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Abstract

To explore the mechanisms whereby estrogen and antiestrogen (tamoxifen (TAM)) can regulate breast cancer cell
growth, we investigated gene expression changes in MCF7 cells treated with 17�-estradiol (E2) and/or with 4-OH-TAM.
The patterns of differential expression were determined by the ValiGen Gene IDentification (VGID) process, a
subtractive hybridization approach combined with microarray validation screening. Their possible biologic
consequences were evaluated by integrative data analysis. Over 1000 cDNA inserts were isolated and subsequently
cloned, sequenced and analyzed against nucleotide and protein databases (NT/NR/EST) with BLAST software. We
revealed that E2 induced differential expression of 279 known and 28 unknown sequences, whereas TAM affected the
expression of 286 known and 14 unknown sequences. Integrative data analysis singled out a set of 32 differentially
expressed genes apparently involved in broad cellular mechanisms. The presence of E2 modulated the expression
patterns of 23 genes involved in anchors and junction remodeling; extracellular matrix (ECM) degradation; cell cycle
progression, including G1/S check point and S-phase regulation; and synthesis of genotoxic metabolites. In tumor
cells, these four mechanisms are associated with the acquisition of a motile and invasive phenotype. TAM partly
reversed the E2-induced differential expression patterns and consequently restored most of the biologic functions
deregulated by E2, except the mechanisms associated with cell cycle progression. Furthermore, we found that TAM
affects the expression of nine additional genes associated with cytoskeletal remodeling, DNA repair, active estrogen
receptor formation and growth factor synthesis, and mitogenic pathways. These modulatory effects of E2 and TAM
upon the gene expression patterns identified here could explain some of the mechanisms associated with the
acquisition of a more aggressive phenotype by breast cancer cells, such as E2-independent growth and TAM
resistance.

Journal of Molecular Endocrinology (2005) 34, 61–75

Introduction

Estrogens play several major roles in mammalian
physiology, including the control of the reproductive
tract and development of secondary sex organs. They
regulate the estrous cycle, control lactation in the
mammary gland and affect bone, liver and cardiovascu-
lar systems (Sutherland et al. 1988, Couse & Korach
1999). In diseases such as breast cancer, estrogens act as
mitogenic factors and are important in tumor initiation
and progression in vitro and in vivo (Lippman et al. 1975,
Soule & McGrath 1980, Key & Pike 1988, Colditz
1998).

Studies on estrogen receptor (ER)-positive breast
cancer cell lines indicate that estrogens and antiestrogens
act on cell populations in early to mid-G1 phase

(Sutherland et al. 1983, Leung & Potter 1987). It is
commonly accepted that tamoxifen (TAM) binds to the
ER and inhibits ER-mediated gene transcription.
Although antiestrogens are widely employed in the
treatment of hormone-responsive breast cancer to
induce cell growth arrest, the mechanisms by which
TAM or its derivatives regulate gene expression are not
well understood. Understanding of these mechanisms
could allow us to explain, at least in part, the
development of cellular resistance to TAM treatment
and consequent therapeutic escape (Gibson et al. 1990,
Katzenellenbogen 1991, Osborne et al. 1995, El Etreby
& Liang 1998).

To explore, at gene expression level, how estrogen
and antiestrogen could regulate cell growth and tumor
progression in breast cancer, we investigated the
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patterns of gene expression in MCF7 cells treated with
TAM and/or with 17�-estradiol (E2). The MCF7 cells,
isolated from a pleural effusion of metastatic human
breast adenocarcima, are ER and progesterone receptor
(PR) positive. Their growth is estrogen dependent and
sensitive to TAM (Soule et al. 1973, Sommers et al. 1990).

The patterns of differential gene expression associated
with E2-induced tumor progression and with TAM
antitumor action were analyzed by the ValiGen Gene
IDentification (VGID) process. This process is based on
a subtractive hybridization method combined with
microarray and integrative data analyses that have
previously been described (Gadal et al. 2003). The
subtractive hybridization method does not require
specific probes or primers to isolate differentially
expressed mRNAs, thus allowing identification of
isoforms and unknown transcripts without having to
predetermine the sequences to be investigated. Microar-
rays provide a rapid and high throughput screening
method for validating the differentially expressed status
of sequences isolated by the subtractive hybridization
process. Differential expression data and extensive
published information were then integrated into a
detailed biologic model. First, we generated a relational
graph encompassing all known functional interactions
between genes, proteins and small molecules recorded in
the scientific literature pertaining to mammalian cellular
and physiologic mechanisms. Then, the entire differen-
tial expression data set was injected into the graph in
order to extract a subgraph functionally correlating the
data sets. This enabled us to construct physiologic/
signaling interaction maps directly correlated with gene

expression patterns and protein interactions (Fig. 1). For
more details, see Gadal et al. 2003 and our web page:
http://perso.club-internet.fr/fgadal. The resulting model
points out some of the mechanisms through which E2
and TAM could affect the initiation, growth and
progression of breast cancer.

Thus, by combining subtractive hybridization, cDNA
microarrays and data integration, we were able to
highlight some of the interconnected mechanisms, such
as cytoskeleton remodeling, matrix degradation, cell
cycle progression, synthesis of genotoxic metabolites,
DNA repair and estrogen receptor constitution/activity,
through which estrogen and antiestrogen regulate tumor
progression.

