N

N

Generalized cylinders in semi-Riemannian and spin
geometry

Christian Bar, Paul Gauduchon, Andrei Moroianu

» To cite this version:

Christian Béar, Paul Gauduchon, Andrei Moroianu. Generalized cylinders in semi-Riemannian and
spin geometry. Mathematische Zeitschrift, 2005, 249 (3), pp.545-580. 10.1007/s00209-004-0718-0 .
hal-00126028

HAL Id: hal-00126028
https://hal.science/hal-00126028v1
Submitted on 23 Jan 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00126028v1
https://hal.archives-ouvertes.fr

hal-00126028, version 1 - 23 Jan 2007

GENERALIZED CYLINDERS IN SEMI-RIEMANNIAN AND SPIN GEOMETRY

CHRISTIAN BAR, PAUL GAUDUCHON, AND ANDREI MOROIANU

ABSTRACT. We use a construction which we call generalized cylindegive a new proof of the fundamen-
tal theorem of hypersurface theory. It has the advantageiafjbvery simple and the result directly extends
to semi-Riemannian manifolds and to embeddings into spzEfaemstant curvature. We also give a new way
to identify spinors for different metrics and to derive thaiation formula for the Dirac operator. Moreover,
we show that generalized Killing spinors for Codazzi teesame restrictions of parallel spinors. Finally, we
study the space of Lorentzian metrics and give a criterioanttvo Lorentzian metrics on a manifold can be
joined in a natural manner by a 1-parameter family of suctrioget

1. INTRODUCTION

n this paper we give various applications of a constructibictvwe callgeneralized cylinders
Let M be a manifold and leg; be a smooth 1-parameter family of semi-Riemannian metrics
onM,t € I c R. Then we call the manifol&Z = I x M with the metricdt® + ¢; a
generalized cylinder oveld. On the one hand, this ansatz is very flexible. Locally, near a
semi-Riemannian hypersurface with spacelike normal iedéry semi-Riemannian manifold is of this
form. The restriction to spacelike normal bundle, i. e. t® plositive sign in front ofit? in the metric of
Z is made for convenience only. Changing the signs of the osetm A/ as well as onZ reduces the
case of a timelike normal bundle to that of a spacelike nobuatle. On the other hand, this ansatz still
allows to closely relate the geometriesidfand Z.

In Sectionﬂz we collect basic material on spinors and thedaerator on semi-Riemannian mani-
folds. We do this to fix notation and for the convenience ofréreder. Some of the material, such as the
spin geometry of submanifolds, is not so easily found in itezdture unless one restricts oneself to the
Riemannian situation.

In SectiorﬂB we study spinors on a manifold foliated by semeirkRannian hypersurfaces. In particular,
we derive a formula for the commutator of the leafwise Dirpemator and the normal derivative. This
formula will be important later.

In Sectiorﬂl we collect formulas relating the curvature otaeralized cylinder to geometric data on
M.

After these preliminaries we give a first application in Simzﬁ One technical difficulty when dealing
with spinors comes from the fact that the definition of spindepends on the metric on the manifold.
This problem does not arise when one works with tensors. Thaole wants to compare the Dirac
operators for two different metrics, then one first has tmiifg the spinor bundles in a natural manner.
This identification problem can be split into two steps. fricenstruct an identification for 1-parameter
families of metrics and, secondly, given two metrics cardta natural 1-parameter family joining them.

The second step is trivial for Riemannian metrics; just usealr interpolation. For indefinite semi-
Riemannian metrics the situation is much more complicatefact, two semi-Riemannian metrics on a
manifold cannot always be joined by a continuous path of iceaven if they have the same signature.
In Section[p we study this problem in detail for Lorentziantries and we give a criterion when two
Lorentzian metrics can be joined in a natural manner.
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The first step, identifying spinors for 1-parameter fansili¢ semi-Riemannian metrics, is carried out
in SectionﬂS. The idea is very simple. Given a 1-parameteilyaofi metrics take the corresponding
generalized cylinder and use parallel transport on thigdgl. It turns out that this identification is the
same as the one constructed differently by Bourguignon hedsécond author ir[|[3] for Riemannian
metrics. The commutator formula from Sectign 3 directiygiates to the variation formula for Dirac
operators.

This variation formula is what one needs to compute the gnergmentum tensor for spinors. To
make this precise we briefly summarize Lagrangian field me'm)rSection[b and we give a general
definition of energy-momentum tensors. Then we compute xaeple of the Lagrangian for spinors
given by the Dirac operator.

In Section[l? we give a new and simple proof of the fundamehtdtem of hypersurface theory. A
hypersurface oR™*! inherits a Riemannian metric and its Weingarten map muistfgahe Gauss and
Codazzi-Mainardi equations. The fundamental theorem #tsconversely, any Riemannian manifold
M with a symmetric endomorphism field @M/ satisfying the Gauss and Codazzi-Mainardi equations
can, at least locally, be embedded isometrically iRto™* with Weingarten map given by this endomor-
phism field. Our proof goes like this: We write down axplicit metric on the cylindeZ = I x M
and we then check that this metric is flat. Since every flat Rigman manifold is locally isometric to
Euclidean space the theorem follows. This approach diregtiends to semi-Riemannian manifolds and
to embeddings into spaces of constant sectional curvatineatessarily zero. This kind of approach to
the fundamental theorem for hypersurfaces was suggestedobcarried out, by Petersen 10, p. 95].

In Section|:|8 we study generalized Killing spinors. They dnaracterized by the overdetermined
equationviy = L1 A(X) -1 whereA is a given symmetric endomorphism field. We show thati§ a
Codazzi tensor, then the manifold can be embedded as a hyfaeesinto a Ricci flat manifold equipped
with a parallel spinor which restricts . This generalizes the case of Killing spinors,= Aid. The
classification of manifolds admitting Killing spinors iﬂ][Sh/as based on the observation that the cone
over such a manifold possesses a parallel spinor. This alserglizes the case thatis parallel which
was studied in[f7].

2. THE DIRAC OPERATOR ON SEM{RIEMANNIAN MANIFOLDS

«, N this section we collect the basic facts and conventionsaming spinors and Dirac operators

on semi-Riemannian manifolds. For a detailed introductienreader may consult the book

[B]. We start with some algebraic preliminaries. Izet s = n and consider the nondegenerate
symmetric bilinear form of signature, s)

i

T n
(v,w) := g vVw! — g vl w?
j=1 j=r+1

onR"™. Define the correspondirgrithogonal groupby
O(r,s) :={A € GL(n,R) | (Av, Aw) = {v,w) forallv,w € R"}
and thespecial orthogonal groupy
SO(r,s) :=={A € O(r,s) | det(A) =1}.

If r =0o0rs =0,thenSO(r, s) is connected, otherwise it has two connected componenéscdimected
component of the identity of the gro®(r, s) is denoted bysOq(r, s).

Now let Cl,. ; be theClifford algebracorresponding to the symmetric bilinear fom-). This is the
unital algebra generated [®/* subject to the relations

(1) vew4w-v+2{w,w)-1=0
for all v,w € R™. There is a decomposition into even and odd elements

Cl,, =CL, & Cl;
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0

such thaR injects naturally intdCl,. ; andR™ into Cl}_,s. Thespin groupis defined by

Spin(r, s) := {v1 -~ vy € CIY, | v; € R™ such that(v;, v;) = +1 andk is every
with multiplication inherited frontCl, ;. Its connected component of the identity, denote@bin, (r, s)
is given by
2k
Sping(r, s) := {v1 -+ -var € ClgS | v; € R", (v;,v;) = £l and H (vj,v;) = 1}
j=1
Givenv € R”™ such that(v,v) # 0 and arbitraryw € R™ we see directly from relatiorﬂ(l) that

-1 _ _ v
v = -y and

(v, w)
(v, v)
Hence—Ad, is the reflection across the hyperplaneand, in particular, leaveR™ c Cl, ; invariant.

Thus conjugation gives an action$yin(r, s) onR™ by an even number of reflections across hyperplanes.
This yields the exact sequence

Ady(w) :=v " w-v=—w+2

V.

1—7Z/27 ={1,—1} — Spin(r, s) Ad, SO(r,s) — 1.

If n = r + s is even the Clifford algebra possesses an irreducible aexnplodulel, s of complex

dimension2”/2, the complexspinor module When restricted t(@lg s the spinor module decomposes

into ’
Er,s - Z:s D ¥

7,87
the submodules of spinors pbsitiveresp.negative chirality In particular, the spin groupin(r, s) C
CIY, acts ons;t, and on¥;,. This action

p=p"@®p~ :Spin(r,s) — Aut(Z;,) x Aut(E; ) C Aut(S,,)

is called thespinor representationf Spin(r, s). Given an orientation o™ the Clﬂﬁs—submoduleg;fS
and ; can be characterized by the action of the volume element= e, - ... - e, € ClSﬁS which
acts ony;, as+i*tn("*+1/2id and ony;;, as—i**"("*1)/2id whereey, . .., e, is a positively oriented
orthonormal basis dR™.

If n is odd, thenCl,.; has two inequivalent irreducible modulg$ , andx] _, both of complex di-
mension2("~1/2 These two modules are again distinguished by the actiohefblume element
vol = ey - ... e, € Cl,.,, namelyvol acts asti**"("+1)/2id on 20 | and as—i**"("+1)/2%id on X1 ,.

When restricted t(ClE,S the two modules become equivalent and we simply wiitg := XY .. This
time the spinor representation

p : Sping(r, s) — Aut(Z, ;)
is irreducible. The spinor module carries a nondegeneratenitian form(-, -) (in general not definite)
which is invariant under the action 8pin,(r, s). To see this, we start with$pin(n, 0)—invariant positive
definite Hermitian produdt on the spinor modul,, ,. We denote by * the action @fl,, o on%,, . We
realize¥, s by turning,, , into aCl, ; representation space in the following way:

e -Vi=ex¥ V1<j<r and ej-Vi=ie;«VU Vr4+1<j<n,

where{e;} is a space and time oriented local orthonormal frame sudtejtia spacelike forj < r and
timelike forj > r + 1. We then define

s(s+1)

(O, V) :=i" 2 h(D,epqp1%...%xe, x V).

