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Twistor forms are a natural generalization of conformal vector fields on Riemannian manifolds. They are defined as sections in the kernel of a conformally invariant first order differential operator. We study twistor forms on compact Kähler manifolds and give a complete description up to special forms in the middle dimension. In particular, we show that they are closely related to Hamiltonian 2-forms. This provides the first examples of compact Kähler manifolds with non-parallel twistor forms in any even degree.

Introduction

Killing vector fields are important objects in Riemannian geometry. They are by definition infinitesimal isometries, i.e. their flow preserves a given metric. The existence of Killing vector fields determines the degree of symmetry of the manifold. Slightly more generally one can consider conformal vector fields, i.e. vector fields whose flows preserve a conformal class of metrics. The covariant derivative of a vector field can be seen as a section of the tensor product Λ 1 M ⊗ T M which is isomorphic to Λ 1 M ⊗ Λ 1 M. This tensor product decomposes under the action of O(n) as

Λ 1 M ⊗ Λ 1 M ∼ = R ⊕ Λ 2 M ⊕ S 2
0 M, where S 2 0 M is the space of trace-free symmetric 2-tensors, identified with the Cartan product of the two copies of Λ 1 M. A vector field X is a conformal vector field if and only if the projection on S 2 0 M of ∇X vanishes. More generally, the tensor product Λ 1 M ⊗ Λ p M decomposes under the action of O(n) as

Λ 1 M ⊗ Λ p M ∼ = Λ p-1 M ⊕ Λ p+1 M ⊕ T p,1 M,
where again T p,1 M denotes the Cartan product. As natural generalizations of conformal vector fields, twistor p-forms are defined to be p-forms ψ such that the projection of ∇ψ onto T p,1 M vanishes.

Coclosed twistor p-forms are called Killing forms. For p = 1 they are dual to Killing vector fields. Note that parallel forms are trivial examples of twistor forms.

Killing forms, as generalization of Killing vector fields, were introduced by K. Yano in [START_REF] Yano | Some remarks on tensor fields and curvature[END_REF]. Twistor forms were introduced later on by S. Tachibana [START_REF] Tachibana | On conformal Killing tensor in a Riemannian space[END_REF], for the case of 2-forms, and by T. Kashiwada [START_REF] Kashiwada | On conformal Killing tensor[END_REF], [START_REF] Tachibana | On the integrability of Killing-Yano's equation[END_REF] in the general case.

The composition of the covariant derivative and the projection Λ 1 M ⊗Λ p M → T p,1 M defines a first order differential operator T , which was already studied in the context of Stein-Weiss operators (c.f. [START_REF] Branson | Stein-Weiss operators and ellipticity[END_REF]). As forms in the kernel of T , twistor forms are very similar to twistor spinors in spin geometry, which were first studied in [START_REF] Atiyah | Self-duality in four dimensional Riemannian geometry[END_REF]. We will give an explicit construction relating these two objects in Section 2.

The special interest for twistor forms in the physics literature stems from the fact that they can be used to define quadratic first integrals of the geodesic equation, i.e. functions which are constant along geodesics. Hence, they can be used to integrate the equation of motion, which was done for the first time by R. Penrose and M. Walker in [START_REF] Penrose | On quadratic first integrals of the geodesic equations for type {22} spacetimes[END_REF]. More recently Killing forms and twistor forms have been successfully applied to define symmetries of field equations (c.f. [START_REF] Benn | Debye potentials for Maxwell and Dirac fields from a generalization of the Killing-Yano equation[END_REF], [START_REF] Benn | Dirac symmetry operators from conformal Killing-Yano tensors[END_REF]).

Despite this longstanding interest in Killing forms, there are only very few global results on the existence or non-existence of twistor forms on Riemannian manifolds. The first result for twistor forms on compact Kähler manifolds was obtained in [START_REF] Yamaguchi | On a Killing p-form in a compact Kählerian manifold[END_REF], where it is proved that any Killing form has to be parallel. Some years later S. Yamaguchi et al. stated in [START_REF] Jun | On the conformal Killing p-form in compact Kaehlerian manifolds[END_REF] that, with a few exceptions for small degrees and in small dimensions, any twistor form on a compact Kähler manifold has to be parallel. Nevertheless, it turns out that their proof contains several serious gaps.

In fact, we will show that there are examples of compact Kähler manifolds having non-parallel twistor forms in any even degree.

For the convenience of the reader, we outline here the main results of the paper, as well as the remaining open questions.

If ψ is a twistor p-form on a compact Kähler manifold (M 2m , ω) with 2 ≤ p ≤ n -2 and p = m, then it turns out that ψ is completely determined (modulo parallel forms) by a special 2-form and its generalized trace (Theorem 4.5). Special 2-forms are closely related to Hamiltonian 2-forms, recently introduced and studied in [START_REF] Apostolov | The geometry of weakly selfdual Kähler surfaces[END_REF] and [START_REF] Apostolov | Hamiltonian 2-forms in Kähler geometry I[END_REF]. Hamiltonian forms arise for example on weakly Bochner-flat Kähler manifolds and on Kähler manifolds which are conformally Einstein.

If p = m, the orthogonal projection of ψ onto the kernel of J on m-forms can still be characterized (up to parallel forms) by special 2-forms, but the complete classification of non-parallel twistor forms can only be obtained up to the hypothetical existence of special m-forms of type (m -1, 1) + (1, m -1). At this moment we have no examples of such forms for m > 2, and moreover we were able to show that they are automatically parallel on compact Kähler-Einstein manifolds.

For m > 2, each special 2-form ϕ with generalized trace f (defined by df = δ c ϕ) determines an affine line {ϕ x = ϕ + xf ω} in the space of 2-forms, which contains distinguished elements : ϕ x is Hamiltonian for x = 1 m 2 -1 , closed for x = 1 m+1 , coclosed for x = -1 and a twistor form for x = -m-2 2(m 2 -1) . For m = 2, the picture is slightly different since the generalized trace of a special 2form (and thus the affine line above) are no longer defined. The results are as follows : every twistor 2-form is (up to parallel forms) primitive and of type (1, 1) (i.e. anti-selfdual), and defines a special 2-form. This special 2-form induces a Hamiltonian 2-form if and only if its codifferential is a Killing vector field. Conversely, a Hamiltonian 2-form always defines the affine line above, and in particular its primitive part is simultaneously a special 2-form and a twistor form. Thus, special 2-forms are, in some sense, less restrictive than Hamiltonian 2-forms on Kähler surfaces.