Materials and methods

Cells and cell culture

The MCF7 breast cancer cell line, obtained from ATCC
(Rockville, MD, USA), was cultured routinely in
Glutamax I Dulbecco’s modified Eagle’s medium
(DMEM) (Gibco Invitogen) supplemented with 10%
fetal calf serum (FCS) (Gibco Invitogen), 50 µg/ml
streptomycin (Gibco Invitogen) and 50 UI/ml penicillin
(Gibco Invitogen) at 37 � C in 5% CO2 atmosphere. The
experiments were carried out in phenol red-free DMEM
(Gibco Invitogen) supplemented with 10% charcoal-
treated FCS, 50 µg/ml streptomycin, 50 UI/ml penicil-
lin and 2 mM L-glutamin (Gibco Invitogen). The cells,
divided into three batches, were incubated at 37 �C in
5% CO2 atmosphere for 8 days. Then, one batch of

Figure 1 Global strategy to identify the biologic paths associated with differentially
expressed genes. Using unified lists of descriptors and verbal forms, the contents of
literature databases were parsed into a massive relational graph. Differential
expression data, generated with VGID methodology and independently verified by
microarrays, were then injected into the graph. The resulting subgraph was then mined
to reveal the functional relationships linking the injected data with previously reported
cellular and physiologic mechanisms. The resulting ‘interaction maps’ were then
merged, by an iterative negative selection procedure, into a biologic model, which was
then subjected to direct experimental evaluation.
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MCF7 cells was stimulated with 1×10�8 M E2 (Sigma
Aldrich) for 15 h, whereas the second batch was
maintained in E2-free medium. To explore E2-associated
differential expression, the VGID procedure was
performed with cDNAs generated from batches 1 and 2.
To explore TAM-associated differential expression, the
third batch of MCF7 cells was incubated with
1×10�8 M E2 and 1×10�7 M TAM (Sigma Aldrich)
for 15 h, and the VGID procedure was performed with
cDNAs generated from batches 2 and 3.

cDNA synthesis

Direct mRNA capture from lysed cells was per-
formed with the Dynabeads mRNA direct kit (Dynal,
Compiégne, France) according to the manufacturer’s
protocol. First-strand cDNA synthesis was carried out
as follows: 6 µl aliquots of first-strand synthesis mixure
(10 mM dNTP each (Promega), 0·1 M DTT and 5
first-strand buffer (both from Life Technologies, Cergy
Pontoise, France)), 500 ng Dynabeads-bound denatured
mRNA and 200 units Superscript II (Life Technologies)
were separately preincubated at 37 �C for 1 min in a
water bath, and then mixed and incubated in a final
volume of 30 µl at 37 �C for 1 h. The first-strand
samples were then transferred to 170 µl diluted
second-strand synthesis mixure (1 final E. coli DNA
ligase buffer (New England Bio-Labs, Saint Quentin
Yveline, France), 900 mM KCI (Sigma Aldrich), 20 mg/
ml glycogen (Boehringer Mannheim, Mannheim,
Germany), 10 mM dNTP each, 10 U/µl E. coli DNA
ligase (New England Bio-Labs), 2 U/µl RNase H and 10
U/µl E. coli DNA polymerase I, all purchased from
Promega) and incubated for 2 h at 16 �C in a
PerkinElmer (Courtaboeuf, France) 9700 thermal cycler.
The cDNA populations, still bound to Dynabeads, were
then digested with Sau3A (4 U/µl; New England
Bio-Labs) for 2 h at 37 �C to generate the fragments of
256 base pairs in statistical length. The reaction was
stopped by heating for 20 min at 65 �C. The digested
cDNAs were then ligated to adapters, and PCR was per-
formed with adapter-specific primers in a PerkinElmer
9700 thermal cycler, using 12 cycles of 95 �C for 30 s,
55 �C for 45 s and 72 �C for 1 min, followed by 72 �C
for 7 min. The PCR products were purified by the
Qiaquick PCR purification kit (Qiagen) and used for
VGID and/or microarray experiments (see below).

Adapters and oligonucleotides

Sequences of adapters (CyberGene, Saint Malo, France)
used in VGID procedure were as follows: BamHI
adapter, 5�CTT AGA ACG AGA CGG ATC CT3� and
3�TT GAA TCT TGC TCT GCC TAG GAC
TAGp5�; BglII-bio adapter, bio 5�CCA GCT AAC
ACC TAG ATC TC3� and 3�TT GGT CGA TTG

TGG ATC TAG AGC TAGp5�. The fragments of
cDNA ligated to these adapters were amplified with the
corresponding oligonucleotides (CyberGene): BamHI
primer, 5�AA CTT AGA ACG AGA CGG ATC CTG
ATC3� and BglII-bio primer, bio 5�AA CCA GCT AAC
ACC TAG ATC TCG ATC3�. The inserts were
amplified with the primers pVG17 (–74), 5�GCA AGG
CGA TTA AGT TGG GTA3� and pVG17 reverse
(–88), 5�CTT CCG GCT CGT ATG TTG TGT3�.

VGID gene identification technology (patent no.
6221585)

As previously described (Gadal et al. 2003), VGID
directly isolates overexpressed and underexpressed
cDNA associated with the transition from a defined
phenotypic state to another state within a congenic
system. For the first denaturation–renaturation step,
300 ng BamHI-ligated-amplified tester were mixed with
1200 ng BglII-bio-ligated-amplified driver. The mixture
was ethanol-precipitated, resuspended in 4 µl HEPES
0·5 M-EDTA 0·2 mM) and overlaid with 20 µl mineral
oil, denatured 5 min at 98 �C and finally chilled on ice.
The salt concentration was adjusted to 0·5 M with 1 µl
of 2·5 M NaCl. After 5-min denaturation at 98 �C, the
sample was allowed to anneal for 20 h at 65 �C. After
hybridization, the oil was removed. The sample volume
was adjusted to 100 µl with 100 mM NaCl and 10 mM
Tris HCl, pH 8, and mixed with 210 µl streptavidin
magnet beads (10 mg/ml, Boehringer Mannheim) to
recover tester single- and double-strand DNA, as
described by the manufacturer. This step was repeated
to remove all biotinylated cDNA. To recover the tester,
double-strand cDNA, the supernatant, which contained
unbiotinylated cDNA, was incubated with 1·5 µg
single-strand binding protein (SSB, Promega) for 30 min
at room temperature. The sample was loaded onto a
Millipore Micropure EZ membrane (which retained the
proteins) and centrifuged for 1 min at 20 800 g at room
temperature. The flow through was combined with
1200 ng driver, and the next round of hybridization was
set up as described above. A total of three hybridization
rounds were performed. The cDNA recovered after the
last round, was amplified by PCR, as described above,
using 25 cycles and the BamHI primer. The sequences
under- or overexpressed were cloned into a modified
pUC19 vector (Gibco Invitogen).