It is easy to check that this is a (not necessarily definite)itian product andbpin,(r, s)—invariant,
and that the action of a vectore R™ C Cl, , on %, ; is Hermitian or skew—Hermitian with respect to
(-,-), depending on the parity af

(2) (v-01,09) = (=1)*T (61,0 - 09) .
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To prepare for the study of submanifolds later on we now Idaneembedding aR™ into R™*! such
that(R")* is spacelike. LefR")* be spanned by a spacelike unit veatgr The mapR™ — Cl,.; 1 ,
v — eg - v, induces an algebra isomorphigm,. ; — CIEH,S under which the volume element 61, ;
is mapped to the volume elementC¥, ., s in casen is odd.

If n is even, therk, 1 ; pulls back toX, ; under this algebra isomorphism. In other words, we can
regard, ;;  as the spinor representation@¥, ; provided we define the action 6, s on¥, 1 ; by

VROor—ey V-0

wherev € R" and- denotes the action @fl,; s.

Similarly, if  is odd, then the action of the volume forms shows #at, , pulls back tox? | while
¥, 1., pulls back tox] .

Now we turn to geometry. LeX denote an oriented-dimensional differentiable manifold. The

bundle P+ (X) of positively oriented tangent frames formsG4.* (n, R)-principal bundle overX.
Here and hencefortfiL " (n, R) denotes the group of real x n-matrices with positive determinant

and A : C/}VLJr(n,R) — GL™(n,R) its connected twofold covering group. #pin structureof X is a
@+(n,R)-principal bundlePg; (X) over X together with a twofold covering ma : Pg; +(X) —
Par,+(X) such that the following diagram commutes

3) P +(X) x GL (n,R) — Pgy+(X)

N

OxA e X

e

Per+(X) x GLJF(?%R) — Pgr+(X)

where the horizontal arrows denote the group actions onriheipal bundles. This definition of a spin
structure has the advantage of being independent of theebbany semi-Riemannian metric 6h An
oriented manifold together with a spin structure will bd@ealaspin manifold

Let X now in addition carry a semi-Riemannian metric of signature), » + s = n, and space and
time orientations. The bundiBso, (X) C Pqgp,+ (X) of positively space and time orientecthonormal
tangent frames forms &0, (r, s)-principal bundle oveX . RestrictingA : CA}iJr(n,R) — GL*(n,R)
to the preimage oBOq(r,s) C GL*(n,R) we recoverAd : Spiny(r,s) — SOq(r,s). Putting
Papin, (X) 1= ©7(Pso, (X)) we get aSpin,(r, s)-principal bundle and the maps in diagrafh (3) re-
strict to the following commutative diagram

Pspin, (X) x Spiny(r, s) —— Pspin, (X)

.

OxAd e X

e

PSQU (X) X SO() (T, S) —_— PSQU (X)
Very often in the literaturePs i, (X) is called a spin structure of and we will call X' together with
Pspin, (X') asemi-Riemannian spin manifold

On a semi-Riemannian spin manifold we definespaor bundleof X as the complex vector bundle
associated to the spinor representation, i. e.

2X = Pspin, (X) X, Ty
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In other words, fop € X the fiber of£, X of XX overp consists of equivalence classes of péirs]
whereb € Pspin, (X ), ando € X, ; subject to the relation
[b,0] = [bg™", go]

for all ¢ € Spin,(r, s). Unfortunately, the spinor bundle cannot be defined indégetly of the metric
usingPg; + (X) instead ofPspin, (X)) because the spinor representafiasf Spin (r, s) on%,. ; does not

extendto a representationéff(n, R) on3, ;. We will come back to this problem in Sectiﬁn 5.

Note that the tangent bundle can also be written in a simikrmer’ X = Pso, (X ) x.R™ wherer is
the standard representatiorS#d, (r, s) onR™. One define€lifford multiplication7, X @ ¥, X — ¥, X
by

[O(b),v] - [b,o] :=[b,v- 0]
whereb € Pspin, (X)p, v € R”, ando € X, . Forg € Spiny(r, s) we see from
[O(bg),v] - [bg,0] = [O(b)Ady,v] - [bg, 0] = [O(b), Adgv] - [b, go]
= [b,gvg~"g0] = [b,gvo] = [bg, vo]

that this is well-defined. Itis this point that goes wrong wioae tries to work with nonoriented manifolds
and pin structures. Had we definBd, = E}dﬁs instead of,. ; = 2275 in odd dimensions, then we would
have obtained the Clifford multiplication with the oppes#ign.

Clifford multiplication inherits the relations of the Cliéird algebra, i. e. forlX,Y € 7, X andy €
¥,X we have

XY o4+Y - X - 0o+2(X,Y)p=0.
In even dimensions the spinor bundle splits into the pasiivd the negativiealf-spinor bundles
4 TX=StXoX X
wherex* X = Pspin, (X) X o+ Eﬁfs. Clifford multiplication by a tangent vector interchangés X and
¥ X.
The Spin, (r, s)-invariant nondegenerate Hermitian forms®n, andx;f, induce (in general indefi-
nite) inner products ol X andX* X which we again denote by, -).

The connection 1-form™ on Pso, (X) for the Levi-Civita connectioiV* can be lifted via® to
Poping (X), . .w™X 1= Ad;" 0 ©*(w¥). Composing withAd; " is necessary because the connection
1-form on Pspin, (X)) must take values in the Lie algebraSyin, (r, s) rather than in that 68O (r, s).
Now w*¥ induces a covariant derivatiVé*~ on XX

An equivalent, but less invariant, way of describiRg'~ is as follows: Ifb is a local section in
Pspin, (X), then©(b) = (e1,...,ey) is a local space and time oriented orthonormal tangent frame
(ej,er) = €;0;; wheres; = 1. The Christoffel symbols o¥* with respect to this frame are given by

n
X _ 4
Vejekf E ij er.
=1

Now the covariant derivative of a locally defined spinor fiele= [b, o], o a function with values ift, s,
is given by

1
(5) vgiX(p: b,dejo—l—?ZFﬁkskek.eg.a
k<t

One checks that’*¥ is a metric connection and that it leaves the splittiﬂg (4¢wen dimensions
invariant. Moreover, it satisfies the following Leibniz eul

Vi (Y -9)=(VzY)-0+Y V%
for all vector fieldsZ andY and all spinor fieldse.
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The curvature tensd®™X of VX can be computed in terms of the curvature tergdrof the Levi-
Civita connection,

1
R™X(Y, Z)p = B Z&?jé‘k <RX(Y, Z)e;, ek> ej - ek p.
i<k
Using the first Bianchi identity one easily computes

(6) ;é‘j ej - R™*(e;,Y)p = QRICX(Y) - Q.

HereRic”® denotes th®icci curvatureconsidered as an endomorphism field/aiy . The Ricci curvature
considered as a symmetric bilinear form will be writiée”™ (Y, Z) = (Ric* (Y), Z).

TheDirac operatormaps spinor fields to spinor fields and is defined by
DX(,D =1° Zsjej : Vix(p.
j=1

Given two spinor fieldsp and« one can define a vector field by the requirementY, Z) = (Z - p, ¢)
for all vector fieldsZ and one easily computes

*div(Y) = (DY, ¢) — (0, DX¢).
Hence the Dirac operator is formally selfadjoint, i. e. iEtimtersection of the supports gfand is
compact, then

(DX, 4) = (¢, D¥9))
where(p, 1) = [}, (¢, ¥) dV.

3. THE DIRAC OPERATOR ON MANIFOLDS FOLIATED BY HYPERSURFACES

=y €t Z be a space and time orientéd + 1)-dimensional semi-Riemannian spin manifold. Let
Y. O : Pspin,(Z) — Pso,(Z) be a spin structure o&. Let M C Z be a semi-Riemannian

hypersurface with trivial spacelike normal bundle. Thisamethere is a vector field on Z

< along M satisfying(v,v) = +1 and (v, TM) = 0. If the signature of\/ is (r, s), then the

signature ofZ is (r + 1, s).

In this situation)/ inherits a spin structure as follows: The bundle of spacetand oriented or-
thonormal frames oM, Pso,(M), can be embedded into the bundle of space and time oriented or
thonormal frames of restricted taM, Pso,(Z)[a, bythe map : (ey,...,e,) = (v,e1,...,e,). Then
Psping (M) := ©~(«(Pso,(M))) defines a spin structure av. We will always implicitly assume that

this spin structure be taken dd. The same discussion is possible on the Ievéfﬁ)er(n, R)-bundles.
The algebraic remarks in the previous section show thatsfeven, then
YZ|y =XM

where the Clifford multiplication with respect f is given byX ® ¢ — v- X - p and “” always denotes
the Clifford multiplication with respect t&. If n is odd, then

STZ|y =EM
and again Clifford multiplication with respect fd is given byX @ ¢ — v - X - ¢ while
YT 2|y =XM

with Clifford multiplication with respect ta\f given by X ® ¢ — —v - X - ¢. The minus sign comes
from the fact that in odd dimensions we defined, = X , while X} | leads to the opposite sign for the
Clifford multiplication. The identifications preserve thatural inner products, -).

Let W denote théVeingarten mamvith respectto, i. e.
7 VY = VY + (W(X),Y)v
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for all vector fieldsX andY on M. The Weingarten map is symmetric with respect to the semi-
Riemannian metric(lW (X),Y) = (X, W(Y)) and is also given by¥(X) = —VZ%v. If we denote
the Christoffel symbols of\/ with respect to a local orthonormal tangent fra(ae, ...,en) by FM ¢

and the Christoffel symbols o with respect tdeg, 1, . .., ¢€,), €0 = v, by ij , then ﬂ’) |mpl|es for
1<j,kt<n

(8) st = it

€) r50 = (Wiey),ex),

(10) szo,e = —5054}1—‘]—2@’0 = —g; (W(ej), ee) .

