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We study the Lie algebra of infinitesimal isometries on compact Sasakian and K-contact manifolds. On a Sasakian manifold which is not a space form or 3-Sasakian, every Killing vector field is an infinitesimal automorphism of the Sasakian structure. For a manifold with K-contact structure, we prove that there exists a Killing vector field of constant length which is not an infinitesimal automorphism of the structure if and only if the manifold is obtained from the Konishi bundle of a compact pseudo-Riemannian quaternion-Kähler manifold after changing the sign of the metric on a maximal negative distribution. We also prove that non-regular Sasakian manifolds are not homogeneous and construct examples with cohomogeneity one. Using these results we obtain in the last section the classification of all homogeneous Sasakian manifolds.

Introduction

There are many interesting geometric situations, which are characterized by the existence of a Killing vector field with special properties. Examples are Sasakian manifolds, K-contact manifolds or total spaces of S 1 -bundles.

In this article we will study the isometry group of a compact Riemannian manifold admitting a special unit Killing vector field.

The starting point is the simple observation that on a compact Riemannian manifold (M, g) a Killing vector field ξ induces a decomposition of the Lie algebra g := Lie(Iso(M)) of the isometry group into eigenspaces of the Lie derivative L ξ . The zero eigenspace g 0 can be identified with the space of Killing vector fields commuting with ξ.

In the regular case, i.e. where all orbits of ξ are closed and have the same length, it is easy to show (under some technical restrictions) that g 0 is spanned by ξ and the Killing vector fields of the quotient space M/S 1 , cf. Lemma 2.3.

The results in the present article were obtained during our visit at Erwin Schrödinger Institute in Vienna. We express our warmest thanks to the Institute for hospitality and support, and to José Figueroa O'Farrill for his invitation. The last two authors are members of the European Differential Geometry Endeavour (EDGE), Research Training Network HPRN-CT-2000-00101, supported by The European Human Potential Programme.

The space g 0 is thus well understood, at least in the regular case. We then concentrate on the complement of g 0 in g with respect to the decomposition mentioned above. Two interesting remarks can be made (cf. Lemma 2.4 below): on the one hand, each Killing vector field from this complement is orthogonal to ξ at every point of M, and on the other hand, the non-zero eigenvalues for the action of L ξ on g are determined by those of the field of endomorphisms ϕ := ∇ξ. In particular, if ϕ has no constant non-zero eigenvalues on M, then g = g 0 .

In order to study the complement of g 0 in g it is thus useful to make further assumptions on ϕ. In the remaining part of the paper we consider the case where ϕ defines at every point of M a complex structure on the orthogonal complement of ξ. Manifolds admitting such a structure are called K-contact, and among them, those satisfying a further integrability condition are called Sasakian (see Section 3 for details).

It turns out that the Lie algebra g of a K-contact manifold splits (as a vector space) into only two subspaces: g = g 0 ⊕ g 2 . We provide an easy proof for the fact that a compact Sasakian manifold with non-trivial g 2 has to be a space of constant curvature or a 3-Sasakian manifold. Moreover we describe the decomposition of g on 3-Sasakian manifolds.

In section 4 we characterize K-contact structures carrying Killing vector fields of constant length in g 2 . It turns out that these manifolds are obtained from SO(3)bundles over pseudo-Riemannian quaternion Kähler manifolds by changing the sign of the metric. In addition we give an example of K-contact manifold having Killing vector fields of non-constant length in g 2 .

In section 5 we study the isometry group on irregular Sasakian manifolds and use this to obtain in the last section the classification of simply connected compact homogeneous Sasakian manifolds. Note that this classification was already obtained in [START_REF] Boyer | On Sasakian-Einstein geometry[END_REF] under the slightly stronger assumption that the automorphism group of the Sasakian structure (rather than the isometry group of the manifold) acts transitively.

Manifolds with unit Killing vector fields

Let (M n , g) be a compact Riemannian manifold carrying a Killing vector field ξ, with dual 1-form η. We denote by G = Iso(M) the isometry group of M and by g = iso(M) the Lie algebra of G, identified with the Lie algebra of Killing vector fields on M. Since G is compact, the adjoint representation of G on g is orthogonal with respect to some scalar product on g. In particular, the endomorphism L ξ of g is antisymmetric, so iL ξ is a Hermitian endomorphism of g C . Let

g C = g C 0 ⊕ g C λ 1 ⊕ . . . ⊕ g C
λs be the decomposition of g C in eigenspaces for iL ξ , where g C λ k corresponds to the eigenvalue λ k and g C 0 to the eigenvalue 0. This induces a direct sum decomposition

(1) g = g 0 ⊕ g λ 1 ⊕ . . . ⊕ g λs ,
where

L ξ |g 0 = 0 and L ξ • L ξ |g λ k = -λ 2 k .
Note that all λ k 's can be chosen to be strictly positive real numbers. For such a choice, (1) will be called the standard decomposition of g.

