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Short-term dynamics of a density interface
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A tube filled with a perfectly wetting liquid falls axially by its own weight. In its
gravity free reference frame, the liquid interface deforms by surface tension into a hemi-
spherical shape. At the impact of the tube on a rigid floor, the interface curvature
reverses violently, forming a concentrated jet. If the contact angle at the tube wall is
such that the interface is flat, the liquid rebounds as a whole with the tube, with no
deformation. We analyze this phenomenon using an impulse pressure description, pro-
viding an exact description of the initial liquid velocity field at the impact, supported
by high speed image velocimetry measurements. This initial dynamics is insensitive to
liquid surface tension and viscosity.

1. Introduction
Liquid jets, or ligaments are the sinews of atomization (Villermaux 2007) as drops

always result from the rupture of more or less smooth threads. Ubiquitous features of
free surface flows, jets naturally erupt in a wide variety of situations, including bursting
bubbles (Blanchard 1967), overdriven Faraday waves (Longuet-Higgins 1983) or collaps-
ing voids (Benjamin & Ellis 1966) as classical examples. Another common occurrence of
jet formation is the one resulting from an impact. This situation is illustrated on figure 1
with the paradigmatic experiment referred to as ‘Pokrovski’s experiment’ in Lavrentiev
& Chabat (1980): a glass tube filled with water falls axially by its own weight. In its
gravity free reference frame, the liquid interface deforms by surface tension into a close-
to-hemispherical shape (meniscus) to adapt to the wetting condition at the wall. At the
impact of the tube on a rigid floor, the interface curvature reverses violently, forming
a concentrated jet. Interestingly, when the tube wall is altered such that the contact
angle is around 90◦,the interface is initially flat, and not deformed after rebound (fig-
ure 2). This simple experiment singles out the crucial role of the free surface geometry
on its later evolution. Such an important effect associated with the geometry of the free
surface has been known for more than a century in the context of ‘shaped-charge jets’
(Birkhoff et al. 1948). Military devices exploiting this effect basically consist in lining
an explosive charge with an artificial ‘meniscus’ made of metal that collapses with the
detonation wave and produces an intense metallic liquid jet. Whereas the resulting jet
velocity typically scales with the detonation wave celerity (of order of several kilometers
per second), the jet produced here with the impacted tube rather scales with the impact
velocity, suggesting a different mechanism of jet formation.

† Also at: Institut Universitaire de France
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Figure 1. A tube filled with a wetting liquid and falling under gravity gives birth to a strong
jet after impact. The interval separating each snapshot of this sequence is 5.5 ms.

Figure 2. When the tube wall is made hydrophobic (silanization), the interface is initially
flat, and not deformed after rebound.

Figure 3. A liquid with a free surface is falling as a whole under gravity. A bubble at the free
surface gives rise to a strong jet after impact. The interval separating each snapshot of this
sequence is 1 ms.

The purpose of the present study is to elucidate the role of free surface corrugations,
not only associated with menisci, but also with standing waves or bubbles cavities (see
figure 3) on the initial interface dynamics. We proceed as follows: in §2, employing
a pressure impulse approach (Batchelor 1967; Cooker & Peregrine 1995), the pressure
field associated with impact as well as the corresponding velocity field are derived using
a variant of the multipole expansion. In §3, the theoretical results are compared to
measurements of the liquid displacement field using high-speed video and particle image
velocimetry. The roles of confinement, surface tension (including the case of non cohesive
fluids) and viscosity are finally discussed.
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Figure 4. Left: Typical experiment of a cavity produced with a bubble, just before impact.
Right: sketch of the liquid domain in the theoretical idealization.

2. Pressure impulse in an impacted tube
A sudden change in the tube velocity induces pressure gradients which in turn produce

a sudden change in the liquid velocity (Batchelor 1967, §6.10). Looking closer at the
very short time dynamics, the impact pressure field is established via a complex acoustic
field radiated from the boundaries. Typically, these phenomena occur on a few acoustic
timescales corresponding to what we call the impact duration τ†. Over the impact
period, neither the velocity nor its spatial gradients are expected to balance the dominant
time derivative, such that the dynamics is assumed to be governed by:

∂u

∂t
= −1

ρ
∇p. (2.1)