Twistor forms on Riemannian manifolds

Let (V, •, • ) be an n-dimensional Euclidean vector space. The tensor product V * ⊗ Λ p V * has the following O(n)-invariant decomposition:

V * ⊗ Λ p V * ∼ = Λ p-1 V * ⊕ Λ p+1 V * ⊕ T p,1 V *
where T p,1 V * is the intersection of the kernels of wedge and inner product maps, which can be identified with the Cartan product of V * and Λ p V * . This decomposition immediately translates to Riemannian manifolds (M n , g), where we have

T * M ⊗ Λ p T * M ∼ = Λ p-1 T * M ⊕ Λ p+1 T * M ⊕ T p,1 T * M (1) 
with T p,1 T * M denoting the vector bundle corresponding to the vector space T p,1 . The covariant derivative ∇ψ of a p-form ψ is a section of T * M ⊗ Λ p T * M. Its projections onto the summands Λ p+1 T * M and Λ p-1 T * M are just the differential dψ and the codifferential δψ. Its projection onto the third summand T p,1 T * M defines a natural first order differential operator T , called the twistor operator. The twistor operator

T : Γ(Λ p T * M) → Γ(T p,1 T * M) ⊂ Γ(T * M ⊗ Λ p T * M
) is given for any vector field X by the following formula

[ T ψ ] (X) := [pr T p,1 (∇ψ)] (X) = ∇ X ψ -1 p+1 X dψ + 1 n-p+1 X ∧ δψ .
Note that here, and in the remaining part of this article, we identify vectors and 1-forms using the metric.

The twistor operator T is a typical example of a so-called Stein-Weiss operator and it was in this context already considered by T. Branson in [START_REF] Branson | Stein-Weiss operators and ellipticity[END_REF]. Its definition is also similar to the definition of the twistor operator in spin geometry. The tensor product between the spinor bundle and the cotangent bundle decomposes under the action of the spinor group into the sum of the spinor bundle and the kernel of the Clifford multiplication. The (spinorial) twistor operator is then defined as the projection of the covariant derivative of a spinor onto the kernel of the Clifford multiplication. Definition 2.1. A p-form ψ is called a twistor p-form if and only if ψ is in the kernel of T , i.e. if and only if ψ satisfies

∇ X ψ = 1 p+1 X dψ - 1 n-p+1 X ∧ δψ , (2) 
for all vector fields X. If the p-form ψ is in addition coclosed, it is called a Killing p-form. This is equivalent to ∇ψ ∈ Γ(Λ p+1 T * M) or to X ∇ X ψ = 0 for any vector field X.

It follows directly from the definition that the Hodge star operator * maps twistor p-forms into twistor (np)-forms. In particular, it interchanges closed and coclosed twistor forms.

In the physics literature, equation (2) defining a twistor form is often called the Killing-Yano equation. The terminology conformal Killing forms to denote twistor forms is also used. Our motivation for using the name twistor form is not only the similarity of its definition to that of twistor spinors in spin geometry, but also the existence of a direct relation between these objects. We recall that a twistor spinor on a Riemannian spin manifold is a section ψ of the spinor bundle lying in the kernel of the (spinorial) twistor operator. Equivalently, ψ satisfies for all vector fields X the equation ∇ X ψ = -1 n X • Dψ, where D denotes the Dirac operator. Given two such twistor spinors, ψ 1 and ψ 2 , we can introduce k-forms ω k , which on tangent vectors X 1 , . . . , X k are defined as

ω k (X 1 , . . . , X k ) := (X 1 ∧ . . . ∧ X k ) • ψ 1 , ψ 2 .
It is well-known that for k = 1 the form ω 1 is dual to a conformal vector field. Moreover, if ψ 1 and ψ 2 are Killing spinors the form ω 1 is dual to a Killing vector field. More generally we have Proposition 2.2. (cf. [START_REF] Semmelmann | Conformal Killing forms on Riemannian manifolds[END_REF]) Let (M n , g) be a Riemannian spin manifold with twistor spinors ψ 1 and ψ 2 . Then for any k the associated k-form ω k is a twistor form.

We will now give an important integrability condition which characterizes twistor forms on compact manifolds. A similar characterization was obtained in [START_REF] Kashiwada | On conformal Killing tensor[END_REF]. We first obtain two Weitzenböck formulas by differentiating the equation defining the twistor operator.

∇ * ∇ψ = 1 p+1 δd ψ + 1 n-p+1 dδ ψ + T * T ψ , (3) 
q(R) ψ = p p+1 δd ψ + n-p n-p+1 dδ ψ -T * T ψ , (4) 
where q(R) is the curvature expression appearing in the classical Weitzenböck formula for the Laplacian on p-forms: ∆ = δd + dδ = ∇ * ∇ + q(R). It is the symmetric endomorphism of the bundle of differential forms defined by

q(R) = e j ∧ e i R e i ,e j , (5) 
where {e i } is any local orthonormal frame and R e i ,e j denotes the curvature of the form bundle. On forms of degree one and two one has an explicit expression for the action of q(R), e.g. if ξ is any 1-form, then q(R) ξ = Ric(ξ). In fact it is possible to define q(R) in a more general context. For this we first rewrite equation ( 5) as

q(R) = i<j (e j ∧ e i -e i ∧ e j ) R e i ,e j = i<j (e i ∧ e j ) • R(e i ∧ e j )•
where the Riemannian curvature R is considered as element of Sym 2 (Λ 2 T p M) and • denotes the standard representation of the Lie algebra so(T p M) ∼ = Λ 2 T p M on the space of p-forms. Note that we can replace e i ∧ e j by any orthonormal basis of so(T p M). Let (M, g) be a Riemannian manifold with holonomy group Hol. Then the curvature tensor takes values in the Lie algebra hol of the holonomy group, i.e. we can write q(R) as

q(R) = ω i • R(ω i )• ∈ Sym 2 (hol)
where {ω i } is any orthonormal basis of hol and • denotes form representation restricted to the holonomy group. Writing the bundle endomorphism q(R) in this way has two immediate consequences: we see that q(R) preserves any parallel subbundle of the form bundle and it is clear that by the same definition q(R) gives rise to a symmetric endomorphism on any associated vector bundle defined via a representation of the holonomy group.