Cloning

The vector used for the cloning step was a derivative of
the pUC19 vector in which polylinker EcoRI– HindIII
was replaced by the 5�AATTCGGATCCA3� pVG17
sequence. To avoid cloning chimeric structures, the
vector/insert DNA ratio used was 3:1. Vector (50 ng)
was ligated to the recovered cDNA and amplified after

Estrogen and tamoxifen gene expression pattern · F GADAL and others 63

www.endocrinology-journals.org Journal of Molecular Endocrinology (2005) 34, 61–75

http://www.endocrinology-journals.org


subtraction in the presence of 1 U ligase (Boehringer
Mannheim) in a final volume of 10 µl overnight at
16 �C. The ligation mixture was purified by the
GeneClean procedure (BIO 101), according to the
manufacturer’s recommendation, and the 2 µl-aliquot
was used to transform 50 µl MAX Efficiency DH10B
cells (Gibco Invitogen). Transformation was performed
by electroporation at 1800 V with the EC100 Electro-
porator (E-C Apparatus Corporation, Petersburg, FL,
USA). Immediately after electroporation, 500 µl SOC
medium were added. Cells were shaken for 1 h at 37 �C,
and an aliquot was spread on LB medium plate
containing 100 µg/ml ampicillin.

Sequencing

Isolated colonies were selected in 150 µl LB with
100 µg/ml ampicillin in order to make glycerol stocks. A
volume of 4 µl of this solution was cycle-sequenced in a
PerkinElmer thermal cycler with the AmpliTaq Gold
DNA polymerase kit (Perkin Elmer), using 10 pmol
pVG17(-74) and pVG17 rev(-88) primers in a final
volume of 50 µl. A pre-PCR step, performed at 95 �C for
13 min, allowed the activation of the polymerase and
the bacteria lysis. Each of the 40 PCR cycles included
three segments: 95 �C/30 s, 54 �C/1 min and 72 �C/
2 min 30 s. The PCR products were sequenced with-
out purification with the BigDye Terminator Cycle
Sequencing kit and ABI Prism 3700 automatic DNA
sequencer (PerkinElmer Applied Biosystem).

Sequence analysis

The clone sequences were analyzed by in-house
programs written in Perl. After removal of the vector
sequence, the repeats were masked and compared with
public databases with the BLASTn and BLASTx
programs. The significance of the similarities was
checked at both the nucleic and protein level. DNA
sequences were considered for further analysis when the
level of similarity with known sequences was greater
than 98%. At the protein level, significant similarity
threshold was fixed as at least 40. The sequence data
were then clustered with Fasta software (Infobiogen,
Evry, France). Unidentified genes (sequences failing to
match anything in the databases, including expressed
sequence tags (ESTs)) could not help us to construct
the relational graph. Thus, these sequences were not
introduced in the analysis.

Microarray construction

All the clones obtained from the subtraction process
were studied with microarray technology. Each clone
was PCR-amplified in a final volume of 100 µl, using
20 pmol of both primers pVG17 (–74) and pVG17 rev

(–88), 10 nmol dNTPs and 1·5 U DyNazyme EXT.
After 13-min enzyme activation at 95 �C, 40 cycles were
carried out (95 �C/30 s, 56 �C/1 min and 72 �C/1 min
30 s). A final incubation was performed for 7 min at
72 �C. The PCR products were purified with the
Multiscreen PCR Kit (Millipore, Saint Quentin Yveline,
France), according to the manufacturer’s instructions,
and concentrated under Vacuum SpeedVac (E-C
Apparatus). The PCR products, resuspended in 3 SSC,
with 11 yeast genes used as internal control, were
spotted in triplicate onto GAPS Amino Silane Coated
Slides (Corning, Schiphol-Rijk, The Netherlands) with
the GMS 417 arrayer (Genetic MicroSystem, Affymetrix,
High Wycombe, Herts, UK). The slides were UV
cross-linked at 300 mJ, prehybridized in 50% forma-
mide, 0·1% SDS, 1% bovine serum albumin (BSA) and
5 SSC buffer at 42 �C for 1 h, washed first in water and
then in 95% ethanol, and finally vacuum dried.

Microarray hybridization, scanning and data
acquisition

cDNA (500 ng) from MCF7 cells treated or not with
TAM or E2 were labeled by random priming with
incorporation of Cyanine5-dUTP for the tester DNA
and Cyanine3-dUTP for the driver samples respectively.
Then, the samples were mixed, concentrated by
evaporation under vacuum and resuspended in prehy-
bridization buffer, as described above, with Denhardt’s
solution replacing BSA. The two-labeled cDNA
mixtures (MCF7 cDNA mixed with MCF7 + E2 one
and MCF7 + E2 cDNA mixed with MCF7 + E2 + TAM
one) were hybridized with the arrayed slides overnight at
42 �C. The slides were then washed for 5 min with 1
SSC-0·1% SDS, 3 min with 1 SSC, 3 min with 0·1 SSC
and 1 min with water, and finally 95% ethanol-dried
and scanned (GenePix 4000A; AXON, Union City, CA,
USA). Accurate differential measurements (final fluor-
escence ratios) were expressed as the average of nine
independent assays where each sequence was arrayed in
triplicate. Visualization, quantification and gene expres-
sion analysis were performed with GENEPIX 3·0
software (AXON). The data were normalized by the
autonormalization method of Yang et al. (2000).

