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GENERALIZED CYLINDERS IN SEMI-RIEMANNIAN AND SPIN GEOMETRY

CHRISTIAN BÄR, PAUL GAUDUCHON, AND ANDREI MOROIANU

ABSTRACT. We use a construction which we call generalized cylinders to give a new proof of the fundamen-
tal theorem of hypersurface theory. It has the advantage of being very simple and the result directly extends
to semi-Riemannian manifolds and to embeddings into spacesof constant curvature. We also give a new way
to identify spinors for different metrics and to derive the variation formula for the Dirac operator. Moreover,
we show that generalized Killing spinors for Codazzi tensors are restrictions of parallel spinors. Finally, we
study the space of Lorentzian metrics and give a criterion when two Lorentzian metrics on a manifold can be
joined in a natural manner by a 1-parameter family of such metrics.

1. INTRODUCTIONI n this paper we give various applications of a construction which we callgeneralized cylinders.
LetM be a manifold and letgt be a smooth 1-parameter family of semi-Riemannian metrics
on M , t ∈ I ⊂ R. Then we call the manifoldZ = I × M with the metricdt2 + gt a
generalized cylinder overM . On the one hand, this ansatz is very flexible. Locally, near a

semi-Riemannian hypersurface with spacelike normal bundle every semi-Riemannian manifold is of this
form. The restriction to spacelike normal bundle, i. e. to the positive sign in front ofdt2 in the metric of
Z is made for convenience only. Changing the signs of the metrics onM as well as onZ reduces the
case of a timelike normal bundle to that of a spacelike normalbundle. On the other hand, this ansatz still
allows to closely relate the geometries ofM andZ.

In Section 2 we collect basic material on spinors and the Dirac operator on semi-Riemannian mani-
folds. We do this to fix notation and for the convenience of thereader. Some of the material, such as the
spin geometry of submanifolds, is not so easily found in the literature unless one restricts oneself to the
Riemannian situation.

In Section 3 we study spinors on a manifold foliated by semi-Riemannian hypersurfaces. In particular,
we derive a formula for the commutator of the leafwise Dirac operator and the normal derivative. This
formula will be important later.

In Section 4 we collect formulas relating the curvature of a generalized cylinder to geometric data on
M .

After these preliminaries we give a first application in Section 5. One technical difficulty when dealing
with spinors comes from the fact that the definition of spinors depends on the metric on the manifold.
This problem does not arise when one works with tensors. Thusif one wants to compare the Dirac
operators for two different metrics, then one first has to identify the spinor bundles in a natural manner.
This identification problem can be split into two steps. First, construct an identification for 1-parameter
families of metrics and, secondly, given two metrics construct a natural 1-parameter family joining them.

The second step is trivial for Riemannian metrics; just use linear interpolation. For indefinite semi-
Riemannian metrics the situation is much more complicated.In fact, two semi-Riemannian metrics on a
manifold cannot always be joined by a continuous path of metrics even if they have the same signature.
In Section 9 we study this problem in detail for Lorentzian metrics and we give a criterion when two
Lorentzian metrics can be joined in a natural manner.
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The first step, identifying spinors for 1-parameter families of semi-Riemannian metrics, is carried out
in Section 5. The idea is very simple. Given a 1-parameter family of metrics take the corresponding
generalized cylinder and use parallel transport on this cylinder. It turns out that this identification is the
same as the one constructed differently by Bourguignon and the second author in [3] for Riemannian
metrics. The commutator formula from Section 3 directly translates to the variation formula for Dirac
operators.

This variation formula is what one needs to compute the energy-momentum tensor for spinors. To
make this precise we briefly summarize Lagrangian field theory in Section 6 and we give a general
definition of energy-momentum tensors. Then we compute the example of the Lagrangian for spinors
given by the Dirac operator.

In Section 7 we give a new and simple proof of the fundamental theorem of hypersurface theory. A
hypersurface ofRn+1 inherits a Riemannian metric and its Weingarten map must satisfy the Gauss and
Codazzi-Mainardi equations. The fundamental theorem saysthat, conversely, any Riemannian manifold
M with a symmetric endomorphism field ofTM satisfying the Gauss and Codazzi-Mainardi equations
can, at least locally, be embedded isometrically intoR

n+1 with Weingarten map given by this endomor-
phism field. Our proof goes like this: We write down anexplicit metric on the cylinderZ = I × M
and we then check that this metric is flat. Since every flat Riemannian manifold is locally isometric to
Euclidean space the theorem follows. This approach directly extends to semi-Riemannian manifolds and
to embeddings into spaces of constant sectional curvature not necessarily zero. This kind of approach to
the fundamental theorem for hypersurfaces was suggested, but not carried out, by Petersen in [10, p. 95].

In Section 8 we study generalized Killing spinors. They are characterized by the overdetermined
equation∇ΣM

X ψ = 1
2A(X) ·ψ whereA is a given symmetric endomorphism field. We show that ifA is a

Codazzi tensor, then the manifold can be embedded as a hypersurface into a Ricci flat manifold equipped
with a parallel spinor which restricts toψ. This generalizes the case of Killing spinors,A = λ id. The
classification of manifolds admitting Killing spinors in [1] was based on the observation that the cone
over such a manifold possesses a parallel spinor. This also generalizes the case thatA is parallel which
was studied in [7].

2. THE DIRAC OPERATOR ON SEMI-RIEMANNIAN MANIFOLDSI n this section we collect the basic facts and conventions concerning spinors and Dirac operators
on semi-Riemannian manifolds. For a detailed introductionthe reader may consult the book
[2]. We start with some algebraic preliminaries. Letr+ s = n and consider the nondegenerate
symmetric bilinear form of signature(r, s)

〈v, w〉 :=

r∑

j=1

vjwj −
n∑

j=r+1

vjwj

onR
n. Define the correspondingorthogonal groupby

O(r, s) := {A ∈ GL(n,R) | 〈Av,Aw〉 = 〈v, w〉 for all v, w ∈ R
n}

and thespecial orthogonal groupby

SO(r, s) := {A ∈ O(r, s) | det(A) = 1}.
If r = 0 or s = 0, thenSO(r, s) is connected, otherwise it has two connected components. The connected
component of the identity of the groupSO(r, s) is denoted bySO0(r, s).

Now let Clr,s be theClifford algebracorresponding to the symmetric bilinear form〈·, ·〉. This is the
unital algebra generated byRn subject to the relations

(1) v · w + w · v + 2 〈v, w〉 · 1 = 0

for all v, w ∈ R
n. There is a decomposition into even and odd elements

Clr,s = Cl0r,s ⊕ Cl1r,s
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such thatR injects naturally intoCl0r,s andR
n into Cl1r,s. Thespin groupis defined by

Spin(r, s) := {v1 · · · vk ∈ Cl0r,s | vj ∈ R
n such that〈vj , vj〉 = ±1 andk is even}

with multiplication inherited fromClr,s. Its connected component of the identity, denoted bySpin0(r, s)
is given by

Spin0(r, s) := {v1 · · · v2k ∈ Cl0r,s | vj ∈ R
n, 〈vj , vj〉 = ±1 and

2k∏

j=1

〈vj , vj〉 = 1}.

Given v ∈ R
n such that〈v, v〉 6= 0 and arbitraryw ∈ R

n we see directly from relation (1) that
v−1 = − v

〈v,v〉 and

Adv(w) := v−1 · w · v = −w + 2
〈v, w〉
〈v, v〉 v.

Hence−Adv is the reflection across the hyperplanev⊥ and, in particular, leavesRn ⊂ Clr,s invariant.
Thus conjugation gives an action ofSpin(r, s) onR

n by an even number of reflections across hyperplanes.
This yields the exact sequence

1 −→ Z/2Z = {1,−1} −→ Spin(r, s)
Ad−→ SO(r, s) −→ 1.

If n = r + s is even the Clifford algebra possesses an irreducible complex moduleΣr,s of complex
dimension2n/2, the complexspinor module. When restricted toCl0r,s the spinor module decomposes
into

Σr,s = Σ+
r,s ⊕ Σ−

r,s,

the submodules of spinors ofpositiveresp.negative chirality. In particular, the spin groupSpin(r, s) ⊂
Cl0r,s acts onΣ+

r,s and onΣ−
r,s. This action

ρ = ρ+ ⊕ ρ− : Spin(r, s) → Aut(Σ+
r,s) × Aut(Σ−

r,s) ⊂ Aut(Σr,s)

is called thespinor representationof Spin(r, s). Given an orientation onRn theCl0r,s-submodulesΣ+
r,s

andΣ−
r,s can be characterized by the action of the volume elementvol := e1 · . . . · en ∈ Cl0r,s which

acts onΣ+
r,s as+is+n(n+1)/2id and onΣ−

r,s as−is+n(n+1)/2id wheree1, . . . , en is a positively oriented
orthonormal basis ofRn.

If n is odd, thenClr,s has two inequivalent irreducible modulesΣ0
r,s andΣ1

r,s, both of complex di-
mension2(n−1)/2. These two modules are again distinguished by the action of the volume element
vol = e1 · . . . · en ∈ Cl1r,s, namelyvol acts as+is+n(n+1)/2id on Σ0

r,s and as−is+n(n+1)/2id on Σ1
r,s.

When restricted toCl0r,s the two modules become equivalent and we simply writeΣr,s := Σ0
r,s. This

time the spinor representation
ρ : Spin0(r, s) → Aut(Σr,s)

is irreducible. The spinor module carries a nondegenerate Hermitian form〈·, ·〉 (in general not definite)
which is invariant under the action ofSpin0(r, s). To see this, we start with aSpin(n, 0)–invariant positive
definite Hermitian producth on the spinor moduleΣn,0. We denote by * the action ofCln,0 onΣn,0. We
realizeΣr,s by turningΣn,0 into aClr,s representation space in the following way:

ej · Ψ := ej ∗ Ψ ∀ 1 ≤ j ≤ r and ej · Ψ := iej ∗ Ψ ∀ r + 1 ≤ j ≤ n,

where{ej} is a space and time oriented local orthonormal frame such that ej is spacelike forj ≤ r and
timelike forj ≥ r + 1. We then define

〈Φ,Ψ〉 := i
s(s+1)

2 h(Φ, er+1 ∗ . . . ∗ en ∗ Ψ).

It is easy to check that this is a (not necessarily definite) Hermitian product andSpin0(r, s)–invariant,
and that the action of a vectorv ∈ R

n ⊂ Clr,s on Σr,s is Hermitian or skew–Hermitian with respect to
〈·, ·〉, depending on the parity ofs:

(2) 〈v · σ1, σ2〉 = (−1)s+1 〈σ1, v · σ2〉 .
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To prepare for the study of submanifolds later on we now look at an embedding ofRn into R
n+1 such

that(Rn)⊥ is spacelike. Let(Rn)⊥ be spanned by a spacelike unit vectore0. The mapRn → Clr+1,s,
v 7→ e0 · v, induces an algebra isomorphismClr,s → Cl0r+1,s under which the volume element ofClr,s
is mapped to the volume element ofClr+1,s in casen is odd.

If n is even, thenΣr+1,s pulls back toΣr,s under this algebra isomorphism. In other words, we can
regardΣr+1,s as the spinor representation ofClr,s provided we define the action ofClr,s onΣr+1,s by

v ⊗ σ 7→ e0 · v · σ

wherev ∈ R
n and· denotes the action ofClr+1,s.

Similarly, if n is odd, then the action of the volume forms shows thatΣ+
r+1,s pulls back toΣ0

r,s while
Σ−
r+1,s pulls back toΣ1

r,s.

