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FROM KIRCHBERG’S INEQUALITY TO THE GOLDBERG

CONJECTURE

ANDREI MOROIANU

Abstract. The main result of this note is that a compact Kähler manifold
whose Ricci tensor has two distinct constant non-negative eigenvalues is locally
the product of two Kähler-Einstein manifolds.

The problem of existence of Kähler metrics whose Ricci tensor has two
distinct constant eigenvalues is related to the limiting case of Kirchberg’s in-
equality [15] for the first eigenvalue of the Dirac operator on compact Kähler
manifolds, as well as to the celebrated (still open) conjecture of Goldberg [13].

2000 Mathematics Subject Classification. Primary 53B20, 53C25

1. Introduction

In this note we consider compact Kähler manifolds (M, g, J) such that the sym-
metric endomorphism corresponding to the Ricci tensor Ric via the metric has
two distinct constant eigenvalues. Since for Kähler manifolds the Ricci tensor is
invariant under the action of J , each eigenvalue is of even multiplicity.

Such manifolds first appeared, to our knowledge, in a conjecture of Lichnerowicz
concerning compact Kähler spin manifolds with least possible (compared to the
scalar curvature) eigenvalue of the Dirac operator. These manifolds carry special
spinor fields and it was showed in [17] that their Ricci tensor has two constant non-
negative eigenvalues. In Section 2 we sketch the proof of the fact that their Ricci
tensor has to be parallel. Then in Section 3 we analyze manifolds with constant
eigenvalues of the Ricci tensor using tools coming from almost Kähler geometry,
and obtain the following splitting theorem.

Theorem 1.1. [3] Let (M, g, J) be a compact Kähler manifold whose Ricci ten-
sor has exactly two distinct constant non-negative eigenvalues λ and µ. Then the
universal cover of (M, g, J) is the product of two simply connected Kähler–Einstein
manifolds of scalar curvatures λ and µ, respectively.

Note that local irreducible examples of Kähler manifolds with eigenvalues of the
Ricci tensor equal to 0 and 1 are known to exist in complex dimension two, cf.
[8] and [2, Remark 1(c)]. Note also that the above result fails if one allows the
Ricci tensor to have more than two different eigenvalues, as shown by the compact
homogeneous Kähler manifolds (the generalized complex flag manifolds).

Another reason for this study came from an a priori unexpected link with the
Goldberg conjecture [13], which states that any compact Einstein almost Kähler
manifold is, in fact, Kähler–Einstein. For any Kähler manifold (M, g, J) with Ricci
tensor having two distinct constant eigenvalues, one can define another g-orthogonal

The material of the present talk is based on a joint work with Vestislav Apostolov and Tedi
Draghici.
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almost complex structure J̄ , by changing the sign of J on one of the eigenspaces
of Ric. The new almost complex structure J̄ , which is not integrable in general,
commutes with J and has a closed fundamental 2-form, i.e. (g, J̄) gives rise to an
almost Kähler structure on the manifold. The integrability of J̄ holds precisely
when the Ricci tensor of g is parallel, or equivalently, when g is locally a product of
two Kähler–Einstein metrics; see Lemma 3.1. Moreover, any Kähler structure (g, J)
with Ricci tensor having two distinct constant eigenvalues either both positive, or
both negative, determines (and is determined by) a certain Einstein almost Kähler
structure (g̃, J̄), see Corollary 3.3. In other words, any example of compact Kähler
manifold whose Ricci tensor is non-parallel and has two constant eigenvalues of the
same sign, would provide a counterexample to the Goldberg conjecture.

2. Limiting manifolds for Kirchberg’s inequality

2.1. The Ricci tensor of limiting manifolds. We follow here the presentation
and notations from [19].

Let (M2m, g, J) be a compact Kähler spin manifold with positive scalar curvature
s and suppose that its complex dimension m is even : m = 2l. K.–D. Kirchberg
[15] showed that every eigenvalue λ of the Dirac operator on M satisfies

(1) λ2 ≥
m

4(m− 1)
inf
M
s.