Assay of NAD(P)H quinone oxidoreductase and
NADH-menadione oxidoreductase activity

MCF7 cells were cultured, as described above, with E2.
The MCF7 cells were harvested with a rubber
policeman, centrifuged at 1000 g for 5 min at 4 �C and
homogenized in cold buffer (100 mM potassium
phosphate, pH 7·0, and 2 mM EDTA). After centrifuga-
tion at 10 000 g for 15 min at 4 �C, the supernatant
containing cytosolic and microsomal enzymes was
isolated. NAD(P)H quinone oxidoreductase activity was
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determined with 2,4-dichlorophenol indophenol (DC-
PIP) (Sigma). Samples (10 µl) were mixed with 80 µl of
1 mM NAD(P)H (Sigma Aldrich) in a microtiter plate
and incubated for 15 min at 37 �C. Then, 4 mM DCPIP
(10 µl) was added to each well, and the absorbance was
measured at 600 nm every 5 min. To assess NADH-
menadione oxidoreductase activity, the samples (10 µl)
were mixed with 70 µl of 10 µM menadione (Sigma
Aldrich) and 10 µl of 40 µM cytochrome C (Sigma
Aldrich). After determining the baseline at 550 nm, 10 µl
of 0·5 mM NADH (Sigma Aldrich) was added, and the
absorbance was measured every minute. Changes in
absorbance were obtained by plotting the absorbance
values as a function of time to determine the slope (rate)
of the linear portion of the curve. Then, changes in
absorbance corresponding to the activity of the enzymes
were expressed as percentages.

Results

Differential gene expression patterns in MCF7 cells
treated with E2 or E2 and TAM

To determine the sequences overexpressed in response
to E2 in MCF7 cells, the sequences contained in the
E2-treated MCF7 cDNA library (tester) were subjected
to competitive hybridization against an excess amount of
cDNA from untreated MCF7 cells (driver). This was
followed by selective trapping of all driver material,
including sequences common to both tester and driver.
In order to obtain E2-underexpressed sequences, the
cDNA obtained from E2-treated MCF7 cells was ligated
to BglII-bio adapter to become the driver library,
whereas the cDNA from untreated MCF7 cells was
ligated to BamHI adapter to form the tester library.
Competitive hybridizations were then performed.

In the TAM experiments, the E2 + TAM-treated
MCF7 cDNA library (tester) was subjected to competi-
tive hybridization against an excess amount of cDNA
from E2-treated MCF7 cells (driver). Sequences under-
expressed in response to TAM treatment were obtained
by inversing the adapter-dependent tester:driver identi-
fication tagging, as described above.

All competitive hybridizations were performed with a
driver/tester ratio of 4, which allowed optimal recovery
of sequences differentially expressed (data not shown).
Three iterative rounds of subtraction and selective
trapping resulted in high enrichment and efficient
isolation of tester-specific sequences, as visualized by
migration on agarose gel (Fig. 2). The electrophoretic
profiles were composed of smears, ranging from 100 to
1250 pb, as well as characteristic bands corresponding to
cDNAs underrepresented (lanes 1 and 3) and overrepre-
sented (lanes 2 and 4) in MCF7 cells treated with E2
alone (lanes 1 and 2) or in combination with TAM (lanes
3 and 4). E2 treatment resulted in the identification of

three different major cDNAs bands, observed in both
lane 1 (underrepresented cDNAs) and lane 2 (overrepre-
sented cDNAs) while treatment with E2 + TAM led to
the identification of nine differentially expressed
sequences, five of which were underexpressed (lane 3).
All these differentially expressed sequences were
characterized by distinct lengths, suggesting that they
reflect different gene expression patterns, which could be
specifically associated with differences in the physiologic
states of the cells after estrogen or antiestrogen
treatments.

All the cDNAs recovered after subtractive hybridiza-
tion were then cloned in a modified Puc vector. To
avoid preferential cloning of smaller cDNAs over larger
fragments, the VGID outputs were electrophoretically
separated on agarose gels, which were then divided into
four parts to separate the cDNAs into size populations.
The first group corresponded to cDNAs larger than 700
pb. The sizes of the second and third cDNA groups were
500–700 pb and 300–500 pb respectively. The last
section was composed of cDNA fragments less than 300
pb in length. Overall, the subtractive hybridization
processes yielded 1005 cDNA inserts, ranging in size
from 100 to 1250 bp. Sequence analysis (Table 1)
revealed that treatment with E2 resulted in the
differential expression of 279 known and 28 unknown
sequences, whereas treatment with E2 + TAM resulted
in the differential expression of 286 known and 14
unknown sequences. Redundant identification of known
sequences was relatively low, corresponding to 28–40%
of the datasets, depending upon the VGID experiments
(Table 1). This strategy allowed us to identify a wide
panel of genes involved in different cell functions affected
by E2 and TAM treatments. Here, redundant identifi-
cation of sequences/genes did indicate relative expres-
sion level, which could then be validated by microarray
analysis. For example (Table 2), the pS2 sequence was
represented by 50 clones, suggesting substantial overex-
pression of the gene, whereas the upstream factor 2
(USF2) sequence was found only once, arguing for
moderate to low overexpression. Indeed, microarray
analysis showed that expression of pS2 and USF2 was
enhanced by 4·93- and 1·44-fold respectively.

