be expressed as:  
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Minimizing the above expression with respect to S leads to the discrete version of the familiar 

critical-fractile formula for the optimal base stock level. In particular, let FN  be the 

cumulative distribution function of N, then the optimal Base Stock level S* is given by (see 

Veatch and Wein [15] for example): 

bh

b
SFN

+
=− )1

~
( *  and  ** ~

SS =    (3) 

where y    denotes the greatest integer that is less than or equal to y (a real number). 

Note that in (3), *S�  is the value where the first-order optimality condition (i.e. the first 

equation) is satisfied with equality.  *S�  itself is, in general, not an integer but the integer 

base-stock level is easily obtained from *S�  by the second equation in (3). Since *S�  

subsumes all important qualitative characteristics of the system, we refer to it frequently in the 

rest of the paper as the continuous approximation of the optimal base-stock level.      

2.2 Definitions and properties of stochastic comparisons 

The principal tool of analysis in the rest of the paper will be stochastic comparisons of 

random variables. We provide below the definitions and properties of these comparisons that 
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are used in the paper. These definitions and further details on stochastic comparison methods 

can be found in Stoyan [14] and  Shaked and Shanthikumar [11].  

Let X1 and X2 two random variables, F1 and F2 their cumulative distribution functions, f1 and 

f2 their probability density functions, and L1, L2 their Laplace transforms. 

Definition 1 (stochastic order): The random variable X1 is stochastically greater than a 

random variable X2 , denoted 21 XX st≥ , if  ( ) ( ) xxFxF ∀−≥−    11 21 . 

Definition 2(convex order): For two random variables X1 and X2, 21 XX c≥  (
21 XX ic≥ ) if 

and only if fxfExfE ∀≥    )]([)]([ 21 convex (non-decreasing and convex).  

Definition 3(Laplace transform order): For two random variables X1 and X2, 21 XX L≥ if 

][][ 21 sXsX
eEeE

−− ≤ .  

In what follows, we summarize some properties of the comparisons previously defined: 

 
21 XX st≥ ⇒

21 XX ic≥ ⇒ 21 XX L≥ . 

Note: In the increasing convex comparison, for two nonnegative random variables having 

identical means, the condition "non-decreasing" is not necessary. 

Finally, in addition to the comparisons presented above, we frequently refer to a simple 

aggregate measure of variability: the coefficient of variation (CV) which is the ratio of the 

standard deviation to the mean of a random variable. 

3. The Influence of Variability  

3. 1 The Optimal Base Stock Level 

Our objective in this section is to analyze the effects of demand inter-arrival variability on 

optimal base stock levels. Song [12] studied uncapacitated systems where the corresponding 

variable of interest is the lead time demand. Song shows that under a so called “variability” 

ordering of the lead time demand, the optimal base stock levels are ordered. We compare two 

GI/M/1 type make-to-stock queues that are identical except for their demand arrival processes 

with associated stationary inter-arrival time random variables A1 and A2. In order to isolate the 

effects of variability from those of utilization rate, we focus on the case where E[A1] = E[A2] 
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(the systems compared are then equivalent in their utilization rates). For a different 

(capacitated but periodic-review) model, Güllü [6] presents a comparison result which holds 

under a regular stochastic order (Definition 1). This order is, however, rather strong and does 

not allow, for instance, comparing two inter-arrival time distributions with the same mean. 

Recall that the optimal base stock level is obtained through the distribution function of the 

shortfall queue from the equation: )/()1*
~

( bhbSFN +=−  ,  *
~

* SS = . Let us note that, for 

G/M/1 queues, the distribution function is a function of the parameter r, the root of the 

characteristic equation: ))1(( µrLr A −= , where LA is the Laplace transform of the inter-

arrival time distribution FA (see Gross and Harris [5]). This leads to the following expression 

for the distribution function of N, the number of customers in the queue: 

...2,1,01)1()1(][)( =−=−+−=≤= xrrxNPxF xx

N ρρρ  (4) 

Lemma 1: Consider two GI/M/1 queues with identical arrival and processing rates and with 

respective parameters r1 and r2 such that 21 rr ≥ , then 21 NN st≥  where 1N  and 2N  are the 

number of customers in the queues 1 and 2 respectively. 