The manifolds which satisfy the limiting case of this inequality are called lim-
iting manifolds for the remainder of this paper. In complex dimension 2, limiting
manifolds were classified in 1994 by Th. Friedrich [11]. In all higher dimensions,
they are characterized by the following

Theorem 2.1. (cf. [15]) M is a limiting manifold if and only if its scalar curvature
s is a positive constant and there exists a spinor Ψ ∈ Γ(Σl+1M) such that

(2) ∇XΨ = −
1

n
(X − iJX) ·DΨ, ∀X,

(3) ∇XDΨ = −
1

4
(Ric(X) + iJRic(X)) · Ψ, ∀X,

(4) κ(X − iJX) · Ψ = (Ric(X) − iJRic(X)) · Ψ, ∀X,

(5) κ(X − iJX) ·DΨ = (Ric(X) − iJRic(X)) ·DΨ, ∀X,

where κ = s
n−2

. In particular, (2) implies (after a Clifford contraction) that DΨ ∈

Γ(ΣlM).

These relations correspond to formulas (58), (59), (60) and (74) from [15], with
the remark that Ψ above and ψl−1 of [15] are related by Ψ = jψl−1. (We recall,
for the convenience of the reader, that Σl denotes the eigenspace for the Clifford
action of the Kähler form on the spin bundle ΣM corresponding to the eigenvalue
i(m− 2l)).

In [17] we obtained the following

Theorem 2.2. (cf. [17], Thm.3.1) The Ricci tensor of a limiting manifold of even
complex dimension has two eigenvalues, κ and 0, the first one with multiplicity n−2
and the second one with multiplicity 2.
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Corollary 2.3. The tangent bundle of M splits into a J–invariant orthogonal direct
sum TM = E ⊕ F (where E and F are the eigenbundles of TM corresponding to
the eigenvalues 0 and κ of Ric respectively). Moreover, the distributions E and F
are integrable.

Proof. All but the last statement are clear from Theorem 2.2, so we only prove the
integrability of E and F . Let ρ denote the Ricci form of M , defined by ρ(X,Y ) =
Ric(JX, Y ), which, of course satisfies dρ = 0. Remark that Xyρ = 0 for X ∈ E and
Xyρ = −κJX for X ∈ F . We consider arbitrary vector fields X,Y ∈ E and Z ∈ F
and obtain (σ stands for the cyclic sum)

0 = dρ(X,Y, Z) = σ(X(ρ(Y, Z) − ρ([X,Y ], Z))

= −ρ([X,Y ], Z),

so E is integrable. Similarly, for X,Y ∈ F and Z ∈ E we have

0 = dρ(X,Y, Z) = σ(X(ρ(Y, Z) − ρ([X,Y ], Z))

= Z(ρ(X,Y )) − ρ([Y, Z], X) − ρ([Z,X ], Y )

= κ(Z(g(JX, Y )) − g(J [Y, Z], X)− g(J [Z,X ], Y ))

= κ(g(∇Y Z, JX) − g(∇XZ, JY )

= −κg([X,Y ], JZ),

which proves the integrability of F . �

From (2)– (5) follows that for every section X of E we have

(6) (X − iJX) · Ψ = (X − iJX) ·DΨ = 0

(7) ∇XΨ = ∇XDΨ = 0.

2.2. Kählerian Killing spinors on Hodge manifolds. The theorem below is
crucial for proving that the Ricci tensor of limiting manifolds is parallel. Its proof is
based on the theory of projectable spinors and the classification of Spinc manifolds
with parallel spinors [18].

Definition 2.4. Let (N4l−2, g, J) be a Kähler manifold equipped with a Spinc struc-
ture. A Kählerian Killing spinor on N is a spinor Ψ satisfying

(8) ∇A
XΨ + αX · Ψ + iα(−1)lJX · Ψ̄ = 0, ∀X,

for some real constant α 6= 0.

