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This paper proposes to re-visit the problem of gas-liquid crystallization in the framework of a two-layer model and with the help 

of data coming from experiments on methane hydrate crystallization in a semi-batch reactor. Preliminary quantitative discussion of 
the order of magnitude of different effects makes possible realistic simplifications in the theoretical models. In particular, the role of 
the interfacial film is clearly defined. As previous authors did, we use a formulation in terms of moments of the crystal size 
distribution, however we are not interested in the numerical solution to the corresponding differential system, but we propose a 
general procedure to express analytically the asymptotic behaviour of the physical system. Thanks to this formulation, influence of 
different parameters can be easily identified and validated on available experimental data.  

 
 

 
1 Introduction 
 

Gas-liquid crystallization can be described by the overall reaction : 
A1(gas) + pA2 aq → qA3 (solid)  [R1] 
in which A2 aq is a compound dissolved in an aqueous solution 

and p and q are stoichiometric coefficients, are frequently met in 
industrial or natural systems. This is for instance the case of 
carbonatation of lime water. The latter case has been extensively 
studied by (Wachi and Jones, 1991 a,b; Jones et al., 1992) and has 
given rise to comprehensive interpretations. 

Gas hydrate crystallization can be also represented by a [R1]-type 
reaction in which A2aq would denote simply water and A3 the gas 
hydrate phase (Englezos et al. 1987 a,b; Skovborg and Rasmussen, 
1994; Herri et al.,1999 ). 

Models are generally based on the assumption of a two-layer 
configuration which consists of : 

i) the superficial film at the gas-liquid interface in which 
absorption and diffusion of the gas into the liquid phase take place 
(possibly accompanied by reactions between dissolved species); this 
zone, of both high supersaturation and high concentration gradient 
values in dissolved gas, is favourable to primary nucleation of crystals;  

ii) the bulk zone in which crystals develop mainly by growth; 
this is a region of lower concentration values and nearly zero gradients 
all the more so since the medium is generally stirred. 

Classical models take into account:  
1. basic equations for the gas-liquid mass transfer (film theory) 

accompanied with kinetic models of chemical reactions; 
2.  equations for the distributed crystal population and 

dissolved gas mass balances; 
3. crystallization kinetic laws. 
The associated mathematical problem is a partial derivative 

equation (PDE) problem when simplification cannot be introduced 
(Wachi and Jones, 1991) or an ordinary differential equation problem 
when simplifying procedures or assumptions (steady state ; use of the 
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crystal population moments) can be applied. (Englezos et al. 1987 a,b; 
Herri et al., 1999) 

In this paper we would like to revisit several aspects of gas-liquid 
precipitation in the framework of the two-layer model. Particularly, the 
different assumptions concerning gas transfer through the interfacial 
film, crystal growth, nucleation and transport in this film will be 
examined. Then, we will propose a general model of crystallization and 
discuss some possible simplifications particularly at later stages of the 
process. The main originality of this paper, however, is to propose 
analytical laws for the system asymptotic behaviour ; these predictions 
can be easily compared to experimental results and give in several 
cases quantitative estimation of the model parameters. This approach, 
although general, will be supported (and possibly validated) by the 
experimental context of methane hydrate crystallization (Herri et al., 
1999) for which we have many results. 

 
2 Models 
System configuration. We consider a vertical cylindrical stirred 

reactor filled with water. The liquid height, volume and cross-section 
section area are respectively denoted by H, V, and A. z is the vertical co-
ordinate (the gas-liquid interface is located at z =0) ;  

t is the time. Two zones are considered (Figure 1). 
- interface layer: the interface layer, of thickness δ  is characterised 

by a concentration profile c'(z, t) in dissolved gas. The boundary 
conditions are: c'(0, t) = Cext and c'(δ, t) = cb(t); Cext is the gas solubility; 
cb(t) is the bulk concentration. The crystal diameter density function 
should be considered in its local, z-dependent form, n'(D, z, t) expressed 
per unit volume. As the agitation state of the interface layer is probably 
weak, we consider it at rest as other authors did. 

- bulk zone: due to the effect of stirring, the concentration in 
dissolved gas cb(t) and the crystal diameter density function per unit 
volume, nb(D, t) are considered as independent of z. The agitation state, 
imposed by the stirrer, is assumed to be uniform and completely 
characterised by the stirring rate. 