Proof : Let the function )1()()( x

x rxFrG ×−== ρ , with parameter r defined on (0,1). Gx(r) 

is decreasing and concave, then for all x, )()( 2121 rGrGrr xx ≤⇒≥ . This implies: 

2121 )()( NNxFxF st≥⇔≤ . Consequently, 2121 NNrr st≥⇒≥  . 

Lemma 2: Consider two GI/M/1 make-to-stock queues such that 21 NN st≥ , then ** 21 SS ≥  

where S1* (respectively S2*) is the optimal base stock level of queue 1 (2). 

Proof : The optimality condition is such that: )/()1*
~

()1*
~

( 2211 bhbSFSF +=−=− . By 

definition of a the stochastic order, 
21 NN st≥  implies that F1(n)≤ F2(n), for all n,   which 

implies that *
~

*
~

21 SS ≥  and consequently that  ** 21 SS ≥ .   

The next lemma is taken from Wolff [19]. 

Lemma 3: Consider two GI/M/1 queues with identical service rates and with respective inter-

arrival time random variables A1 and A2 such that ][][ 21 AEAE =  and 21 AA c≤ , then 21 AA L≥  

and consequently 21 rr ≤ . 
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Putting together lemmas 1, 2 and 3, the following property is established for two GI/M/1 

queues with respective inter-arrival times A1 and A2 such that ][][ 21 AEAE = . 

Proposition 1: Consider two GI/M/1 make-to-stock queues with identical cost parameters, 

service rates, and with respective demand inter-arrival-times A1 and A2 such that 

][][ 21 AEAE =  and 21 AA c≤ , then 
*

2

*

1 SS ≤ where S1* (respectively S2*) is the optimal base 

stock level of system 1 (system 2).  

Proof: Let r1 and r2 be the respective parameters of systems 1 and 2. Using lemma 3 we have: 

2121 rrAA ic ≤⇒≤ . Lemma 1 states that 2121 NNrr st≤⇒≤ , and finally employing lemma 

2, we have the desired result.  

This result states the effect of the demand distribution on the base stock level S* via the 

parameter r. The optimal base stock levels are increasing in with respect to the convex order 

of inter-arrival time distributions when all other parameters are held constant.  

Remark: Note that, one can alternatively directly compute the optimal base stock level using 

equations (3) and (4). This leads to: 
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where )/( hbb +=α . The effect of the coefficient r on S
* 

can also be inferred from expression 

(5): S
* 

is increasing in r. However, this direct computation does not give any insights on the 

underlying conditions. For instance, we can observe from Lemma 2 that the desired result 

imposes a strong stochastic order condition on the variable N. The key point is that the inter-

arrival time comparison should induce a stochastic order of the queue lengths (a rather strong 

and non-trivial condition). Unfortunately, there are few existing comparison results for the 

queue length process based on weaker orders -such as the convex order- of arrival or service 

processes (see Whitt [18] for some known cases). This implies that immediate extension of 

the above approach to more general make-to-stock queues is difficult.  



 9 

3.2 The optimal cost 

The previous section focused on the relationship between the base stock level and the demand 

variability. In this section, we study the influence of this variability on the optimal cost. For 

that, we start by pointing out the expression of the cost as well as the results previously 

obtained. 

Let us note that, in uncapacitated systems, corresponding comparison results are usually 

expressed in terms of the demand distribution (for single-period models) and in terms of the 

distribution of lead-time demand (infinite-horizon models). Song [12] shows that, for an 

(infinite-horizon) uncapacitated continuous-time system, the ordering of the demand during 

lead time (or the ordering of the lead time itself) induces an ordering of the corresponding 

costs: *)(*)( 221121 SCSCDD ic ≥⇒≥ . Ridder, Van Der Laan and Solomon [10] use a 

weaker condition called “2_variability” (see [10]), showing for a single-period model that 

*)(*)( 2211221 SCSCDD ≤⇒≥  (where D is the demand random variable). 

As in the corresponding uncapacitated model [12], the comparison of the optimal cost 

function is more delicate than the comparison of optimal base stock levels. In particular, our 

main result will require a continuous relaxation of the base stock level. This is a frequently 

made assumption (see [12] or [13]) in the literature. To outline the procedure, recall from 

Section 2.1 that, the optimal cost function is given by equation (2) where the base stock level 

is taken to be  *~
* SS = . We ignore the integrality correction temporarily and first focus on 

the continuous variable *~
S . Based on Proposition 1, we can then obtain the following lemma: 

Lemma 5: Let *~
S  be the continuous approximation of the optimal base-stock level (see the 

remark following equation (3)), the corresponding optimal cost (defined in equation (2)) 

C( *~
S ) is equal to ( ) ( )( )( )rrSh −−− 1/

~* ρ . 