Plugging this into[(5) we get for a sectign= [b, o] of 2|, andl < j <n

1
Vgi_z(p = b,deja+§ ng (ej),e0) €0eo - € + Z F]k’ cxer-ep | - o

1<k<t<n

1 Lo
= |b,de;0 + 5| e Wie;) + Z 1"% Ereo-€er-€o-€r | -0
1<k<t<n

— ‘7EAJ

1
p v Wieg) o
Hence for eactX € T'M and each sectiop of 2|, we have

(11) Ve =ViMp %1/ W(X) - .

Now let p be a section oE Z defined in a neighborhood @f/. On the one hand,

n
iT*D%p = Zsjej : Vezjztp +v-VEZ0p.
j=1

On the other hand by (IL1),

n n n
1
> ejei - ViFp Zé‘jej'VEjM@*gZé‘jej'V'W(ej)'w
j=1 j=1

j=1
n n
7V'Z€'V'€"V2k[ +EZ€'I/'€'~W(€')~
J i Ve PTG J J i)

a1
= —i%v.DM 3 tr(Wv -

M
whereD™ = DM if n is even and™ = (DO —BM) if n is odd. Thus the Dirac operators o
and onZ are related by
v-DF =DM 4 L [ jsyDE
12 D? =DM 5 >

whereH = 1 tr(W) denotes the mean curvature.

Next we consider the situation th&t carries a semi-Riemannian foliation by hypersurfaces. The
commutator of the leafwise Dirac operator and the normavdgve will be of central importance later.

Proposition 3.1. Let Z be an(n + 1)-dimensional semi-Riemannian spin manifold of signafurel, s).
Let Z carry a semi-Riemannian foliation by hypersurfaces withiait spacelike normal bundle, i. e. the
leavesM are semi-Riemannian hypersurfaces and there exists anigltb on Z perpendicular to the
leaves such thatv, v) = 1 andVZv = 0. LetIW denote the Weingarten map of the leaves with respect
tov and letd = L tr(W) be the mean curvature.
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Then the commutator of the leafwise Dirac operator and thenabderivative is given by
. 1
V2, DM =" (®% e — g vegrad" (H) - o+ S v - div™ (W) - ).

Here grad™ denotes the leafwise gradientiv (W) = & (VQJ’,IW)(ej) denotes the leafwise

divergence of the endomorphism figld ©" = 32" ;v -¢; - V%V”([ej)cp, and “-” denotes Clifford
multiplication onZ.

Proof. We choose a local oriented orthonormal tangent frame. . ., ¢,,) for the leaves and we may
assume for simplicity thé?Ze; = 0. We compute

i [VEZ DMy = Zsj (VEZ(V ey VEJ,MQD) —v-ej- V?J,MVEZQD)

j=1
= Yy (VEEVEM - VEMYEZ)
j=1
Mo < 1
E Zgju-ej-(VEZ(VerZ+§1/-W(ej))
j=1
>z 1 >Z
~(VEF 4 5v- W(e)VE7 )
= 1
= Devees (R¥Z(ne) + VI + 5v- (VEW)(e)) )
j=1
w 1 . - 1
i fgv-Rm%)-wZewew(V%%ej>+5v-(v§vv)(ej>)w
j=1
1
(@) —§V-Ricz(1/)-<p
- XM 1 2 1 Z
X v (VG = 5v- W2en) + 5v- (VEW)(e) )
j=1
1

1 S 2 Z
(13) LS (= W2ep) + (VEW)(e)) .
The Riccati equation for the Weingarten mapZ W)(X) = R? (X, v)v + W?(X) yields

, = 1 1 1
iVPEDMe = v RicFW) o+ Dot oY eey (RE(eg )
j=1

1 1
5V Ric® (1) - o + DV + §ricz(y, v)p

(14)

1 n
oWy — 3 Zaj ric? (v,e;)v - e - .
j=1

The Codazzi-Mainardi equatioﬂ [9, p. 115] gives forY,V € T, M

(RZ(X,Y)V,v)y = ((VEW)(Y), V) = (V¥ W)(X),V).
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Thus

I
NE

ricz(y,X) €; <RZ(X, ej)ej,y>

1

<.
Il

I
NE

o5 ((TEW)e)es) — ((TH)C0).c,))

<.
Il
—

= (VYW - <divM(W),X>.
Plugging this into[(1]4) we get

i VEE DMy = DWep - % isj (tr(Vg][W) - <divM(W), ej>) voej-

Jj=1

1 ¢ 1
Wy 3 Zsj de, tr(W)v - €5 - 0 + Y divM(W) %
j=1

, 1 ,
= Dy gv ~grad" (H) - ¢ + Sv - div™ (W) - .

4. THE GENERALIZED CYLINDER

et M be ann-dimensional differentiable manifold, Igt be a smooth 1-parameter family of
( semi-Riemannian metrics oW, ¢ € I wherel C R is an interval. We define thgeneralized
cylinderby

Z=IxM
with semi-Riemannian metric
gz == dt* + gq.
The generalized cylinder is gn + 1)-dimensional semi-Riemannian manifold (with boundary Has

boundary) of signaturé- + 1, s) if the signature ofy; is (r, s). The vector field := % is spacelike of

unit length and orthogonal to the hypersurfagés:= {t} x M. LetW denote the Weingarten map of
M, with respect tar and letH be the mean curvature.

If X is alocal coordinate field of/, then(X, v) = 0 and[X,v] = 0. Thus
0 = d(X,v)=(VIX,v)+ (X, Viv)=(Viv,v) + (X, VIv)
= —(W(X),v)+(X,VIv)=(X,VIv)
and differentiatingv, v) = 1 yields (v, VZv) = 0. Hence
VZv =0,
i. e. forp € M the curveg — (¢,p) are geodesics parameterized by arclength. So the assumspfio

Propositior{ 3]1 are satisfied for the foliatioh/; ).
Now fix p € M andX,Y € T,,M. We define the first and second derivativeypby

d

E(gt(Xv Y)),

d2
ﬁ(gt(Xa Y))

gt(XaY)

g:(X,Y)

Theng; andg; are smooth 1-parameter families of symmet#ic0)-tensors on/.
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Proposition 4.1. On a generalized cylindeE = I x M with semi-Riemannian metrig? = (-,-) =
dt? + g, the following formulas hold:

(15) (W(X),Y) = —sa(X)Y),
(16) (RP(U,V)X,Y) = (RM(UV)X,Y)

4 GU )3V Y) = 40, )iu(V, X)),

(17) (REYU) = 5 (T8 0) - (VR0 D))
a8) (REXwY) = =5 @X.Y) +3(W(X),Y),
(19) e (v0) = (W) - 2, (7).
(20) ric?(X,v) = dXtr(W)—<divM(W),X>,
(21) ric®(X,Y) = ric"(X,Y) +2(W(X), W(Y))
— (W) (W(X),Y) — S3X, V),
(22) Scal® = Scal™ +3tr(W?) — tr(W)? — try, (i),

whereX,Y, U,V € T,M,p € M.

Proof. To show ) we extend andY to local coordinate fields of/ so that all Lie brackets vanish.
Then the Koszul formuld]9, p. 61] for the Levi-Civita contiea of Z yields

(W(X),Y) = —(VE0Y) =~ (dx (1Y) +dy (Y, X) — dy (X,0))
= *%dv <Y7X>:7%%915()(7}/):7%915()(7}/)

Equation [(1p) follows directly fron{ (15) and the Gauss eiquajff, p. 100]

(RP(U,V)X,Y) = (RM(UV)X,Y)+(W(U),X)(W(V),Y)
—(W(U),Y)(W(V),X).

Equation [1]) follows directly fron{ (15) and the CodazziiN&rdi equation[[9, p. 115]
(REX YY) = ((FYW)(),U) = (T W)(X),U).

The Riccati equation fol”

(VZW)(X) = R*(X,v)v + W3(X)
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gives
(RP(X,v)n,Y) = ((VEZW)(X),Y)—(W?*(X),Y)
= AW0,Y) — (W(VEX),Y) — (W(X), VZY)
50V (X),Y)
= e (XY = (W(VE0),Y) - (W(X), VEv)

F50(V(X),Y)

- 7%gt(X,Y) + (W(W(X)),Y) +(W(X),W(Y))

F30(W(X),Y)

= LR(XY) — La(W(X).Y)

which is ). The Ricci curvature is now easily computed.
: - W 1& . .
ric?(v,v) = Y g (R (e v)v,e5) E —525]- (Ge(ej,€5) + 9e(W(ej), e5))
j=1 j=1
1 ..
B L+
which is (19). Moreover,

'M:

ric®(X,v) = €j <RZ(X, ej)ej, V)

<
[
—

=
N | —

&5 (V290 (X)) = (VX" g0) (ej. 7))

&
Ms

-3 (W) — (TEWe)) e, )

1

divM W, X> + (VW)

<.
[

P

divMe W, X> +dx tr(W)
thus showing@O). Furthermore,

\ER

ric®(X,Y) =

(). &

e (R%(ej, X)Y,e;) + (R%(v, X)Y,v)

<.
Il

1. :
€j<<R1\/It(ej7X)Y7 €j> + th(ej,Y)gt(X, 6])

NIE

1

~20u(es )X, V) - % (30X, Y) + (W (X), V)

<.
Il

= (X, Y)+ > g (W V(W (X),e;)
7j=1

— (Wiej), e5) (W(X), Y>)f—gt(X Y)+(W*(X),Y)
= 1™ (X, V) +2(W(X),W(Y)) — tr(W) (W(X),Y)

1
—— g (X, Y
2915( ) )
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shows [21). Formuld ($2) for the scalar curvature follovesrr{19) and [(31).