To confirm the differential expression status of the
sequences isolated by VGID and obtain quantitative
information, the cDNA insert of all the clones, known as
well as unknown nonredundant sequences (607 se-
quences), were PCR amplified and arrayed on slides.
Because of the existing overlap between the two data
sets, the 147 genes subject to differential regulation in
response to both E2 and TAM were represented twice
on the same microarray. The microarrays thus
constructed, representing a total of 460 different probes,
were then independently hybridized to each of the
different mRNA populations corresponding to our
experimental conditions. Thus, when verifying the
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differential responses obtained after estrogen treatment,
for instance, the microarrays utilized contained not only
all the genes identified as estrogen responsive after
VGID analysis, but also all those identified as TAM
responsive. Multiple randomly selected cDNAs were
also spotted on the same slides to serve as internal
controls. Post-hybridization analyses were based on the
autonormalization method of Yang et al. (2000). For
example, the cDNA obtained from E2-treated MCF7

cells was labeled with Cy-5 fluorochrome (red); that from
untreated MCF7 cells with Cy-3 fluorochrome (green).
After hybridization (Fig. 2), red and green fluorescence
indicated greater relative expression in the presence and
in the absence of E2 respectively. Yellow fluorescence
corresponded to equivalent expression levels. Micro-
array analyses confirmed both the patterns and levels of
differential expression of the majority (�90%) of the
genes identified as differentially expressed through

Figure 2 Isolation of transcripts differentially expressed in MCF7 cells.
Gel migration analyses (1·5% agarose) were performed at each step of
the VGID process. Lanes 2 and 4 correspond respectively to cDNA
samples of sequences overrepresented in the MCF7 + E2 and MCF7 +
E

2
+ TAM libraries. For identification of the transcripts underexpressed in

MCF7 + E2 and MCF7 + E2 + TAM, the process was repeated, using
the MCF7 and the MCF7 + E2 cDNA libraries as tester respectively.
Thus, lanes 1 and 3 represent sequences underrepresented in the
MCF7 + E2 and the MCF7 + E2 + TAM cDNA libraries after differential
trapping.

Table 1 Distribution of the MCF7 differentially expressed sequences to response in E2 and TAM treatments. cDNA transcripts
obtained by subtractive hybridizations were cloned into a modified Puc vector and sequenced. Gene identification was performed
with BLAST software against nucleotide and protein banks.

VGID subtractive hybridization

Under-expressed
with E2

Over-expressed
with E2

Under-expressed
with TAM

Over-expressed
with TAM

Number of clones sequenced 280 253 236 236
Number of exploitable sequences 263 233 214 230
Number of known sequences 237 (142 non-

redundant)
219 (137 non-

redundant)
207 (148 non-

redundant)
221 (138 non-

redundant)
Number of unknown sequences 23 (20 non-redundant) 8 (8 non-redundant) 7 (5 non-redundant) 9 (non-redundant)
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utilization of VGID, except for immunophilin (Table 3)
(entire data set available at http://perso.club-
internet.fr/fgadal).

Integrative analysis of the information embodied in
the literature, combined with the VGID and microarray
results, singled out a set of 32 differentially expressed
genes coding for proteins associated with broad cellular
functions (Tables 2 and 3). The expression status (under-
or overexpressed), as indicated by the VGID outputs for
31 of these identified genes, was corroborated by
microarray analysis. In our dataset, eight genes were
found to be differentially expressed by a factor superior
to twofold, nine by a factor of 1·50–2·00 and 14 by a
factor inferior to 1·50. These results indicate that the
VGID procedure is sensitive enough to isolate
transcripts the expression level of which is only slightly
modified.

E2 modulates biologic functions in MCF7

Integrative analysis indicated that, in MCF7 cells, E2
treatment seemed to affect (Table 2):

(i) Anchors and junctions remodeling. Seven of the
eight genes identified as playing significant roles in these
mechanisms were repressed, including � catenin,
junction plakoglobin, �-actin-1, claudin 4, the Arp2/3
complex involved in adherent junctions, and keratins
8 and 18, implicated with junction plakoglobin in
desmosomes constitution. Only Hsp27, which plays a
role in adherent junctions, was found to be upregulated.

(ii) Extracellular matrix (ECM) degradation. In ECM
degradation, underexpression of hepatocyte growth
factor activator inhibitor 2 (HAI-2) and USF2, together
with overexpression of cathepsin D and pS2, argued for
an important role of E2 in the activation of proinvasive
mechanisms through matrice remodeling.

(iii) Cell-cycle progression. Overexpressed c-myc, nm
23-H2 nucleotide diphosphate kinase, cyclin kinase
subunit 1 (Cks1), CDK2, B-myb, activator of S phase
kinase (ASK) and underexpressed TGF� are involved in
cell-cycle progression, in particular with the G1/S
checkpoint and in S-phase progression (Fig. 3).

(iv) Synthesis of genotoxic metabolites. Genes involved
in detoxification mechanisms, such as UDP glucurono-
syltransferase, NAD(P)H menadione oxidoreductase and
thiol-specific antioxidant, were found to be underex-
pressed, whereas NAD(P)H dehydrogenase ubiquinone
was overexpressed in MCF7 cells after E2 treatment,
suggesting a decrease in the effciency of at least one
important detoxification pathway.

E2 decreases the activity of both NAD(P)H
menadione oxidoreductase and NAD(P)H quinone
oxidoreductase

To verify our conclusion that E2-treatment induced
modifications in the activities of the oxidant-dependent
and genotoxic quinone-dependent pathways (Fig. 4), we
measured the activities of two key enzymes, NAD(P)H
menadione oxidoreductase and NAD(P)H quinone
oxidoreductase. In E2-treated cells, we observed that
activities of both enzymes were reduced by 11�2% and
30�6% (P<0·05) respectively, as compared with
untreated MCF7 cells.

TAM antagonizes only some effects of E2 upon gene
expression in MCF7 cells

Our integrative data analysis indicated that TAM
treatment reverses E2-induced changes in the expression
of only 11 genes and apparently restores only some of
the biologic functions affected by E2 (Table 2).

Table 3 Function and expression level of TAM-responsive genes. The levels of expression indicate over-expression (upward arrows)
and under-expression (downward arrows). These expression patterns were qualitatively and quantitatively verified by microarray
expression analyses. In the ‘microarrays status’ column ‘0’ indicates failure to detect differential expression. Relative expression
levels are indicated by arrows and x-fold.