Proof: Using the explicit form of the stationary queue length distribution, we can express the 

expected cost as a function of the base stock level as: 

;
11

1
)(

1
2
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rShSC

S
S

S

ρρρρ                          (6) 

The proof follows by a direct insertion of *~
S  in the above cost function.  
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It now follows from Proposition 1 and Lemma 5 that, for GI/M/1-type make-to-stock queues, 

the parameter r induces an order on the optimal cost.  

Proposition 2: Consider two GI/M/1 make-to-stock queues with identical service rates and 

cost parameters, and with inter-arrival-times A1 and A2 such that E[A1]=E[A2] and 21 AA c≤ , 

then )
~

()
~

( *

22

*

11 SCSC ≤ , where C1(
*

1

~
S ) (respectively C2(

*

2

~
S )) is the optimal cost under the 

base stock policy of system 1 (respectively system 2). 

Proof: Referring to lemmas 3, 2 and 1, we obtain: 2121 rrAA c ≤⇒≤  (by lemma 3), 

2121 NNrr st≤⇒≤  (by lemma 1) and 2
*

1
*

21

~~
SSNN st ≤⇒≤  (by lemma 2). Finally, by 

virtue of Lemma 5, 
*

2

*

1

~~
SS ≤ implies that )

~
()

~
( *

22

*

11 SCSC ≤ .  

3.3  Comparisons of some commonly used arrival processes  

Below, we present some probability distributions that are frequently used in modeling 

inventory and queueing processes. Stochastic convex order results for some of these 

distributions are also presented. Whenever this type of order is available, the ordering of 

optimal inventory levels and costs follow directly from Propositions 1 and 2. Detailed 

definitions of the distributions and their parameters can be found in Appendix A. 

3.3.1 Gamma/Weibull Distributions 

For certain frequently used probability distributions, convex stochastic order has been 

established in terms of the parameters of the distribution. The gamma distribution frequently 

used in queueing applications is such a case. The following result is taken from Stoyan [14]. 

Consider two gamma distributions G1(λ,α,x) and G2(µ,β,x) with respective densities g1(x) and 

g2(x) (see Appendix A), if βα >  and µβλα // ≤  , then 21 GG ic≤ .  Propositions 1 and 2 

then imply the following: for two GI/M/1 make-to-stock queues with identical service rates 

and cost parameters, and with inter-arrival-times A1 (with distribution G1(λ,α,x)) and A2 (with 

distribution G2(µ,β,x)) such that E[A1]=E[A2], if βα >  and µβλα // ≤  we have the 

following ordering of the optimal base stock levels and the optimal costs: 
*

2

*

1 SS ≤  

and )
~

()
~

( *

22

*

11 SCSC ≤ . 
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As an important special case of the above result, if we have two Erlang-distributed random 

variables, A1 and A2 with identical means and respectively with k1 (k2) stages such that 21 kk >  

then 21 AA c≤ .  Propositions 1 and 2 then lead to the following result: for two GI/M/1 make-

to-stock queues with identical service rates and cost parameters, and with inter-arrival-times 

A1 (with an Erlang distribution of k1 stages) and A2 (with an Erlang distribution of k2 stages) 

such that E[A1]=E[A2], if 21 kk >  we have the following ordering of the optimal base stock 

levels and the optimal costs: 
*

2

*

1 SS ≤  and )
~

()
~

( *

22

*

11 SCSC ≤  

Weibull distributions are frequently used in reliability/maintenance applications and are 

pertinent for spare parts inventory management. From [14] we have the following comparison 

result: let two Weibull distributions W1(λ,α,x) and W2(µ,β,x) with respective density functions 

f1(x) and f2(x) (see Appendix A) and respective means 
21

 and ff mm , if βα >  and 
21 ff mm ≤  , 

then 21 WW ic≤ . Using Propositions 1 and 2, we then have then following result:  consider two 

GI/M/1 make-to-stock queues with identical service rates and cost parameters, and with inter-

arrival-times A1 (with distribution W1(λ,α,x)) and A2 (with distribution W2(µ,β,x)) such that 

E[A1]=E[A2]. If βα > , then: 
*

2

*

1 SS ≤  and )
~

()
~

( *

22

*

11 SCSC ≤ . 

3.3.2 Erlang Distributions with Unidentical Stages  

In this section, we consider Erlang distributions consisting of k different stages with different 

means. This class of distributions can cover coefficients of variation ranging between k/1  

and 1. Because of the rational form of Laplace transform ( )( )∏
=

+=
k

i

iiA SSL
1

/)( λλ  (with λi the 

rate of stage i), the calculation of r for the Erlang distributions with k stages amounts to 

solving a (k+1)
th

 degree equation. 