O

Example4.2. A simple special case of a generalized cylinder is thatedgped producti. e.g, = f(t)?g
wheref : I — R is a smooth positive function. Thep = 2f fg = %gt andg, = 2(f2 + ff)g =
212417 4, and the formulas in Propositi¢n %.1 reduce to

7
W= f%d,
REXYIU = R0 + 4 o)y - o,
RZ(X,v)v = féx,
ric?(X,Y) = rith(X,Y)(nl)f#<X,Y>,
ricZ(X,Z/) = 0,
ric® (v,v) = fn§, | "
Scal® = ScalMt— p —(n — 1)f2 +2/7

f? ’
compare[p, Ch. 7].

5. IDENTIFYING SPINORS AND THE VARIATION FORMULA FOR THEDIRAC OPERATOR

tis an annoying problem that the definition of spinors, intcast to that of differential forms
and tensors, depends on the semi-Riemannian metric of théatth Hence if one wants to
compare the Dirac operators for two different metrics ors fias to identify the underlying
spinor bundles.

The problem of constructing such identifications can be sl two steps: First construct identifica-
tions for any two metrics in a 1-parameter family of metri€ke identification of spinors for two metrics
will in general depend on the 1-parameter family of metrainipg them. Secondly, given two metrics
construct a natural curve of metrics joining them.

Both steps have been carried out very satisfactorily forctse of Riemannian metrics iﬂ [3]. Inthe
present section we will deal only with the first step. The secstep cannot always be carried out. In
Sectior[p we will discuss this problem for the case of Lorenétrics in great detail.

Now letg,, t € I, be a smooth 1-parameter family of semi-Riemannian metfisiggnature(r, s) on
a manifoldM. We form the generalized cylindef := I x M with metricg = dt> + g;. Fort € I we
abbreviate the semi-Riemannian manifoM, g;:) by M.

Spin structures o/ and onZ are in 1-1-correspondence. As explained in Secﬂion 3 spiktstres
on Z can be restricted to spin structures bfh = M. Conversely, given a spin structure a# it can

be pulled back ta x M yielding a(?i+(n,R)—principal bundle onZ. Enlarging the structure group
via the embeddin@ﬁ+(n,R) — C/}VLJr(n + 1,R) covering the standard embeddiag.” (n,R) —
GL*(n+ 1,R), a — <(1)
onM.

Let us write “” for the Clifford multiplication onZ and “e,” for the Clifford multiplication on ;.
Recall from Sectioff]3 thatZ|y, = XM, as Hermitian vector bundles if = r + s is even and
¥t Z|y, = XM, if nis odd. In both cases the Clifford multiplications are rethby X o, o = v - X - ¢.
For givenz € M andty,t; € I parallel translation oif along the curve — (¢, x) is a linear isometry

2), yields the spin structure af which restricts to the given spin structure
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Tttol s XMy, — X,.M,,. Since “” and v are parallel along the curve— (¢, z) so is the family of

Clifford multiplications “e;” and ng preserves Clifford multiplication in the following sense:

Tid (X o1 ) = (10 X) &4, (7))
In general, the covariant derivative and hence parallekpart depends on the semi-Riemannian metric
and its first derivatives. We note here that for fixed M the parallel transpontf(} s T My, — Ty My,
or Tf(} 0 XMy, — XMy, is determined by («) and g:(z), no z-derivatives ofg; enter. Namely, if
xl, ..., 2" are local coordinates oh/ and X (¢, z) = > ¢ (z,t) 52 is a parallel vector field along
t +— (t,z), then this means by (10) arld[15)

\v4 " . A b
—X = J roder | =——
dt ;(6 +; k,0 >8xj

0

[, = je. &) O
Z §j+§zgt gt ke Evh

j=1 k=1

Thusnﬂj : T My, — T, M, is given by solving the system of ordinary differential etjoias

Etr) =5 3 o' @)uns @ (1),

k,e=1

For spinors the situation is similar. B [3, Prop. 2] this wilsahat our identificatiorfrf; of spinors for
different metrics coincides with the one ﬂ [3].

Now we rewrite the commutator formula of Propositfon] 3.1r Eectiony of £Z (or £ Z if n is
odd) we have

s n ) | Y
(23) i [VEZ DM p =W — 5 grad™t (Hi) o 0+ 3 divMe (W) et 0

where DM is the Dirac operator of\f;, grad™ is the gradient andiv’* the divergence (of en-
domorphisms) onV;, W, is the Weingarten map o#/; in Z and H;, = %tr(Wt) the mean cur-

vature and finallyd"ep = Y7 cje; o V%V]:ffej)@ for any orthonormal basisi, ..., e,. ¢From
([3) we havediv (W;) = —3 div™ (g;), H; = —5= trg, (§:) and®Wt = —1D9 whereDdp =
S i gsekdi(ej ex)es o VaMip. Thus [2B) can be rewritten as

. 1, 1 . 1w,
(24) iS[VEZ DM p = 7@% +3 grad™* (tr,, (g:)) o o — i divMe(gy) e .

Now if ¢ is parallel along the curves— (t,x), i. e. itis of the formy(t, x) = 7{ ¢ (x) for some spinor
field ¢» on M,,, then the left hand side of (24) is &t t,

, d
VEZ,DM]p = VEEDMp= 2| qepug
t=to
d
=,
=to

We have shown the variation formula for the Dirac operator:

Theorem 5.1. Let g; be a smooth 1-parameter family of semi-Riemannian metrica spin manifold
M. We write briefly), for the semi-Riemannian spin manifold/, g;). Let;! be the identification
of spinor spaces foM/;, and M;, constructed above, lgb: be the Dirac operator of/;, let “e,” be
Clifford multiplication on)M; and let®9tp = szzl ejckge(ej, en)e; oy VEMip,

Then for any smooth spinor fieltlon M, we have

d

A I ) . 5 oA
P rDMeri o = —Eggmp t7 grad™o (tr, (1)) ot ¥ — 1 div™eo (g, ) o4 .
t=

to

This is exactly the formula given irﬂ[3, Thm. 21] for Riemaamimanifolds.
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6. ENERGY-MOMENTUM TENSORS

heoreml can be used to compute the energy-momentum tiemsspinors. In order to
explain what this means we briefly sketch Lagrangian fieldthesee [h p. 153 ff] for a
more detailed introduction. Let/ denote a differentiable manifold and lgtbe a set of

5 (smooth) semi-Riemannian metrics &, open in theC*>°-topology. Letr : £ — G x M
be a fiber bundle with finite dimensional fibers. For exampl@/icarries a spin structure the fiber over
(g,x) € G x M could be the spinor space atwith respect to the metrig, £, ., = M. For each
fixed g € G the restrictiont—!({g} x M) — M is a fiber bundle ovet/ and we can form the space
of smooth sections, of this bundle. These Fréchet manifolfig give rise to a Fréchet fiber bundle
S :=U,eg Sy — §. LetF C S be a Fréchet submanifold such that the restriction” — G is again a
Fréchet fiber bundle.

Now let L : F — QIl(M) be a smooth map whefel”!(11) denotes the space of smooth densities
on M, i. e. smooth sections of"T* M ® o), Whereo,, is the orientation line bundle. We assume that
L is local in the sense that for € F the densityL(y) evaluated at € M depends only orp(z) and
the M-derivatives ofp atz. In other words,L(¢)(z) is a function of the jetj$S¢(z). We call L the
Lagrangian densityIn physics it is customary to integrate ovef and call [,, L(¢) the Lagrangianor
theaction We avoid this integration since in general the integg\glL(w) need not exist.

We call a smooth 1-parameter famipy € F, with ¢y = ¢ compactly supported it is constant
outside a compact subskt C M, i. e.pi(z) = ¢(x) forallz € M \ K and allt. SinceL is local L(y:)
is constant outsid& as well so thatf,, (L(¢:) — L(¢)) exists and

%t_o /M(L(%)fL(W :/1;4%

The sectionp € F, is calledcritical for L if for each compactly supported deformatipn

/ 4
To explain the concept of energy-momentum tensors we negdname piece of structure. Léf C
T'F be a connection. This means that for gng F we havel, F = T,(Fr(,))® H, and the restriction
dr|g, : H, — TG is an isomorphism. For fixeg € F andg := 7(¢) we have the linear map
dLo (dr|y,)~ " : T,G — QI"l(M). Recall thafl,G is nothing but the space of smoqith 0)-tensors. A

smooth symmetri¢2, 0)-tensorQ,, will be called theenergy-momentum tensfar ¢ with respect to the
Lagrangianl if

L(py).
t=0

t=0

dL o (drl,) " (k) = (Qp k), dV,

forall k € T,G. Here(., -)g denotes the (pointwise) metric on symmettlc0)-tensors induced by and
dVj is the Riemannian volume measure forlf it exists @), is obviously unique. By its definition the
energy-momentum tensor describes the behavior of the hg@gnaunder variations of the metric.