Now we turn to geometry. LetX denote an orientedn-dimensional differentiable manifold. The
bundlePGL+(X) of positively oriented tangent frames forms aGL+(n,R)-principal bundle overX .
Here and henceforthGL+(n,R) denotes the group of realn × n-matrices with positive determinant

andA : G̃L
+
(n,R) → GL+(n,R) its connected twofold covering group. Aspin structureof X is a

G̃L
+
(n,R)-principal bundleP

G̃L
(X) overX together with a twofold covering mapΘ : P

G̃L
+(X) →

PGL+(X) such that the following diagram commutes

(3) P
G̃L

+(X) × G̃L
+
(n,R)

Θ×A

��

// P
G̃L

+(X)

Θ

��

##GGGGGGGGG

X

PGL+(X) × GL+(n,R) // PGL+(X)

::vvvvvvvvv

where the horizontal arrows denote the group actions on the principal bundles. This definition of a spin
structure has the advantage of being independent of the choice of any semi-Riemannian metric onX . An
oriented manifold together with a spin structure will be called aspin manifold.

LetX now in addition carry a semi-Riemannian metric of signature(r, s), r + s = n, and space and
time orientations. The bundlePSO0

(X) ⊂ PGL+(X) of positively space and time orientedorthonormal

tangent frames forms anSO0(r, s)-principal bundle overX . RestrictingA : G̃L
+
(n,R) → GL+(n,R)

to the preimage ofSO0(r, s) ⊂ GL+(n,R) we recoverAd : Spin0(r, s) → SO0(r, s). Putting
PSpin0

(X) := Θ−1(PSO0(X)) we get aSpin0(r, s)-principal bundle and the maps in diagram (3) re-
strict to the following commutative diagram

PSpin0
(X) × Spin0(r, s)

Θ×Ad

��

// PSpin0
(X)

Θ

��

$$IIIIIIIII

X

PSO0
(X) × SO0(r, s) // PSO0

(X)

::uuuuuuuuu

Very often in the literaturePSpin0
(X) is called a spin structure ofX and we will callX together with

PSpin0
(X) a semi-Riemannian spin manifold.

On a semi-Riemannian spin manifold we define thespinor bundleof X as the complex vector bundle
associated to the spinor representation, i. e.

ΣX := PSpin0
(X) ×ρ Σr,s.
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In other words, forp ∈ X the fiber ofΣpX of ΣX overp consists of equivalence classes of pairs[b, σ]
whereb ∈ PSpin0

(X)p andσ ∈ Σr,s subject to the relation

[b, σ] = [bg−1, gσ]

for all g ∈ Spin0(r, s). Unfortunately, the spinor bundle cannot be defined independently of the metric
usingP

G̃L
+(X) instead ofPSpin0

(X) because the spinor representationρ of Spin0(r, s) onΣr,s does not

extend to a representation of̃GL
+
(n,R) onΣr,s. We will come back to this problem in Section 5.

Note that the tangent bundle can also be written in a similar manner,TX = PSO0
(X)×τR

n whereτ is
the standard representation ofSO0(r, s) onR

n. One definesClifford multiplicationTpX⊗ΣpX → ΣpX
by

[Θ(b), v] · [b, σ] := [b, v · σ]

whereb ∈ PSpin0
(X)p, v ∈ R

n, andσ ∈ Σr,s. Forg ∈ Spin0(r, s) we see from

[Θ(bg), v] · [bg, σ] = [Θ(b)Adg, v] · [bg, σ] = [Θ(b),Adgv] · [b, gσ]

= [b, gvg−1gσ] = [b, gvσ] = [bg, vσ]

that this is well-defined. It is this point that goes wrong when one tries to work with nonoriented manifolds
and pin structures. Had we definedΣr,s = Σ1

r,s instead ofΣr,s = Σ0
r,s in odd dimensions, then we would

have obtained the Clifford multiplication with the opposite sign.

Clifford multiplication inherits the relations of the Clifford algebra, i. e. forX,Y ∈ TpX andϕ ∈
ΣpX we have

X · Y · ϕ+ Y ·X · ϕ+ 2 〈X,Y 〉ϕ = 0.

In even dimensions the spinor bundle splits into the positive and the negativehalf-spinor bundles,

(4) ΣX = Σ+X ⊕ Σ−X

whereΣ±X = PSpin0
(X) ×ρ± Σ±

r,s. Clifford multiplication by a tangent vector interchangesΣ+X and
Σ−X .

TheSpin0(r, s)-invariant nondegenerate Hermitian forms onΣr,s andΣ±
r,s induce (in general indefi-

nite) inner products onΣX andΣ±X which we again denote by〈·, ·〉.
The connection 1-formωX on PSO0

(X) for the Levi-Civita connection∇X can be lifted viaΘ to
PSpin0

(X), i. e.ωΣX := Ad−1
∗ ◦ Θ∗(ωX). Composing withAd−1

∗ is necessary because the connection
1-form onPSpin0

(X) must take values in the Lie algebra ofSpin0(r, s) rather than in that ofSO0(r, s).
NowωΣX induces a covariant derivative∇ΣX onΣX.

An equivalent, but less invariant, way of describing∇ΣX is as follows: If b is a local section in
PSpin0

(X), thenΘ(b) = (e1, . . . , en) is a local space and time oriented orthonormal tangent frame,
〈ej , ek〉 ≡ εjδjk whereεj = ±1. The Christoffel symbols of∇X with respect to this frame are given by

∇X
ej
ek =

n∑

ℓ=1

Γℓjk eℓ.

Now the covariant derivative of a locally defined spinor fieldϕ = [b, σ], σ a function with values inΣr,s,
is given by

(5) ∇ΣX
ej

ϕ =

[
b, dej

σ +
1

2

∑

k<ℓ

Γℓjk εk ek · eℓ · σ
]
.

One checks that∇ΣX is a metric connection and that it leaves the splitting (4) ineven dimensions
invariant. Moreover, it satisfies the following Leibniz rule:

∇ΣX
Z (Y · ϕ) = (∇X

Z Y ) · ϕ+ Y · ∇ΣX
Z ϕ

for all vector fieldsZ andY and all spinor fieldsϕ.
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The curvature tensorRΣX of ∇ΣX can be computed in terms of the curvature tensorRX of the Levi-
Civita connection,

RΣX(Y, Z)ϕ =
1

2

∑

j<k

εjεk
〈
RX(Y, Z)ej, ek

〉
ej · ek · ϕ.

Using the first Bianchi identity one easily computes

(6)
n∑

j=1

εj ej · RΣX(ej , Y )ϕ =
1

2
RicX(Y ) · ϕ.

HereRicX denotes theRicci curvatureconsidered as an endomorphism field onTM . The Ricci curvature
considered as a symmetric bilinear form will be writtenricX(Y, Z) =

〈
RicX(Y ), Z

〉
.

TheDirac operatormaps spinor fields to spinor fields and is defined by

DXϕ = is
n∑

j=1

εjej · ∇ΣX
ej

ϕ.

Given two spinor fieldsϕ andψ one can define a vector fieldY by the requirement〈Y, Z〉 = 〈Z · ϕ, ψ〉
for all vector fieldsZ and one easily computes

is div(Y ) =
〈
DXϕ, ψ

〉
−
〈
ϕ,DXψ

〉
.

Hence the Dirac operator is formally selfadjoint, i. e. if the intersection of the supports ofϕ andψ is
compact, then

(DXϕ, ψ) = (ϕ,DXψ)

where(ϕ, ψ) =
∫
M 〈ϕ, ψ〉 dV .

3. THE DIRAC OPERATOR ON MANIFOLDS FOLIATED BY HYPERSURFACES

L etZ be a space and time oriented(n + 1)-dimensional semi-Riemannian spin manifold. Let
Θ : PSpin0

(Z) → PSO0
(Z) be a spin structure onZ. Let M ⊂ Z be a semi-Riemannian

hypersurface with trivial spacelike normal bundle. This means there is a vector fieldν onZ
alongM satisfying〈ν, ν〉 = +1 and〈ν, TM〉 = 0. If the signature ofM is (r, s), then the

signature ofZ is (r + 1, s).

In this situationM inherits a spin structure as follows: The bundle of space andtime oriented or-
thonormal frames ofM , PSO0

(M), can be embedded into the bundle of space and time oriented or-
thonormal frames ofZ restricted toM ,PSO0(Z)|M , by the mapι : (e1, . . . , en) 7→ (ν, e1, . . . , en). Then
PSpin0

(M) := Θ−1(ι(PSO0
(M))) defines a spin structure onM . We will always implicitly assume that

this spin structure be taken onM . The same discussion is possible on the level ofG̃L
+
(n,R)-bundles.

The algebraic remarks in the previous section show that ifn is even, then

ΣZ|M = ΣM

where the Clifford multiplication with respect toM is given byX⊗ϕ 7→ ν ·X ·ϕ and “·” always denotes
the Clifford multiplication with respect toZ. If n is odd, then

Σ+Z|M = ΣM

and again Clifford multiplication with respect toM is given byX ⊗ ϕ 7→ ν ·X · ϕ while

Σ−Z|M = ΣM

with Clifford multiplication with respect toM given byX ⊗ ϕ 7→ −ν · X · ϕ. The minus sign comes
from the fact that in odd dimensions we definedΣr,s = Σ0

r,s while Σ1
r,s leads to the opposite sign for the

Clifford multiplication. The identifications preserve thenatural inner products〈·, ·〉.
LetW denote theWeingarten mapwith respect toν, i. e.

(7) ∇Z
XY = ∇M

X Y + 〈W (X), Y 〉 ν
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for all vector fieldsX and Y on M . The Weingarten map is symmetric with respect to the semi-
Riemannian metric,〈W (X), Y 〉 = 〈X,W (Y )〉 and is also given byW (X) = −∇Z

Xν. If we denote
the Christoffel symbols ofM with respect to a local orthonormal tangent frame(e1, . . . , en) by ΓM,ℓ

jk

and the Christoffel symbols ofZ with respect to(e0, e1, . . . , en), e0 = ν, by ΓZ,ℓ
jk , then (7) implies for

1 ≤ j, k, ℓ ≤ n

ΓZ,ℓ
jk = ΓM,ℓ

jk ,(8)

ΓZ,0
jk = 〈W (ej), ek〉 ,(9)

ΓZ,ℓ
j0 = −ε0εℓΓZ,0

jℓ = −εℓ 〈W (ej), eℓ〉 .(10)

Plugging this into (5) we get for a sectionϕ = [b, σ] of ΣZ|M and1 ≤ j ≤ n

∇ΣZ
ej
ϕ =


b, dej

σ +
1

2


−

n∑

ℓ=1

εℓ 〈W (ej), eℓ〉 ε0e0 · eℓ +
∑

1≤k<ℓ≤n
ΓM,ℓ
jk εkek · eℓ


 · σ




=


b, dej

σ +
1

2


−e0 ·W (ej) +

∑

1≤k<ℓ≤n
ΓM,ℓ
jk εke0 · ek · e0 · eℓ


 · σ




= ∇ΣM
ej

ϕ− 1

2
ν ·W (ej) · ϕ.

Hence for eachX ∈ TM and each sectionϕ of ΣZ|M we have

(11) ∇ΣZ
X ϕ = ∇ΣM

X ϕ− 1

2
ν ·W (X) · ϕ.

Now letϕ be a section ofΣZ defined in a neighborhood ofM . On the one hand,

i−sDZϕ =

n∑

j=1

εjej · ∇ΣZ
ej
ϕ+ ν · ∇ΣZ

ν ϕ.

On the other hand by (11),

n∑

j=1

εjej · ∇ΣZ
ej
ϕ =

n∑

j=1

εj ej · ∇ΣM
ej

ϕ− 1

2

n∑

j=1

εj ej · ν ·W (ej) · ϕ

= −ν ·
n∑

j=1

εj ν · ej · ∇ΣM
ej

ϕ+
1

2

n∑

j=1

εj ν · ej ·W (ej) · ϕ

= −i−sν · D̃M − 1

2
tr(W )ν · ϕ

whereD̃M = DM if n is even andD̃M =

(
DM 0
0 −DM

)
if n is odd. Thus the Dirac operators onM

and onZ are related by

(12) ν ·DZ = D̃M +
isn

2
H − is∇ΣZ

ν

whereH = 1
n tr(W ) denotes the mean curvature.