Theorem 2.5. Let (Nn, g, J), n = 4l − 2 be a simply connected compact Hodge
manifold endowed with a Spinc structure carrying a Kählerian Killing spinor Ψ ∈
Γ(Σl−1N ⊕ ΣlN). Then this Spinc structure on N is actually a spin structure.

Proof. The proof is in two steps. We first show that the Kählerian Killing spinor on
N induces a Killing spinor on some S1 bundle overN , and then use the classification
of Spinc manifolds carrying Killing spinors to conclude.

The Hodge condition just means that r
2π [Ω] ∈ H2(N,Z) for some r ∈ R∗, and

we will fix some r with this property. The isomorphism H2(N,Z) ≃ H1(N,S1)
guarantees the existence of some principal U(1) bundle π : S → N whose first
Chern class satisfies c1(S) = r

2π [Ω]. Furthermore, the Thom–Gysin exact sequence
shows that S is simply connected if r is chosen in such a way that r

2π [Ω] is not a

multiple of some integral class in H2(N,Z) (cf. [5], p.85).
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The condition above on the first Chern class of S shows that there is a connection
on S whose curvature form G satisfies G = −irπ∗Ω. This connection induces a 1–
parameter family of metrics on S which turn the bundle projection π : S → N into
a Riemannian submersion with totally geodesic fibers. These metrics are given by

gt
S(X,Y ) = g(π∗(X), π∗(Y )) − t2 ω(X)ω(Y ) (t > 0),

where ω denotes the (imaginary valued) connection form on S.
By pull–back from N , we obtain a Spinc structure on S, whose spinor bundle

is just π∗ΣN . After a straightforward computation, one finds that for a suitably
chosen parameter t, the pull back π∗Ψ of our Kählerian Killing spinor Ψ is a Killing
spinor of the pull–back Spinc structure on S.

Now, a standard argument shows that π∗Ψ induces a parallel spinor Φ on the
cone S̄ over S, endowed with the pull–back Spinc structure (see [18]). Since S

is compact, a theorem of Gallot ([12], Prop.3.1) shows that S̄ is an irreducible
Riemannian manifold. From ([18], Thm.3.1) we then deduce that either the Spinc

structure of S̄ is actually a spin structure, or there exists a Kähler structure I on
S̄ such that

(9) X · Φ = iI(X) · Φ, ∀X ∈ T S̄,

and the Spinc structure of S̄ is the canonical Spinc structure induced by I (these
two cases do not exclude each other). In the first case we are done since the pull-
back operation for Spinc structures on Riemannian submersions is one-to-one. The
second case turns out to be impossible, cf. [19] for the details.

�

We are now ready to complete the proof of:

Theorem 2.6. The Ricci tensor of a limiting manifold of even complex dimension
is parallel.

Proof. We give here the main ideas, the reader is referred to [19] for details. Let N
be a maximal leaf of the integrable distribution F . An easy calculation shows that
the Ricci tensor of N is defined positive. As N is complete, Myers’ Theorem implies
that N is compact and the theorem of Kobayashi ([16], Thm. A) shows that N is
simply connected. We shall now consider the restriction ΦN of Φ := Ψ + 2√

nκ
DΨ

to N . The relations (4) and (5) show that ΦN is a section of the Spinc structure
on N with associated line bundle E1,0|N .

A rather intricate computation yields that ΦN is a Kählerian Killing spinor
satisfying the hypothesis of Theorem 2.5. Moreover, N is a Hodge manifold: if we
denote by i the inclusion N →M and by ρ the Ricci form of M , then κΩN = i∗ρ,
which implies κ[ΩN ] = i∗(2πc1(M)), and thus [ΩN ] is a real multiple of i∗(c1(M)) ∈
H2(N,Z).