Example6.1. Let M carry a spin structure, |€t be the set of all semi-Riemannian metrics/ahand let
E be the universal spinor bundlg, ..y = X M. ThenS is the universal bundle of spinor fields and we
putF := S. We fix A € R and we define the Lagrangidnby

L(p) == Re(p, (D = N)yp), dV

where DY is the Dirac operator with respect to the metjic= 7 (). If ¢, is a compactly supported
deformation ofp we write % lt=0r = ¢ and we compute

J i
v dt

Thuse is critical if and only if (D9 — \)p = 0, i. e. if ¢ is a Dirac-eigenspinor for the eigenvalhe

Lig) = / Re((, (D7 — Ng), + (9, (DY — N)g),) dV,
t=0 M

2 Re /M (6, (DT = \g), V.
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The connectiorf{ is determined by the parallel translatiﬁﬁ;)\ used in the previous section to identify

spinors for different metrics. More precisely,, is the set of all% 0 74 for all smooth curveg, of

metrics withgy = ().
Now let g; be such a 1-parameter family of metrics and wkite= go. We compute
dL o (d7T|H¢)71(k)
d

= = L(+t
dt|,_, (To%)
d
= =|  Re(rp, (D" = N)(159)),, dVy,
t=0
_ d 0 Mgt -t d‘/t‘]t
= o . Re <<p, (1, D75 — )\)<p>go av,, dVy,

d
(T?Dgtﬁ‘iso)> +{p, (D* = Ne)y, =

d
= Re <(p7 n
< dt t=0 g0

The first term is given by the variation formula for the Dirgoegator. By KIZ), all terms of the form
Re (¢, 1°X o4, ©) vanish. Thus Theorefn .1 yields

dv,
o) av,.
t=0 dng ) 9

d 1 .
Re <<p, = (T?Dgf75¢)> = —5Re(p, D), .
t=0 9o
For the second term we use
dl dv, 1
— 2 =~ try, (k)
dt|,_odVy 2%
Thus
_ 1
dLo (drlu,) "' (k) = 5Re (= (9. D6), + (@ (D® = N)g),, trg, (k) dVi,
= <Q<P7 k)go dVgo
for the symmetrig¢2, 0)-tensor
1
Qo(X.Y) = —7Re((p. X oy Vi) + (.Y 09, VX'0))

+% Re (p, (D% = N)¢) go(X,Y).

If pis critical, i. e. if D9p = Ay, then the energy-momentum tensor simplifies to

1 ,
(25) Qe(X,Y) = =7 Re ({9, X oy, VM) + (0, Y g VM) .

Example 6.2. Again, letM carry a spin structure, 1€t be the set of all semi-Riemannian metricsan
and letZ be the universal spinor bundlg, ,, = X4 M. Then agairs is the universal bundle of spinor
fields and we this time we pi, := {¢ € S, | [, (¥, ¢), dVy = £1}. We define the Lagrangiah by

L(¢) :==Re (¢, Dp), dVj.

Now ¢ is critical if and only if

d .
/ pn L(p:) = 2Re/ (¢, D), dVy =0
M t=0 M

for all ¢ perpendicular ta, i. e. if and only if D9 is a multiple ofy. This way we obtain all nonnull
eigenspinors for all eigenvalues simultaneously as etitits.

This time the connection has to be chosen differently be}:a;jsjs a pointwise isometry but the vol-
ume elementV, also depends on the semi-Riemannian metric. Therefgrdoes not give an isometry

for the L2-product used to defin&. This can be corrected by defining the connectibas the set of all

i‘ dVy,
dt [t=0 dVy,

74 for all smooth curveg, of metrics withgy = ().
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Then we have for such a 1-parameter family of metgicwith & := gq

_ d
Lo arl,) 0 =Re (i | (2DE) av,

t=0 g0

and therefore )
Qu(X,Y) = 1 Re (<907X ®90 vli/:M‘P> + <‘P’ Y ey, VE:(M‘P»
for all ¢, critical or not.
These two examples show that for noncritigathe energy-momentum tensor also depends on the
choice of the connectio/. In contrast, for criticaky the differentiald descends to a magL :

ToF |Tp(Frpy) — QM(M). Thus the maplL o dr=! : Tp(,)G — QIPI(M) is well defined with-
out any reference té.

7. EMBEDDINGS OF HYPERSURFACES

e will now apply the cylinder construction described in S&m:@ to study the question
whether a given manifold can be isometrically immersed agpeetsurface into a manifold
of constant curvature. The classical example for such dtieghe fundamental theorem for
hypersurfaces which can be stated as follows:

77 G
/ 9‘/’
G

O

Theorem 7.1. Let(M™, g) be a Riemannian manifold and ldtbe a field of symmetric endomorphisms
of T'M satisfying the equations of Gauss and Codazzi-Mainardi:

(26) (VXAY = (VWAX,
(27) RM(X,Y)Z = (A(Y),Z)AX) - (A(X), Z) A(Y)

forall X,Y,Z e T,M,pe M.

Then every point of\/ has a neighborhood which can be isometrically embedded Eutdidean
(n + 1)-spaceR"*!, with Weingarten mapA. If M is simply connected, then there exists a global
isometric immersion af/ into R" ™! with the above property.

A proof can be found in|]6, Ch. VII.7], but here we will give a neageometrical argument based on
the cylinder construction. This will allow us to extend tlesult without effort to the semi-Riemannian
case and to embeddings into model spaces of constant sdationature not necessarily zero. We will
construct arexplicit metric of constant curvature on the cylindex M, whose restriction to the leaf
{0} x M isg.

For a constant € R define thegeneralized sinandcosine functions

ﬁsin(\/%-t) , k>0 cos(vi-t) , >0
5,.(t) = t ; k=0 and ¢, (¢) := 1 , k=0
\/#msinh(\/lnl 1), k<0 cosh(y/[R] - £), K< 0

One easily checks, (0) = 0, ¢, (0) = 1, k52 +¢2 = 1, 5" = ¢, andc/, = —ks,.

Theorem 7.2. Let(M™, g) be a semi-Riemannian manifold and et R. Let A be a field of symmetric
endomorphisms af M satisfying

(28) (VXA)Y = (VWWAX,
RM(X,Y)Z = (A(Y),Z)A(X) - (A(X),Z) A(Y)
(29) +6((Y,Z2) X —(X,2)Y)

forall X,Y,Z € T,M,p € M. Define a family of metrics o/ by
9e(X,Y) = g((ex(t) id — 5(1) A)2 X, Y).

Then the metridt? + g; on Z = I x M has constant sectional curvatuseon its domain of definition
(i. e. for |¢| sufficiently small).
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Proof. PutRZ(X,Y)Z := R*(X,Y)Z— x({Y, Z) X — (X, Z) Y. Having constant sectional curvature
K is equivalent taRZ = 0. The proof is based on the following lemma:

Lemma7.3. LetZ = I x M be ageneralized cylinder and lete R. Assume thag(RZ (X,v)v,Y) =0
for all vector fieldsX andY on Z, wherer denotes the vectq%.

(i) If the Weingarten mag of the hypersurfac0} x M of Z satisfies@S), thep(RZ(X,Y)Z,v) =
0 for all vector fieldsX, Y andZ on Z.
(ii) If, moreover,A also satisfies@g), theRZ = 0, i. e. Z has constant sectional curvatuse

Assume this lemma for a moment. We will check that the mettic+ ¢, satisfies the hypothesis of
the lemma forg; (X,Y) = g((c.(t)id — 5,(t)A)?X,Y). Let W, denote the Weingarten tensor of the
hypersurfacgt} x M of Z. This gives rise to a tensor field on Z, vanishing in the direction of.
¢ From the definition of, we compute

9(X,Y) = —29((cx(t)id — 54 (t)A)) (ks (1) id + ¢ (t) A) X, Y)
= —2g,((cn(t)id — 5, (£)A)) " (k8 (£) id + ¢ () A) X, Y)

hence by|[(15)
W = (cu(t)id — 5, (t)A)) " (ks (t) id + ¢ (t)A).
Moreover,
G(X,Y) = —2g([k(ck(t)id — s4(t)A)* — (ksk(t)id + ¢ (t)A)*]X,Y) .
Equation [IB) yields
a(RE(X,v)n,Y) = —%gt(X, Y)— %gt(W(X), Y)

= g(r(cx(t)id — 5.(t)A)*X,Y)

= rq(X,Y),
thus R? (X, v)r = kX and henceRZ (X, v)v = 0. All conditions of the lemma are satisfied and the
theorem follows. O

Proof of the lemmaThe modified curvature tensdtZ has all the symmetries of a curvature tensor
including the Bianchi identities.

i) Consider the family of tensors oW defined byK,(X,Y, Z), := (RZ(X,Y)Z, u>(m). Using the
second Bianchi identity o, together with the fact that commutes with vectors ol and the formula
W(X)=-VZv=-VZX +[1,X]=-VZX we see

K(X,Y,Z) = d,(RZ(X,Y)Z,V)
— (VERZ)(X.Y)Z.v)
—(RZ(W(X),Y)Z + RZ(X,W(Y))Z + RZ(X,Y)W(Z),v)
= ((VERZ)w,Y)Z,v)+ {(V£RZ)(X,v)Z,V)
(30) +(W*K)(X,Y, Z)

whereWW* denotes the induced action @f as a derivation on tensors. ¢From the assumption in the
lemma we conclude

0 = dx(RZ(w,Y)Z,v)
= ((VXRE)w,Y)Zv) +(REZ(VZv,Y)Z,v) + (RE (v,VXY)Z,v)
+(RZ(v,Y)V%Z,v)+ (RE(1,Y)Z, VXV>
= <(VXRZ v, Y)Z,v) — (RE(W(X),Y)Z,v) +0
—(RZ(nY)Z,W(X))
thus
(VERED)(,Y)Z,v) = (RZ(W(X),Y)Z,v) + (RE(v,Y)Z,W(X))
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and similarly
(V¥RZ)(X,v)Z,v) = (RZ(X,W(Y))Z,v) + (RE(X,1)Z,W(Y)).
Plugging this into[(30) yields
Ki(X,Y,Z) = (REZW(X),Y)Zv)+ (RE(w,Y)Z W(X))

+{(RE(X,W(Y)Z,v) + (RZ(X,1)Z,W(Y))
+(W*K)(X,Y, Z).

HenceK, = F(t)(K,) for some linear endomorphisin of the space of 3-tensors. This is a linear first
order ODE forK,. The initial conditionk, = 0 follows from (1}) becaus#/, = A is a Codazzi tensor.
This shows thaKk; = 0.

ii) Similarly, using the identity RZ (X, Y)Z,v) = 0 that we just obtained, we see that the family of
tensors onV/ defined byR,(X,Y,Z,V), := (RZ(X,Y)Z, V>(t ) satisfies a linear ODE. Moreover,

(L8) impliesR, = 0 becauséV, = A satisfies the Gauss equation. ThHs= 0 for all ¢. This proves
the lemma. O

Now recall that any semi-Riemannian manifold of constaatiseal curvature: is locally isometric to
M;}®. HereM;® is the model space of constant sectional curvatuaed signaturér, s). If k = 0, then
My ® is semi-Euclidean spad®” with the metricy, , = (dz')?+- - -+ (dz")? — (dz" )2 — - . . — (dz™)?.