Next we consider the situation thatZ carries a semi-Riemannian foliation by hypersurfaces. The
commutator of the leafwise Dirac operator and the normal derivative will be of central importance later.

Proposition 3.1. LetZ be an(n+1)-dimensional semi-Riemannian spin manifold of signature(r+1, s).
LetZ carry a semi-Riemannian foliation by hypersurfaces with trivial spacelike normal bundle, i. e. the
leavesM are semi-Riemannian hypersurfaces and there exists a vector field ν onZ perpendicular to the
leaves such that〈ν, ν〉 = 1 and∇Z

ν ν = 0. LetW denote the Weingarten map of the leaves with respect
to ν and letH = 1

n tr(W ) be the mean curvature.
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Then the commutator of the leafwise Dirac operator and the normal derivative is given by

[∇ΣZ
ν , D̃M ]ϕ = is(DWϕ− n

2
ν · gradM (H) · ϕ+

1

2
ν · divM (W ) · ϕ).

Here gradM denotes the leafwise gradient,divM (W ) =
∑n
j=1 εj (∇M

ej
W )(ej) denotes the leafwise

divergence of the endomorphism fieldW , DWϕ =
∑n

j=1 εj ν · ej · ∇ΣM
W (ej)ϕ, and “·” denotes Clifford

multiplication onZ.

Proof. We choose a local oriented orthonormal tangent frame(e1, . . . , en) for the leaves and we may
assume for simplicity that∇Z

ν ej = 0. We compute

i−s[∇ΣZ
ν , D̃M ]ϕ =

n∑

j=1

εj

(
∇ΣZ
ν (ν · ej · ∇ΣM

ej
ϕ) − ν · ej · ∇ΣM

ej
∇ΣZ
ν ϕ

)

=

n∑

j=1

εj ν · ej ·
(
∇ΣZ
ν ∇ΣM

ej
ϕ−∇ΣM

ej
∇ΣZ
ν ϕ

)

(11)
=

n∑

j=1

εj ν · ej ·
(
∇ΣZ
ν (∇ΣZ

ej
+

1

2
ν ·W (ej))

−(∇ΣZ
ej

+
1

2
ν ·W (ej))∇ΣZ

ν

)
ϕ

=

n∑

j=1

εj ν · ej ·
(
RΣZ(ν, ej) + ∇ΣZ

[ν,ej ] +
1

2
ν · (∇Z

ν W )(ej)
)
ϕ

(6)
= −1

2
ν · RicZ(ν) · ϕ+

n∑

j=1

εj ν · ej ·
(
∇ΣZ
W (ej) +

1

2
ν · (∇Z

ν W )(ej)
)
ϕ

(11)
= −1

2
ν · RicZ(ν) · ϕ

+

n∑

j=1

εj ν · ej ·
(
∇ΣM
W (ej) −

1

2
ν ·W 2(ej) +

1

2
ν · (∇Z

ν W )(ej)
)
ϕ

= −1

2
ν · RicZ(ν) · ϕ+ DWϕ

+
1

2

n∑

j=1

εj ej ·
(
−W 2(ej) + (∇Z

ν W )(ej)
)
ϕ.(13)

The Riccati equation for the Weingarten map(∇Z
ν W )(X) = RZ(X, ν)ν +W 2(X) yields

i−s[∇ΣZ
ν , D̃M ]ϕ = −1

2
ν · RicZ(ν) · ϕ+ DWϕ+

1

2

n∑

j=1

εj ej · (RZ(ej , ν)ν) · ϕ

= −1

2
ν · RicZ(ν) · ϕ+ DWϕ+

1

2
ricZ(ν, ν)ϕ

= DWϕ− 1

2

n∑

j=1

εj ricZ(ν, ej) ν · ej · ϕ.(14)

The Codazzi-Mainardi equation [9, p. 115] gives forX,Y, V ∈ TpM

〈
RZ(X,Y )V, ν

〉
=
〈
(∇M

XW )(Y ), V
〉
−
〈
(∇M

Y W )(X), V
〉
.



GENERALIZED CYLINDERS IN SEMI-RIEMANNIAN AND SPIN GEOMETRY 9

Thus

ricZ(ν,X) =

n∑

j=1

εj
〈
RZ(X, ej)ej , ν

〉

=

n∑

j=1

εj

(〈
(∇M

XW )(ej), ej
〉
−
〈
(∇M

ej
W )(X), ej

〉)

= tr(∇M
XW ) −

〈
divM (W ), X

〉
.

Plugging this into (14) we get

i−s[∇ΣZ
ν , D̃M ]ϕ = DWϕ− 1

2

n∑

j=1

εj

(
tr(∇M

ej
W ) −

〈
divM (W ), ej

〉)
ν · ej · ϕ

= DWϕ− 1

2

n∑

j=1

εj dej
tr(W )ν · ej · ϕ+

1

2
ν · divM (W ) · ϕ

= DWϕ− n

2
ν · gradM (H) · ϕ+

1

2
ν · divM (W ) · ϕ.

�

4. THE GENERALIZED CYLINDERL etM be ann-dimensional differentiable manifold, letgt be a smooth 1-parameter family of
semi-Riemannian metrics onM , t ∈ I whereI ⊂ R is an interval. We define thegeneralized
cylinderby

Z := I ×M

with semi-Riemannian metric

gZ := dt2 + gt.

The generalized cylinder is an(n + 1)-dimensional semi-Riemannian manifold (with boundary ifI has
boundary) of signature(r + 1, s) if the signature ofgt is (r, s). The vector fieldν := ∂

∂t is spacelike of
unit length and orthogonal to the hypersurfacesMt := {t} ×M . LetW denote the Weingarten map of
Mt with respect toν and letH be the mean curvature.

If X is a local coordinate field onM , then〈X, ν〉 = 0 and[X, ν] = 0. Thus

0 = dν 〈X, ν〉 =
〈
∇Z
ν X, ν

〉
+
〈
X,∇Z

ν ν
〉

=
〈
∇Z
Xν, ν

〉
+
〈
X,∇Z

ν ν
〉

= −〈W (X), ν〉 +
〈
X,∇Z

ν ν
〉

=
〈
X,∇Z

ν ν
〉

and differentiating〈ν, ν〉 = 1 yields
〈
ν,∇Z

ν ν
〉

= 0. Hence

∇Z
ν ν = 0,

i. e. for p ∈ M the curvest 7→ (t, p) are geodesics parameterized by arclength. So the assumptions of
Proposition 3.1 are satisfied for the foliation(Mt)t∈I .

Now fix p ∈M andX,Y ∈ TpM . We define the first and second derivative ofgt by

ġt(X,Y ) :=
d

dt
(gt(X,Y )),

g̈t(X,Y ) :=
d2

dt2
(gt(X,Y )).

Thenġt andg̈t are smooth 1-parameter families of symmetric(2, 0)-tensors onM .
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Proposition 4.1. On a generalized cylinderZ = I ×M with semi-Riemannian metricgZ = 〈·, ·〉 =
dt2 + gt the following formulas hold:

〈W (X), Y 〉 = −1

2
ġt(X,Y ),(15)

〈
RZ(U, V )X,Y

〉
=

〈
RMt(U, V )X,Y

〉
(16)

+
1

4
(ġt(U,X)ġt(V, Y ) − ġt(U, Y )ġt(V,X)) ,

〈
RZ(X,Y )U, ν

〉
=

1

2

(
(∇Mt

Y ġt)(X,U) − (∇Mt

X ġt)(Y, U)
)
,(17)

〈
RZ(X, ν)ν, Y

〉
= −1

2
(g̈t(X,Y ) + ġt(W (X), Y )) ,(18)

ricZ(ν, ν) = tr(W 2) − 1

2
trgt

(g̈t),(19)

ricZ(X, ν) = dX tr(W ) −
〈
divM (W ), X

〉
,(20)

ricZ(X,Y ) = ricMt(X,Y ) + 2 〈W (X),W (Y )〉(21)

− tr(W ) 〈W (X), Y 〉 − 1

2
g̈t(X,Y ),

ScalZ = ScalMt + 3 tr(W 2) − tr(W )2 − trgt
(g̈t),(22)

whereX,Y, U, V ∈ TpM , p ∈M .

Proof. To show (15) we extendX andY to local coordinate fields onM so that all Lie brackets vanish.
Then the Koszul formula [9, p. 61] for the Levi-Civita connection ofZ yields

〈W (X), Y 〉 = −
〈
∇Z
Xν, Y

〉
= −1

2
(dX 〈ν, Y 〉 + dν 〈Y,X〉 − dY 〈X, ν〉)

= −1

2
dν 〈Y,X〉 = −1

2

∂

∂t
gt(X,Y ) = −1

2
ġt(X,Y ).

Equation (16) follows directly from (15) and the Gauss equation [9, p. 100]

〈
RZ(U, V )X,Y

〉
=

〈
RMt(U, V )X,Y

〉
+ 〈W (U), X〉 〈W (V ), Y 〉

− 〈W (U), Y 〉 〈W (V ), X〉 .

Equation (17) follows directly from (15) and the Codazzi-Mainardi equation [9, p. 115]

〈
RZ(X,Y )U, ν

〉
=

〈
(∇Mt

X W )(Y ), U
〉
−
〈
(∇Mt

Y W )(X), U
〉
.

The Riccati equation forW

(∇Z
ν W )(X) = RZ(X, ν)ν +W 2(X)
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gives
〈
RZ(X, ν)ν, Y

〉
=

〈
(∇Z

ν W )(X), Y
〉
−
〈
W 2(X), Y

〉

=
∂

∂t
〈W (X), Y 〉 −

〈
W (∇Z

ν X), Y
〉
−
〈
W (X),∇Z

ν Y
〉

+
1

2
ġt(W (X), Y )

= −1

2

∂

∂t
ġt(X,Y ) −

〈
W (∇Z

Xν), Y
〉
−
〈
W (X),∇Z

Y ν
〉

+
1

2
ġt(W (X), Y )

= −1

2
g̈t(X,Y ) + 〈W (W (X)), Y 〉 + 〈W (X),W (Y )〉

+
1

2
ġt(W (X), Y )

= −1

2
g̈t(X,Y ) − 1

2
ġt(W (X), Y )

which is (18). The Ricci curvature is now easily computed.

ricZ(ν, ν) =
n∑

j=1

εj
〈
RZ(ej , ν)ν, ej

〉 (18)
= −1

2

n∑

j=1

εj (g̈t(ej , ej) + ġt(W (ej), ej))

(15)
= −1

2
trgt

(g̈t) + tr(W 2)

which is (19). Moreover,

ricZ(X, ν) =

n∑

j=1

εj
〈
RZ(X, ej)ej , ν

〉

(17)
=

1

2

n∑

j=1

εj

(
(∇Mt

ej
ġt)(X, ej) − (∇Mt

X ġt)(ej , ej)
)

(15)
= −

n∑

j=1

εj

(〈
(∇Mt

ej
W )(X), ej

〉
−
〈
(∇Mt

X W )(ej), ej

〉)

= −
〈
divMt W,X

〉
+ tr(∇Mt

X W )

= −
〈
divMt W,X

〉
+ dX tr(W )

thus showing (20). Furthermore,

ricZ(X,Y ) =

n∑

j=1

εj
〈
RZ(ej , X)Y, ej

〉
+
〈
RZ(ν,X)Y, ν

〉

(16),(18)
=

n∑

j=1

εj

( 〈
RMt(ej , X)Y, ej

〉
+

1

4
ġt(ej , Y )ġt(X, ej)

−1

4
ġt(ej , ej)ġt(X,Y )

)
− 1

2
(g̈t(X,Y ) + ġt(W (X), Y ))

= ricMt(X,Y ) +

n∑

j=1

εj(〈W (ej), Y 〉 〈W (X), ej〉

− 〈W (ej), ej〉 〈W (X), Y 〉) − 1

2
g̈t(X,Y ) +

〈
W 2(X), Y

〉

= ricMt(X,Y ) + 2 〈W (X),W (Y )〉 − tr(W ) 〈W (X), Y 〉

−1

2
g̈t(X,Y )
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shows (21). Formula (22) for the scalar curvature follows from (19) and (21). �

Example 4.2. A simple special case of a generalized cylinder is that of awarped product, i. e.gt = f(t)2g

wheref : I → R is a smooth positive function. Theṅgt = 2 f ḟ g = 2ḟ
f gt andg̈t = 2(ḟ2 + f f̈)g =

2 ḟ
2+ff̈
f2 gt and the formulas in Proposition 4.1 reduce to

W = − ḟ
f

id,

RZ(X,Y )U = RMt(X,Y )U +
ḟ2

f2
(〈X,U〉Y − 〈Y, U〉X) ,

RZ(X, ν)ν = − f̈
f
X,

ricZ(X,Y ) = ricMt(X,Y ) − (n− 1)ḟ2 + f f̈

f2
〈X,Y 〉 ,

ricZ(X, ν) = 0,

ricZ(ν, ν) = −nf̈
f
,

ScalZ = ScalMt − n
(n− 1)ḟ2 + 2f f̈

f2
,

compare [9, Ch. 7].