We then apply Theorem 2.5 and deduce that the Spinc structure on N has
actually to be a spin structure (i.e. E1,0|N is a flat bundle on N). An explicit
computation of the curvature of E1,0|N in terms of the curvature tensor of M yields
that TM |N = E|N ⊕ F|N is a parallel decomposition of the vector bundle TM |N
over N , so finally, by choosing N arbitrarily, we deduce that E and F are parallel
distributions on M . �
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3. Almost Kähler manifolds

We now relax the hypothesis in Theorem 2.6 : rather than assuming that M is
a limiting manifold, we only suppose that the Ricci tensor of M has two constant
non-negative eigenvalues.

3.1. The commuting almost Kähler structure. The main idea of the proof of
Theorem 1.1 is to construct an almost Kähler structure J̄ on (M, g, J), which is
compatible with g and commutes with J .

Lemma 3.1. Let (M, g, J) be a Kähler manifold whose Ricci tensor has constant
eigenvalues λ < µ. Denote by Eλ and Eµ the corresponding J-invariant eigenspaces
and define a g-orthogonal almost complex structure J̄ by setting J̄|Eλ

= J|Eλ
; J̄|Eµ

=

−J|Eµ
. Then J and J̄ mutually commute and (g, J̄) is an almost Kähler structure,

i.e. the fundamental form Ω(·, ·) = g(J̄ ·, ·) is symplectic. Moreover, (g, J̄) is Kähler
(i.e. J̄ is integrable) if and only if (M, g) is locally product of two Kähler–Einstein
manifolds of scalar curvatures λ and µ, respectively.

Proof. Denote by Ω(·, ·) = g(J ·, ·) the fundamental form of (g, J) and consider the
(1,1)-forms α and β defined by

α(X,Y ) = Ω(prλ(X), prλ(Y )), ∀X,Y ∈ TM ;

β = Ω − α,

where prλ (resp. prµ) denotes the orthogonal projection of the tangent bundle TM
onto Eλ (resp. Eµ). The Ricci form ρ(·, ·) = Ric(J ·, ·) of (M, g, J) is then given by

ρ = λα+ µβ.

As Ω = α + β and ρ are both closed (1,1)-forms, so are the 2-forms α and β. By
the very definition of J̄ , the fundamental form Ω(·, ·) = g(J̄ ·, ·) is given by

Ω = α− β,

and hence is closed, i.e. (g, J̄ ,Ω) is an almost Kähler structure; it is Kähler as soon
as the Ricci tensor is parallel (equivalently, α and β are parallel), i.e. when (M, g)
is locally a product of two Kähler-Einstein manifolds with scalar curvatures λ and
µ, respectively. �

Let us consider for a moment the more general context of Kähler manifolds
(M, g, J) which admit a commuting almost Kähler structure J̄ . Any g-orthogonal
almost complex structure J̄ which commutes with and differs from ±J gives rise to a
g-orthogonal, J-invariant endomorphism Q = −J ◦ J̄ of TM such that Q2 = Id|TM

;
we thus define an orthogonal, J-invariant splitting of the tangent bundle TM

TM = E+ ⊕ E−

into the sum of the ±1-eigenspaces of Q, the (complex) sub-bundles E±, respec-
tively. As in the proof of Lemma 3.1, we consider the (1,1)-forms α and β, the
restrictions of the fundamental form Ω of (g, J) to the spaces E+ and E−, respec-
tively. The fundamental forms Ω and Ω of (g, J) and (g, J̄) are then given by

Ω = α+ β; Ω = α− β,
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proving that α and β are closed. Therefore, corresponding to any Kähler metric
(g, J) admitting a commuting almost Kähler structure J̄ , we may consider a natural
1-parameter family gt of metrics having the same property (see [19]):

(10) gt = g|E+
+ tg|E

−

, t > 0,

where g|E+
(resp. g|E

−

) denotes the restriction of g to the eigenspaces E+ (resp.

to E−).

Lemma 3.2. For any t > 0, the metric gt is Kähler with respect to J , almost
Kähler with respect to J̄ and has the same Ricci tensor as the metric g = g1.