Integrating the second Weitzenböck formula (4) yields the following integrability condition for twistor forms.

Proposition 2.3. Let (M n , g) be a compact Riemannian manifold. Then a p-form ψ is a twistor p-form, if and only if

q(R) ψ = p p+1 δd ψ + n-p n-p+1 dδ ψ . (6) 
For coclosed forms, Proposition 2.3 is a generalization of the well-known characterization of Killing vector fields on compact manifolds, as divergence free vector fields in the kernel of ∆ -2 Ric. In the general case, it can be reformulated as Corollary 2.4. Let (M n , g) a compact Riemannian manifold with a coclosed p-form ψ. Then ψ is a Killing form if and only if

∆ ψ = p + 1 p q(R) ψ .
One has similar characterizations for closed twistor forms and for twistor m-forms on 2m-dimensional manifolds.

An important property of the equation defining twistor forms is its conformal invariance (c.f. [START_REF] Benn | Dirac symmetry operators from conformal Killing-Yano tensors[END_REF]). We note that the same is true for the twistor equation in spin geometry. The precise formulation for twistor forms is the following. Let ψ be a twistor form on a Riemannian manifold (M, g). Then ψ := e (p+1)λ ψ is a twistor p-form with respect to the conformally equivalent metric ĝ := e 2λ g. Parallel forms are obviously in the kernel of the twistor operator, hence they are twistor forms. Using the conformal invariance we see that for any parallel form ψ, also the form ψ := e (p+1)λ ψ is a twistor p-form with respect to the conformally equivalent metric g := e 2λ g. The form ψ is in general not parallel.

The first non trivial examples of twistor forms were found on the standard sphere.

Here it is easy to show that any twistor p-form is a linear combination of eigenforms for the minimal eigenvalue of the Laplace operator on closed resp. coclosed p-forms. It is shown in [START_REF] Semmelmann | Conformal Killing forms on Riemannian manifolds[END_REF] that the number of linearly independent twistor forms on a connected Riemannian manifold is bounded from above by the corresponding number on the standard sphere. Other examples exist on Sasakian, nearly Kähler and on weak G 2 -manifolds. In some sense they are all related to the existence of Killing spinors. Up to now these are more or less all known global examples of twistor forms.

In section 3 we will see that there are many new examples on compact Kähler manifolds. The examples include the complex projective space and Hirzebruch surfaces.

Twistor forms on Kähler manifolds

In this section we will consider twistor forms on a compact Kähler manifold (M, g, J) of dimension n = 2m. The case of forms in the middle dimension, i.e. forms of degree m, is somewhat special and will be treated in the next section.

On a complex manifold the differential splits as d = ∂ + ∂. Moreover, one has the following real differential operator

d c = i ( ∂ -∂) = Je i ∧ ∇ e i ,
where {e i } is a local orthonormal frame. The formal adjoints of d and d c are denoted by δ and δ c . If ω is the Kähler form then Λ denotes the contraction with ω and L the wedge product with ω. Another important operator acting on forms is the natural extension of the complex structure J on p-forms, defined as follows :

Ju := J(e i ) ∧ e i u ∀u ∈ Λ p M.
Notice that this is the Lie algebra extension of J acting as derivative, rather than the group extension of J acting as automorphism. In particular, J acts on (p, q)-forms by scalar multiplication with i(qp).

These operators satisfy the following fundamental commutator relations

d c = -[ δ, L ] = -[ d, J ] , δ c = [ d, Λ ] = -[ δ, J ] , d = [ δ c , L ] = [ d c , J ] , δ = -[ d c , Λ ] = [ δ c , J ] .
In addition, the following commutators resp. anti-commutators vanish

0 = [ d, L ] = [ d c , L ] = [ δ, Λ ] = [ δ c , Λ ] = [ Λ, J ] = [ J, * ] , 0 = δd c + d c δ = dd c + d c d = δδ c + δ c δ = dδ c + δ c d .
Using these relations we are now able to derive several consequences of the twistor equation on Kähler manifolds. We start by computing δ c u for a twistor p-form u.

δ c u = - Je i ∇ e i u = - Je i ( 1 p+1 e i du - 1 n-p+1 e i ∧ δu) = -2 p+1 Λ(du) + 1 n-p+1 J(δu) = -2 p+1 dΛ(u) + 2 p+1 δ c u + 1 n-p+1 J(δu) = -2 p-1 dΛ(u) + p+1 (p-1)(n-p+1) J(δu) . (7) 
¿From this we immediately obtain

δ c d u = -d δ c u = - p+1 (p-1)(n-p+1) (J(dδu) + d c δ u) , (8) 
δδ c u = -δ c δu = -2(n-p+1) (n-p)(p+1) Λ(δdu) . (9) 
A similar calculation for the operator d c leads to

d c u = - e i ∧ ∇ Je i u = - e i ∧ ( 1 p+1 Je i du - 1 n-p+1 Je i ∧ δu) = 1 p+1 J(du) + 2 n-p+1 L(δu) = 1 p+1 J(du) + 2 n-p+1 δ(Lu) + 2 n-p+1 d c u = n-p+1 (p+1)(n-p-1) J(du) + 2 n-p+1 δ(Lu) . (10) 
We apply this to conclude

δd c u = n-p+1 (p+1)(n-p-1) ( Jδdu -δ c du ) . ( 11 
)
As a first step we will prove that for a twistor p-form u the form ΛJ(u) has to be parallel. Here we can assume p = 2, since otherwise there is nothing to show. It will be convenient to introduce for a moment the following notation Using the various commutator rules we will derive several equations relating the quantities x, y, a, b, α and β. We start with

x = JΛ(dδu) = J(dδΛu -δ c δu) = dδ(JΛu) + dδ c (Λu) + d c δ(Λu) -Jδ c δu = a -α -β -2(n-p+1) (n-p)(p+1) y ,
where we also used equation ( 9) to replace the summand Jδ c δu. Similarly we have

y = JΛ(δdu) = J(δd(Λu) -δδ c u) = δd(JΛu) + δd c (Λu) + δ c d(Λu) -Jδδ c u = b + β + α + 2(n-p+1) (n-p)(p+1) y .
Adding the two equations for x resp. y, we obtain that x + y = a + b, i.e. we can express x and y in terms of a, b, α and β as

y = ǫ 1 (b + α + β), ǫ 1 = (n-p)(p+1) (n-p)(p+1)-2(n-p+1) , (12) 
x = a + b -y = a + (1 -ǫ 1 ) b -ǫ 1 (α + β) . (13) 
Note that ǫ 1 is well defined since the denominator may vanish only in the case (n, p) = (4, 2), which we already excluded. Next, we contract equation [START_REF] Benn | Dirac symmetry operators from conformal Killing-Yano tensors[END_REF] with the Kähler form to obtain an equation for α.