5. IDENTIFYING SPINORS AND THE VARIATION FORMULA FOR THEDIRAC OPERATORI t is an annoying problem that the definition of spinors, in contrast to that of differential forms
and tensors, depends on the semi-Riemannian metric of the manifold. Hence if one wants to
compare the Dirac operators for two different metrics one first has to identify the underlying
spinor bundles.

The problem of constructing such identifications can be split into two steps: First construct identifica-
tions for any two metrics in a 1-parameter family of metrics.The identification of spinors for two metrics
will in general depend on the 1-parameter family of metrics joining them. Secondly, given two metrics
construct a natural curve of metrics joining them.

Both steps have been carried out very satisfactorily for thecase of Riemannian metrics in [3]. In the
present section we will deal only with the first step. The second step cannot always be carried out. In
Section 9 we will discuss this problem for the case of Lorentzmetrics in great detail.

Now let gt, t ∈ I, be a smooth 1-parameter family of semi-Riemannian metricsof signature(r, s) on
a manifoldM . We form the generalized cylinderZ := I ×M with metricg = dt2 + gt. For t ∈ I we
abbreviate the semi-Riemannian manifold(M, gt) byMt.

Spin structures onM and onZ are in 1-1-correspondence. As explained in Section 3 spin structures
on Z can be restricted to spin structures onMt = M . Conversely, given a spin structure onM it can

be pulled back toI ×M yielding aG̃L
+
(n,R)-principal bundle onZ. Enlarging the structure group

via the embedding̃GL
+

(n,R) →֒ G̃L
+
(n + 1,R) covering the standard embeddingGL+(n,R) →֒

GL+(n + 1,R), a 7→
(

1 0
0 a

)
, yields the spin structure onZ which restricts to the given spin structure

onM .

Let us write “·” for the Clifford multiplication onZ and “•t” for the Clifford multiplication onMt.
Recall from Section 3 thatΣZ|Mt

= ΣMt as Hermitian vector bundles ifn = r + s is even and
Σ+Z|Mt

= ΣMt if n is odd. In both cases the Clifford multiplications are related byX •t ϕ = ν ·X ·ϕ.
For givenx ∈ M andt0, t1 ∈ I parallel translation onZ along the curvet 7→ (t, x) is a linear isometry
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τ t1t0 : ΣxMt0 → ΣxMt1 . Since “·” and ν are parallel along the curvet 7→ (t, x) so is the family of
Clifford multiplications “•t” and τ t1t0 preserves Clifford multiplication in the following sense:

τ t1t0 (X •t0 ϕ) = (τ t1t0X) •t1 (τ t1t0 ϕ).

In general, the covariant derivative and hence parallel transport depends on the semi-Riemannian metric
and its first derivatives. We note here that for fixedx ∈ M the parallel transportτ t1t0 : TxMt0 → TxMt1

or τ t1t0 : ΣxMt0 → ΣxMt1 is determined bygt(x) and ġt(x), nox-derivatives ofgt enter. Namely, if
x1, . . . , xn are local coordinates onM andX(t, x) =

∑n
j=1 ξ

j(x, t) ∂
∂xj is a parallel vector field along

t 7→ (t, x), then this means by (10) and (15)

0 =
∇
dt
X =

n∑

j=1

(
ξ̇j +

n∑

k=1

ΓZ,j
k,0 ξ

k

)
∂

∂xj

=

n∑

j=1


ξ̇j +

1

2

n∑

k,ℓ=1

gjℓt ġt,kℓξ
k


 ∂

∂xj
.

Thusτ t1t0 : TxMt0 → TxMt1 is given by solving the system of ordinary differential equations

ξ̇j(t, x) = −1

2

n∑

k,ℓ=1

gjℓt (x)ġt,kℓ(x)ξ
k(t, x).

For spinors the situation is similar. By [3, Prop. 2] this shows that our identificationτ t1t0 of spinors for
different metrics coincides with the one in [3].

Now we rewrite the commutator formula of Proposition 3.1. For a sectionϕ of ΣZ (or Σ+Z if n is
odd) we have

(23) i−s[∇ΣZ
ν , DMt ]ϕ = DWtϕ− n

2
gradMt(Ht) •t ϕ+

1

2
divMt(Wt) •t ϕ

whereDMt is the Dirac operator ofMt, gradMt is the gradient anddivMt the divergence (of en-
domorphisms) onMt, Wt is the Weingarten map ofMt in Z andHt = 1

n tr(Wt) the mean cur-
vature and finallyDWtϕ =

∑n
j=1 εj ej •t ∇ΣMt

Wt(ej)ϕ for any orthonormal basise1, . . . , en. ¿From

(15) we havedivMt(Wt) = − 1
2 divMt(ġt), Ht = − 1

2n trgt
(ġt) andDWt = − 1

2Dġt whereDġtϕ =∑n
j,k=1 εjεkġt(ej , ek)ej •t ∇ΣMt

ek
ϕ. Thus (23) can be rewritten as

(24) i−s[∇ΣZ
ν , DMt ]ϕ = −1

2
Dġtϕ+

1

4
gradMt(trgt

(ġt)) •t ϕ− 1

4
divMt(ġt) •t ϕ.

Now if ϕ is parallel along the curvest 7→ (t, x), i. e. it is of the formϕ(t, x) = τ tt0ψ(x) for some spinor
fieldψ onMt0 , then the left hand side of (24) is att = t0

[∇ΣZ
ν , DMt ]ϕ = ∇ΣZ

ν DMt ϕ =
d

dt

∣∣∣∣
t=t0

τ t0t D
Mt ϕ

=
d

dt

∣∣∣∣
t=t0

τ t0t D
Mtτ tt0ψ.

We have shown the variation formula for the Dirac operator:

Theorem 5.1. Let gt be a smooth 1-parameter family of semi-Riemannian metrics on a spin manifold
M . We write brieflyMt for the semi-Riemannian spin manifold(M, gt). Let τ t1t0 be the identification
of spinor spaces forMt0 andMt1 constructed above, letDMt be the Dirac operator ofMt, let “•t” be
Clifford multiplication onMt and letDġtϕ =

∑n
j,k=1 εjεkġt(ej , ek)ej •t ∇ΣMt

ek
ϕ.

Then for any smooth spinor fieldψ onMt0 we have

d

dt

∣∣∣∣
t=t0

τ t0t D
Mtτ tt0ψ = − i

s

2
Dġt0ψ +

is

4
gradMt0 (trgt0

(ġt0)) •t0 ψ − is

4
divMt0 (ġt0) •t0 ψ.

This is exactly the formula given in [3, Thm. 21] for Riemannian manifolds.
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6. ENERGY-MOMENTUM TENSORST heorem 5.1 can be used to compute the energy-momentum tensorfor spinors. In order to
explain what this means we briefly sketch Lagrangian field theory, see [4, p. 153 ff] for a
more detailed introduction. LetM denote a differentiable manifold and letG be a set of
(smooth) semi-Riemannian metrics onM , open in theC∞-topology. Letπ : E → G ×M

be a fiber bundle with finite dimensional fibers. For example, if M carries a spin structure the fiber over
(g, x) ∈ G ×M could be the spinor space atx with respect to the metricg, E(g,x) = ΣgxM . For each
fixed g ∈ G the restrictionπ−1({g} ×M) → M is a fiber bundle overM and we can form the space
of smooth sectionsSg of this bundle. These Fréchet manifoldsSg give rise to a Fréchet fiber bundle
S :=

⋃
g∈G Sg → G. LetF ⊂ S be a Fréchet submanifold such that the restrictionπ : F → G is again a

Fréchet fiber bundle.

Now letL : F → Ω|n|(M) be a smooth map whereΩ|n|(M) denotes the space of smooth densities
onM , i. e. smooth sections ofΛnT ∗M ⊗ oM whereoM is the orientation line bundle. We assume that
L is local in the sense that forϕ ∈ F the densityL(ϕ) evaluated atx ∈ M depends only onϕ(x) and
theM -derivatives ofϕ at x. In other words,L(ϕ)(x) is a function of the jetj∞Mϕ(x). We callL the
Lagrangian density. In physics it is customary to integrate overM and call

∫
M
L(ϕ) theLagrangianor

theaction. We avoid this integration since in general the integral
∫
M
L(ϕ) need not exist.

We call a smooth 1-parameter familyϕt ∈ Fg with ϕ0 = ϕ compactly supportedif it is constant
outside a compact subsetK ⊂M , i. e.ϕt(x) = ϕ(x) for all x ∈M \K and allt. SinceL is localL(ϕt)
is constant outsideK as well so that

∫
M (L(ϕt) − L(ϕ)) exists and

d

dt

∣∣∣∣
t=0

∫

M

(L(ϕt) − L(ϕ)) =

∫

M

d

dt

∣∣∣∣
t=0

L(ϕt).

The sectionϕ ∈ Fg is calledcritical for L if for each compactly supported deformationϕt
∫

M

d

dt

∣∣∣∣
t=0

L(ϕt) = 0.

To explain the concept of energy-momentum tensors we need one more piece of structure. LetH ⊂
TF be a connection. This means that for anyϕ ∈ F we haveTϕF = Tϕ(Fπ(ϕ))⊕Hϕ and the restriction
dπ|Hϕ

: Hϕ → Tπ(ϕ)G is an isomorphism. For fixedϕ ∈ F andg := π(ϕ) we have the linear map
dL ◦ (dπ|Hϕ

)−1 : TgG → Ω|n|(M). Recall thatTgG is nothing but the space of smooth(2, 0)-tensors. A
smooth symmetric(2, 0)-tensorQϕ will be called theenergy-momentum tensorfor ϕ with respect to the
LagrangianL if

dL ◦ (dπ|Hϕ
)−1(k) = 〈Qϕ, k〉g dVg

for all k ∈ TgG. Here〈·, ·〉g denotes the (pointwise) metric on symmetric(2, 0)-tensors induced byg and
dVg is the Riemannian volume measure forg. If it existsQϕ is obviously unique. By its definition the
energy-momentum tensor describes the behavior of the Lagrangian under variations of the metric.

Example 6.1. LetM carry a spin structure, letG be the set of all semi-Riemannian metrics onM and let
E be the universal spinor bundle,E(g,x) = ΣgxM . ThenS is the universal bundle of spinor fields and we
putF := S. We fixλ ∈ R and we define the LagrangianL by

L(ϕ) := Re 〈ϕ, (Dg − λ)ϕ〉g dVg
whereDg is the Dirac operator with respect to the metricg = π(ϕ). If ϕt is a compactly supported
deformation ofϕ we write d

dt |t=0ϕt = ϕ̇ and we compute
∫

M

d

dt

∣∣∣∣
t=0

L(ϕt) =

∫

M

Re(〈ϕ̇, (Dg − λ)ϕ〉g + 〈ϕ, (Dg − λ)ϕ̇〉g) dVg

= 2 Re

∫

M

〈ϕ̇, (Dg − λ)ϕ〉g dVg.