If x > 0, thenM”® is a pseudosphere, more precisely, it is the semi-Riemarimyaersurface of
(R, g,11,5) defined by(z,z), ., . = 1/k andz' > 0if r = 0. If & < 0, thenM* is a pseu-
dohyperbolic space, more precisely, it is the semi-Rierizminypersurface ofR" 1, g, ;1) defined by

(T, 2), o1 = 1/K andz"*! > 0if » = 0. In all casesM”* is connected and homogeneous. Moreover,
M">* is simpy connected except fbL "1 if x > 0 andM?~ 1 if x < 0, compare[[o, p. 108 ff].

The local isometry is essentially given by the Riemannigpoeential map, seﬂlll, Cor. 2.3.8], and
it is uniquely determined by its differential at a point. Apipg this to the cylinder constructed in The-
orem[7.} yields the local statement in the fundamental #vador hypersurfaces for semi-Riemannian
manifolds.

Corollary 7.4. Let(M", g) be a semi-Riemannian manifold of signatgres) and letx € R. Let A be
a field of symmetric endomorphismsiaf/ satisfying the equations of Gauss and Codazzi-Mainardi:

(VX¥AY = (VVA)X,
RM(X,Y)Z = (A(Y),Z)A(X) - (A(X),Z) A(Y)

+x((Y,2) X — (X, 2)Y)
forall X,Y,Z e T,M,pe M.

Then for every poinp € M, for everyqg € M’ +1:¢, and for every linear isometric embedditg:
T,M — T M ! there exists a neighborhodd of p in M and an isometric embedding : U —
M’ +1s as a semi-Riemannian hypersurface with Weingarten maguch thatf (p) = g anddf(p) = F.

Moreover, any two such local embeddinfjsand f, must agree in a neighborhood pfif f1(p) =
f2(p) =: g anddfy(p) = df2(p) : T,M — T M5,

Now, that this local result is established, exactly the sanoef as in [§, Ch. VII, Thm. 7.2] can be
used to show the corresponding global immersion statemeheisimply connected case.

Coroallary 7.5. Let (M™,g) be a simply connected semi-Riemannian manifold of sigediys), let
x € R and letA be a field of symmetric endomorphisms/o¥/ satisfying the two equationf {28) and

[B9) above.

Then M can be isometrically immersed as a semi-Riemannian hydarsiinto the model space
M7 +1s with Weingarten mapl. Any two such immersions differ by an isometryvif™-=.
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8. GENERALIZED KILLING SPINORS

e now turn our attention to restrictions of spinors to hypdeces. LetM™ c Z"t! be a
hypersurface of a spin manifolel admitting a parallel spinow. If n + 1 is even, we will
assume tha¥ lies in X+ Z. From the discussion in Sectifh 3 we see that the restrigtiof
W to M is actually a spinor od/ and ) reads

(31) 0=V¥U =ViMy — %A(X) o)

for all X € TM where A is the Weingarten tensor of the submanifdlfl and “e” denotes Clifford
multiplication onM. If v is an eigenspinor of the Dirac operator, théiis closely related to the energy-
momentum tensor ap. More precisely, usindztS) one computes

QulX,Y) = § (X, A(Y) (0, )

where (1, 1) is constant since) is parallel onZ. Spinors satisfyingl) will be callegeneralized
Killing spinors. They are closely related to the so—calleeKilling spinors studied by Friedrich and Kim
in [H].

Conversely, given a generalized Killing spinpon a manifoldM ™ with VM) — %A(X) e, itis
natural to ask whether the tenséican be realized as the Weingarten tensor of some isomethiedaimng
of M in a manifoldZ"*+! carrying parallel spinors. Morel studied this problem ie tase where the
tensorA is parallel, se€f[7].

The next result provides an affirmative answer to the aboestipn, for the case where the energy-
momentum tensor af is a Codazzi tensor.

Theorem 8.1. Let (M™, g) be a semi-Riemannian spin manifold and Aebe a field of symmetric en-
domorphisms of M satisfying equatiormG) of/. Lety be a spinor on(M™, g) satisfying for all
XeTlM

(32) VP = JA(X) e

Then the generalized cylindef = I x M with the metricdt? + g;, whereg,(X,Y) = g((id —
tA)2X,Y), and with the spin structure inducing the given one{6h x M by restriction has a parallel
spinor, whose restriction to the le§®} x M is justi).

Proof. The spinor) defines a spinoW on Z by parallel transport along the geodesits {«}. More
precisely, we defin@ g ,) := v, via the identificatior®, M = ¥y ;) Z (resp.E;B I)Z for n odd) and
W10y = 16 (0,2)- By construction we have

(33) V22T =0 and V2| 10y =0
forall X e TM.

The explicit form of the metricg;, yields (R*(X,v)r,Y) = 0 on Z for all X andY tangent
to M as in the proof of Theorerh 1.2. Since the Codazzi equafiop I{2@ls Lemmd 7|3 (i) yields
(R®(v,X)Y,Z)=0o0nallof Z. HenceR* (v, X) = 0 forall X € T M.

Let X be a fixed arbitrary vector field o/, identified as usual with the vector fie{d, X) on Z.
Using (38) we get = 1RZ (v, X) - ¥ = VIZVYZ Y, thus showing that the spinor fielZ ¥ is
parallel along the geodesitsx {x}. Now @) shows that this spinor vanishesfet 0, hence it is zero
everywhere or£. SinceX was arbitrary, this shows that is parallel onZ. O

This theorem generalizes the result fro|fh [1] where the chse ) - id is treated A € R, and it is
shown that the cone over a manifold with Killing spinors aténpiarallel spinors, as well as a more recent
result by Morel [}] for the case whes is parallel. Nevertheless, the question whether a manifdta
a spinor satisfying@Z) can be isometrically embedded inaaifald with parallel spinors such that
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becomes the Weingarten tensor of the embedding withoutrdasguhatA is a Codazzi tensor is left open
in the present article.

9. THE SPACE OFLORENTZIAN METRICS

n the final section we address the problem of connecting aoysémi-Riemannian metrics of

signaturer, s) on some manifold/ of dimensiom = r+s, by a curvey; of semi-Riemannian

metrics of the same signature in a unique and universal mahhe latter requirement reduces

this problem to the purely algebraic issue of finding a ursgéway of relating any two inner
products of signaturé-, s) on some real vector spaée= R" in the manifoldM,. , of all inner products
of signature(r, s) on E.

In the positive or negative definite case an obvious candlidathe linear interpolatiop; = tg; +
(1 — t)go which, however, cannot be used for other signatures. Amreltive solution, which has been
considered in the definite case, see d]g [3], but holds innadty identical way for all signatures, relies
on the geometry oM, 5, as a (semi-Riemannian) symmetric space that we now redeilyb

For any signaturér, s) the identity component of the general linear gra@ép™ (E) = GL™ (n,R)
acts transitively onM,. ; by

(v 9)(u,v) = gy u, v o)

fory € GLT(E), g € M, andu,v € E. For any chosen, in M. 4, the isotropy group o

in GL™(E) is the special orthogonal groi§O(go) relative togy. Recall that, except in the definite
case wher80(go) is connected$O(go) hastwo connected components. We thus get the identification
M, s = GLT(E)/SO(go) or, equivalentlyM,. ; = R* x SL(E)/SO(go), whereR* acts by homoth-
eties, andL(E) = SL(n, R) denotes the special linear group of elements of determinanGL™ (E).
HenceM; . := SL(E)/SO(go) can be regarded as the space of inner products ohsignature(r, s)

and with a fixed volume element. Concerning the problem adgabin this section, it is clearly sufficient
to restrict our attention to1) ..

The homogeneous geometry 1% . = SL(E)/SO(go) can be described as follows. For simplicity,
write G := SL(E), H := SO(go), let g be the Lie algebra of, identified with the Lie algebra of
trace-free endomorphisms &, and leth be the Lie algebra off, identified with the Lie algebra of
go-skewsymmetric endomorphisms. Denoterbyhe orthogonal complement gfin g with respect to
the Killing form of g, so thatg = h @ m. Recall that the Killing form ofyg equals the bilinear form
a, b — tr(ab), up to a positive universal constant, so ttwais the space of,-symmetric elements af.
Since the Killing form isG-invariant,m is stable under the adjoint action &, making/\/l?.7S a reductive
homogeneous space. Moreover, we clearly have the Lie braelkeions[h, ] C b, [h,m] C m, and
[m, m] C h showing thatM?.,S is actually a symmetric homogeneous space.

In the positive definite case\/tg_ro is a Riemannian symmetric space of noncompact type, hence a
Hadamard space. It follows that any two pointsNziﬂyo can be joined by a unique geodesicg lindgg
are any two points oM, o, theng = go(A-, ), for a uniquely defined automorphisiof E, whereA
is symmetric and positive definite for bojb andg. ThenA = exp(a) for a uniquely defined symmetric
endomorphisna of E and the unique geodesic connectijgto g is the curvey; := go(exp(ta)-,-) =
go(At- ), fort € [0,1] whereexp : g — G denotes the exponential mapping.

In the general case, the restriction of the Killing forrmtas an H -invariant inner product of signature
(% + @ -1, rs), making/\/lﬂ_’S asemi-Riemanniasymmetric space of this signature.

The fact that/\/lRS is symmetric, as a semi-Riemannian homogeneous spacdesntpht the Levi-
Civita connection of the semi-Riemannian metric coincigéh the canonical homogeneous connection.

In particular, all (semi-Riemannian) geodesics emandtiomg ¢, are of the formexp(tX) - go for X €
m =Ty M, .