TAM-responsive genes
Accession
number

VGID™

identification
status

Number of clone
corresponding to
identified genes

Microarray
status (X fold
expressed)

Broad functions
Cytoskeletal
remodelling

Profilin J03191 # 1 #1·32±0·05

Cetechols/quinone
synthesis regulation

HSD17 B4 NM_000414 # 1 #1·24±0·02

DNA repair DDB-2 U18300 & 1 &1·27±0·04
XR-CC1 L34079 & 1 &1·44±0·01

Active ER constitution Hsp90 X15183 & 1 &1·37±0·06
Immunophlin M88279 & 1 0
REA AF150962 # 1 #1·22±0·02

Mitogenic pathway ERK1 X60188 # 1 #1·49±0·01
Growth factor TGF-� AH003012 & 1 &2·14±0·01
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Increases in the expression of claudin 4, �-actin-1,
keratin 8, keratin 18 and decrease in the expression of
Hsp27 suggest that TAM treatment could restore
anchoring and junction structures.

Switching in HGFA I2, cathepsin D and pS2
expression suggests that TAM could restore protection
of ECM integrity.

Expression switching of NAD(P)H menadione oxi-
doreductase, thiol-specific antioxidant, and NADH
dehydrogenase ubiquinone argues for a possible
restoration of detoxification mechanisms, including a
decrease in E2-induced quinones synthesis, which could
prevent catechols/quinone genotoxic effects.

Interestingly, we did not find any change in the
expression of genes involved in cell-cycle progression
previously affected by E2. Furthermore, we found (Table
3) that TAM treatment specifically decreases the
expression of the DDB-2 and XR-CC1 genes involved
in DNA repair. TAM treatment also inhibits the
expression of Hsp90 and immunophilin while increasing
that of REA. These three gene products are known to

play a role in the formation of active ER. Concurrently,
TAM treatment induces the overexpression of profilin,
which is associated with actin dynamics. Finally, TAM
treatment induces underexpression of TGF� and
overexpression of ERK1 and hydroxysteroid (17-beta)
dehydrogenase 4 (HSD17�4).

Discussion

In the present study, we used the analytic approach we
had previously described (Gadal et al.) to identify the
genes differentially expressed in MCF7 breast cancer
cells stimulated with E2 or treated with TAM. With this
approach, the capture of biotinylated cDNA and
single-strand cDNA is very effective, thereby avoiding
the construction of normalized cDNA libraries and
increasing significantly the number of differentially
regulated genes correctly identified. The differential
expression pattern of over 90% of the sequences thus
isolated was confirmed by microarray analyses. These

Figure 3 Effects of E2 on the differential expression of genes regulating cell-cycle progression. Boxes
with plain color represent genes found to be differentially expressed by the VGID process and
confirmed by cDNA microarray analysis.
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techniques have been significantly improved over the
past 4 years, and it is now widely accepted that they can
reliably be used to verify accurately and independently
the relevance of differential expression data generated by
new technologies, such as the VGID approach, for
instance. For comparison, with Suppression Subtractive
Hybridization (SSH) as the primary means to detect
differential expression, only 70% of identified genes were
confirmed by a microarrays approach similar to that
described above (Kuang et al. 1998). Furthermore, and
in opposition to high-density microarrays, the VGID
strategy avoids the introduction of analytic bias resulting
from the a priori selection of genes to be investigated. We
then carried out computer-assisted data integration to
achieve an understanding of the physiologic mechanisms
potentially affected by differential expression of the
identified genes. Initially, the sets of genes identified as
estrogen or TAM responsive were completely separate
because they were independently obtained from different

RNA populations. Subsequent data analysis showed that
some genes were differentially modulated under each
of our two experimental conditions, thereby indicating
partial overlap between the two datasets. The VGID
data sets included genes previously shown to be
regulated in response to E2 or TAM, such as Hsp27
(Porter et al. 2001), pS2 (Inadera et al. 2000), cathepsin D
(Inadera et al. 2000, Safe 2001), c-myc (Doisneau-Sixou
et al. 2003), ERK1 (Rabenoelina et al. 2002) and
�-catenin (Gunin et al. 2003), thereby substantiating the
validity of our experimental approach. The fact that
only immunophilin expression changes were not
corroborated by microarray analyses may be explained
by the observation that quantitative information
obtained with small cDNA inserts as well as clones
arising from less abundant mRNA species could be
unreliable due to their propensity to generate weak
signals falling within the ‘noise’ of microarray hybridiza-
tion signals (Yang et al. 1999). Here, the transcript for

Figure 4 Evidence of E2 genotoxic effects in MCF7 cells. Boxes with plain color represent genes found to be differentially
expressed by the VGID process and confirmed by cDNA microarray analysis.
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immunophilin could well belong to the low-abundance
class since it was represented by only one isolated clone
(Table 3). Despite this limitation, our approach allowed
us to isolate and screen a large number of transcripts,
pointing out physiologic mechanisms apparently affected
by estrogenic or antiestrogenic treatments in MCF7
breast cancer cells.