Thusϕ is critical if and only if(Dg − λ)ϕ = 0, i. e. if ϕ is a Dirac-eigenspinor for the eigenvalueλ.
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The connectionH is determined by the parallel translationτ t1t0 used in the previous section to identify
spinors for different metrics. More precisely,Hϕ is the set of all ddt

∣∣
t=0

τ t0ϕ for all smooth curvesgt of
metrics withg0 = π(ϕ).

Now letgt be such a 1-parameter family of metrics and writek := ġ0. We compute

dL ◦ (dπ|Hϕ
)−1(k)

=
d

dt

∣∣∣∣
t=0

L(τ t0ϕ)

=
d

dt

∣∣∣∣
t=0

Re
〈
τ t0ϕ, (D

gt − λ)(τ t0ϕ)
〉
gt
dVgt

=
d

dt

∣∣∣∣
t=0

Re
〈
ϕ, (τ0

t D
gtτ t0 − λ)ϕ

〉
g0

dVgt

dVg0
dVg0

= Re

(〈
ϕ,

d

dt

∣∣∣∣
t=0

(τ0
t D

gtτ t0ϕ)

〉

g0

+ 〈ϕ, (Dg0 − λ)ϕ〉g0
d

dt

∣∣∣∣
t=0

dVgt

dVg0

)
dVg0 .

The first term is given by the variation formula for the Dirac operator. By (2), all terms of the form
Re 〈ϕ, isX •g0 ϕ〉 vanish. Thus Theorem 5.1 yields

Re

〈
ϕ,

d

dt

∣∣∣∣
t=0

(τ0
t D

gtτ t0ϕ)

〉

g0

= −1

2
Re
〈
ϕ,Dkϕ

〉
g0
.

For the second term we use
d

dt

∣∣∣∣
t=0

dVgt

dVg0
=

1

2
trg0(k).

Thus

dL ◦ (dπ|Hϕ
)−1(k) =

1

2
Re
(
−
〈
ϕ,Dkϕ

〉
g0

+ 〈ϕ, (Dg0 − λ)ϕ〉g0 trg0(k)
)
dVg0

= 〈Qϕ, k〉g0 dVg0
for the symmetric(2, 0)-tensor

Qϕ(X,Y ) = −1

4
Re
(〈
ϕ,X •g0 ∇ΣM

Y ϕ
〉

+
〈
ϕ, Y •g0 ∇ΣM

X ϕ
〉)

+
1

2
Re 〈ϕ, (Dg0 − λ)ϕ〉 g0(X,Y ).

If ϕ is critical, i. e. ifDg0ϕ = λϕ, then the energy-momentum tensor simplifies to

(25) Qϕ(X,Y ) = −1

4
Re
(〈
ϕ,X •g0 ∇ΣM

Y ϕ
〉

+
〈
ϕ, Y •g0 ∇ΣM

X ϕ
〉)
.

Example 6.2. Again, letM carry a spin structure, letG be the set of all semi-Riemannian metrics onM
and letE be the universal spinor bundle,E(g,x) = ΣgxM . Then againS is the universal bundle of spinor
fields and we this time we putFg := {ϕ ∈ Sg |

∫
M 〈ϕ,ϕ〉g dVg = ±1}. We define the LagrangianL by

L(ϕ) := Re 〈ϕ,Dgϕ〉g dVg.
Nowϕ is critical if and only if

∫

M

d

dt

∣∣∣∣
t=0

L(ϕt) = 2 Re

∫

M

〈ϕ̇,Dgϕ〉g dVg = 0

for all ϕ̇ perpendicular toϕ, i. e. if and only ifDgϕ is a multiple ofϕ. This way we obtain all nonnull
eigenspinors for all eigenvalues simultaneously as criticalϕ’s.

This time the connection has to be chosen differently because τ t1t0 is a pointwise isometry but the vol-
ume elementdVg also depends on the semi-Riemannian metric. Thereforeτ t1t0 does not give an isometry
for theL2-product used to defineF . This can be corrected by defining the connectionH̄ as the set of all
d
dt

∣∣
t=0

√
dVgt

dVg0
τ t0ϕ for all smooth curvesgt of metrics withg0 = π(ϕ).
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Then we have for such a 1-parameter family of metricsgt with k := ġ0

dL ◦ (dπ|H̄ϕ
)−1(k) = Re

〈
ϕ,

d

dt

∣∣∣∣
t=0

(τ0
t D

gtτ t0ϕ)

〉

g0

dVg0

and therefore

Qϕ(X,Y ) = −1

4
Re
(〈
ϕ,X •g0 ∇ΣM

Y ϕ
〉

+
〈
ϕ, Y •g0 ∇ΣM

X ϕ
〉)

for all ϕ, critical or not.

These two examples show that for noncriticalϕ the energy-momentum tensor also depends on the
choice of the connectionH . In contrast, for criticalϕ the differentialdL descends to a mapdL :
TϕF/Tϕ(Fπ(ϕ)) → Ω|n|(M). Thus the mapdL ◦ dπ−1 : Tπ(ϕ)G → Ω|n|(M) is well defined with-
out any reference toH .

7. EMBEDDINGS OF HYPERSURFACESW e will now apply the cylinder construction described in Section 4 to study the question
whether a given manifold can be isometrically immersed as a hypersurface into a manifold
of constant curvature. The classical example for such a result is the fundamental theorem for
hypersurfaces which can be stated as follows:

Theorem 7.1. Let (Mn, g) be a Riemannian manifold and letA be a field of symmetric endomorphisms
of TM satisfying the equations of Gauss and Codazzi-Mainardi:

(∇M
X A)Y = (∇M

Y A)X,(26)

RM (X,Y )Z = 〈A(Y ), Z〉A(X) − 〈A(X), Z〉A(Y )(27)

for all X,Y, Z ∈ TpM , p ∈M .

Then every point ofM has a neighborhood which can be isometrically embedded intoEuclidean
(n + 1)-spaceR

n+1, with Weingarten mapA. If M is simply connected, then there exists a global
isometric immersion ofM into R

n+1 with the above property.

A proof can be found in [6, Ch. VII.7], but here we will give a more geometrical argument based on
the cylinder construction. This will allow us to extend the result without effort to the semi-Riemannian
case and to embeddings into model spaces of constant sectional curvature not necessarily zero. We will
construct anexplicit metric of constant curvature on the cylinderI ×M , whose restriction to the leaf
{0} ×M is g.

For a constantκ ∈ R define thegeneralized sineandcosine functions

sκ(t) :=





1√
κ

sin(
√
κ · t) , κ> 0

t , κ= 0
1√
|κ|

sinh(
√
|κ| · t), κ< 0

and cκ(t) :=





cos(
√
κ · t) , κ> 0

1 , κ= 0

cosh(
√
|κ| · t), κ< 0

One easily checkssκ(0) = 0, cκ(0) = 1, κs2
κ + c2κ = 1, s′κ = cκ, andc′κ = −κsκ.

Theorem 7.2. Let (Mn, g) be a semi-Riemannian manifold and letκ ∈ R. LetA be a field of symmetric
endomorphisms ofTM satisfying

(∇M
X A)Y = (∇M

Y A)X,(28)

RM (X,Y )Z = 〈A(Y ), Z〉A(X) − 〈A(X), Z〉A(Y )

+ κ(〈Y, Z〉X − 〈X,Z〉Y )(29)

for all X,Y, Z ∈ TpM , p ∈M . Define a family of metrics onM by

gt(X,Y ) := g((cκ(t) id − sκ(t)A)2X,Y ).

Then the metricdt2 + gt onZ = I×M has constant sectional curvatureκ on its domain of definition
(i. e. for |t| sufficiently small).
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Proof. PutRZ
κ (X,Y )Z := RZ(X,Y )Z− κ(〈Y, Z〉X−〈X,Z〉Y ). Having constant sectional curvature

κ is equivalent toRZ
κ ≡ 0. The proof is based on the following lemma:

Lemma 7.3. LetZ = I×M be a generalized cylinder and letκ ∈ R. Assume thatg(RZ
κ (X, ν)ν, Y ) = 0

for all vector fieldsX andY onZ, whereν denotes the vector∂∂t .

(i) If the Weingarten mapA of the hypersurface{0}×M ofZ satisfies (28), theng(RZ
κ (X,Y )Z, ν) =

0 for all vector fieldsX , Y andZ onZ.

(ii) If, moreover,A also satisfies (29), thenRZ
κ ≡ 0, i. e.Z has constant sectional curvatureκ.

Assume this lemma for a moment. We will check that the metricdt2 + gt satisfies the hypothesis of
the lemma forgt(X,Y ) = g((cκ(t) id − sκ(t)A)2X,Y ). LetWt denote the Weingarten tensor of the
hypersurface{t} ×M of Z. This gives rise to a tensor fieldW onZ, vanishing in the direction ofν.
¿From the definition ofgt we compute

ġt(X,Y ) = −2g((cκ(t) id − sκ(t)A))(κsκ(t) id + cκ(t)A)X,Y )

= −2gt((cκ(t) id − sκ(t)A))−1(κsκ(t) id + cκ(t)A)X,Y )

hence by (15)
W = (cκ(t) id − sκ(t)A))−1(κsκ(t) id + cκ(t)A).

Moreover,

g̈t(X,Y ) = −2g
(
[κ(cκ(t) id − sκ(t)A)2 − (κsκ(t) id + cκ(t)A)2]X,Y

)
.

Equation (18) yields

gt(R
Z(X, ν)ν, Y ) = −1

2
g̈t(X,Y ) − 1

2
ġt(W (X), Y )

= g(κ(cκ(t) id − sκ(t)A)2X,Y )

= κ gt(X,Y ),

thusRZ(X, ν)ν = κX and henceRZ
κ (X, ν)ν = 0. All conditions of the lemma are satisfied and the

theorem follows. �

Proof of the lemma.The modified curvature tensorRZ
κ has all the symmetries of a curvature tensor

including the Bianchi identities.

i) Consider the family of tensors onM defined byKt(X,Y, Z)x :=
〈
RZ
κ (X,Y )Z, ν

〉
(t,x)

. Using the
second Bianchi identity onZ, together with the fact thatν commutes with vectors onM and the formula
W (X) = −∇Z

Xν = −∇Z
ν X + [ν,X ] = −∇Z

ν X we see

K̇t(X,Y, Z) = dν
〈
RZ
κ (X,Y )Z, ν

〉

=
〈
(∇Z

ν R
Z
κ )(X,Y )Z, ν

〉

−
〈
RZ
κ (W (X), Y )Z +RZ

κ (X,W (Y ))Z +RZ
κ (X,Y )W (Z), ν

〉

=
〈
(∇Z

XR
Z
κ )(ν, Y )Z, ν

〉
+
〈
(∇Z

Y R
Z
κ )(X, ν)Z, ν

〉

+(W ∗Kt)(X,Y, Z)(30)

whereW ∗ denotes the induced action ofW as a derivation on tensors. ¿From the assumption in the
lemma we conclude

0 = dX
〈
RZ
κ (ν, Y )Z, ν

〉

=
〈
(∇Z

XR
Z
κ )(ν, Y )Z, ν

〉
+
〈
RZ
κ (∇Z

Xν, Y )Z, ν
〉

+
〈
RZ
κ (ν,∇Z

XY )Z, ν
〉

+
〈
RZ
κ (ν, Y )∇Z

XZ, ν
〉

+
〈
RZ
κ (ν, Y )Z,∇Z

Xν
〉

=
〈
(∇Z

XR
Z
κ )(ν, Y )Z, ν

〉
−
〈
RZ
κ (W (X), Y )Z, ν

〉
+ 0

+ 0 −
〈
RZ
κ (ν, Y )Z,W (X)

〉

thus 〈
(∇Z

XR
Z
κ )(ν, Y )Z, ν

〉
=
〈
RZ
κ (W (X), Y )Z, ν

〉
+
〈
RZ
κ (ν, Y )Z,W (X)

〉
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and similarly
〈
(∇Z

Y R
Z
κ )(X, ν)Z, ν

〉
=
〈
RZ
κ (X,W (Y ))Z, ν

〉
+
〈
RZ
κ (X, ν)Z,W (Y )

〉
.