As a symmetric semi-Riemannian manifd\d%s is certainly geodesically complete in the sense that
geodesics are defined on all®f but for (r, s) # (n,0), (0,n), itis not longer true that any two points can
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be joined by a geodesic and, if so, there is no guarantediigtpdesic be unique. This will be illustrated
firstly in the case thatr, s) = (1,1), then in the general Lorentzian case wiers) = (n — 1, 1).

9.1. The space of Lorentzian inner productsin dimension 2. Let £ denote an oriented real vector
space of dimensio@. We fix a positive generatar of the real lineA2E*, which can be viewed as a
symplectic form onE. Now G = SL(2,R), g = sl(2,R) is the Lie algebra of trace-free endomorphisms
of E, andM? | is the space of all Lorentzian inner productsBnwhose volume form with respect to
the given orientation is. For any chosen poinfy € M ; we then have\? | = SL(2,R)/SO(1,1).
Note thatSO(1, 1) has two connected components. The connected componerg iofethtity SO (1, 1)
cosht sinht
sinht cosh t)'
The other connected component equai0,(1,1). Differentiation with respect té shows that the

corresponding isotropy Lie algeblas the Lie algebra o2 x 2-matrices of the forrT((b) g) ,forb € R.

An endomorphisna of E is tracefree if and only if it is “antisymmetric” with respeto w, i. e. if and
only if it satisfies:w (o, ) + w(-,a-) = 0.

is isomorphic the the additive group of real numbers via the isomorphisin— (

For anyg € M¢ , there is one and only one automorphigpof £ such that
(34) g=w(1I4).

Sinceg is symmetricl, is trace-free. Its determinant equal$ becausg is Lorentzian, with volume
form equal tow. In particular,Ig2 = 1. The light cone of; is the union of the two eigenspaceslgf for
the eigenvalues1. The latter are generated byt I,v respectively, for any nonzeroc E.

Conversely, for any automorphisiof E of trace equal td and of determinant equal te1l, the
bilinear formg defined byg = w(:, I*) is a Lorentzian inner product, with volume form equalkt@nd
I=1,.

The automorphisni, belongs to the Lie algebig on whichG acts by the adjoint representation, and
the mapg — I, is G-equivariant. Indeed, by definition &f, we have that(vy-,v-) = w(:,-) for each
~v € G, so that

-1

Y9 = g(fy '7’)/71') = W(’yil',Ig 771.) = w(.,f}/lgr}/il.)_

The mapg — I, is then aG-equivariant identification a9 ; with the adjoint orbit of all elements
of g of determinant equal te-1.

As a function defined op = R3, the opposite of the determinant is a nondegenerate qimfban
of signature (2, 1), equal to the (suitably normalized)iKgl form. We denote the symmetric bilinear
form corresponding te- det by (-,-), i. e. (u, u) = —det(u) = 3 tr(u?). The adjoint orbit is then the
pseudospheril" of elements: such thatu, u) = 1 in the 3-dimensional Minkowski spade, (-, -)).
The restriction of(-, -) to M"" makes the latter &-homogeneous Lorentzian manifold, known as the

2-dimensionatle Sitter universeThe mapM¢ ; — My, g — I, is aG-equivariant isometry.

The reflection with respect tg, -) about a vector subspace is an isometrygf-, -)) and it preserves
M;"'. Since the fixed point set of an isometry is a totally geodesimanifold the geodesicsbf;"' are
precisely the intersections M}’l with 2-dimensional vector subspacEsc g. There are three types of
geodesics: timelike geodesics (hyperbolas) correspgrtdiMinkowski planes, spacelike geodesics (el-
lipses) corresponding to spacelike planes, and null gécaléstraight lines) corresponding to degenerate
planes (tangent to the light cone).
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Fig. 1

Now let I, I’ be two different points irMi’l. If I’ = —1I, then each plan& containingl also contains
I'. In the timelike or in the null cas& lies on the other connected componentih M;'. Thus all
spacelike geodesics emanating frérit I’ = —1I, but the timelike and null geodesics emanating frbm
missI’ = —1I.

If I' # —1, thenI andI’ are linearly independent, so the plafecontaining/ andI’ is uniquely
determined. Thug’ is hit by the geodesic emanating frahnif and only if it does not lie on the “wrong”
connected component @ N M;'" (in the timelike or null case). In other words, the pointsidi)y*
which cannot be reached by a geodesic emanating frane precisely the ones lying on timelike or null
geodesics emanating froml.

\ / unreachable
points

AN\

Fig. 2

The two null geodesics emanating froaf are cut out ofMI}"' by the affine plang (I, I') = —1}.
Thus the pointd’ € M;"" with (I, I’) < —1 cannot be attained by a geodesic frém

Similarly, by looking at the affine plan§(I, I’) = +1} we see that the point8 with (I,I’) > 1
are the ones that lie on timelike geodesics emanating frottme ones with(7, I’) = 1 are the ones that

lie on null geodesics emanating framand the ones with-1 < (I, I’) < 1 lie on spacelike geodesics
emanating front.

We now retranslate this information backtd{ ;. If g, ¢’ € MY , then
g/ = g(Av ')7
with
A=1I "y =1,1y.
We then have .
<Ig, Igl> = 5‘51‘ A

Note thatA is g- andg’-symmetric and of determinant equal+d.

By choosingg as a base-point, we conclude tltrtatt(i1 can also be identified with the space of all
g-symmetric automorphisms of determinardgf £. We summarize:

Proposition 9.1. The space/\/l(i1 of Lorentzian inner products on a 2-dimensional real vedpace
that have a fixed volume element carries a natural Lorentmi@tric making itSL(2, R)-equivariantly
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isometric to the 2-dimensional de Sitter universe. f§’ € M ; there is a unique endomorphisi
such thaty’ = g(A-, -). Moreover, the following holds:

e If tr(A) > 2, then there is a unique geodesic/n? | joining g andg’. This geodesic is timelike.

e If tr(A) = 2, then there is a unique geodesicAn! | joining g andg’. This geodesic is null.

e If —2 < tr(A) < 2, then there is a unique geodesicM! ; joining g and¢’. This geodesic is
spacelike.

e If tr(A) < —2, then there is no geodesic i , joining g andg’.

o Iftr(A) = —2andg # —¢/, then there is no geodesic itt? | joining g andy’.

o Iftr(A) = —2andg = —¢/, then all spacelike geodesicsM? ; emanating frony pass through
¢’ while the timelike and null geodesics.M{ ; emanating frony missy’.

This proposition shows that given two Lorentzian metricsad®-dimensional manifold we can con-
struct a canonical 1-parameter family of Lorentzian mstjiéning them only if the endomorphism field
A relating the two metrics satisfies(A) > —2. A restriction like this does not come as a surprise
because there are pairs of Lorentzian metrics e. g. on tleeu®-tvhich cannot even be joined by any
continuous curve of Lorentzian metrics. Topological pmtigs of the space of Lorentzian metrics on
compi:t manifolds such as the number of connected compmaedtheir fundamental groups are stud-
ied in [4].

9.2. The space of Lorentzian inner products in higher dimensions. We now consider the manifold
My =Rt x M) _,  ofall Lorentzian inner products of signature— 1, 1) on somen-dimensional
real vector spacé.

As observed before the manifczhzklg,l_’1 is a symmetric semi-Riemannian space of signature

(st

and the geodesics emanating from any chosen base-pp#re of the formexp(tX) - go, where X
belongs to the space of trace-freegy-symmetric endomorphisms df, m being naturally identified
with the tangent spacg,, M9, ;.

The goal of this section is to determine the set of elememsM,,_; ; which can be joined fromg,
by a geodesic itM,,_1 1, and whether or not this geodesic is unique. This has just ere in detail in
the case that = 2 and, as we shall see, the general case can essentially lededuhe2-dimensional
case. More precisely, we have

Proposition 9.2. Let g, andg be two distinct points ioM,,_1 ;. Then there is the following alternative:
Either

(i) E splits as
E=FE1®E,—2y,
where the sum is orthogondk; ; is of signature(1, 1), E,,_2 o is of signature(n — 2,0) for go andg.
Both go and g belong to the corresponding totally geodesic submanifeld; x M,,_20 C M, _1 1.
Thus the issue of the existence and uniqueness of geodasiEsctingy, to ¢ is reduced to the same issue
for the2-dimensional Lorentzian metri%‘Em andgg, , in My ; as described in Propositi.l, or
(i) F splits as
E=FEy1® FE, 30,
where the sum is orthogonat, ; is of signature(2, 1), E,,_s o is of signaturg(n — 3,0) for go andg.
Both go and g belong to the corresponding totally geodesic submanifeld ; x M,,_30 C M, _1 1.
The 3-dimensional Lorentzian metrias ,, and gz, , are related byg g, , = gog,, (B, ), where
B is an automorphism oF; ; of the formk(id + z), wherek is a positive real number and is an
endomorphism o, ; satisfyingz® = 0 butz? # 0. Thusg, andg are connected by a unique geodesic
whoseFE; ;-part is of the form

gt‘EQYl = gO‘EQYl(Bt.7 ')7



24 CHRISTIAN BAR, PAUL GAUDUCHON, AND ANDREI MOROIANU

with B, = k' exp(t(z — 327)) = k' (1 +tx+ @xz)
This follows directly from Exercise 19 ir||:|[9, Ch. 9]. Since weuld not find any reference containing
a proof of this statement we devote the rest of the paper twiﬂlngropositiorIEZ.

Recall that for any andg, in M,,_ 1, there exists a uniquely defined automorphidrof £ — with
detA > 0 —suchthay = go(A-,): A= (y1)*y~ !, foranyy € GL(E) such thay = v - go andA4 is
symmetric relative to both andgy. Theng, can be joined witly by a geodesic inM,,_; ; if and only
if Ais of the formA = exp(a), for somegy-symmetric endomorphism of E, and the corresponding
geodesic is then the curye := go(exp(ta)-,-) fort € [0, 1].