α = δ c d(Λu) = Λ(δ c du) = - p+1 (p-1)(n-p+1) (ΛJ(dδu) + Λ(d c δ u)) = - p+1 (p-1)(n-p+1) (x -β) .
Contracting equation [START_REF] Gallot | Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne[END_REF] with the Kähler form we obtain a similar expression for β.

β = δd c (Λu) = Λ(δd c u) = n-p+1 (p+1)(n-p-1) ( ΛJδdu -Λ(δ c du) ) = n-p+1 ( 
p+1)(n-p-1) (yα) . Replacing x and y in the equations for α resp. β leads to

a + (1 -ǫ 1 ) b -ǫ 1 (α + β) = ǫ 2 β + α, ǫ 2 = (p-1)(n-p+1) p+1 ǫ 1 (b + α + β) = ǫ 3 β + α ǫ 3 = (p+1)(n-p-1)
n-p+1

.

Finally we obtain two equations only involving a, b, α and β, a

+ (1 -ǫ 1 ) b = (ǫ 1 -ǫ 2 ) α + (ǫ 1 -1) β (14) 
ǫ 1 b = (1 -ǫ 1 ) α + (ǫ 3 -ǫ 1 ) β . (15) 
Considering equation [START_REF] Semmelmann | Conformal Killing forms on Riemannian manifolds[END_REF] we note that b and β are in the image of δ, whereas α is in the image of d. Hence, since the coefficient (1ǫ 1 ) is obviously different from one, we can conclude that α has to vanish. Moreover, we have the equation

ǫ 1 b = (ǫ 3 -ǫ 1 )β.
Applying the same argument in equation ( 14) we obtain that a has to vanish and that (1ǫ 1 )b = (ǫ 1 -1)β. Combining the two equations for b and β we see that also these expressions have to vanish. Taking the scalar product of a and b with JΛu and integrating over M yields that JΛu has to be closed and coclosed, hence harmonic.

Proposition 3.1. Let (M, g, J) be a compact Kähler manifold. Then for any twistor form u the form ΛJu is parallel.

Proof. Let u be a twistor p-form. We have already shown that JΛu is harmonic, i.e. ∆(JΛu) = 0. Since ∆ = ∇ * ∇ + q(R), the proof of the proposition would follow from q(R)(JΛu) = 0. For a twistor form u we have the Weitzenböck formula (4) and the argument in Section 2 shows that the curvature endomorphism q(R) commutes with Λ and J. Hence, we obtain q(R)(JΛu) = p p+1 y + n-p n-p+1 x , with the notation above. Since a, b, α and β vanish, equations [START_REF] Jun | On the conformal Killing p-form in compact Kaehlerian manifolds[END_REF] and [START_REF] Kashiwada | On conformal Killing tensor[END_REF] show that x, y vanish too. Hence, q(R)(JΛu) = 0 and the Weitzenböck formula for ∆ and integration over M prove that JΛu has to be parallel.

In the case where the degree of the twistor form is different from the complex dimension, this proposition has an important corollary. Corollary 3.2. Let (M, g, J) be a compact Kähler manifold of complex dimension m. Then for any twistor p-form u, with p = m, Ju is parallel.

Proof. We first note that the Hodge star operator * commutes with the complex structure J and with the covariant derivative. Moreover, it interchanges L and Λ. If u is a twistor p-form, then * u is a twistor form, too, and by Proposition 3.1, ΛJ * u is parallel. Hence, also * ΛJ * u is parallel. But * ΛJ * u = ±LJu and it follows that LJu is parallel. Since the contraction with the Kähler form commutes with the covariant derivative we conclude that ΛLJu is parallel as well. Thus (mp)Ju = ΛLJu -LΛJu is parallel.

In the remaining part of this section we will investigate twistor forms u for which Ju is parallel. The results below are thus valid for all twistor p-forms with p = m, but also for twistor m-forms annihilated by J, a fact used in the next section. Proposition 3.3. Let (M, g, J) be a compact Kähler manifold of dimension n = 2m. Then any twistor p-form u for which Ju is parallel satisfies the equations

δ c u = µ 1 dΛu, d c u = µ 2 δLu, δu = -µ 1 d c Λu, du = -µ 2 δ c Lu ,
with constants µ 1 := -2(n-p+1) (p-1)(n-p)-2 and µ 2 := 2(p+1) p(n-p-1)-2 .

Note that this proposition is also valid for forms in the middle dimension.

Proof. The formula for δ c u follows from equation ( 7) after interchanging J and δ and using the assumption that Ju is parallel. Because of Jδ = δJ + δ c we obtain

δ c u (1 - p+1 (p-1)(n-p+1) ) = -2 p-1 dΛ(u) + p+1 (p-1)(n-p+1) δ(Ju) = -2 p-1 dΛ(u) .
Since JΛu is also parallel, the formula for δu follows by applying J to the above equation. Similarly we obtain the expression for d c u by using equation [START_REF] Branson | Stein-Weiss operators and ellipticity[END_REF] and the relation Jd = dJ + d c . This yields

d c u (1 - n-p+1 (p+1)(n-p-1) ) = n-p+1 (p+1)(n-p-1) d(Ju) + 2 n-p-1 δ(Lu) = 2 n-p-1 δ(Lu) .
Applying J to this equation yields the formula for du .

As a first application of Proposition 3.3 we will show that the forms du and δu are eigenvectors of the operator ΛL. This implies

(1 + µ 2 ) du = -µ 2 L(δ c u) = -µ 1 µ 2 LdΛu = -µ 1 µ 2 dLΛu = -µ 1 µ 2 d(ΛLu -(m -p) u) = -µ 1 µ 2 (δ c Lu + ΛLdu -(m -p) du) = µ 1 du -µ 1 µ 2 ΛL(du) + µ 1 µ 2 (m -p) du .
Collecting the terms with du we obtain

ΛL(du) = -1 + µ 2 -µ 1 -µ 1 µ 2 (m-p) µ 1 µ 2 du
where m denotes the complex dimension. Substituting the values for µ 1 and µ 2 given in Proposition 3.3, the formula for ΛL(du) follows after a straightforward calculation.