Plugging this into (30) yields

K̇t(X,Y, Z) =
〈
RZ
κ (W (X), Y )Z, ν

〉
+
〈
RZ
κ (ν, Y )Z,W (X)

〉

+
〈
RZ
κ (X,W (Y ))Z, ν

〉
+
〈
RZ
κ (X, ν)Z,W (Y )

〉

+(W ∗Kt)(X,Y, Z).

HenceK̇t = F (t)(Kt) for some linear endomorphismF of the space of 3-tensors. This is a linear first
order ODE forKt. The initial conditionK0 = 0 follows from (17) becauseW0 = A is a Codazzi tensor.
This shows thatKt ≡ 0.

ii ) Similarly, using the identity
〈
RZ
κ (X,Y )Z, ν

〉
≡ 0 that we just obtained, we see that the family of

tensors onM defined byRt(X,Y, Z, V )x :=
〈
RZ
κ (X,Y )Z, V

〉
(t,x)

satisfies a linear ODE. Moreover,
(16) impliesR0 ≡ 0 becauseW0 = A satisfies the Gauss equation. ThusRt ≡ 0 for all t. This proves
the lemma. �

Now recall that any semi-Riemannian manifold of constant sectional curvatureκ is locally isometric to
M
r,s
κ . HereM

r,s
κ is the model space of constant sectional curvatureκ and signature(r, s). If κ = 0, then

M
r,s
0 is semi-Euclidean spaceRn with the metricgr,s = (dx1)2+ · · ·+(dxr)2−(dxr+1)2−· · ·−(dxn)2.

If κ > 0, then M
r,s
κ is a pseudosphere, more precisely, it is the semi-Riemannian hypersurface of

(Rn+1, gr+1,s) defined by〈x, x〉r+1,s = 1/κ andx1 > 0 if r = 0. If κ < 0, thenM
r,s
κ is a pseu-

dohyperbolic space, more precisely, it is the semi-Riemannian hypersurface of(Rn+1, gr,s+1) defined by
〈x, x〉r,s+1 = 1/κ andxn+1 > 0 if r = 0. In all casesMr,s

κ is connected and homogeneous. Moreover,
M
r,s
κ is simpy connected except forM

1,n−1
κ if κ > 0 andM

n−1,1
κ if κ < 0, compare [9, p. 108 ff].

The local isometry is essentially given by the Riemannian exponential map, see [11, Cor. 2.3.8], and
it is uniquely determined by its differential at a point. Applying this to the cylinder constructed in The-
orem 7.2 yields the local statement in the fundamental theorem for hypersurfaces for semi-Riemannian
manifolds.

Corollary 7.4. Let (Mn, g) be a semi-Riemannian manifold of signature(r, s) and letκ ∈ R. LetA be
a field of symmetric endomorphisms ofTM satisfying the equations of Gauss and Codazzi-Mainardi:

(∇M
X A)Y = (∇M

Y A)X,

RM (X,Y )Z = 〈A(Y ), Z〉A(X) − 〈A(X), Z〉A(Y )

+ κ(〈Y, Z〉X − 〈X,Z〉Y )

for all X,Y, Z ∈ TpM , p ∈M .

Then for every pointp ∈ M , for everyq ∈ M
r+1,s
κ , and for every linear isometric embeddingF :

TpM → TqM
r+1,s
κ there exists a neighborhoodU of p in M and an isometric embeddingf : U →

M
r+1,s
κ as a semi-Riemannian hypersurface with Weingarten mapA, such thatf(p) = q anddf(p) = F .

Moreover, any two such local embeddingsf1 andf2 must agree in a neighborhood ofp if f1(p) =
f2(p) =: q anddf1(p) = df2(p) : TpM → TqM

r+1,s
κ .

Now, that this local result is established, exactly the sameproof as in [6, Ch. VII, Thm. 7.2] can be
used to show the corresponding global immersion statement in the simply connected case.

Corollary 7.5. Let (Mn, g) be a simply connected semi-Riemannian manifold of signature (r, s), let
κ ∈ R and letA be a field of symmetric endomorphisms ofTM satisfying the two equations (28) and
(29) above.

ThenM can be isometrically immersed as a semi-Riemannian hypersurface into the model space
M
r+1,s
κ with Weingarten mapA. Any two such immersions differ by an isometry ofM

r+1,s
κ .
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8. GENERALIZED K ILLING SPINORSW e now turn our attention to restrictions of spinors to hypersurfaces. LetMn ⊂ Zn+1 be a
hypersurface of a spin manifoldZ admitting a parallel spinorΨ. If n + 1 is even, we will
assume thatΨ lies inΣ+Z. From the discussion in Section 3 we see that the restrictionψ of
Ψ toM is actually a spinor onM and (11) reads

(31) 0 = ∇ΣZ
X Ψ = ∇ΣM

X ψ − 1

2
A(X) • ψ

for all X ∈ TM whereA is the Weingarten tensor of the submanifoldM and “•” denotes Clifford
multiplication onM . If ψ is an eigenspinor of the Dirac operator, thenA is closely related to the energy-
momentum tensor ofψ. More precisely, using (25) one computes

Qψ(X,Y ) =
1

4
〈X,A(Y )〉 〈ψ, ψ〉

where〈ψ, ψ〉 is constant sinceψ is parallel onZ. Spinors satisfying (31) will be calledgeneralized
Killing spinors. They are closely related to the so–calledT–Killing spinors studied by Friedrich and Kim
in [5].

Conversely, given a generalized Killing spinorψ on a manifoldMn with ∇ΣM
X ψ − 1

2A(X) • ψ, it is
natural to ask whether the tensorA can be realized as the Weingarten tensor of some isometric embedding
of M in a manifoldZn+1 carrying parallel spinors. Morel studied this problem in the case where the
tensorA is parallel, see [7].

The next result provides an affirmative answer to the above question, for the case where the energy-
momentum tensor ofψ is a Codazzi tensor.

Theorem 8.1. Let (Mn, g) be a semi-Riemannian spin manifold and letA be a field of symmetric en-
domorphisms ofTM satisfying equation (26) onM . Let ψ be a spinor on(Mn, g) satisfying for all
X ∈ TM

(32) ∇ΣM
X ψ =

1

2
A(X) • ψ.

Then the generalized cylinderZ = I × M with the metricdt2 + gt, wheregt(X,Y ) = g((id −
tA)2X,Y ), and with the spin structure inducing the given one on{0} ×M by restriction has a parallel
spinor, whose restriction to the leaf{0} ×M is justψ.

Proof. The spinorψ defines a spinorΨ onZ by parallel transport along the geodesicsR × {x}. More
precisely, we defineΨ(0,x) := ψx via the identificationΣxM ∼= Σ(0,x)Z (resp.Σ+

(0,x)Z for n odd) and

Ψ(t,x) = τ t0Ψ(0,x). By construction we have

(33) ∇ΣZ
ν Ψ ≡ 0 and ∇ΣZ

X Ψ|{0}×M = 0

for all X ∈ TM .

The explicit form of the metricsgt yields
〈
RZ(X, ν)ν, Y

〉
= 0 on Z for all X and Y tangent

to M as in the proof of Theorem 7.2. Since the Codazzi equation (26) holds Lemma 7.3 (i) yields〈
RZ(ν,X)Y, Z

〉
= 0 on all ofZ. HenceRZ(ν,X) = 0 for all X ∈ TM .

Let X be a fixed arbitrary vector field onM , identified as usual with the vector field(0, X) on Z.
Using (33) we get0 = 1

2R
Z(ν,X) · Ψ = ∇ΣZ

ν ∇ΣZ
X Ψ, thus showing that the spinor field∇ΣZ

X Ψ is
parallel along the geodesicsR×{x}. Now (33) shows that this spinor vanishes fort = 0, hence it is zero
everywhere onZ. SinceX was arbitrary, this shows thatΨ is parallel onZ. �

This theorem generalizes the result from [1] where the caseA = λ · id is treated,λ ∈ R, and it is
shown that the cone over a manifold with Killing spinors admits parallel spinors, as well as a more recent
result by Morel [7] for the case whenA is parallel. Nevertheless, the question whether a manifoldwith
a spinor satisfying (32) can be isometrically embedded in a manifold with parallel spinors such thatA
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becomes the Weingarten tensor of the embedding without assuming thatA is a Codazzi tensor is left open
in the present article.

9. THE SPACE OFLORENTZIAN METRICSI n the final section we address the problem of connecting any two semi-Riemannian metrics of
signature(r, s) on some manifoldM of dimensionn = r+s, by a curvegt of semi-Riemannian
metrics of the same signature in a unique and universal manner. The latter requirement reduces
this problem to the purely algebraic issue of finding a universal way of relating any two inner

products of signature(r, s) on some real vector spaceE ∼= R
n in the manifoldMr,s of all inner products

of signature(r, s) onE.

In the positive or negative definite case an obvious candidate is the linear interpolationgt = tg1 +
(1 − t)g0 which, however, cannot be used for other signatures. An alternative solution, which has been
considered in the definite case, see e.g. [3], but holds in a formally identical way for all signatures, relies
on the geometry ofMr,s, as a (semi-Riemannian) symmetric space that we now recall briefly.

For any signature(r, s) the identity component of the general linear groupGL+(E) ∼= GL+(n,R)
acts transitively onMr,s by

(γ · g)(u, v) = g(γ−1u, γ−1v)

for γ ∈ GL+(E), g ∈ Mr,s, andu, v ∈ E. For any choseng0 in Mr,s, the isotropy group ofg0
in GL+(E) is the special orthogonal groupSO(g0) relative tog0. Recall that, except in the definite
case whereSO(g0) is connected,SO(g0) hastwo connected components. We thus get the identification
Mr,s = GL+(E)/SO(g0) or, equivalently,Mr,s = R

+ × SL(E)/SO(g0), whereR
+ acts by homoth-

eties, andSL(E) ∼= SL(n,R) denotes the special linear group of elements of determinant1 in GL+(E).
HenceM0

r,s := SL(E)/SO(g0) can be regarded as the space of inner products onE of signature(r, s)
and with a fixed volume element. Concerning the problem addressed in this section, it is clearly sufficient
to restrict our attention toM0

r,s.

The homogeneous geometry ofM0
r,s = SL(E)/SO(g0) can be described as follows. For simplicity,

write G := SL(E), H := SO(g0), let g be the Lie algebra ofG, identified with the Lie algebra of
trace-free endomorphisms ofE, and leth be the Lie algebra ofH , identified with the Lie algebra of
g0-skewsymmetric endomorphisms. Denote bym the orthogonal complement ofh in g with respect to
the Killing form of g, so thatg = h ⊕ m. Recall that the Killing form ofg equals the bilinear form
a, b 7→ tr(ab), up to a positive universal constant, so thatm is the space ofg0-symmetric elements ofg.
Since the Killing form isG-invariant,m is stable under the adjoint action ofH , makingM0

r,s a reductive
homogeneous space. Moreover, we clearly have the Lie bracket relations[h, h] ⊂ h, [h,m] ⊂ m, and
[m,m] ⊂ h showing thatM0

r,s is actually a symmetric homogeneous space.

In the positive definite case,M0
n,0 is a Riemannian symmetric space of noncompact type, hence a

Hadamard space. It follows that any two points ofM0
n,0 can be joined by a unique geodesic. Ifg andg0

are any two points ofMn,0, theng = g0(A·, ·), for a uniquely defined automorphismA of E, whereA
is symmetric and positive definite for bothg0 andg. ThenA = exp(a) for a uniquely defined symmetric
endomorphisma of E and the unique geodesic connectingg0 to g is the curvegt := g0(exp(ta)·, ·) =
g0(A

t·, ·), for t ∈ [0, 1] whereexp : g → G denotes the exponential mapping.