The proof of Propositio@.z requires the spectral analgkid. For this purpose it is convenient to
introduce a positive definitEBuclideaninner product-, -) on E such thatyy, = (I-,-) whereI is of the
form

(35) I =id — 2(u, -)u,
for some element € E such thaju|? = 1. Here, and henceforth; | denotes the norm with respect to
(+,-). Forgg the vector is timelike with go (u, u) = —1. Conversely, any suchdetermines a Euclidean

inner product as above.

Theng = go(A4-,-) can be written ag = (.S-, ) for a uniquely defined., -)-symmetric automorphism
S of E with exactlyn — 1 positive andl negative eigenvalues.

Conversely, for any such automorphisimthe inner producy = (S-, -) belongs taM,,_; ; with

A=I"18=18S.

The spectral decomposition Sfreads

£
S = Aollp + EP NI,

r=1
with Ag < 0 < A1 < ...\, Wherell; denotes thé¢-, -)-orthogonal projection onto th#;-dimensional
eigenspacé’; of S corresponding to the eigenvalde, j = 0,1, ..., ¢. Note thatdy = 1.
Via the decompositiot = Ey @ @le E, the unit vectorn: appearing in@S) splits as

U=ug+uy+...+ up.

We denote byA the subset of € {0,1,..., ¢} such that; # 0, and bym the cardinality ofA. For

eachj € A such thadd; > 1 we denote by, the (-, -)-orthogonal complement af; in E;. Let E be
the subspace dof defined by

(36) E= P EodE,
JEA;>1 jéA

andWW them-dimensional subspace &f defined by

(37) W = @ Ru;
JEA
so that
E=EaW.

Both E andV are left invariant by4, I, andS. The sum is orthogonal with respect(to-), go, andg.

Note thatif0 ¢ A, i. e.ifug =0, thenF is of signaturén —m — 1, 1) andW is of signaturém, 0),
whereas, i0 € A, i. e.ifuy # 0, W is of signatu[e(m —1,1) and E is of signaturgn — m,0) for g
(but is always of signaturén — 1, 1) for go, asE is orthogonal tau).

SinceE is orthogonal tay, Ip =idandAz = S . In particular,A, ; is symmetric forgo, g and
(+,-) and its spectral decomposition coincides with the oné‘gf given by ), with eigenvalues; for
eachj ¢ A and eacly € A withd; > 1.
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The spectral study oft is then reduced to the spectral studyAf;- and the latter is summarized by
the following lemma.

Lemma9.3. (i) The characteristic polynomidP of Ay, defined byP(t) = det(tid — A}y ) is given by
(38) Pty=TJt- ) +2D> Nlul> T =)

jea JEA keA\{j}
In particular, the roots off are all distinct from the);, j € A.

(i) For each real rooty of P the corresponding eigenspace is the one-dimensional veptace
generated by the elemenyt € 1V defined by

(39) =3y

JR kTN

Moreover,
C1P'(n)
2 Q)

where@ denotes the polynomial defined @yt) = [[;c (¢t — A;). In particular, v, is a null-vector —
for bothg andgy — if and only ify is a multiple root ofP.

(40) g(”w”u) = ,UQO(”;“”#) =

Proof. By definition, anyv € W is of the formv = Z].eA y;u;, for real numbergy, . .., ym,, SO that
Av=15v = Z()\jyj —2(Su,v)) u;j.
JjeA

Note thatv is an eigenvector ofl y;; for some eigenvalug if and only if

(41) (1= Aj) yj = —2(Su,v),

for eachj € A. Itis easily checked th&tSu, v) cannot be equal to if v # 0. Indeed, suppose for a
contradiction that satisfies 1) with(Su,v) = 0 andv # 0. Sincev # 0, one of they;, sayyi, is
nonzero, so that = A;. This impliesy # A;, for j # 1, as the\; are pairwise distinct. It follows that
y; = 0forall j # 1, so that = yyu;. Then(Su,v) = Ay1|ui|* # 0 asy; # 0, a contradiction.

In particular, this showg # A; for eachj € A so that we can write

(42) v = —2(Su,v) Z

JEA

uj
=X

Moreover, by computingSu, v) = (Sv, u) from §2), we get
Ajlugl? 1

(43) Sl 1
jea BT Aj 2

It follows that each eigenvalue of|y; is a root of the polynomiaP defined by@S). Sincé is monic
and of degreen, it must coincide with the characteristic polynomialfy;,. We readily see fron@8)
that the roots ofP are distinct from the\; (recall that the latter are pairwise distinct). From|(42) we
immediately see that the eigenspace correspondipgd@enerated by the vectoy, defined by |((39).

Conversely, for each rogt of P the vector,, defined by @9) is certainly an eigenvectorAy; for
the eigenvalue..

Since the roots of are distinct from the\;, P can also be expressed by
P(t) Aj lug)?
(44) S =142)
Q(t) At

where we put)(t) := [[;c(t — A;). Differentiating [4}) at = 4, we get [4). It follows that,, is a
null vector if and only if P’ () = 0, meaning thaf: is a multiple root. O
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For further use, we need more information about the signettaracteristic polynomidt att = \;,
j € A, and att = 0. In the sequel, we use the notatifit,) = (—1)", for some integer, to mean that
P has the sign of—1)" — in particular is not zero — at= t.

Lemma9.4. (i) If 0 ¢ A, we re-label the\; so thatA = {1,...,m},and0 < \; < ... < A,,. We then
have:

P(=00) = P(Xo) = (-1)™,
(45) P(0) = (-1)",

PO\ =), j=1,....m.
In particular, P has then exactlyn distinct real rootsu < 0 < p1 < ... < pim—1, With g € (Ag,0)
andp; € (A, \it1),fori=1,...,m— 1.

(i) If 0 € A, we re-label the\; so thatA = {0,1,...,m —1}andXy <0 < A < ... < Ap—1. We
then have

P(—o00) = P(Xo) = P(0) = (1),
PO =(-1)"771 j=1,...,m—1.

In particular, P has then at leastm — 2) distinct real root) < p1 < ... < pim—2, With z; € (Ai; Ai1),
fori=1,....,m—2.

(46)

Proof. Easy consequence df {38). O

We now consider the two cases whidoes or does not belong 1.
Case 10 ¢ A.

According to Lemm4 (i w is diagonalizable (oveR) with one negative eigenvalyg andm—1
distinct positive eigenvalues. Moreover, we easily semf) that then corresponding eigenvectors
v,,, defined by [(39), are all spacelike. On the other hatydh, is also diagonalizable with one negative
eigenvalue, namely, — whose eigenspace 5, — andn — m — 1 positive eigenvalues. Denote
by E; 1 the direct sum of, and the (one-dimensional) eigenspacegfand byE,,_» ( the orthogonal
complement o, ; for g or go. Then, bothy andg, are of signaturél, 1) on £ ; and positive definite on
E,_20. Accordingly,A splits as the sum of two operatofs= A; ;1 ¢ A,,—2,0, WhereA; ; acts trivially
onE,_, o and is diagonalizable, with negative eigenvaluegipn, whereasi,,_, o acts trivially onE ;
and is positive definite, as well gg- and g-symmetric onE,,_, ¢. This can be interpreted as follows.
Denote byM; ; the space of Lorentzian inner productsf,, by M,,_» ( the space of positive definite
inner products of,,_, . Then the producM; ; x M,,_» ¢ is naturally embedded as a totally geodesic
submanifold ofM,,_1,1 and bothg = g\, , © g5, ,, andgo = gog, , ® 90|, _,, PElONG tO it. In
M—2, any two elements, in particulaig, ,, andgo|g, , ,, are joined by a unique geodesic. The
situation concerning; ; has been explored in detail in the first part of this sectiarthé present case,
9\, andgo g, , are related by the automorphistg, , which is diagonalizable with distinct negative
eigenvalues, so thatp, , andgo|, , cannot be linked by a geodesic.

Case 20 ¢ A.

According to Lemm4 9]4 (ii), there exist at least— 2 distinct positive eigenvalues of i, namely
0 < p <...< um—so. Then, either these eigenvalues are all simple roof8,afr one of them — and
only one — is a triple root. The case that two of them are doudii¢s is impossible since, according to
Lemm (i), the corresponding eigenvectors defineo@y @uld then form an orthogonal pair of
nonzero null vectors in the Lorentzian spdég g).

In the case when all; are simple roots, we easily check by usifig (40) that the spmeding eigen-
vectors are all spacelike. Denote By, ( the direct sum of the corresponding eigenspacesgrahd
by E1,1 C W the orthogonal complement &, _» ( for g or go. Then, botty andg, are positive definite
onE,_,( and of signaturél, 1) on E; ;. The situation is then quite similar to the previous oneggxc
that all cases considered in Sectjor] 9.1di ; may now happen, depending on whether the missing two
roots of P are complex conjugate, both positive (equal or distinctath negative (equal or distinct).
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It remains to consider the case that one ofithesayy; := £ > 0, is atriple root ofP. Then, according
to Lemm (iii), the corresponding eigenveatgr is a null vector. Again, it is easily checked that the
vy, fori # j, are all spacelike. Denote Wy, 3  the direct sum of the eigenspaces corresponding to the
wi, i # j,andE°, and byFE»> 1 C W the orthogonal complement &, s  for g or go. Then, bothy and
go are positive definite of,,_3 ¢ and of signatur¢2, 1) on E, ;. It follows thatg andg, both belong to
a same totally geodesic subspaet ; x M,,_3 ¢. Moreover, the restriction ofl to £ ;, which relates
9lE,,, andgo g, ,, is of the formk(id + z), wherex is nilpotent and regular (this is becaysghas no

other eigenvector tham,;). Now, id + x is the exponential of — ”“2—2 which is certainly symmetric for
bothgy andg (sincex = (id + x) — id is symmetric) and is the only symmetric “logarithm” wf + .
We thus get a unique (null) geodesic betwegn;, , andg g, , in M2 1, hence also betwee andg in
My, 1.

This completes the proof of Propositi@g.z O
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