  

In what follows, superscript ' will be used to denote variables or 
parameters relative to the surface layer whereas bulk variables or 
parameters will be written with subscript b. Variables without particular 
indication are relative to the system or to both zones. 

 

 

 

 

 

 

 

 

 

 
Figure 1. The two-film system. 

 

Processes  

- gas absorption 
The gas absorption rate per unit volume r(t) is expressed by the 

well-known relation (Mehta and Sharma, 1971): 
r(t) = kLa (Cext – cb (t)) (1)  
a is the mass transfer surface area per volume of  liquid and kL the 

mass-transfer coefficient. In the experiments reported here, kLa ranges 
between 0.001 and 0.005 s-1. 

 
- mass transport in the interfacial layer 
In the two-film theory, the interfacial layer thickness is obtained 

from the relation : 

ak
aD

L

G=δ  (2) (2) 

in which DG is the dissolved gas diffusivity. For instance, δ ranges 
between 10 and 50 µm in (Herri et al., 1999). Thus, the interfacial layer is 
very thick compared to the usual height of the reactor(0.2 m).  

Concentration is maintained at value Cext by the gas-liquid 
equilibrium at the external interface. Crystallization occurs because Cext 
is greater than Ceq, the equilibrium concentration in presence of 
crystals. Concentration in the bulk, c, is proved to be close to Ceq, at 
least, at late stages of the crystallization process. This means that 
supersaturation sharply decreases throughout the film layer. In gas-
liquid precipitation experiments, visual observations clearly show that 
nucleation mainly takes place in the interfacial film from which the 
nucleated crystals are then transferred to the bulk where they go on 
growing. According to the authors this transfer process is differently 
described. Wachi and Jones (1991 a) attribute it to Stokes-Einstein 
diffusion whereas Englezos et al. (1987 a,b) consider that nuclei appear 
in the film and are instantaneously transferred to the bulk as soon as 
supersaturation conditions are created. We propose here a discussion 
on the inter-layer transfer process by taking into account Stokes 
diffusion, floating and crystal growth.  

The Stokes-Einstein diffusion coefficient DP of a spherical particle 
of diameter D’ is given by : 
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in which T is the temperature, ηL, the dynamic viscosity of the 
liquid medium and k the Boltzmann constant. 

Methane hydrate particles immersed in water move upwards 
(floating) because they are lighter than the fluid medium. Their limit 
velocity w is given by : 
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g denotes the gravity and | ∆ρ |the absolute value of the density 
difference between solid and liquid. 

Relative importance of Stokes-Einstein diffusion and settling 
floating can be judged from the corresponding particle flux, i.e. 
respectively : 
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and JF = n’.w (6) 

From dimensional analysis follows: 
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For the methane hydrate-water system (Herri et al, 1999), the 
parameter typical values {T, δ, |�∆ρ |} are respectively: {275 K, 30 µm, 
912 kg.m-3}. Stokes-Einstein diffusion is preponderant for D’ < 0.65 µm. 
This crystal size is reached in about 19s (growth rate G ≈ 2 µm.min-1). 
The floating time : tF (tF = δ.w-1) is equal to 143 s . From the order of 
magnitude of these values, it appears that, once a crystal is nucleated in 
the interfacial film, it rapidly reaches a size for which diffusion is 
negligible ; this means that its motion is essentially ruled by flotation. 
Most crystals of methane hydrate are nucleated at the gas-solid 
boundary, where supersaturation is maximum. As they are lighter than 
water, they tend to move upwards to the gas-liquid interface where 
they go on growing. Their transfer to the bulk zone is due to 
entrainment by the bulk flow, however should occur only beyond a 
minimum size. 

 
- crystallization processes 
The crystallization processes are presented independently of the 

reactor zone in which they occur.  
Classical assumptions are taken for the kinetic laws of the different 

crystallization processes : 
 
i) linear growth rate G: 

G = kg σ�p,        ( 1−=
eqC
cσ )  (8) 

in the considered medium ; Ceq is the equilibrium concentration in 
presence of the solid phase ; constant kg is assumed to be 
independent of crystal diameter D (Mac Cabe simplification), however 
possibly dependent on stirring ; p is a constant, of typical values 1 or 2 
(Garside, 1985 ; Dirksen and Ring, 1991).  

 
ii) primary nucleation rate B1 : 
The production rate of primary nuclei per unit volume is expressed 

according the classical expression (Nielsen, 1964): 