As commonly done in impact studies (Cooker & Peregrine 1995), the intricate details of
the acoustic field are not examined and an incompressible evolution ruled by global mo-
mentum balances is considered, just as in the problem of billiard balls impact where the
elastic wavefield is classically neglected. On integrating equation (2.1) over the impact
duration, the velocity field after impact is uncovered:

u(τ)− u(0) = −1
ρ
∇P, (2.2)

where P is the impulse pressure defined by:

P =
∫ τ

0

p dt, (2.3)

accounting for the total liquid pressure variation associated with impact (or impulse
gravity). Incompressibility implies that P is an harmonic function:

∆P = 0. (2.4)

Note that the neglected viscous terms are actually identically nil, the velocity field being
the gradient of an harmonic potential. Consequently, there is no viscous effects in the
volume, and the region of influence of viscosity is concentrated near the free surface and
the wall in a thin boundary layer of thickness

√
ντ , with ν the kinematic viscosity.

The purpose of the following developments is to derive the solution of the Laplace
equation (2.4) for the physical setup sketched in figure 4. It consists of an infinite

† Here, τ is observed to be 10−4s, whereas the acoustic timescale is rather 10−5s.
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vertical tube of radius R/λ filled with liquid. At the free surface, a bubble of radius R
(≤ R/λ, so that the ‘confinement factor’ λ lies in the range 0 < λ ≤ 1), modelled with
an half-sphere, is present. At initial time, the container is impulsively started, with a
velocity U0ez. The associated impulse pressure satisfies P = 0 at the free surface. On
the solid boundaries, the boundary conditions derive from (2.2):

Un = −1
ρ

∂P

∂n
, (2.5)

where Un = U0(ez · n). Moreover, at the infinitely deep bottom, the impact enforces
∂P
∂z = −ρU0.

Were no bubble present, the trivial solution −ρU0z would hold for the impulse pres-
sure field. This ‘impulsive hydrostatic’ pressure distribution imparts an equal momentum
distribution within the liquid bulk. Each fluid particle acquires a velocity U0ez after im-
pact in the fixed frame, that is no velocity at all in the moving frame: incompressibility
guarantees that the sudden change in the container velocity is instantaneously trans-
mitted to all fluid particles through the pressure linear stratification. This instructive
example, illustrated with the experiment showed figure 2, shows that the only free sur-
face geometry compatible with the preceding impulsive hydrostatic pressure distribution
is a planar one. Indeed, enforcing a zero pressure distribution on a curved surface will
generate corrections to the pressure field. This situation is the one under study: free sur-
face corrugations, possibly produced with the help of surface tension, but not exclusively,
will give rise to pressure and velocity corrections.

Analytically, solutions of Laplace equation are easily found when the boundaries of
the domain are iso-coordinates surfaces. Conversely, the present problem is ‘hybrid’ in
this sense as the boundaries are iso-coordinates of two representation systems. Seventy
years ago, Knight (1936) made a first step in building solutions to such ‘mixed’ problems,
considering precisely a problem with an identical geometry. Closely following the original
treatment of Knight, we shall now investigate and solve the pressure impulse problem.

2.1. Elementary harmonic solutions in the cylindro-spherical domain: modified
multipoles

In the following, each considered field will admit two representations : a cylindrical one
(ξ, Φ, z) and a spherical one (r, θ,Φ). With these two alternate views, it is possible to
express the requirements on the general solution F to the present problem:

(i) ∆F = 0 in the whole domain (r ≥ R, ξ ≤ R/λ, z ≤ 0)

(ii) ∂F
∂ξ = 0 on the cylinder surface ξ = R/λ

(iii) F = 0 on the plane z = 0

(iv) F = 0 on the sphere surface r = R

(2.6)

Without condition (ii), expressing the impermeability condition on the cylinder, a
standard approach would consist in an expansion of the solution into odd multipoles
(each readily satisfying (i) and (iii)) so as to meet condition (iv) on the sphere. With
the cylinder included, the strategy basically remains similar, but the base functions are
modified with the help of regular cylindrical harmonic functions in order to satisfy (ii).