Proof. The first statements follow from the fact that the fundamental form of (gt, J)
(resp. (gt, J̄)) is closed as being equal to α + tβ (resp. α − tβ), where α and β

are constructed as above with respect to g = g1. For the last claim, note that the
volume form of the metric gt is a constant multiple of the volume form of g = g1,
so, from the local expression in complex coordinates, the Ricci forms of the Kähler
structures (gt, J) and (g, J) coincide. �

As for Kähler metrics with Ricci tensor having distinct constant eigenvalues, Lemma
3.2 shows that one can deform any such given metric to one whose Ricci tensor has
constant eigenvalues equal to −1, 0 or +1. In particular, we get

Corollary 3.3. On a complex manifold (M,J) there is a one-to-one correspon-
dence between Kähler metrics with Ricci tensor of constant eigenvalues λ < µ with
λµ > 0 and Kähler-Einstein metrics g̃ of scalar curvature 4λ carrying an orthogonal
almost Kähler structure J̄ which commutes with and differs from ±J ; in this cor-
respondence J̄ is compatible also with g and coincides (up to sign) with the almost
Kähler structure defined in Lemma 3.1; moreover, J̄ is integrable precisely when g

(and g̃) is locally product of two Kähler–Einstein metrics.

Proof. Let (M, g, J) be a Kähler manifold whose Ricci tensor has constant eigenval-
ues λ < µ and J̄ be the almost Kähler structure commuting with J given by Lemma
3.1. It is easy to see that the ±1-eigenspaces of the endomorphism Q = −J◦J̄ above
are given by E+ = Eλ, E− = Eµ, where, we recall, Eλ and Eµ are the eigenspaces

of Ric. By Lemma 2, the metric g̃ = gµ/λ obtained via (10) is Kähler–Einstein with
scalar curvature 4λ. Conversely, starting from a Kähler–Einstein structure (g̃, J) of
scalar curvature 4λ, endowed with an almost Kähler structure J̄ commuting with
J , the deformation (10) provides a Kähler metric (g, J) whose Ricci tensor has
constant eigenvalues λ < µ, by putting g1 = g̃ and g = gλ/µ. The almost complex
structure J̄ is compatible to both g and g̃. It is clear then that the common Ricci
tensor of g and g̃ is J̄-invariant, and therefore, J̄ coincides (up to sign) with the
almost complex structure defined in Lemma 3.1. By Lemma 3.1 we also conclude
that the integrability of J̄ is equivalent to g (hence also g̃) being locally a product
of two Kähler–Einstein metrics. �

3.2. Curvature obstructions to existence of strictly almost Kähler struc-

tures. The proof of Theorem 1.1 will be derived by showing the integrability of
the almost Kähler structure obtained in Corollary 1. To do this we first observe
that existence of a strictly almost Kähler structure imposes several non-trivial re-
lations between different U(n)-components of the curvature. Because the almost
Kähler structure will take the center stage in what follows, we drop the bar-notation
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from the previous sub-section and will even forget for now that in our situation the
manifold also admits a Kähler structure.

Thus, let (M, g, J) be an almost Kähler manifold of (real) dimension 2n. We
start by reviewing some necessary elements of almost Kähler geometry.

The almost complex structure J gives rise to a type decomposition of complex
vectors and forms, and accordingly, of any complex tensor field; by convention,
J acts on the cotangent bundle T ∗M by Ja(X) = a(−JX). We thus have a
decomposition of the complexified cotangent bundle

T ∗M ⊗ C = Λ1,0M ⊕ Λ0,1M,

and of the bundle of complex 2-forms

Λ2M ⊗ C = Λ1,1M ⊕ Λ2,0M ⊕ Λ0,2M.