Similarly we could prove the formula for ΛL(δu) by starting from the equation d c u = µ 2 δLu. Nevertheless it is easier to note that * u is again a twistor form (of degree n-p). In order to use the property that du resp. δu are eigenvectors of ΛL we still need the following elementary lemma. Lemma 3.5. Let (M 2m , g, J) be a Kähler manifold and let α be a p-form on M, then

[ Λ, L s ] α = s (m -p -s + 1) L s-1 α .
Moreover, if α is a primitive p-form, i.e. if Λ(α) = 0, then α satisfies in addition the equation Λ r L s α = s!(m-p-s+r)! (s-r)!(m-p-s)! L s-r α , where r, s are any integers.

Proof. In the case r = 1 we prove the formula for the commutator of Λ and L by induction with respect to s. For s = 1 it is just the well-known commutator relation for Λ and L. Assume now that we know the formula for s -1, then

[ Λ, L s ] α = ( Λ • L s -L s • Λ ) α = Λ • L s-1 (Lα) -L s-1 (L • Λ) α = L s-1 • Λ (Lα) + (s -1) (m -(p + 1) -(s -1) + 1) L s-2 (Lα) -L s-1 • Λ (Lα) + (m -p) L s-1 α = ((s -1)(m -p -s) + (m -p)) L s-1 α = s (m -p -s + 1) L s-1 α .
The formula for Λ r L s in the case r > 1 then follows by applying the commutator relation several times.

Twistor forms versus Hamiltonian 2-forms

On a Kähler manifold, any p-form u with p ≤ m has a unique decomposition, u = u 0 + Lu 1 + . . . + L l u l , where the u i 's are primitive forms. This is usually called the LePage decomposition of u. From now on we suppose that p ≤ m, otherwise we just replace u by its Hodge dual * u. Applying ΛL and using the Lemma 3.5 in the case r = 1 we obtain

Λ L(u) = (m -p) u 0 + 2 (m -p + 1)Λu 1 + . . . + (l + 1) (m -p + l) L l u l .
It is easy to see that coefficients in the above sum are all different. Indeed, (s + 1)(mp + s) = (r + 1)(mp + r) if and only if (sr)(mp + 1 + s + r) = 0, and recall that we assumed that p ≤ m. Hence, a p-form u with p ≤ m is an eigenvector of ΛL if and only u = L i α, for some primitive form α and in that case the corresponding eigenvalue is (i + 1)(mp + i).

Lemma 3.4 thus implies that du = L s v and δu = L r w for some primitive forms v and w, and moreover (2mp -2)(p + 2) = 4(s + 1)(mp + s -1) and p(2mp) = 4(r + 1)(mp + r + 1), which have the unique solutions 2s = p and 2r = p -2. Hence, denoting p = 2k, we have

du = L k v δu = L k-1 w
for some vectors v and w. Moreover, we see that the LePage decomposition of u has the form u = u 0 + . . . + L k u k , where u k has to be a function.

Lemma 4.1. Let u be a 2k-form with Ju parallel and such that du L k v and δu = L k-1 w, for some vectors v and w. Then

w = k(2m-2k+1) 2k+1 Jv• Proof. Applying J to the equation du = L k v leads to d c u = Jdu = L k (Jv)
. Thus, contracting with the Kähler form yields

Λ(d c u) = d c Λu + δu = Λ L k (Jv) = k (m -k) L k-1 (Jv) .
¿From Proposition 3.3 we have the equation δu = -µ 1 d c Λu. Hence,

δu = (1 -1 µ 1 ) -1 k(m -k)L k-1 (Jv)
, which proves the lemma after substituting the value of µ 1 .

In the next step we will show that in the LePage decomposition of u only the last two terms, i.e. L k-1 u k-1 and L k u k , may be non-parallel. Indeed we have

∇ X u = ∇ X u 0 + L(∇ X u 1 ) + . . . + L k (∇ X u k ) = 1 p+1 X L k v - 1 n-p+1 X ∧ L k-1 w = L k-1 ( k p+1 JX ∧ v -1 n-p+1 X ∧ w) + L k ( 1 p+1 x, v ) = L k-1 ω 1 + L k ω 2 ,
for some primitive forms ω 1 , ω 2 . Hence, comparing the first line with the last, implies that the components u 0 , u 1 , . . . , u k-2 have to be parallel. But then we can without loss of generality assume that they are zero, i.e. for a twistor p-form u, with Ju parallel, we have

u = L k-1 u k-1 + L k u k where u k-1 is a primitive 2-form and u k is a function, i.e. p = 2k.
Our next aim is to translate the twistor equation for u into equations for u k-1 resp. u k . This leads naturally to the following definition, which we will need for the rest of this paper. Definition 4.2. A special 2-form on a Kähler manifold M is a primitive 2-form ϕ of type (1, 1) satisfying the equation

∇ X ϕ = γ ∧ JX -Jγ ∧ X -2 m γ(X) ω , (16) 
for some 1-form γ, which then necessarily equals

m 2(m 2 -1) δ c ϕ.
Recall that a 2-form u is of type (1,1) if and only if Ju = 0. As a first property of such special forms we obtain

Lemma 4.3. If ϕ is a special 2-form on a compact Kähler manifold M of dimension m > 2, then δ c ϕ is exact.
Proof. Taking the wedge product with X in ( 16) and summing over an orthonormal basis yields dϕ = 2 m-1 m Lγ = 1 m+1 Lδ c ϕ. It follows that Ldδ c ϕ = 0 and, since L is injective on 2-forms, we conclude that δ c ϕ is closed. Hence, δ c ϕ = h + df for some function f and a harmonic 1-form h. We have to show that h vanishes. First, note that h is in the kernel of d c and δ c since the manifold is Kähler. Computing its

L 2 -norm we obtain (h, h) = (h, h + df ) = (h, δ c ϕ) = (d c h, ϕ) = 0 .
Definition 4.4. The function f given by the lemma above will be called the generalized trace of the special 2-form ϕ. It is only defined up to a constant.