2.1.1. The modified dipole
The dipolar field φ(r, θ) = − ∂

∂z

(
1
r

)
= cos θ/r2, which is a singular solution to Laplace

equation in spherical coordinates, fails to meet condition (ii) as already noticed. It is
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therefore desirable to build a solution of the form F0 = φ(r, θ) + ϕ(ξ, z), where ϕ(ξ, z)
is a regular solution to Laplace equation in cylindrical coordinates preserving (i) and
(iii) but derived so that F0 complies with (ii). Regularity and symmetry requirements
suggest the following form for ϕ:

ϕ(ξ, z) =
∫ ∞

0

f(m) sin(mz)I0(mξ) dm, (2.7)

where the spectral decomposition f(m) is unknown for the moment. On the cylinder
surface, the derivatives with respect to ξ of the regular and singular parts must balance
each other:

− ∂φ

∂ξ
(R/λ, z) = 3

(
R
λ

)
z((

R
λ

)2
+ z2

)5/2
=

∂ϕ

∂ξ
(R/λ, z) =

∫ ∞
0

mf(m) sin(mz)I1(mR/λ) dm.

(2.8)
Inverting the sine Fourier transform then provides with the following expression for the
spectral amplitude:

f(m) =
2
π

∫ 0

−∞

sin(mz)
mI1(mR/λ)

3

(
R
λ

)
z((

R
λ

)2
+ z2

)5/2

 dz. (2.9)

This spectral decomposition allows to recover the expression of ϕ(ξ, z):

ϕ(ξ, z) =
2
π

∫ ∞
0

m
K1(mR/λ)
I1(mR/λ)

sin(mz)I0(mξ) dm, (2.10)

where the following relation has been used:∫ 0

−∞

az sin(mz)

(a2 + z2)5/2
dz =

1
3
m2K1(ma). (2.11)

Relation (2.10) explicits the correction to the dipolar field needed so that the resulting
modified dipole F0 satisfies (i), (ii) and (iii).

Although exact, relation (2.10) does not appear to have the most relevant form in
view of the formulation of condition (iv) on the sphere. A more appropriate form of the
solution in the vicinity of the sphere consists in a zonal harmonics expansion. On making
use of the following identity (Knight 1936):

sin(mz)I0(mξ) =
∞∑

n=0

(−1)n m2n+1r2n+1

(2n + 1)!
P2n+1(cos θ), (2.12)

where P2n+1(cos θ) is the Legendre polynomial of degree 2n + 1, one can also obtain the
following expression for the modified dipole:

F0(r, θ) =
(

R

r

)2

cos θ +
∞∑

n=0

λ2n+3α
(0)
2n+1

( r

R

)2n+1

P2n+1(cos θ), (2.13)

with

α
(0)
2n+1 =

(−1)n

(2n + 1)!
2
π

∫ ∞
0

m2n+2 K1(m)
I1(m)

dm. (2.14)

2.1.2. Modified multipoles
As remarked by Knight, differentiating F0 with respect to z an even number of times

gives functions sharing analogous properties, namely harmonicity (i), boundary condi-
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tion (ii) as well as condition (iii). Upon recalling that:

− ∂2s+1

∂z2s+1

(
1
r

)
=

∂2s

∂z2s

(
cos θ

r2

)
= (2s + 1)!

P2s+1 (cos θ)
r2s+2

, (2.15)

1
(2s)!

∂2s

∂z2s

∞∑
n=0

r2n+1P2n+1(cos θ) =
∞∑

n=0

C2s
2n+2s+1r

2n+1P2n+1(cos θ), (2.16)

these solutions can be written as:

F2s =
R2s

(2s)!
∂2sF0

∂z2s

= (2s + 1)
(

R

r

)2s+2

P2s+1(cos θ) +
∞∑

n=0

λ2n+2s+3α
(2s)
2n+1

( r

R

)2n+1

P2n+1(cos θ)

where:
α

(2s)
2n+1 = C2s

2n+2s+1α
(0)
2n+2s+1. (2.17)

2.2. Formal expansion of the complete solution
Having derived the modified multipoles, it is natural to seek the complete solution under
an expansion of the form P =

∑∞
0 A2sF2s. However, since the functions F2s are expected

to decrease asymptotically to 0 for large z as F0, it appears difficult to comply with the
additional constraint limz→−∞

∂P
∂z = −ρU0. While the suggested expansion is natural

in the context of a decaying electrostatic potential field created with a charged sphere
(the original context of Knight), it fails here to capture the solution. Indeed, elementary
solutions of Laplace equation linear in cartesian variables cannot be expressed as a con-
vergent serie of modified multipoles and have therefore to be included separately. More
specifically, the ‘impulsional hydrostatic’ pressure field −ρU0z already evoked earlier has
here to be added to the complete solution:

P (r, θ) = −
( r

R

)
P1(cos θ) +

∞∑
s=0

A2sF2s, (2.18)

with P here expressed in units of ρU0R.
In the case of a charged sphere, the potential is forced through inhomogeneous bound-

ary conditions on the sphere surface. Conversely, the impact induces a linear pressure
profile, uncompatible with pressure cancellation on the (non-planar) free surface. The
impact therefore drives in return the emergence of a multipolar field.