( )[ ]( )2
1 1ln-exp σβ +∝B   (9) 

or more simply by B1 = k1 σ n (10) 
in which k1 is a constant and n, positive exponent; can commonly 

take relatively high values (5 to 10). The nuclei are supposed to be 
created at a zero initial size. 
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iii) secondary nucleation rate B2:  
The production rate of secondary nuclei per unit volume is 

expressed by (Garside, 1985): 
B2 = k2 σ�mm2 (11) 
in which k2 is a constant, generally dependent on agitation, m is a 

positive exponent ranging from zero (purely mechanical origin of the 
nuclei) to relatively low values (typically 2 to 3 ; case of “true” 
secondary nucleation). (Garside, 1985); m2 denotes the second order 
moment of the diameter distribution (proportional to the crystal surface 
area per unit volume of the medium). As before for primary nucleation, 
the initial size of the secondary nuclei is assumed to be zero. 

 
iv) agglomeration : 
The agglomeration kernels depend both on agitation and 

supersaturation (Hounslow et al., 1988). The role of agglomeration in 
the different crystal population balances will be represented by an 
additive term Aag which will be expressed later on. 

 
Model dynamic equations.  In this section we present the general 

dynamic equations which describe the time evolution of the system, 
particularly of the concentration in dissolved gas and of the crystal 
density function and the simplification which can be assumed in each 
zone. 

 
- mass balance 
In any point of the two zones, the mass balance in dissolved gas is 

expressed by the general partial derivative equation :  
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JD is the molar flux of the dissolved gas, m2 the second-order 
moment of the crystal distribution, vmol the solid molar volume, and kv a 
crystal shape constant (kv = π/2for spherical particles). 

bulk zone :  
As the bulk zone is supposed perfectly mixed, Equation (12) is not 

relevant, at least in the present form, it should be replaced by the 
following global balance using relation (1) : 
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interfacial layer: 
As commonly in the framework of the film model (Welty et al., 

1969 ; Beek et al. 1975), comparison between the gas absorption flow-
rate and the gas amount actually consumed in the interfacial layer can 
suggest simplifications. 

Ratio γ �between the two flow-rates is given by : 
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Denoting φ’ the volume fraction of solid and 'D  the crystal mean 
diameter in the film, assuming Cext >> cb, and a ≈ H1  and using 

relation (2), we obtain an approximate expression of α : 
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The parameter typical values {D’, δ, G’, Cext.vmol} are : {5µm, 30µm, 
2µm.min-1, 7.2 x 10-3} for methane hydrate in water. DG = 5 x 10-9 m2.s-1 
and φ’ is estimated to 0.01.  

The corresponding calculated value of γ is 200 for methane 
hydrate in water. Due to the uncertainty of the different parameters, this 
value is questionable, however probably realistic. This proves that 
crystallization weakly affects mass transfer in the interfacial layer ; 
consequently, from Equation (12), it follows that a linear profile of 
concentration ranging between Cext and Cb can be assumed in the 
interfacial layer at the steady state. 

 
- crystal population balances 
The crystal population balance is expressed by the general partial 

derivative equation: 
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where the population density function n depends on diameter D, 
time t and height z. Flux J refers to the circulation of the particles in the 
system (JF, JP, as mentioned before or convection flux).  

interfacial layer:  
We propose several simplifying assumptions for the interfacial 

layer.  
- steady state : this is justified by the small extension of this layer 

and its constant exchange with the gaseous atmosphere and the liquid 
bulk; 

- linear profile of concentration in dissolved gas and negligible 
crystallization processes (i.e. growth, agglomeration and secondary 
nucleation) except of course primary nucleation: this is justified by the 
calculated α ; 

Taking into account too that particles nucleated in the film are 
rapidly transferred to the bulk by flow entrainment), their starting size in 
the bulk is probably little dispersed and small. This is the reason why 
we give up calculating it accurately and we restrict the role of the 
interfacial film to an external source of nuclei which feeds the bulk of the 
reactor.  