Even though numerical analysis is relatively easy, explicit results of stochastic comparisons 

do not seem to exist for this class of distributions. Hereon, we concentrate on two-stage 

generalized-Erlang distributions and thus cover CV’s ranging from 2/1  to 1. In this case, 

the calculation of r requires solving a third degree equation (see Appendix B).   

It can be verified that for two Erlang distributions with the same mean and different 

coefficients of variation such that 21 CVCV ≥ , we have 21 rr ≥ . Using Propositions 1 and 2 
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(along with lemmas 1 and 2) then leads to on ordering of the optimal base stock levels and 

costs in the corresponding GI/M/1 make-to-stock queues. In addition, when A1 (an Erlang 

random variable) is compared with A2 (an exponential random variable) having the identical 

mean, we obtain: 21 rr ≤  (in fact, it is known that ρ=2r , see Wolff [19]) . Using Propositions 

1 and 2, it is immediately seen that an Erlang inter-arrival time distribution induces lower 

optimal base stock levels and costs than an exponential inter-arrival time distribution with the 

same mean (in the GI/M/1 make-to-stock queue setting).  

3.3.3 Two-Stage Hyper-Exponential Distributions  

Two-stage hyper-exponential distributions cover the domain 1≥CV  and are frequently used 

to model high-variability arrival processes. For this class of distributions the parameter r can 

be explicitly obtained.  

The Laplace Transform of a H2 distributed random variable with parameter q and rates λ1 and 

λ2 (see Appendix A) is: 

s

q

s

q
sLA

+

−
+

+
=

2

2

1

1 )1(
)(

λ

λ

λ

λ
, 

therefore  

)1(

)1(

)1( 2

2

1

1

r

q

r

q
r
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−
+
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λ
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leading to: 

( ) 
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−+







 −
+−

+
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µ

λλ

µ

λλ

µ

λλ 12

2

2121 5.0
2

25.0
2

5.0 qr  

with the stability condition: 1/)1(/ 21 >−+ ρρ qq . 

It can easily be verified that, that r1 of an H2/M/1 queue is always greater than r2 (=ρ) of a 

corresponding M/M/1 queue.  Using Propositions 1 and 2, we can then establish that the 

optimal base stock levels and the costs are higher in H2/M/1 make-to-stock queues than in a 

corresponding M/M/1 make-to-stock queue (with the identical mean inter-arrival time). 
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3.3.4 Modeling Batch Arrivals: The General-Exponential Distribution  

For high-variability ( 1≥CV ) arrival processes the General-Exponential distribution (see 

Appendix A for a precise definition) constitutes a modeling tool which covers all ranges of 

the coefficient of variation.  

A useful feature of this distribution is that as a model, it is equivalent to a batch arrival 

process where batches arrive according a Poisson distribution with rate λ and where the batch 

size X is geometrically distributed with parameter q.  

The Laplace transform of a GE distribution of parameter q and rate λ is 

( )sqqsLA ++−= λλ /1)( ,  therefore: 

)1(
1

r

q
qr

−+
+−=

µλ

λ
 then qr −+= 1

µ

λ
 

with the stability condition µλ />q . 

The comparison of an M/M/1 and a GE/M/1 with the same mean yields that r1 (of the 

GE/M/1) is always greater than r2 (=ρ) of the corresponding M/M/1 system. Therefore, by 

Propositions 1 and 2 a batch-arrival demand process requires a higher optimal base-stock 

level and generates higher costs than the unit-arrival demand process with the identical arrival 

rate. 

Similarly, the comparison of two GE/M/1 queues with the same mean 2211 // λλ qq =  and 

with different CV's (where CV1≥ CV2) implies that 21 rr ≥ , thereby leading to an ordering to of 

the optimal costs and the base-stock levels. 