MCF7 cells develop into xenogafts in ovariectomized
athymic mice only when supplemented with E2 (Soule &
McGrath 1980), indicating that E2 promotes primary
tumor growth. Our results show (Table 2) that, in MCF7
cells, E2 regulates the expression of seven genes involved
in the transition from the G1 to the S phase of the cell
cycle, such as c-myc (Safe 2001, Doisneau-Sixou et al.
2003), CDK2 (Safe 2001, Doisneau-Sixou et al. 2003),
b-myb (Saville & Watson 1998), ASK (Masai et al. 2000),
CKS1 (Spruck et al. 2001), TGF� (Polyak et al. 1994) and
nm23-H2 (Ji et al. 1995). Five of these, CDK2,
nm23-H2, CKS1, b-myb and ASK, are reported here,
for the first time, to our knowledge, as being regulated
by E2 at mRNA level. CDK2 forms complexes with
cyclins E and A, indispensable for progression through
mid- and late G1 phase and entry into S phase (Safe
2001) (Fig. 3). Thus, E2-induced increase in CDK2
expression should enhance the level of CDK2 protein
available to form these complexes. The cyclin A/CDK2
complex was reported to activate b-myb involved in
S-phase progression (Saville & Watson 1998). Over-
expression of b-myb, observed here, could reinforce
cell-cycle progression. Interestingly, we also observed the
overexpression of ASK, another gene implicated in
S-phase progression (Masai et al. 2000). Here, CKS1
induces the degradation of p27, a CDK2 inhibitor
(Spruck et al. 2001), thus increasing CDK2 activity. The
overexpression of CKS1 can also result from TGF�
underexpression, since TGF� inhibits CKS1 transcrip-
tion (Simon et al. 1995). Finally, decrease in TGF� level
induces additional inhibition of p27 expression (Polyak
et al. 1994, Reynisdottir et al. 1995). Altogether, these
different effects converge to enhance CDK2 activity in
addition to the increases in CDK2 mRNA levels
described above. In this study, we also observed the
E2-induced overexpression of nm23-H2, a nucleotide
diphosphate kinase activating c-myc expression (Ji et al.
1995). This suggests that E2 directly and indirectly
stimulates c-myc expression.

One of the key features of an aggressive phenotype is
the ability of the cancer cells to escape from the tumor
stroma, thus promoting metastasis. The invasive process
through the basement membrane requires changes in
intercellular adhesion, cell motility and remodeling of
the ECM (DePasquale et al. 1994, Lochter & Bissell
1995). In epithelium, desmosomes form strong adhesive
junctions between cells by linking intermediate keratin
filament networks to sites of intercellular adhesion. An
essential structural component of desmosome is junction

plakoglobin, the underexpression of which is associated
with anchorage loss in cancers (Tada et al. 2000). Our
results show that E2 inhibits the expression of junction
plakoglobin as well as that of keratins 8 and 18, which
are interconnected to desmosomes via binding to
desmoplakin, arguing for E2-induced desmosome dis-
organization. In agreement with this, DePasquale et al.
(1994) have observed a rearranging of vesicular plako-
globin staining after E2 treatment of MCF7 cells, which
could be a consequence of plakoglobin underexpression.
We also observed in E2-treated MCF7 cells, for the first
time, to our knowledge, the underexpression of subunit
1B of the Arp2/3 complex, which is thought to promote
actin filament assembly at the barbed end (Cooper
& Schafer 2000), suggesting E2-induced retardation
of actin microfilament polymerization. Furthermore,
the overexpression of Hsp27 (Porter et al. 2001)
(Table 2), which inhibits the formation of basolateral
microfilaments, suggests that E2 treatment could alter
microfilament homeostasis and microfilament dynamics
(Piotrowicz & Levin 1997). Catenins form an important
complex with cadherins, linking them to the actin
filament network. Underexpression of � catenin (Gunin
et al. 2003) in E2-treated MCF7 cells could modify this
process. Indeed, decrease in cadherin-associated �
catenin has been associated with invasiveness in breast
cancer (Gonzalez et al. 1999). Importantly, E2 decreased
�-actin expression (Table 2), a phenomenon known to be
associated with the progression from a nonmetastatic
to a metastatic phenotype of cells in salivary gland
adenocarcinoma (Suzuki et al. 1998). Finally, we
observed, for the first time, to our knowledge,
E2-regulated expression of claudin 4, involved in tight
junction constitution, the underexpression of which is
associated with increased invasive potential (Michl et al.
2003). Altogether, our results and those of other workers
indicate that, in MCF7 cells, E2 treatment modulates the
expression of major genes promoting the remodeling of
cell adhesion structures, and leads, in consequence, to
decreases in cell adhesiveness and increases in cell
mobility, thereby setting off two major causal mecha-
nisms associated with tumor progression and the
acquisition of an invasive potential (Suzuki et al. 1998)
through the loss of stable cell–cell adherent junctions
(DePasquale et al. 1994).

In this study, we identified E2-induced overexpression
of cathepsin D and pS2, and underexpression of two
new genes, USF2 and HGFA I2. Known to be
associated with invasive human breast cancer (Elliott
et al. 2002) and metastasis (Birchmeier et al. 1997), HGF
can activate the transcription factor E1AF (Hanzawa
et al. 2000), which, in turn, stimulates the production of
various MMPs (matrix metalloproteinases) (Hanzawa
et al. 2000), thereby promoting matrix degradation.
HGF is synthesized as pro-HGF/SF, and it requires
activation by factors such as HGF activator (HGFA).
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Thus, through a decrease in HGFA I2 (inhibitor of
HGFA) expression, E2 appears to promote HGFA-
mediated specific activation of HGF, resulting in ECM
degradation. This process could be reinforced by the
underexpression of USF2, observed here for the first
time, which interacts, like other USF transcription
factors, with the E1 box binding site on the HGF gene
multiconsensus region. Jiang et al. (2000) have shown
that only USF-1, and not USF-2, can stimulate HGF
transcription. We can speculate that underexpression of
USF-2 could diminish USF-2 competition for E1 box,
facilitate USF-1-dependent HGF gene transcription and
promote E1AF-dependent MMPs gene transcription,
leading to increased matrix degradation potential.
Furthermore, cathepsin D secretion by breast cancer
cells has been shown to lead to matrix degradation via
the formation of large acidic vesicles, which may
facilitate matrix component digestion (Montcourrier
et al. 1990). pS2 overexpression could be associated with
an alteration in ECM deposition and increased cell
mobility (Williams et al. 1996).