Averaged nucleation rate 1'B can be calculated from integration 
of Equation (10) over the film to give : 
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σext and σb are the supersaturation level respectively at the gas-
liquid and at the two-layer interface. 

bulk zone 
Population balance is deduced from general equation (16), 

however taking into account the bulk homogeneity and the feed in 
nuclei from the interfacial film ; it follows : 
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In the classical crystal population balance equations (Randolph 
and Larson, 1988), particularly in the framework of the MSMPR model, 
nuclei are generally assumed to be generated at initial zero size. This 
simplification is certainly valid for nuclei created by primary nucleation 
(B1b) or “true” secondary nucleation (B2b ; Equation (11) with m � 0). 
However, according to previous discussions in this text, it is certainly 
questionable in the case of  the nuclei which are produced in the 



  

interfacial film and then transferred to the bulk (term '1B ). We propose 

to consider a non necessarily zero initial size (D’b0) for these nuclei. 
moment equations 
The first three moments of the crystal size distribution by number 

are : 
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The partial derivative equation (18) results in the following moment 
equations : 
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Presence of terms in 1'B in Equations (23) and (24) results from 
the possibility of nuclei of non zero size as aforesaid. Last terms of left-
hand side of these equations are due to the contribution of  
agglomeration (Kagg, β1, β2 are positive constants).These are 
approximate expressions which assume constant agglomeration kernel 
and take into account the experimental shape of the crystal size 
distribution. This simplification has been introduced and validated in 
(Herri et al., 1999) in the case of crystallization of methane hydrate. 

 
Asymptotic solution to the problem. Solving Equations (13), (22-

24) requires numerical integration which presents no particular 
difficulty, however is not straightforward (Englezos et al. 1987 ; Wachi 
and Jones, 1991, a,b  ; Herri et al.,1999). Sensitivity to the system 
parameters clearly appears in these results, however cannot be 
described in simple words. We will prove here that the asymptotic 
solution of the problem can be found in an analytical form the 
parameters of which are the characteristics of the system and the 
processes.  

- mathematical procedure 
The calculation procedure starts with the mass balance equation : 
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In presence of crystals, the variance of the present solid-liquid-gas 
system is equal to 1. This means that, at given temperature, equilibrium 
conditions are determined, particularly pressure and temperature. If, like 
here, external pressure is fixed at a value Pext higher than the equilibrium 
value Peq (or equivalently Cext > Ceq), the system continuously absorbs 
gas to create new crystals. Thus, m2b continuously increases and is 
assumed to be asymptotycally proportional to : tα where α is a positive 
exponent. 

Remark : in presence of agglomeration, the situation is more 
complex and will be examined in a next paper (Cournil and Herri, 
2002). For the moment, we assume that Kagg is zero. 

As, in Equation (13), product bbmG 2 should keep finite values, 

Gb necessarily tends to zero, thus is of the form : 
G = K t-α (25) 
Thus, from (8), cb tends asymptotycally to Ceq. 

Putting these asymptotic values into (13) gives : 
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K
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Asymptotic value of the nucleation rate in the film is :  
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The following steps of the procedure consist of : 
i) putting m2b and Gb into Eqn(24) and deriving m1b 
ii) putting m1b and Gb into Eqn (23)and deriving m0b 
iii) putting m0b into Eqn (22) and identifying α and K 
iv) expressing the different moments and characteristics of the 

crystal population (particle number and mean diameter). 
- typical cases 
The previous procedure can be applied to different situations of 

determining crystallization processes. 
- film nucleation and bulk growth 
In this case, the basic assumption is that nucleation only occurs in 

the film and is negligible in the bulk (due to too low supersaturation in 
the bulk). 

Equations (24), (23), (22) can be respectively simplified in : 
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Applying the previous procedure successively gives : 
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The values of α and K are obtained from identification according 
to the powers of t in Equation (31) : 

α = 1 and K is a root of the equation: 
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If the initial size of the nuclei transferred to the bulk can be 
neglected, then using also (2) and (27), we can express respectively K, 

Nb, the asymptotic number of crystals in the bulk and bD their mean 

size : 
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Consequently, in this case, the number of crystals increases 
linearly and their mean size keeps constant. 

 



  

 
- film nucleation, bulk growth, and bulk secondary nucleation 
In this case, we still consider film nucleation and bulk growth as 

determining, however we take also into account secondary nucleation 
which could play a part because of the continuously increasing 
surface area of the crystals. As previously we consider that D’b0=0. 