4. Numerical examples  

In this section, we investigate some numerical examples of different GI/M/1 make-to-stock 

queues in order to quantify the effects of variability. Our theoretical results in the previous 

sections are based on a precise definition of variability that stems from the convex stochastic 

order. Because this order is not easily quantifiable, we present the numerical results based on 

a simple aggregate measure of variability: the coefficient of variation (CV). It is important to 

note that, as a comparison, the ordering of CV's is weaker than the convex order (in fact, it is 
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implied by the convex order for identical means). This allows us to numerically verify 

whether the convex order condition can be relaxed. 

Our investigation then consists of studying S* and C(S*) as functions of the coefficient of 

variation for given distributions. For this purpose, we take a fixed value of ρ and compute the 

parameters of the different interarrival time distributions in order to obtain the same average 

arrival rate. We then compute the parameter r and the optimal base stock level S* and the 

associated cost C(S*) using formulas (5) and (6). We then plot these values as a function of 

the coefficient of variation of the interarrival time distribution. Appendix B outlines the 

procedure that is used to modify the CV for different inter-arrival time distributions. 

The first set of results is based on Two-Stage Generalized-Erlang distributions. Figure 1 

depicts the variation of optimal base stock levels and costs as a function of the coefficient of 

variation in Er(λ1,λ2)/M/1 make-to-stock queues with ρ=0.9, b=10.  

 

Fig.1 : S* and C(S*) as a function of  CV  for ρ=0.9, b=10 

The optimal cost as a function of CV shows that C(S*) increasing in the coefficient of 

variation even though there are discontinuities due to the discrete nature of S*. These 

discontinuities are more significant when the backlog cost increases. These first results 

demonstrate that optimal base stock levels and optimal costs are increasing in the CV of the 

inter-arrival time distribution. On the other hand, our analytical results require the stochastic 

convex order definition of variability which is much stricter than a simple CV order.  The 

question then is: are there cases where the simple CV order fails? This question will be 

investigated in the next example. 
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As a second example, let us investigate GE/M/1 and H2/M/1 make-to-stock queues (both 

inter-arrival time distributions have CV’s greater than 1). Indeed, within each class the base 

stock level and the associated cost increase as a function of the coefficient of variation as 

shown in Figure 2 for ρ=0.9, h=1, b=10.  

 

 

 

 

 

Figure 2 : S* and C(S*)  as a function of the CV  for ρ=0.9, h=1, b=10 

We can observe from Figure 2 that the optimal base stock level is almost a linear function of 

the CV when GE and H2 distributions are considered separately. 

More interestingly however, note that optimal base stock levels and the optimal costs increase 

faster in GE/M/1 make-to-stock systems than in corresponding H2/M/1 systems as shown in 

Figure 3: 

 

Fig.3 : Comparison Between the Optimal Base Stock Levels of the GE/M/1 and the H2/M/1 

Make-to-Stock Queues (ρ=0.9, h=1, b=10) 
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Figure 3 underlines the limitations of comparisons based only on the coefficient of variation. 

For identical values of CV, a higher base-stock level is required for GE/M/1 systems than in 

H2/M/1 systems. This difference becomes more pronounced as the coefficient of variation 

increases (for instance when CV>3). For instance, the H2/M/1 system with a CV of 4 has a 

lower optimal base stock level than a GE/M/1 system with a CV of 3.9. Obviously, an 

increased coefficient of variation alone does not lead to increased base stock levels in this 

case. Furthermore, by virtue of the continuous approximation: C( Ŝ )=h Ŝ  (see the remark at 

the end of Section 3.2), the same arguments apply to the optimal costs: an H2/M/1 system 

with a higher coefficient of variation can have lower optimal costs than a less variable (in 

terms of CV) GE/M/1 system. In other words, as in Ridder, Van Der Laan and Solomon [10], 

increased demand variability (in terms of coefficient of variation) can lead to lower base 

stock levels and to lower costs in some cases.  