From now on we will always assume that ξ has constant length 1.

Definition 2.1. The vector field ξ is called regular if its flow has closed orbits of constant length. It is called quasi-regular if the flow has closed orbits whose lengths have jumps. Finally, ξ is called irregular if its flow has a non-closed orbit.

It is easy to see that ξ is regular or quasi-regular if and only if there exists some p > 0 such that exp e (pξ) = e, where e is the unit of G.

We now study in more detail the case where ξ is regular. The flow of ξ defines an isometric circle action on M and the quotient N := M/S 1 of M by this action carries a Riemannian metric such that the projection M → N is a Riemannian submersion with minimal fibers. Conversely, every connection 1-form iη on a principal S 1 -bundle M over a Riemannian manifold N induces a 1-parameter family of metrics g t on M turning the bundle projection into a Riemannian submersion with minimal fibers via the following formula:

(2)

g t = g N + t 2 η ⊗ η.
The metric g t carries a unit Killing vector field whose orbits are closed and have constant length 2πt. The following "folkloric" lemma relates the exterior derivative dη and the curvature of the connection of the S 1 -bundle M → N.

Lemma 2.2. Let (M n , g, ξ, η) be as above and denote by 2πℓ the length of the orbits of ξ. On the S 1 -principal fibration M → N := M/S 1 we define a connection whose horizontal distribution is ξ ⊥ . Then the curvature form of this connection is equal to idη/ℓ.

Conversely, if F is a 2-form in H 2 (N, Z), let M be the S 1 -bundle over N with Chern class [F ] and let iξ denote the vector field dual to the connection form iη of a connection on M whose curvature form is iF . Then for each t > 0, ξ t := ξ/t is a unit Killing vector field for the metric g t defined by (2), with dual 1-form η t = η. Tts orbits have length 2πt and dη t = d(tθ) = tF .

By rescaling the metric on M, we may assume that the orbits of the Killing vector field ξ have constant length 2π (this amounts to take t = 1 in the construction above). The infinitesimal isometries of M which preserve ξ (i.e. the space g 0 ) can be easily described in the following way: Lemma 2.3. (cf. [START_REF] Kakolewski | The geometry of some Kähler-Einstein manifolds[END_REF]) With the notations from Lemma 2.2, let A be a Killing vector field on M commuting with ξ. Then there exists a unique Killing vector field X on N and a function f on N (unique up to a constant) such that

(3) df = -X F
and A = X * + f ξ. Conversely, if F is harmonic and N is simply connected, then for every Killing vector field X on N the equation (3) has a solution f unique up to a constant and X * + f ξ is a Killing vector field on M commuting with ξ.

Note: For a vector field X on N, X * denotes the horizontal lift of X to M, i.e. the unique vector field on M orthogonal to ξ which projects onto X.

Proof. Write A = f ξ + B with B, ξ = 0. Since L ξ preserves the decomposition T M = ξ ⊕ ξ ⊥ , f is actually a function on N and B is projectable on some X ∈ Γ(T N). The condition ∇A(ξ, ξ) = 0 is automatically satisfied, ∇A(Y * , Y * ) = 0 for every Y ∈ T N is equivalent to X being Killing on N and finally ∇A(Y * , ξ) + ∇A(ξ, Y * ) = 0 for every Y ∈ T N is equivalent to (3).

To prove the converse we only have to check that d(X F ) = 0 for every Killing vector field X on N and harmonic 2-form F . This follows directly from the Hodge decomposition: the harmonic form L X F (L X commutes with ∆, because X is Killing) is equal to d(X F ) + X dF = d(X F ), which is exact, so they both vanish.

The previous lemma actually shows that there is a canonical exact sequence 0 → Rξ → g 0 → iso(N) → 0.

We now return to the general setting and prove the following simple but very useful lemma concerning the complement of g 0 in g with respect to the standard decomposition described above.

Lemma 2.4. Let A be a Killing vector field in g λ 1 ⊕ . . . ⊕ g λs . Then 1. A is orthogonal to ξ at every point of M.

2. L ξ A is dual to the 1-form -A dη.

Proof. 1. It is enough to prove this for A in some fixed g λ k . As before we can write A = f ξ + B with B, ξ = 0, and from the invariance w.r.t. L ξ of the decomposition

T M = ξ ⊕ ξ ⊥ we deduce that ξ(ξ(f )) = -λ 2 k f . On the other hand 0 = ∇ ξ A, ξ = ξ(f ), so f = 0 (as λ k = 0).

Using the first part of the lemma we get for every vector field

Y dη(A, Y ) = Aη(Y ) -Y η(A) -η([A, Y ]) = ∇ A ξ, Y -∇ Y ξ, A = ∇ A ξ, Y + ξ, ∇ Y A = [A, ξ], Y .
If we identify dη with an endomorphism of T M, we see that A has to be an eigenvector of the symmetric endomorphism dη • dη for the eigenvalue -λ 2 k . This shows that the non-zero coefficients of X in the above "Fourier-type" decomposition are completely determined by the algebraic behavior of dη.