Having included this forcing, the linear relationship between the coefficients of the
expansion derives from the constraint of vanishing pressure on the bubble surface. Once
projected on each Legendre polynomial P2n+1 (cos θ), this reads:

(2n + 1) A2n +
∞∑

s=0

λ2n+2s+3α
(2s)
2n+1A2s = δ0n. (2.19)

In the case of weak confinement (e.g. isolated bubble), the first order approximation of
these coefficients is: {

A0 = 1− λ3α
(0)
1

A2n = −λ2n+3α
(0)
2n+1/(2n + 1)

, (2.20)

revealing the dominance of the dipolar field in the correction for a large range of confine-
ments. But in the general case where confinement cannot be introduced perturbatively,
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Figure 5. Left: pressure levels (a) and velocity field (c) obtained with the cylindrical represen-
tation for a value of the confinement factor of λ = 0.5. (a) : the isobars are equispaced with a
step of 0.08ρU0R. (c) : along with the velocity vectors are represented the levels of the pressure
gradient norm. These are equispaced with a step of 0.12ρU0. Right: the theoretical velocity
field for the confined geometry (λ = 1) is represented figure (b), whereas a typical velocity field
obtained experimentally after PIV treatment is plotted figure (d).

the solution of the system (2.19) can still be obtained by numerical means, after trun-
cation at a satisfying order. In all cases, inclusion of 10 modified multipoles appears
sufficient to guarantee the respect of condition (iv) with an absolute error inferior than
10−4.

Eventually, given the general expression for the impulse pressure (2.18) derived, and
with the help of the governing equation (2.1), the liquid velocity field in a frame moving
with the container reads:

u(r, θ) = −U0R∇
( ∞∑

s=0

A2sF2s

)
. (2.21)

Figure 5 illustrates typical pressure impulse distributions for different confinement
factors. The strong inhomogeneity of the pressure gradient field is remarkable and en-
tirely induced by the corrugation of the free surface (driving the emergence of multipoles
through condition (iv)). Immediately after impact, the strongly inhomogeneous pressure
field induced by the impact is converted into a similarly inhomogeneous kinetic energy
distribution, through the governing equation (2.1). The corresponding velocity fields are
represented figure 5b-c.

From the above analysis, the following physical picture emerges: introducing a free
surface corrugation of, say, depth H and typical curvature radius R induces a deforma-
tion of the isobars surrounding the cavity, as illustrated figure 5a. The isobar squeeze
then naturally reflects in the pressure gradient intensity in the vicinity of the cavity bot-
tom. Taking the pressure level at the cavity depth far from the corrugation, i.e. ρU0H,
and the natural length scale of the cavity, i.e. R, as characteristic scales, the order of
magnitude of the pressure gradient is expected to be

∂P

∂z
≈ −ρU0

H

R
(2.22)
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H

R

(a) (b)

Figure 6. Left: maximum meniscus velocity at the impact in a frame moving with the container
in units of U0, as a function of the confinement factor λ. The dotted line corresponds to
the theoretical prediction, and the circles to the experimental observation. The plain circles
correspond to near hemispherical bubbles (H/R ∼ 1). The inserted plot illustrates the linear
dependence between the meniscus velocity and the impact velocity in the confined (λ = 1) case
for two tubes (circles: glass bottom; triangles: aluminium bottom). Right: Same data as in the
left figure, but rescaled with the aspect ratio H/R of the bubble. Water is the working fluid;
the triangle reports an experiment made with ethanol (of surface tension 3 times smaller than
water), and the square an experiment conducted with the V50 silicon oil of dynamic viscosity
50 times larger than water.

Although H and R are basically the same quantity in the theoretical idealization, this
scale distinction will prove useful in the analysis of the experimental results.