Figure 4 explains why CV alone cannot suffice, in general, to compare optimal base stock 

levels and costs. Going back to Lemma 1 (which then leads to Propositions 1 and 2), the key 

comparison parameter is r (a higher value of r leads to higher (in a non-strict sense) optimal 

base stock levels and costs for the same ρ).  As the respective CVs are varied according to the 

rule explained in Appendix A, it can be seen from Figure 4 that the GE distribution always 

has a higher r value for the identical CV level. By Propositions 1 and 2, it follows then that 

for the same CV, the GE inter-arrival time distribution will generate higher optimal base 

stock levels and optimal costs. The difference between the optimal base stock levels of the 

two systems (observed in Figure 3) becomes especially pronounced as the CV increases. This 

can be explained as follows: from Figure 4, it can be seen that as the CV increases both r 

values approach 1 while the r value of the GE distribution continues to stay above that of the 

HE distribution.  From equation (5), it is known that the optimal base stock level is very 

sensitive to small changes in r when r is close to 1 (note that the denominator of equation 5, 

log(r),  approaches 0 as r approaches 1).  For high CV’s (greater than 3.5 in Figure 4), the 

relatively small differences in the respective r parameters translate into significant 

differences in the optimal base stock levels. Unfortunately a general relationship between the 

CV and the parameter r does not seem to exist (r is the root of a non-linear equation related 

to the Laplace transform of the inter-arrival time distribution).  
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Fig.4 : The r parameters of the GE/M/1 and the H2/M/1 Make-to-Stock Queues as a function 

of the inter-arrival time Coefficient of Variation (for ρ=0.9)). 

5. Conclusion  

The degrading effects of variability on the performance of production and inventory systems 

are well known. We attempted to provide a precise and general description of the effects of 

variability for make-to-stock queues. Our investigation here is limited to GI/M/1-type 

systems. A parallel technical note (Jemai and Karaesmen [7]) extends -approximately- some 

of these results to M/G/1 and G/G/1 type systems. However, even the analysis of these special 

cases underline the difficulty of obtaining general conditions for more complicated systems. 

Results on increasing optimal base stock levels and costs require very strong stochastic order 

relationships on queue length distributions as a function of interarrival (or processing) time 

distributions, which may not hold under very general circumstances. On the other hand, a 

couple of general conclusions can be extracted from our analysis. First, the coefficient of 

variation alone is not a sufficient measure of variability for ordering base stock levels and 

optimal costs in general. In certain cases, increased coefficient of variation can lead to 

decreased inventories and costs. Second, the convex order is a valuable condition which 

guarantees the ordering of optimal costs and base stock levels. Both our analytical and 

numerical results indicate that production/inventory systems that have the same average load 

can behave completely differently depending on the second order characteristics of the 

underlying processes. This implies that careful modeling of underlying demand and 

production processes is critical in order to capture finer properties of these systems.  

This paper was limited to the analysis of a single-class make-to-stock queue. The analysis of 

multi-class make-to-stock queues pose several additional challenges like the scheduling of 
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production and the allocation of inventories and is an on-going investigation (see de 

Véricourt, Karaesmen and Dallery [16],[17]). A recent paper by Benjaafar and Kim [3] 

generalizes some of the results in this paper to a multi-class GI/M/1 make-to-stock queue 

(under First Come First Served order scheduling). It would be interesting to verify whether 

such multi-class results can be extended to more complicated scheduling/allocation policies as 

in [16] or [17]. 
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Appendix A 

This appendix summarizes the parameters of the probability distributions used as well as the 

approach used to vary the coefficient of variation as a function of the parameters.  
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In order to vary the coefficient of 

variation while keeping the same average 

of the Er(λ1,λ2) distributions, we vary λ1 

and calculate corresponding λ2 . 
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λλ)(  For HE(q1,q2,λ1,λ2) distributions, we vary 

q1 and calculate the other parameters of 

the distribution. 
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For the GE(q,λ) distributions, we vary q 

and calculate the corresponding λ.   
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Appendix B 

Calculation of r for an Erlang distribution with two stages: 

The Laplace transform of an Erlang distribution with K different stages of rate λi is: 

∏
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and finally:  
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with ( ) 1/ 2121 <+ ρρρρ  the stability condition. 

Consider two Erlang distributions with the same mean ( ) ( ) ''/''/ 21212121 λλλλλλλλ +=+ and 

different coefficients of variation 21 cvcv ≥  ( ''et    '' 21212121 λλλλλλλλ +≤+≤ ), then we 

have 21 rr ≥ .  

The calculation leads us to study a function f of the form:  
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on the domain: 1// 2121 <= yyxx ; 11 yx >  and 22 yx > . We verify numerically that f is 

always positive on its domain and consequently that 21 rr ≥ . 

 