In the general case, the restriction of the Killing form tom is anH-invariant inner product of signature(
r(r+1)

2 + s(s+1)
2 − 1, rs

)
, makingM0

r,s asemi-Riemanniansymmetric space of this signature.

The fact thatM0
r,s is symmetric, as a semi-Riemannian homogeneous space, implies that the Levi-

Civita connection of the semi-Riemannian metric coincideswith the canonical homogeneous connection.
In particular, all (semi-Riemannian) geodesics emanatingfrom g0 are of the formexp(tX) · g0 for X ∈
m = Tg0Mr,s.

As a symmetric semi-Riemannian manifoldM0
r,s is certainly geodesically complete in the sense that

geodesics are defined on all ofR, but for(r, s) 6= (n, 0), (0, n), it is not longer true that any two points can
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be joined by a geodesic and, if so, there is no guarantee that the geodesic be unique. This will be illustrated
firstly in the case that(r, s) = (1, 1), then in the general Lorentzian case when(r, s) = (n− 1, 1).

9.1. The space of Lorentzian inner products in dimension 2. Let E denote an oriented real vector
space of dimension2. We fix a positive generatorω of the real lineΛ2E∗, which can be viewed as a
symplectic form onE. NowG ∼= SL(2,R), g ∼= sl(2,R) is the Lie algebra of trace-free endomorphisms
of E, andM0

1,1 is the space of all Lorentzian inner products onE, whose volume form with respect to
the given orientation isω. For any chosen pointg0 ∈ M0

1,1 we then haveM0
1,1 = SL(2,R)/SO(1, 1).

Note thatSO(1, 1) has two connected components. The connected component of the identitySO0(1, 1)

is isomorphic the the additive groupR of real numbers via the isomorphismt 7→
(

cosh t sinh t
sinh t cosh t

)
.

The other connected component equals−SO0(1, 1). Differentiation with respect tot shows that the

corresponding isotropy Lie algebrah is the Lie algebra of2× 2-matrices of the form

(
0 b
b 0

)
, for b ∈ R.

An endomorphismα of E is tracefree if and only if it is “antisymmetric” with respect to ω, i. e. if and
only if it satisfies:ω(α·, ·) + ω(·, α·) = 0.

For anyg ∈ M0
1,1 there is one and only one automorphismIg of E such that

(34) g = ω(·, Ig·).

Sinceg is symmetricIg is trace-free. Its determinant equals−1 becauseg is Lorentzian, with volume
form equal toω. In particular,I2

g = 1. The light cone ofg is the union of the two eigenspaces ofIg, for
the eigenvalues±1. The latter are generated byv ± Igv respectively, for any nonzerov ∈ E.

Conversely, for any automorphismI of E of trace equal to0 and of determinant equal to−1, the
bilinear formg defined byg = ω(·, I·) is a Lorentzian inner product, with volume form equal toω and
I = Ig .

The automorphismIg belongs to the Lie algebrag, on whichG acts by the adjoint representation, and
the mapg 7→ Ig is G-equivariant. Indeed, by definition ofG, we have thatω(γ·, γ·) = ω(·, ·) for each
γ ∈ G, so that

γ · g = g(γ−1·, γ−1·) = ω(γ−1·, Ig γ−1·) = ω(·, γ Igγ−1·).

The mapg 7→ Ig is then aG-equivariant identification ofM0
1,1 with the adjoint orbit of all elements

of g of determinant equal to−1.

As a function defined ong ∼= R
3, the opposite of the determinant is a nondegenerate quadratic form

of signature (2, 1), equal to the (suitably normalized) Killing form. We denote the symmetric bilinear
form corresponding to− det by 〈·, ·〉, i. e. 〈u, u〉 = − det(u) = 1

2 tr(u2). The adjoint orbit is then the
pseudosphereM1,1

1 of elementsu such that〈u, u〉 = 1 in the 3-dimensional Minkowski space(g, 〈·, ·〉).
The restriction of〈·, ·〉 to M

1,1
1 makes the latter aG-homogeneous Lorentzian manifold, known as the

2-dimensionalde Sitter universe. The mapM0
1,1 → M

1,1
1 , g 7→ Ig , is aG-equivariant isometry.

The reflection with respect to〈·, ·〉 about a vector subspace is an isometry of(g, 〈·, ·〉) and it preserves
M

1,1
1 . Since the fixed point set of an isometry is a totally geodesicsubmanifold the geodesics ofM

1,1
1 are

precisely the intersections ofM
1,1
1 with 2-dimensional vector subspacesE ⊂ g. There are three types of

geodesics: timelike geodesics (hyperbolas) corresponding to Minkowski planes, spacelike geodesics (el-
lipses) corresponding to spacelike planes, and null geodesics (straight lines) corresponding to degenerate
planes (tangent to the light cone).
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Now letI, I ′ be two different points inM1,1
1 . If I ′ = −I, then each planeE containingI also contains

I ′. In the timelike or in the null caseI ′ lies on the other connected component ofE ∩ M
1,1
1 . Thus all

spacelike geodesics emanating fromI hit I ′ = −I, but the timelike and null geodesics emanating fromI
missI ′ = −I.

If I ′ 6= −I, thenI andI ′ are linearly independent, so the planeE containingI andI ′ is uniquely
determined. ThusI ′ is hit by the geodesic emanating fromI if and only if it does not lie on the “wrong”
connected component ofE ∩ M

1,1
1 (in the timelike or null case). In other words, the points onM

1,1
1

which cannot be reached by a geodesic emanating fromI are precisely the ones lying on timelike or null
geodesics emanating from−I.

b

−I

b
I

M
1,1
1

unreachable
points

Fig. 2

The two null geodesics emanating from−I are cut out ofM1,1
1 by the affine plane{〈I, I ′〉 = −1}.

Thus the pointsI ′ ∈ M
1,1
1 with 〈I, I ′〉 < −1 cannot be attained by a geodesic fromI.

Similarly, by looking at the affine plane{〈I, I ′〉 = +1} we see that the pointsI ′ with 〈I, I ′〉 > 1
are the ones that lie on timelike geodesics emanating fromI, the ones with〈I, I ′〉 = 1 are the ones that
lie on null geodesics emanating fromI, and the ones with−1 < 〈I, I ′〉 < 1 lie on spacelike geodesics
emanating fromI.

We now retranslate this information back toM0
1,1. If g, g′ ∈ M0

1,1, then

g′ = g(A·, ·),
with

A = I−1
g Ig′ = IgIg′ .

We then have

〈Ig, Ig′ 〉 =
1

2
trA.

Note thatA is g- andg′-symmetric and of determinant equal to+1.

By choosingg as a base-point, we conclude thatM0
1,1 can also be identified with the space of all

g-symmetric automorphisms of determinant1 of E. We summarize:

Proposition 9.1. The spaceM0
1,1 of Lorentzian inner products on a 2-dimensional real vectorspace

that have a fixed volume element carries a natural Lorentzianmetric making itSL(2,R)-equivariantly
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isometric to the 2-dimensional de Sitter universe. Forg, g′ ∈ M0
1,1 there is a unique endomorphismA

such thatg′ = g(A·, ·). Moreover, the following holds:

• If tr(A) > 2, then there is a unique geodesic inM0
1,1 joining g andg′. This geodesic is timelike.

• If tr(A) = 2, then there is a unique geodesic inM0
1,1 joining g andg′. This geodesic is null.

• If −2 < tr(A) < 2, then there is a unique geodesic inM0
1,1 joining g andg′. This geodesic is

spacelike.
• If tr(A) < −2, then there is no geodesic inM0

1,1 joining g andg′.
• If tr(A) = −2 andg 6= −g′, then there is no geodesic inM0

1,1 joining g andg′.
• If tr(A) = −2 andg = −g′, then all spacelike geodesics inM0

1,1 emanating fromg pass through
g′ while the timelike and null geodesics inM0

1,1 emanating fromg missg′.

This proposition shows that given two Lorentzian metrics ona 2-dimensional manifold we can con-
struct a canonical 1-parameter family of Lorentzian metrics joining them only if the endomorphism field
A relating the two metrics satisfiestr(A) > −2. A restriction like this does not come as a surprise
because there are pairs of Lorentzian metrics e. g. on the 2-torus which cannot even be joined by any
continuous curve of Lorentzian metrics. Topological properties of the space of Lorentzian metrics on
compact manifolds such as the number of connected components and their fundamental groups are stud-
ied in [8].

9.2. The space of Lorentzian inner products in higher dimensions. We now consider the manifold
Mn−1,1 = R

+×M0
n−1,1 of all Lorentzian inner products of signature(n−1, 1) on somen-dimensional

real vector spaceE.

As observed before the manifoldM0
n−1,1 is a symmetric semi-Riemannian space of signature
(
n(n− 1)

2
, n− 1

)

and the geodesics emanating from any chosen base-pointg0 are of the formexp(tX) · g0, whereX
belongs to the spacem of trace-freeg0-symmetric endomorphisms ofE, m being naturally identified
with the tangent spaceTg0M0

n−1,1.

The goal of this section is to determine the set of elementsg ∈ Mn−1,1 which can be joined fromg0
by a geodesic inMn−1,1, and whether or not this geodesic is unique. This has just been done in detail in
the case thatn = 2 and, as we shall see, the general case can essentially be reduced to the2-dimensional
case. More precisely, we have

Proposition 9.2. Letg0 andg be two distinct points inMn−1,1. Then there is the following alternative:
Either

(i) E splits as
E = E1,1 ⊕ En−2,0,

where the sum is orthogonal,E1,1 is of signature(1, 1), En−2,0 is of signature(n − 2, 0) for g0 andg.
Bothg0 andg belong to the corresponding totally geodesic submanifoldM1,1 × Mn−2,0 ⊂ Mn−1,1.
Thus the issue of the existence and uniqueness of geodesics connectingg0 to g is reduced to the same issue
for the2-dimensional Lorentzian metricsg0|E1,1

andg|E1,1
in M1,1 as described in Proposition 9.1, or

(ii) E splits as
E = E2,1 ⊕ En−3,0,

where the sum is orthogonal,E2,1 is of signature(2, 1), En−3,0 is of signature(n − 3, 0) for g0 andg.
Bothg0 andg belong to the corresponding totally geodesic submanifoldM2,1 × Mn−3,0 ⊂ Mn−1,1.
The3-dimensional Lorentzian metricsg0|E2,1

and g|E2,1
are related byg|E2,1

= g0|E2,1
(B·, ·), where

B is an automorphism ofE2,1 of the formk(id + x), wherek is a positive real number andx is an
endomorphism ofE2,1 satisfyingx3 = 0 butx2 6= 0. Thusg0 andg are connected by a unique geodesic
whoseE2,1-part is of the form

gt|E2,1
= g0|E2,1

(Bt·, ·),
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withBt = kt exp(t(x − 1
2x

2)) = kt
(
1 + tx+ t(t−1)

2 x2
)

.

This follows directly from Exercise 19 in [9, Ch. 9]. Since wecould not find any reference containing
a proof of this statement we devote the rest of the paper to showing Proposition 9.2.

Recall that for anyg andg0 in Mn−1,1, there exists a uniquely defined automorphismA of E — with
detA > 0 — such thatg = g0(A·, ·): A = (γ−1)∗γ−1, for anyγ ∈ GL(E) such thatg = γ · g0 andA is
symmetric relative to bothg andg0. Theng0 can be joined withg by a geodesic inMn−1,1 if and only
if A is of the formA = exp(a), for someg0-symmetric endomorphisma of E, and the corresponding
geodesic is then the curvegt := g0(exp(ta)·, ·) for t ∈ [0, 1].