Genotoxic metabolites, such as catechol estrogens and
quinone derivatives, arising from E2 catabolism are
suspected to promote carcinogenesis via production of
genotoxic metabolites. Indeed, CYP1B1 (cytochrome
P450) hydroxylates E2 to the promutagenic metabolite
4-OH catechol estrogen (4-OH-E2) (Hayes et al. 1996).
E2-induced underexpression of TGF�, described here,
could increase CYP1B1 expression (Dohr et al. 1997)
and thus enhance E2 catabolism. On the other hand, our
data show that E2 induces underexpression of UDP
glucuronosyltransferase, which is involved in the
catechol-quinone detoxification system (Raftogianis et al.
2000), thus contributing to increased production of
semiquinone (E2-3,4-semiquinone) and quinone (E2-3,4-
quinone) from 4-OH-E2 (Fig. 4). However, quinones can
be recycled to catechols in the presence of NAD(P)H
menadione oxidoreductase (Long & Jaiswal 2000).
Consequently, underexpression of this gene (Table 2)
and decrease of its activity lead to increased levels of
toxic E2-3,4-derived quinones. Quinones can also be
synthesized from ubiquinol conjugates in the presence of
NAD(P)H dehydrogenase ubiquinone (Hatefi et al. 1985).
Overexpression of this gene, in E2-treated MCF7,
reinforces the accumulation of quinone metabolites
promoting tumor progression (Yager & Liehr 1996).
Moreover, E2 decreases both NAD(P)H:quinone oxido-
reductase activity and thiol-specific antioxidant mRNA
level (Table 3), an effect which could result in free
radical damage (Yim et al. 1994, Ernster et al. 1995,
Montano & Katzenellenbogen 1997). Thus, E2 appears
to play a further role in breast cancer development by
modulating the expression of five enzymes involved in
the control of E2-dependent genotoxic metabolites and
free radicals production, thereby increasing the prob-
ability that mutations occur during DNA synthesis. In

conclusion, E2 appears to promote breast cancer
progression by stimulating cell growth, anchorage
junctions remodeling and ECM disassembly, together
with genotoxic metabolite accumulation. The slight
changes in gene expression observed by microarray
analyses (Tables 2 and 3) appear sufficient to promote
tumor progression and invasiveness.

TAM, an E2 antagonist, reverses the effects of E2
upon expression of genes involved in genotoxic
metabolite accumulation and cytoskeletal ECM remod-
eling in addition to the overexpression of profilin, which
is known to promote actin filament assembly at the
barbed end (Kang et al. 1999) and of HSD17 �4, which
is known to inactivate E2 by conversion to estrone
(Luu-The 2001) (Tables 2 and 3). This could explain, at
least in part, how TAM can abrogate the E2-induced
phenotype. The fact that cell-cycle progression was not
inhibited can be explained by recent findings that TAM
can function as a molecular agonist inducing cell-cycle-
associated gene in breast cancer (Hodges et al. 2003).
Interestingly, TAM treatment also affects the expression
of several genes not regulated by E2, such as profilin,
DDB-2, XR-CC1, Hsp90, REA, immunophilin, ERK1,
HSD17 �4 and TGF-�. Some of these genes could be
involved in TAM resistance. Overexpression of REA
(Table 3), which competes with the coactivator SRC-1 in
binding to ER and inhibits ER transcriptional activity
(Delage-Mourroux et al. 2000), could explain the reversal
of E2-dependent transcriptional activities observed with
TAM treatment. Although antiestrogenic treatment
increases the life expectancy of breast cancer patients,
resistance and relapse phenomena can frequently occur
(Johnston 1997). Hypotheses of TAM resistance include
the following: 1. ER structural and functional modifica-
tions (Chander et al. 1993); 2. post-receptor interaction
modifications; 3. paracrine secretion modifications
(Katzenellenbogen 1991); 4. pharmacologic changes
(Osborne et al. 1992). Our results support the first
hypothesis, since we observed, in MCF7 cells treated
with TAM, decreases in expression of Hsp90 and
immunophilin, both of which are required for the
formation of functional ER heterocomplexes capable of
interacting with hormones (Schiene-Fischer & Yu 2001).
We showed here that TAM decreases the expression of
TGF� (Table 3). Throughout the duration of TAM
treatment, the inhibition of growth factor expression
would promote selection of cells endowed with
constitutively high expression of one or more growth
factors or growth factor receptor (Wakeling 1990).
Indeed, TGF� is constitutively expressed in many
estrogen-independent cells (Bates et al. 1988). Evidence
now shows that constitutive activity of growth factor can
bypass the cell’s dependence on estrogen and provide a
mechanism for hormone-independent growth (Johnston
et al. 1992), thus making TAM treatment inefficient. This
could explain, at least in part, the arising of TAM
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resistance. Moreover, TAM increases ERK1 gene
expression (Table 3), which could in turn enhance cell
proliferation and inhibit TGF�-induced antiproliferative
responses via SMAD 2/3 phosphorylation (Kretzschmar
2000). This may indicate a paradoxical effect of TAM,
explaining at least in part, the phenomenon of TAM
resistance (Rabenoelina et al. 2002). Finally, the
downregulating effects of TAM treatment upon two
genes involved in the base excision DNA repair system,
DDB-2 (Itoh et al. 1999, Nichols et al. 2000) and XRCC1
(Miller et al. 2001), could lead to increased mutation rate
in tumor cells.

In conclusion, our experimental approach allowed us
to identify 32 early E2-induced genes, including 19 new
genes. It also allowed us to detect the TAM-induced
expression reversal of 11 E2-induced genes. In addition,
we were able to report TAM-specific regulation of nine
genes, including eight new ones. Integrative data
analyses provided a global understanding of the cellular
mechanisms alterations associated with E2 and TAM
treatments. This knowledge could be important to
predict cell behavior associated with antiestrogenic
treatment and subsequently determine new therapeutic
targets. In particular, an understanding of mechanisms
leading to TAM resistance/relapse may facilitate the
development of novel therapeutic strategies addressed to
estrogen-regulated tumorigenesis.
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