A similar decomposition holds for the complex bundle S2M ⊗ C of symmetric 2-
tensors. When considering real sections of Λ2M (resp. of S2M), we prefer to
introduce the super-scripts ′ and ′′ for denoting the projections to the real sub-
bundles Λ1,1

R
M (resp. S1,1

R
M) of J-invariant 2-forms (resp. symmetric 2-tensors)

and to [[Λ2,0M ]] (resp. [[S2,0M ]]) of J-anti-invariant ones (here and henceforth [[ ]]
stands for the real vector bundle underlying a given complex bundle). Thus, for
any section ψ of Λ2M (resp. of S2M) we have the splitting ψ = ψ′ + ψ′′, where

ψ′(·, ·) =
1

2
(ψ(·, ·) + ψ(J ·, J ·)) and ψ′′(·, ·) =

1

2
(ψ(·, ·) − ψ(J ·, J ·)).

Note that Λ1,1
R
M can be identified with S

1,1
R
M via the complex structure J : for

any α ∈ Λ1,1
R
M ,

A = (J ◦ α) := α(J ·, ·)

is the corresponding section of S1,1
R
M .

The real bundle [[Λ2,0M ]] (resp. [[S2,0M ]]) inherits a canonical complex structure
J , acting by

(Jψ)(X,Y ) := −ψ(JX, Y ), ∀ψ ∈ [[Λ2,0M ]].

(We adopt a similar definition for the action of J on [[S2,0M ]]).
It is well known that the fundamental form Ω(·, ·) = g(J ·, ·) of an almost Kähler

structure is a real harmonic 2-form of type (1, 1), i.e. satisfies:

Ω(J ·, J ·) = Ω(·, ·) , dΩ = 0 and δΩ = 0,

where d and δ are the differential and co-differential operators acting on forms.
Moreover, if ∇ is the Levi-Civita connection of g, then ∇Ω (which is identified with
the Nijenhuis tensor of J) is a section of the real vector bundle [[Λ1,0M ⊗ Λ2,0M ]].

We first derive several consequences from the classical Weitzenböck formula for
a 2-form ψ:

∆ψ −∇∗∇ψ = [Ric(Ψ·, ·) − Ric(·,Ψ·)] − 2R(ψ)(11)

=
2(n− 1)

n(2n− 1)
sψ − 2W (ψ) +

(n− 2)

(n− 1)
[Ric0(Ψ·, ·) − Ric0(·,Ψ·)],

where: ∆ = dδ + δd denotes the Riemannian Laplace operator acting on 2-forms,
∇∗ denotes the adjoint of ∇ with respect to g; Ric0 = Ric− s

2ng is the traceless part
of the Ricci tensor, s = trace(Ric) is the scalar curvature, Ψ is the skew-symmetric
endomorphism of TM identified to ψ via the metric, and R and W are respectively
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the curvature tensor and the Weyl tensor, considered as endomorphisms of Λ2M

or as sections of Λ2M ⊗ Λ2M , depending on the context.
Applying relation (11) to the (harmonic) fundamental form Ω of the almost

Kähler structure (g, J), we obtain

(12) ∇∗∇Ω = 2R(Ω) − [Ric(J ·, ·) − Ric(·, J ·)] .

Note that the Ricci tensor of a Kähler structure is J-invariant, but this is no
longer true for an arbitrary almost Kähler structure. It will be thus useful to
introduce the invariant and the anti-invariant parts of the Ricci tensor with respect
to the almost complex structure J , Ric′ and Ric′′, respectively. We also put

ρ = J ◦ Ric′

to be the (1,1)-form corresponding the the J-invariant part of Ric, which will be
called Ricci form of (M, g, J). For Kähler manifolds, ρ is clearly equal to the image
of Ω under the action of the curvature R, but this is not longer true for almost
Kähler manifolds. In fact,

ρ∗ = R(Ω)

can be considered as a second (twisted) Ricci form of (M, g, J) which is not, in
general, J-invariant (see e.g. [22]). We will consequently denote by (ρ∗)′ and (ρ∗)′′

the corresponding 2-forms which are sections of the bundles Λ1,1
R
M and [[Λ2,0M ]],

respectively. With these notations, formula (12) is a measure of the difference of
the two types of Ricci forms on an almost Kähler manifold:

(13) ρ∗ − ρ =
1

2
(∇∗∇Ω).