The proof of Proposition 9.2 requires the spectral analysisof A. For this purpose it is convenient to
introduce a positive definiteEuclideaninner product(·, ·) onE such thatg0 = (I·, ·) whereI is of the
form

(35) I = id − 2(u, ·)u,
for some elementu ∈ E such that|u|2 = 1. Here, and henceforth,| · | denotes the norm with respect to
(·, ·). Forg0 the vectoru is timelike withg0(u, u) = −1. Conversely, any suchu determines a Euclidean
inner product as above.

Theng = g0(A·, ·) can be written asg = (S·, ·) for a uniquely defined(·, ·)-symmetric automorphism
S of E with exactlyn− 1 positive and1 negative eigenvalues.

Conversely, for any such automorphismS, the inner productg = (S·, ·) belongs toMn−1,1 with

A = I−1S = IS.

The spectral decomposition ofS reads

S = λ0Π0 +

ℓ⊕

r=1

λjΠr,

with λ0 < 0 < λ1 < . . . λℓ, whereΠj denotes the(·, ·)-orthogonal projection onto thedj -dimensional
eigenspaceEj of S corresponding to the eigenvalueλj , j = 0, 1, . . . , ℓ. Note thatd0 = 1.

Via the decompositionE = E0 ⊕
⊕ℓ

r=1Er the unit vectoru appearing in (35) splits as

u = u0 + u1 + . . .+ uℓ.

We denote by∆ the subset ofj ∈ {0, 1, . . . , ℓ} such thatuj 6= 0, and bym the cardinality of∆. For
eachj ∈ ∆ such thatdj > 1 we denote byẼj the (·, ·)-orthogonal complement ofuj in Ej . Let Ẽ be
the subspace ofE defined by

(36) Ẽ :=
⊕

j∈∆,dj>1

Ẽj ⊕
⊕

j /∈∆

Ej ,

andW them-dimensional subspace ofE defined by

(37) W =
⊕

j∈∆

Ruj

so that
E = Ẽ ⊕W.

Both Ẽ andW are left invariant byA, I, andS. The sum is orthogonal with respect to(·, ·), g0, andg.

Note that if0 /∈ ∆, i. e. if u0 = 0, thenẼ is of signature(n−m− 1, 1) andW is of signature(m, 0),
whereas, if0 ∈ ∆, i. e. if u0 6= 0, W is of signature(m − 1, 1) andẼ is of signature(n −m, 0) for g
(butW is always of signature(m− 1, 1) for g0, asẼ is orthogonal tou).

SinceẼ is orthogonal tou, I|Ẽ = id andA|Ẽ = S|Ẽ . In particular,A|Ẽ is symmetric forg0, g and
(·, ·) and its spectral decomposition coincides with the one ofS|Ẽ , given by (36), with eigenvaluesλj for
eachj /∈ ∆ and eachj ∈ ∆ with dj > 1.
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The spectral study ofA is then reduced to the spectral study ofA|W and the latter is summarized by
the following lemma.

Lemma 9.3. (i) The characteristic polynomialP ofA|W defined byP (t) = det(t id−A|W ) is given by

(38) P (t) =
∏

j∈∆

(t− λj) + 2
∑

j∈∆

λj |uj |2
∏

k∈∆\{j}
(t− λk).

In particular, the roots ofP are all distinct from theλj , j ∈ ∆.

(ii) For each real rootµ of P the corresponding eigenspace is the one-dimensional vector space
generated by the elementvµ ∈W defined by

(39) vµ =
∑

j∈∆

uj
µ− λj

.

Moreover,

(40) g(vµ, vµ) = µ g0(vµ, vµ) = −1

2

P ′(µ)

Q(µ)

whereQ denotes the polynomial defined byQ(t) =
∏
j∈∆(t − λj). In particular,vµ is a null-vector —

for bothg andg0 — if and only ifµ is a multiple root ofP .

Proof. By definition, anyv ∈ W is of the formv =
∑
j∈∆ yjuj , for real numbersy1, . . . , ym, so that

Av = ISv =
∑

j∈∆

(λjyj − 2(Su, v))uj.

Note thatv is an eigenvector ofA|W for some eigenvalueµ if and only if

(41) (µ− λj) yj = −2(Su, v),

for eachj ∈ ∆. It is easily checked that(Su, v) cannot be equal to0 if v 6= 0. Indeed, suppose for a
contradiction thatv satisfies (41) with(Su, v) = 0 andv 6= 0. Sincev 6= 0, one of theyj , sayy1, is
nonzero, so thatµ = λ1. This impliesµ 6= λj , for j 6= 1, as theλj are pairwise distinct. It follows that
yj = 0 for all j 6= 1, so thatv = y1u1. Then(Su, v) = λ1y1|u1|2 6= 0 asy1 6= 0, a contradiction.

In particular, this showsµ 6= λj for eachj ∈ ∆ so that we can write

(42) v = −2(Su, v)
∑

j∈∆

uj
µ− λj

.

Moreover, by computing(Su, v) = (Sv, u) from (42), we get

(43)
∑

j∈∆

λj |uj|2
µ− λj

= −1

2
.

It follows that each eigenvalue ofA|W is a root of the polynomialP defined by (38). SinceP is monic
and of degreem, it must coincide with the characteristic polynomial ofA|W . We readily see from (38)
that the roots ofP are distinct from theλj (recall that the latter are pairwise distinct). From (42) we
immediately see that the eigenspace corresponding toµ is generated by the vectorvµ defined by (39).

Conversely, for each rootµ of P the vectorvµ defined by (39) is certainly an eigenvector ofA|W for
the eigenvalueµ.

Since the roots ofP are distinct from theλj , P can also be expressed by

(44)
P (t)

Q(t)
= 1 + 2

∑

j∈∆

λj |uj|2
t− λj

,

where we putQ(t) :=
∏
j∈∆(t − λj). Differentiating (44) att = µ, we get (40). It follows thatvµ is a

null vector if and only ifP ′(µ) = 0, meaning thatµ is a multiple root. �
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For further use, we need more information about the sign of the characteristic polynomialP att = λj ,
j ∈ ∆, and att = 0. In the sequel, we use the notationP (t0) ≡ (−1)r, for some integerr, to mean that
P has the sign of(−1)r — in particular is not zero — att = t0.

Lemma 9.4. (i) If 0 /∈ ∆, we re-label theλj so that∆ = {1, . . . ,m}, and0 < λ1 < . . . < λm. We then
have:

P (−∞) ≡ P (λ0) ≡ (−1)m,

P (0) ≡ (−1)m−1,

P (λj) ≡ (−1)m−j , j = 1, . . . ,m.

(45)

In particular, P has then exactlym distinct real rootsµ0 < 0 < µ1 < . . . < µm−1, with µ0 ∈ (λ0, 0)
andµi ∈ (λi, λi+1), for i = 1, . . . ,m− 1.

(ii) If 0 ∈ ∆, we re-label theλj so that∆ = {0, 1, . . . ,m− 1} andλ0 < 0 < λ1 < . . . < λm−1. We
then have

P (−∞) ≡ P (λ0) ≡ P (0) ≡ (−1)m,

P (λj) ≡ (−1)m−j−1, j = 1, . . . ,m− 1.
(46)

In particular,P has then at least(m−2) distinct real roots0 < µ1 < . . . < µm−2, withµi ∈ (λi, λi+1),
for i = 1, . . . ,m− 2.

Proof. Easy consequence of (38). �

We now consider the two cases when0 does or does not belong to∆.

Case 1: 0 /∈ ∆.

According to Lemma 9.4 (i),A|W is diagonalizable (overR) with one negative eigenvalueµ0 andm−1
distinct positive eigenvalues. Moreover, we easily see from (40) that them corresponding eigenvectors
vµ, defined by (39), are all spacelike. On the other hand,A|Ẽ is also diagonalizable with one negative
eigenvalue, namelyλ0 — whose eigenspace isE0 — andn − m − 1 positive eigenvalues. Denote
byE1,1 the direct sum ofE0 and the (one-dimensional) eigenspace ofµ0, and byEn−2,0 the orthogonal
complement ofE1,1 for g org0. Then, bothg andg0 are of signature(1, 1) onE1,1 and positive definite on
En−2,0. Accordingly,A splits as the sum of two operatorsA = A1,1 ⊕An−2,0, whereA1,1 acts trivially
onEn−2,0 and is diagonalizable, with negative eigenvalues onE1,1, whereasAn−2,0 acts trivially onE1,1

and is positive definite, as well asg0- andg-symmetric onEn−2,0. This can be interpreted as follows.
Denote byM1,1 the space of Lorentzian inner products ofE1,1, byMn−2,0 the space of positive definite
inner products ofEn−2,0. Then the productM1,1 ×Mn−2,0 is naturally embedded as a totally geodesic
submanifold ofMn−1,1 and bothg = g|E1,1

⊕ g|En−2,0
andg0 = g0|E1,1

⊕ g0|En−2,0
belong to it. In

Mn−2,0 any two elements, in particularg|En−2,0
andg0|En−2,0

, are joined by a unique geodesic. The
situation concerningM1,1 has been explored in detail in the first part of this section. In the present case,
g|E1,1

andg0|E1,1
are related by the automorphismA|E1,1

which is diagonalizable with distinct negative
eigenvalues, so thatg|E1,1

andg0|E1,1
cannot be linked by a geodesic.

Case 2: 0 ∈ ∆.

According to Lemma 9.4 (ii), there exist at leastm − 2 distinct positive eigenvalues ofA|W , namely
0 < µ1 < . . . < µm−2. Then, either these eigenvalues are all simple roots ofP , or one of them — and
only one — is a triple root. The case that two of them are doubleroots is impossible since, according to
Lemma 9.3 (ii), the corresponding eigenvectors defined by (39) would then form an orthogonal pair of
nonzero null vectors in the Lorentzian space(E, g).

In the case when allµi are simple roots, we easily check by using (40) that the corresponding eigen-
vectors are all spacelike. Denote byEn−2,0 the direct sum of the corresponding eigenspaces andẼ, and
byE1,1 ⊂W the orthogonal complement ofEn−2,0 for g or g0. Then, bothg andg0 are positive definite
onEn−2,0 and of signature(1, 1) onE1,1. The situation is then quite similar to the previous one, except
that all cases considered in Section 9.1 forM1,1 may now happen, depending on whether the missing two
roots ofP are complex conjugate, both positive (equal or distinct) orboth negative (equal or distinct).
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It remains to consider the case that one of theµi, sayµj := k > 0, is a triple root ofP . Then, according
to Lemma 9.3 (iii), the corresponding eigenvectorvµj

is a null vector. Again, it is easily checked that the
vµi

, for i 6= j, are all spacelike. Denote byEn−3,0 the direct sum of the eigenspaces corresponding to the
µi, i 6= j, andE0, and byE2,1 ⊂W the orthogonal complement ofEn−3,0 for g or g0. Then, bothg and
g0 are positive definite onEn−3,0 and of signature(2, 1) onE2,1. It follows thatg andg0 both belong to
a same totally geodesic subspaceM2,1 ×Mn−3,0. Moreover, the restriction ofA toE2,1, which relates
g|E2,1 andg0|E2,1

, is of the formk(id + x), wherex is nilpotent and regular (this is becauseµj has no

other eigenvector thanvµj
). Now, id + x is the exponential ofx − x2

2 , which is certainly symmetric for
bothg0 andg (sincex = (id + x) − id is symmetric) and is the only symmetric “logarithm” ofid + x.
We thus get a unique (null) geodesic betweeng0|E2,1

andg|E2,1
in M2,1, hence also betweeng0 andg in

Mn,1.

This completes the proof of Proposition 9.2. �
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ÉCOLE POLYTECHNIQUE, CENTRE DEMATHÉMATIQUES, 91128 PALAISEAU CEDEX, FRANCE

E-mail address: baer@math.uni-hamburg.de

E-mail address: pg@math.polytechnique.fr

E-mail address: am@math.polytechnique.fr