We can now state the main result of this section Theorem 4.5. Let u be a form of degree p on a compact Kähler manifold M 2m and suppose that n -2 ≥ p ≥ 2 and p = m. Then u is a twistor form if and only if there exists a special 2-form ϕ whose generalized trace is f and a positive integer k such that p = 2k and u = L k-1 ϕ -m-p p(m 2 -1) L k f + parallel form. The same statement is valid for p = m under the additional assumption that Ju is parallel.

Proof. Consider first the case p ≤ m. Using the notations from Lemma 4.1, the twistor equation for u reads

∇ X u k-1 + L∇ X u k = k p+1 JX ∧ v - 1 n-p+1 X ∧ w. (17) 
An equality between 2-forms is equivalent with the equality of their primitive parts and that of their traces with respect to the Kähler form. The equality of the primitive parts in ( 17) is equivalent to

∇ X u k-1 = ( k p+1 JX ∧ v -1 n-p+1 X ∧ w) -1 m Λ ( k p+1 JX ∧ v -1 n-p+1 X ∧ w) ω ,
where ω is the Kähler form. Now, Λ(JX ∧ v) =v, X and Λ(X ∧ w) -Jw, X so we obtain

∇ X u k-1 = k p+1 JX ∧ v -1 n-p+1 X ∧ w + 1 m ( k p+1 v, X -1 n-p+1 Jw, X ) ω = k p+1 JX ∧ v -1 n-p+1 k(n-p+1) p+1 X ∧ Jv + ( k m(p+1) - 1 m(n-p+1) k(n-p+1) p+1
) v, X ω

= k p+1 JX ∧ v -k p+1 X ∧ Jv + 2k m(p+1) v, X ω = γ ∧ JX -Jγ ∧ X -2 m γ(X) ω , where γ is the 1-form defined by γ(X) = -k p+1 v, X . Contracting with JX shows that γ = m 2(m 2 -1) δ c u k-1 , so v = (p+1)m p(m 2 -1) δ c u k-1 .
The second part of ( 17) consists in the equality of the traces, which is equivalent to

X(u k ) = -p m(p+1) v, X + 1 p+1 v, X = m-p m(p+1) X v , i.e. du k = m-p m(p+1) v = -m-p p(m 2 -1) δ c u k-1 .
We have shown that u is a twistor form if and only if u k-1 is a special form and u k is m-p p(m 2 -1) times its generalized trace. A priori, this only proves the theorem for p ≤ m, but because of the invariance of the hypothesis and conclusion of the theorem with respect to the Hodge duality, the theorem is proved in full generality.

Specializing the above result for k = 1 yields the following characterization of twistor 2-forms also obtained in [START_REF] Apostolov | Hamiltonian 2-forms in Kähler geometry I[END_REF]. Note that the result that we obtain is more complete than that of [START_REF] Apostolov | Hamiltonian 2-forms in Kähler geometry I[END_REF] since we do not assume the fact that the 2-form u is a (1, 1)-form. Lemma 4.6. Let (M 2m , g, J, ω) be a Kähler manifold. Then a 2-form u is a twistor form if and only if there exists a 1-form γ with

∇ X u = γ ∧ JX -Jγ ∧ X -γ(X) ω . ( 18 
)
The 1-form γ is necessarily equal to γ

= 1 2m-1 Jδu. Moreover, γ = -1 m-2 d u, ω provided that m > 2.
Proof. First of all we can rewrite equation [START_REF] Tachibana | On conformal Killing tensor in a Riemannian space[END_REF] as ∇ X u = -X (γ ∧ ω) + X ∧ Jγ. Contracting (resp. taking the wedge product) in [START_REF] Tachibana | On conformal Killing tensor in a Riemannian space[END_REF] with X and summing over an orthonormal frame {e i } we obtain Jγ = -1 2m-1 δu and γ ∧ ω = -1 3 du . Substituting this back into (18) yields the defining equation for a twistor 2-form, i.e.:

∇ X u = 1 3 X du -1 2m-1 X ∧ δu .
Conversely, Theorem 4.5 shows that u = u 0 + Lf , where

∇ X u 0 = (γ ∧ JX -Jγ ∧ X) -2 m γ(X) ω , and df = -m-2 2(m 2 -1) δ c u 0 = -(m-2)
m γ, so clearly u satisfies [START_REF] Tachibana | On conformal Killing tensor in a Riemannian space[END_REF].

This characterization of twistor 2-forms in particular implies that for m > 2 special forms are just the primitive parts of twistor 2-forms and vice versa. In the remaining part of this section we will describe a similar relation between twistor forms and Hamiltonian 2-forms. Using the results of [START_REF] Apostolov | Hamiltonian 2-forms in Kähler geometry I[END_REF] we can thus produce many examples of non-parallel twistor forms. Definition 4.7. A (1, 1)-form ψ is called Hamiltonian if there is a function σ such that ∇ X ψ = 1 2 (dσ ∧ JX -Jdσ ∧ X) for any vector field X. When m = 2 one has to require in addition that Jgrad(σ) is a Killing vector field.

It follows immediately from the definition that dσ = d ψ, ω . Hence, one could without loss of generality replace σ with ψ, ω .

Any special 2-form ϕ with generalized trace f defines an affine line ϕ + Rf ω in the space of 2-forms modulo constant multiples of the Kähler form. Lemma 4.6 shows that this line contains a twistor 2-form and it is not difficult to see that it contains a unique closed form and also an unique coclosed form. Indeed, for some real number x, d(ϕ+xf ω) = 0 is equivalent to -1 m+1 Lδ c ϕ+xLdf = 0, i.e. x = 1 m+1 , and δ(ϕ+xf ω) = 0 is equivalent to δϕ = xd c f = xJdf = xJδ c ϕ = -xδϕ, i.e. x = -1. The following proposition shows that this affine line also contains a Hamiltonian 2-form. Proposition 4.8. Let (M 2m , g, J, ω) be a Kähler manifold with a Hamiltonian 2-form ψ. Then u := ψ -ψ,ω 2 ω is a twistor 2-form. Conversely, if u is a twistor 2-form and m > 2, then ψ := u -u,ω m-2 ω is a Hamiltonian 2-form.