Equations (24), (23), (22) can be respectively simplified in : 
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From (8) and (11) follows : 
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Using (8) and the expressions (25) and (26) of the asymptotic 
variation of G and m2b with time, we transform (37) in (38): 
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Identification according to the powers of t is a little more 
complicated than previously. Two cases should be considered : 

a)  3α-3 = 0 , i.e., α = 1, however with : m > p; this latter condition 
expresses that secondary nucleation rate should depend more on 
supersaturation than growth rate. This behaviour is rather common for 
“true” secondary nucleation. If these conditions are fulfilled, case a) is 
asymptotically similar to the situation of film nucleation-growth bulk 
which was discussed just before (Equations (32)-(34)). This means that 
asymptotycally bulk “true” secondary nucleation is less active than 
film primary nucleation. 
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however, with m < p ; as explained in the previous section, this 
latter condition is not frequently met for “true” secondary nucleation ; 
however, it is observed of course in the case of purely mechanical 
nuclei generation (m = 0). 

The respective expressions of asymptotic Nb, and bD are : 

( )[ ] ( )

23

2

1 23
2

122

−

−














−−

= α
α

α ααα

σ t

k
kk

HSvaCkN
p
m

Gv

molexteqL
b  

( )

( )
α

α

α

α

αα

−
−

−












−

= 1

3
1

3

2

12

23
2

t
k

k

D

p
m

G

b  

 
 
 
 
 
 

Figure 2   Time evolution of crystal mean diameter (a) and number 
per unit volume (b) at different stirring rates during methane hydrate 
crystallization at 30 bars and 1°C 

 

In the case of secondary nucleation of purely mechanical origin 
(m=0; α = 3/2), these expressions become: 
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3 Comparison with experimental data 
 
The theoretical results are now examined in the framework of the 

already mentioned experimental study of (Herri et al., 1999) on methane 
hydrate crystallization. This work is very rich in data because of the 
instrumentation of the reactor with an optical sensor for in situ particle 
size determinations. 

Agreement between theory and experiment will be discussed in 
several aspects : 

 
Time evolution of crystal number and mean diameter at different 

stirring rates. In Figure 2, we recall experimental results obtained by us 
(Herri et al., 1999) on methane hydrate crystallization. According to the 
stirring rate, the time evolution of the crystal density and mean diameter 
is quite different.  

Concerning the asymptotic law of variation with time of the crystal 
mean diameter and crystal number, if we represent them using 
respectively a law in tβ and a law in tε, we obtain the following results : 

β < 0 and ε > 1 at high stirring rate (500 rpm) 
β = 0 and ε = 1 at medium values (400 rpm) 
β > 0 and ε < 1 at low stirring rate (250 rpm) 
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These results are quite consistent with the different theoretical 
possibilities we considered before, i.e., respectively : 

i) case of film nucleation, bulk crystal growth and secondary 
nucleation (with m/p = 1/2 at 500 rpm); this latter assumption is 
particularly plausible, because high stirring rate can result in crystal 
erosion or attrition; 

ii) case of film nucleation and bulk crystal growth (at these 
moderate stirring rates, agglomeration and fragmentation have 
opposite somewhat balanced effects); 

iii) case of film nucleation, bulk crystal growth and agglomeration ; 
at the lowest stirring rate agglomeration overcomes fragmentation 

 
Influence of stirring rate on the crystal mean diameter. We 

consider only experiments in which primary nucleation and crystal 
growth are preponderant, that is to say with constant asymptotic mean 

diameter bD . 

From Figure 2, it appears that bD increases with the stirring rate in 

the range [350 rpm - 450 rpm] for which bD is nearly independent of 

time. The previous model predicts the following asymptotic value for 
this diameter: 

bD  = 
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In this expression, the most dependent factor on stirring rate is kL 
which is known to be an increasing function (Wachi and Jones, 1991b, 
Herri et al., 1999). This is quite consistent with the experimental results. 

 
4. Conclusion 
 
In this paper we propose a new discussion on gas-liquid 

crystallization in the framework of two-film models. Assumptions and 
interpretations are systematically placed in the context of the 
experimental system methane hydrate-water. This leads us to propose 
a simplified, however realistic, expression of the process dynamics in 
the form of a system of differential equation in dissolved gas 
concentration and crystal distribution moments. Instead of solving 
numerically this system as several authors did, we propose a general 
and easy procedure to obtain the asymptotic solution. According to 
the relevant crystallization processes (primary nucleation, secondary 
nucleation, crystal growth, agglomeration), the different asymptotic 
laws of crystal number and mean diameter versus time are calculated 
and found in an analytical form in which the influence of different 
parameters (stirring rate, supersaturation) is quantitatively expressed. 
Using these predictions, we can interpret data coming from methane 
hydrate crystallization. In particular, we prove the strong influence of 
stirring rate through its action on agglomeration and fragmentation. 
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