3. Experiments and comparisons
Experiments have been conducted using a high-speed Photron video camera at typ-

ically 3000 frames per second at a resolution of 1024 × 1024 pixels. Theory predicts a
decrease of the initial meniscus maximal velocity (on the tube axis) as the confinement
factor λ tends to 1. This behaviour, already visible from a comparison of the veloc-
ity fields plotted in figures 5b and 5c, is more detailed in figure 6. In a frame moving
with the container, the initial velocity at the cavity bottom has been reported for dif-
ferent confinement ratios and compared with the theoretical prediction. Interestingly,
the agreement is correct only for near hemispherical bubbles having comparable curva-
ture radius and cavity depth. Actually, our theory does not consider cavities such that
H/R 6= 1 (with H and R defined figure 6b). But so far, the mechanism described below
equation (2.21) anticipates a linear dependence of the cavity velocity with H/R. And
indeed, dividing all the observed velocities with this geometrical quantity leads to a quite
nicer agreement between theory and experiments (figure 6b).

The structure and intensity of the velocity field was measured using PIV at the mo-
ment of impact in the confined geometry (λ = 1) by seeding the liquid (water) with
100µm particles. A vertical plane containing the tube symmetry axis was illuminated
with a laser sheet produced with a continuous 2W Argon laser. Classical PIV treat-
ment (Meunier & Leweke 2003) gives access to the bulk velocity field. Typical result is
shown figure 5d, in qualitative agreement with the theoretical velocity field (figure 5b).
Quantitative comparison is provided by examining the radial and axial velocity profiles
along a horizontal line tangenting the meniscus, and the tube axis of symmetry as shown
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(a) (b)

Figure 7. Comparison between theoretical and experimental velocity profiles, in units of U0 in
the confined geometry (λ = 1). (a): the profile is taken along a ray tangent to the meniscus. (b):
the profile is plotted along the symmetry axis. In both cases, the thick (dotted) line correspond
to the radial (axial) theoretical velocity. The filled (empty) circles represent an experimental
observation made with water, in a 3 cm diameter glass tube. The impact velocity is 6 m/s.

on figure 7. This quantitative agreement is achieved within a purely inertial theory ac-
counting for the deformation of the hydrostatic impulse pressure field by the presence
of the cavity, disregarding viscous and surface tension stresses. In particular, the viscous
boundary layer at the tube wall is invisible (figure 7a).

4. Conclusions and extension to non-cohesive fluids
The early time deformation of a curved density interface following an impact has

been elucidated. An impact induces an impulsional linear pressure stratification within
the bulk, therefore transmitting the information of sudden velocity change to all fluid
particles. For the fluid to move as a whole, the free surface has to be planar. Any
departure from the plane will induce impulse pressure corrections, and hence motions
within the bulk. This resulting velocity field has been derived analytically for free surface
corrugations ranging from isolated bubbles to menisci by means of a purely inertial
theory, in agreement with experimental observations. Viscous effects do not appear to
be relevant in the present problem (no visible effect associated with viscous boundary
layers nor deviation of the cavity velocity with an oil 50 times more viscous than water),
consistently with our description.

Interestingly, the free surface corrugations considered experimentally could not have
been produced without the help of surface tension since it is necessary in the formation of
menisci, or bubbles. But the dynamics subsequent to the impact does not rely on surface
tension at all. A further proof of the non-role played by surface tension is to consider
a non-cohesive deformable medium, namely sand as working fluid. A first experiment
consists in observing the impact of a tube filled with sand presenting a planar free
surface (figure 8). Here, no jet at all is observed and the sand particles are at best
superficially fluidized. In a second experiment, an artificial ‘meniscus’ is sculpted at the
free surface and a strong jet is observed in return just after the impact, alike the one
observed after the impact of a sphere on sand bed (Thoroddsen & Shen 2001). The non-
cohesive character of the medium certainly draws aside surface tension as relevant in
the present experiment. Moreover, the fact that a jet emerges in that case too pinpoints
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Figure 8. Top: a tube filled with sand and with a flat surface is impacted. 2 ms separates each
snapshot of the sequence. Bottom: the same tube with a sculpted ‘meniscus’ is impacted. There
is a time interval of 1 ms between each image.

the universal/ubiquitous aspect of jet formation in a medium with a curved stress-free
surface and initial harmonic pressure (or stress) distribution.

The subsequent development of the free surface which rapidly evolves both in shape
and velocity is therefore expected to be insensitive to surface tension and viscosity. The
features of the resulting stretched jet, the regions and timescales over which viscosity
and surface tension will eventually come into play and the ultimate fragmentation of the
jet into droplets are currently under investigation.

This work was supported by the Agence Nationale de la Recherche through grant
ANR05-BLAN-0222-01, and by EADS Foundation.
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