Proof. Let ψ be a Hamiltonian 2-form and let u be defined as

u := ψ -ψ,ω 2 ω, then ∇ X u = ∇ X ψ -1 2 d ψ, ω (X) ω = 1 2 (dσ ∧ JX -Jdσ ∧ X) -1
2 dσ(X) ω . Thus, the (1, 1)-form u satisfies the equation ( 18) of Lemma 4.6 with, γ := 1 2 dσ, and it follows that u is a twistor 2-form. Conversely, starting from a twistor 2-form u and defining ψ := u -u,ω m-2 ω, we can use the characterization of Lemma 4.6 to obtain

∇ X ψ = γ ∧ JX -Jγ ∧ X .
Since for m > 2 we have γ = -1 m-2 d u, ω = 1 2 d ψ, ω , which implies that ψ has to be a Hamiltonian 2-form. case if and only if the normalized Ricci form is a Hamiltonian 2-form. The examples include some Hirzebruch surfaces and the complex projective spaces.

The middle dimension

In this section we study twistor forms of degree m on compact Kähler manifolds of real dimension n = 2m. This case is very special thanks to the following Lemma 5.1. Let Λ m M = L 1 ⊕ . . . ⊕ L r be a decomposition of the bundle of m-forms in parallel subbundles and u = u 1 + . . . + u r be the corresponding decomposition of an arbitrary m-form u. Then u is a twistor form if and only if u i is a twistor form for every i.

Proof. In the case of m-forms on 2m-dimensional manifolds Proposition 2.3 provides a characterization of twistor forms similar to that of Killing forms. A m-form u is a twistor form if and only if

∆ u = m + 1 m q(R) u (20) 
Given a decomposition of the form bundle Λ m M into parallel subbundles we know that the Laplace operator ∆ as well as the symmetric endomorphism q(R) preserve this decomposition. Hence, equation ( 20) can be projected onto the summands, i.e. ( 20) is satisfied for u = u 1 + . . . + u r if and only it is satisfied for all summands u i , which proves the lemma.

In Section 3 we defined special 2-forms, which turned out to be the main building block for twistor p-forms with p = m. In dealing with twistor m-forms on 2mdimensional Kähler manifolds we have to introduce the following Definition 5.2. A special m-form on a 2m-dimensional Kähler manifold is a m-form ψ of type (1, m -1) + (m -1, 1) satisfying for all vector fields X the equation

∇ X ψ = X ∧ Jτ -(m -1) JX ∧ τ -(m -1) (X τ ) ∧ ω , (21) 
for some 1-form τ , which then necessarily equals 1 m 2 -1 δ c ψ.

Note that for m = 2, we retrieve the definition of special 2-forms on 4-dimensional manifolds (Definition 4.2). Proposition 5.3. Let u be a m-form on a compact Kähler manifold M 2m . Then u is a twistor form if and only if m = 2k and there exists a special 2-form φ and a special m-form ψ such that u = L k-1 φ + ψ + parallel form.

Proof. Lemma 5.1 shows that we can assume u = L k u k for some primitive form u k . Suppose k ≥ 1, then it follows from Proposition 3.1 that JΛu = JΛL k u k = 0. Thus Lemma 3.5 implies JL k-1 u k = 0. Since L k-1 is injective on Λ m-2k , we get Ju k = 0 and eventually Ju = 0. For twistor forms annihilated by J, the conclusion of Theorem 4.5 also holds in the case p = m. Hence, u = L k-1 φ + parallel f orm, where φ is a special 2-form.

It remains to treat the case k = 0, i.e. the case where u is a primitive m-form. Contracting the twistor equation with the Kähler form yields

X δ c u + JX δu = 0 (22)
for all vector fields X. After wedging with X and JX and summing over an orthonormal basis, this gives

J δ u = (m -1) δ c u and J δ c u = -(m -1) δ u . (23) 
Now, * u is again a twistor m-form and the above argument shows that we can suppose * u to be primitive. (Otherwise, * u = L k-1 φ + parallel f orm, for a special 2-form φ, which in particular is self-dual, i.e. u = L k-1 φ + parallel f orm). Applying the Hodge star operator to Λ( * u) = 0 immediately implies Lu = 0. This shows that du = -Lδ c u, so the twistor equation becomes

∇ X u = 1 m + 1 ( -X L δ c u -X ∧ δ u ) (24) = 1 m + 1 ( -JX ∧ δ c u -L (X δ c u) + 1 m -1 X ∧ Jδ c u ) ,
which is just the defining equation ( 21) of a special m-form with τ = 1 m 2 -1 δ c u. According to our definition of special m-forms, we still have to show that (up to parallel forms) u is of type (m -1, 1) + (1, m -1). Equivalently we will show this for ∇ X u, where X is any vector field. Recall that u is of type (m -1, 1) + (1, m -1) if and only if J 2 u = -(m -2) 2 u. We will compute J 2 (∇ X u) using the twistor equation. Equation (23) implies that δu is of type (m -1, 0) + (0, m -1), i.e J 2 (δu) = -(m -1) 2 δu. Moreover, using ( 22) and (23) we obtain Adding these two equations implies J 2 (∇ X u) = -(m -2) 2 ∇ X u after using the twistor equation as written in (24).

As an application of Proposition 5.3 we see that any twistor 2-form on a 4-dimensional Kähler manifold has to be of type (1, 1) and primitive, i.e. any twistor 2-form has to be a special 2-form. In this case we know from Lemma 4.9 that any Hamiltonian 2form gives rise to a twistor 2-form and vice versa, under some additional conditions. This clarifies the situation of twistor 2-forms in dimension 4 and shows in particular that one can exhibit many examples. Moreover, one can show that any special m-form (m ≥ 3) on a Kähler-Einstein manifold has to be parallel. Nevertheless for the moment it remains unclear whether these forms have to be parallel in general.

Twistor forms on the complex projective space

In this section we describe the the construction of twistor forms on the complex projective space (c.f. [START_REF] Apostolov | Hamiltonian 2-forms in Kähler geometry I[END_REF]). Let M = CP m be equipped with the Fubini-Study metric and the corresponding Kähler form ω. Then the Riemannian curvature is given as

R X, Y Z = -(X ∧ Y + JX ∧ JY ) Z -2 ω(X, Y ) JZ
for any vector fields X, Y, Z. This implies for the Ricci curvature Ric = 2(m + 1)id. Let K be any Killing vector field on CP m . Then there exists a function f with ∆f = 4(m + 1)f and K = Jgrad(f ), i.e. f is an eigenfunction of the Laplace operator for the first non-zero eigenvalue. Now, consider the 2-form φ := dK = dJdf = dd c (f ). Since K is a Killing vector field it follows:

∇ X φ = ∇ X (dK) = 2 ∇ X (∇K) = 2 ∇ 2 X, • K = -2 R(K, X) = -2 (df ∧ JX -Jdf ∧ X) -4 df (X) ω .
It is clear that φ is a (1, 1)-form and an eigenform of the Laplace operator for the minimal eigenvalue 4(m + 1). A small modification of φ yields a twistor 2-form. Indeed, defining φ := φ + 6f ω one obtains ∇ X φ = -2 (df ∧ JX -Jdf ∧ X) + 2 df (X) ω .