Taking the inner product with Ω of the relation (13) we obtain the difference of the
two types of scalar curvatures:

(14) s∗ − s = |∇Ω|2 =
1

2
|∇J |2 ,

where, we recall s = trace(Ric) is the usual scalar curvature of g, and s∗ =
2〈R(Ω),Ω〉 is the so-called star-scalar curvature of the almost Kähler structure
(g, J). Here and throughout the paper, the inner product induced by the metric
g on various tensor bundles over the manifold will be denoted by 〈 〉, while the
corresponding norm is denoted by | |; note that 〈 〉 acting on 2-forms differs by a
factor of 1/2 compared to when it acts on corresponding tensors or endomorphisms.
In the present paper ∇Ω is viewed as a Λ2M -valued 1-form, while ∇J is considered
as a section of (T ∗M)⊗2 ⊗ TM , etc.

Formulae (13) and (14) can be interpreted as “obstructions” to the (local) exis-
tence of a strictly almost Kähler structure J , compatible with a given metric g; see
e.g. [4]. We derived these relations by using properties of the 2-jet of J (although
eventually (14) depends on the 1-jet only), so that (13) and (14) can be viewed as
obstructions to the lifting of the 0-jet of J to the 2-jet.

In fact, there is even a more general identity than (13), due to Gray [14], which
could also be interpreted as an obstruction to the lifting of the 0-jet of J to the
2-jet: Starting from the splitting

Λ2M = Λ1,1
R
M ⊕ [[Λ2,0M ]],
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we denote by R̃ the component of the curvature operator acting trivially on the
first factor, i.e.

R̃X,Y,Z,T =
1

4

(
RX,Y,Z,T −RJX,JY,Z,T −RX,Y,JZ,JT +RJX,JY,JZ,JT

)
.

Thus, R̃ can be viewed as a section of the bundle EndR([[Λ2,0M ]]), which in turn
decomposes further as

EndR([[Λ2,0M ]]) =
(
EndR([[Λ2,0M ]])

)′
⊕

(
EndR([[Λ2,0M ]])

)′′
,

into the sub-bundles of endomorphisms of [[Λ2,0M ]] which commute, respectively,

anti-commute with the action of J on [[Λ2,0M ]]. Denoting by R̃′ and R̃′′ the corre-

sponding components of R̃, Gray’s identity is [14]

(15) R̃′ = −
1

4

∑
(∇ej

Ω)⊗(∇ej
Ω) .

As for the component R̃′′, from its definition we have

(R̃′′)X,Y,Z,T =
1

8

(
RX,Y,Z,T −RJX,JY,Z,T −RX,Y,JZ,JT +RJX,JY,JZ,JT

+RX,JY,Z,JT +RJX,Y,Z,JT +RX,JY,JZ,T +RJX,Y,JZ,T

)
,

showing that

(R̃′′)Z1,Z2,Z3,Z4
= RZ1,Z2,Z3,Z4

= WZ1,Z2,Z3,Z4
∀Zi ∈ T 1,0M.

Thus, R̃′′ is actually determined by the Weyl curvature of M .
The next Weitzenböck-type formula provides a further obstruction, this time to

the lift of the 3-jet of J to the 4-jet. We skip the proof, which can be found in [3].

Proposition 3.4. For any almost Kähler structure (g, J,Ω) the following relation
holds:

∆(s∗ − s) = −4δ
(
Jδ(JRic′′)

)
+ 8δ

(
〈ρ∗,∇· Ω〉

)
+ 2|Ric′′|2(16)

−8|R̃′′|2 − |∇∗∇Ω|2 − |φ|2 + 4〈ρ, φ〉 − 4〈ρ,∇∗∇Ω〉 ,

where the semi-positive (1,1)-form φ is given by φ(X,Y ) = 〈∇JXΩ,∇Y Ω〉; δ de-
notes the co-differential with respect to ∇, acting on 1-forms and 2-tensors.