Using Lemma 4.6 for γ := -2 df one concludes that φ is a twistor 2-form. It is not difficult to show that indeed any twistor (1, 1)-form on CP m has to arise in this way. Summarizing the construction one has Proposition 6. 1 ([4]). Let K = Jgrad(f ) be any Killing vector field on the complex projective space CP m then φ := dd c (f ) + 6 f ω = (dd c (f )) 0 + 2m-4 m f ω defines a non-parallel twistor (1, 1)-form. Moreover, in dimension 4, φ is a primitive (1,1)-form, i.e. φ = (dd c (f )) 0 .

There are examples of twistor 2-forms on 4-dimensional manifolds which do not come from Hamiltonian 2-forms [2]. The complete local classification of Hamiltonian 2-forms was obtained in [START_REF] Apostolov | The geometry of weakly selfdual Kähler surfaces[END_REF] for m = 2 and in [START_REF] Apostolov | Hamiltonian 2-forms in Kähler geometry I[END_REF] in the general case. The same references contain examples of compact Kähler manifolds with non-parallel Hamiltonian 2-forms.

  x := JΛ(dδu), a := dδ(JΛu), α := δ c d(Λu), y := JΛ(δdu), b := δd(JΛu), β := δd c (Λu) .

Lemma 3 . 4 .

 34 Let u be a twistor p-form with Ju parallel. Then du and δu satisfy the equations ΛL(du) = 1 4 (np -2) (p + 2) du , ΛL(δu) = 1 4 (np) p δu . Proof. ¿From Proposition 3.3 we have the equation du = -µ 2 δ c Lu = -µ 2 Lδ c uµ 2 u.

  Hence, 4ΛL(d * u) = (p -2)(np + 2)d * u and we have (p-2)(n-p+2) * d * u = 4 * ΛL(d * u) = 4 LΛ * d * u = 4 ΛL * d * u -4 (m-p+1) * d * u .

  δu) = [(p -2)(np + 2) + 4 (mp + 1)] δu = (np) p δu .

J 2 (

 2 X ∧ δu) = (-1 -(m -1) 2 ) X ∧ δu + 2 JX ∧ Jδu = (-1 -(m -1) 2 ) X ∧ δu + 2 (m -1) JX ∧ δ c u and similarly J 2 (X Lδ c u) = (-1 -(m -1) 2 ) X Lδ c u + 2 JX JLδ c u = (-1 -(m -1) 2 ) X Lδ c u -2 (m -1) JX Lδu = -(m -2) 2 X Lδ c u + 2 (m -1)X ∧ δu -2(m -1) JX ∧ δ c u .
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The situation is somewhat different in dimension 4. If ψ is a Hamiltonian 2-form then u = ψ -ψ,ω 2 ω = u 0 is an anti-self-dual twistor 2-form (or equivalently, of type (1, 1) and primitive). Conversely, if we start with an anti-self-dual twistor 2-form u 0 and ask for which functions f is the (1, 1)-form ψ := u 0 + f ω a Hamiltonian 2-form we have Lemma 4.9. Let (M 4 , g, J) be a Kähler manifold with an anti-self-dual twistor 2form u 0 . Then ψ := u 0 + f ω is Hamiltonian 2-form if and only if

and δu 0 is dual to a Killing vector field. In particular, this is the case on simply connected Einstein manifolds.

Proof. Since f = ψ,ω 2 we conclude from the definition that ψ is a Hamiltonian 2form if and only if ∇ X ψ = df ∧ JX -Jdf ∧ X for any vector field X. On the other hand u 0 is assumed to be a twistor (1, 1)-form. Hence, from Lemma 4.6 u 0 satisfies

This is the case if and only if γ = df , or equivalently if δu 0 = -3 Jdf . If the complex dimension is 2, the definition of Hamiltonian 2-forms made the additional requirement that Jdσ, which here is proportional to δu 0 , is dual to a Killing vector field. Hence, it remains to show that on simply connected Einstein manifolds the equation [START_REF] Yamaguchi | On a Killing p-form in a compact Kählerian manifold[END_REF] has a solution such that δu 0 is dual to a Killing vector field. Let X be any Killing vector field on an arbitrary Kähler manifold, then

i.e. the 1-form JX is closed. Hence, since the manifold is simply connected, there exists some function f with JX = df and also X = -Jdf . Finally, it is easy to see that on Einstein manifolds, for any twistor 2-form u 0 , the 2-form δu 0 is dual to a Killing vector field (cf. [START_REF] Semmelmann | Conformal Killing forms on Riemannian manifolds[END_REF]).

Hamiltonian 2-forms have the following remarkable property (c.f. [START_REF] Apostolov | Hamiltonian 2-forms in Kähler geometry I[END_REF]). If ψ is Hamiltonian, and if σ 1 , . . . , σ m are the elementary symmetric functions in the eigenvalues of ψ with respect to the Kähler form ω, then all vector fields K j = Jgrad(σ j ) are Killing. Furthermore, the Poisson brackets {σ i , σ j } vanish, which implies that the Killing vector fields K 1 , . . . , K m commute. If the Killing vector fields are linearly independent, then the Kähler metric is toric. But even if they are not linearly independent one has further interesting properties, which eventually lead to a complete local classification of Kähler manifolds with Hamiltonian 2-forms in [START_REF] Apostolov | Hamiltonian 2-forms in Kähler geometry I[END_REF]. The most important sources of Kähler manifolds with Hamiltonian 2-forms are weakly Bochner-flat Kähler manifolds and (in dimension greater than four) Kähler manifolds which are conformally-Einstein. A Kähler manifold is weakly Bochner-flat if its Bochner tensor is coclosed, which is the