Integrating (16) over the manifold, one obtains an integral formula identical to
the one in [21, Proposition 3.2], up to some integration by parts. In particular we
have:

Corollary 3.5. ([21]) For any compact almost Kähler manifold with J-invariant
Ricci tensor the following inequality holds:

(17)

∫

M

[
4〈ρ, φ〉 − 4〈ρ,∇∗∇Ω〉 − |∇∗∇Ω|2 − |φ|2

]
dVg ≥ 0,

where dVg = 1
n!

Ωn is the volume form of g.

Remark 3. As shown by Sekigawa, the above inequality gives an obstruction to
the (global) existence of strictly almost Kähler structures, when the metric g is
Einstein with non-negative scalar curvature. Indeed, in this case Ric′′ = 0 and
2〈ρ, φ〉 = 〈ρ,∇∗∇Ω〉 = s

2n |∇Ω|2, so that, by (17), ∇Ω = 0, i.e. J is necessarily
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Kähler. In dimension 4, other integrability results have been derived from (16); see
e.g. [10], [1], [20].

Proof of Theorem 1.1. We now turn back to the notation used in Section 3.1.
Thus, (g, J,Ω) denotes the Kähler structure, with Ricci tensor having two non-
negative distinct constant eigenvalues 0 ≤ λ < µ, while (g, J̄ ,Ω) is the almost
Kähler structure constructed by Lemma 3.1; we shall also use the (1,1)-forms α
and β introduced in Section 2.1, so that we have

(18) Ω = α+ β; Ω = α− β; ρ = λα+ µβ; ρ̄ = λα− µβ,

where ρ and ρ̄ are the Ricci forms of (g, J) and (g, J̄), respectively.
For proving Theorem 1.1 it is enough to show that J̄ is integrable (see Lemma

3.1), or equivalently, that ∇Ω = 0. The latter will be derived from the integral
inequality stated in Corollary 3.5 (see Remark 3).

Let φ̄(X,Y ) = 〈∇J̄XΩ,∇Y Ω〉 be the semi-positive definite (1,1)-form with re-
spect to J̄ , defined in Proposition 3.4. By (18) and using the semi-positivity of the
(1,1)-forms α and φ̄, we get

〈ρ̄, φ̄〉 − 〈ρ̄,∇∗∇Ω〉 = (λ − µ)〈α, φ̄〉 + (µ− λ)〈α,∇∗∇Ω〉(19)

+µ〈Ω, φ̄〉 − µ〈Ω,∇∗∇Ω〉

= (λ − µ)〈α, φ̄〉 + (µ− λ)〈α,∇∗∇Ω〉 −
µ

2
|∇Ω|2

≤ (µ− λ)〈α,∇∗∇Ω〉 −
µ

2
|∇Ω|2.

Since 〈α,∇Ω〉 = 0 (because α and ∇Ω are of type (1, 1) and (2, 0) + (0, 2), respec-
tively), we have

〈α,∇∗∇Ω〉 = 〈∇α,∇Ω〉 =
1

2
|∇Ω|2 ,

where in the last step we used that α = 1
2
(Ω + Ω) and Ω is parallel. Substituting

into the inequality (19), we obtain

〈ρ̄, φ̄〉 − 〈ρ̄,∇∗∇Ω〉 ≤ −
λ

2
|∇Ω|2.

Since by assumption λ ≥ 0, the latter inequality shows that 〈ρ̄, φ̄〉−〈ρ̄,∇∗∇Ω〉 is an
everywhere non-positive function and Corollary 3.5 then implies that ∇∗∇Ω = 0;
after multiplying by Ω we reach ∇Ω = 0. �
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