Example. If dη • dη has no constant negative eigenvalue on M, then every Killing vector field on M is an automorphism of the structure (M, ξ) (i.e. g = g 0 ).

Example. For the Hopf fibration (S 2n+1 , ξ) → CP n , dη is twice the pull-back of the Kähler form of the base, thus showing that g is actually reduced to g 0 ⊕ g 2 .

Example. Let N be equal to the product of s copies of CP 1 with the Fubini-Study metric (i.e. round spheres of radius 1/2). Take λ 1 , . . . , λ s to be distinct positive integers and let M be the Riemannian manifold induced (via the procedure described above) by the S 1 bundle over N with curvature i(λ 1 ω 1 + . . . + λ s ω s ), where ω i is the Kähler form of the i-th factor. Then the Lie algebra of infinitesimal isometries of M is equal (as vector space) to g = g 0 ⊕ g λ 1 ⊕ . . . ⊕ g λn , where g 0 is isomorphic to Rξ plus the direct sum of s copies of su 2 and each g λ i is 2-dimensional.

So far we obtained a description of g 0 in the regular case and made some general remarks on the Killing vector fields in the orthogonal complement of g 0 . In order to get further results on this complement it is necessary to impose additional assumptions on ξ, more precisely on the algebraic behavior of dη . In the remaining sections we will consider the case where the skew-symmetric endomorphism corresponding to dη defines a complex structure on the orthogonal complement ξ ⊥ . This leads to K-contact structures or, with a further integrability condition to Sasakian structures.

Sasakian Manifolds

A Sasakian structure is a special contact structure on a Riemannian manifold. These structures were studied in the seventies by the Japanese school and, in the last decade, after the work of Bär [START_REF] Bär | Real Killing spinors and holonomy[END_REF] and Friedrich et al. [START_REF] Baum | Twistor and Killing Spinors on Riemannian Manifolds[END_REF] on manifolds with Killing spinors and that of Boyer et al. on 3-Sasakian manifolds [START_REF] Boyer | Essays on Einstein manifolds[END_REF], they turned out to constitute one of the most important special geometries, being the odd-dimensional analogues of Kähler manifolds. Definition 3.1. A vector field ξ on a Riemannian manifold (M, g) is called a Sasakian structure if ξ is a Killing vector field of unit length and

(4) ∇ • ∇ξ = ξ ∧ •.
In particular, if we apply (4) to two arbitrary vectors and then take the scalar product with ξ we find that the tensors ϕ := ∇ξ and η := g(ξ, .) are related by

ϕ 2 = -Id + η ⊗ ξ.
It is an easy exercise (see e.g. [START_REF] Bär | Real Killing spinors and holonomy[END_REF]) to check that (M, g) is Sasakian if and only if the metric cone ( M, ḡ) defined by M = M × R + and ḡ = dr 2 + r 2 g is Kähler. Most experts today actually prefer to take this last statement as the definition of Sasakian structures, because it is more geometrical and intuitive. Definition 3.2. A triple {ξ 1 , ξ 2 , ξ 3 } of Sasakian structures is called a 3-Sasakian structure on M if the following conditions are satisfied:

1. The frame (ξ 1 , ξ 2 , ξ 3 ) is orthonormal; 2. For each permutation (i, j, k) of signature δ, the tensors ϕ i := ∇ξ i and η i := g(ξ i , .) are related by

ϕ j ϕ i = (-1) δ ϕ k -η j ⊗ ξ i .
Equivalently, M is 3-Sasakian if and only if the cone M is hyperkähler, and this can be taken to be the definition as before.

The next lemma gives a sufficient condition for a manifold to be 3-Sasakian. It was originally proved in [START_REF] Baum | Twistor and Killing Spinors on Riemannian Manifolds[END_REF]. Lemma 3.3. If ξ 1 and ξ 2 are two orthogonal vector fields defining Sasakian structures, then the triple {ξ 1 , ξ 2 , ξ 3 := ∇ ξ 1 ξ 2 } is a 3-Sasakian structure.

It turns out that on compact manifolds, the norm of a Killing vector field satisfying (4) is a "characteristic function of the sphere". In other words, we have: Lemma 3.4. (see [START_REF] Tanno | On the isometry groups of Sasakian manifolds[END_REF]) Let ξ be a Killing vector field on a compact manifold M satisfying (4). If M has non-constant sectional curvature, then ξ has constant length (so it defines a Sasakian structure on M after a homothetic change of metric).

The following result is a synthesis of several papers studying the isometries of Sasakian manifolds [START_REF] Tanno | On the isometry groups of Sasakian manifolds[END_REF], [START_REF] Moroianu | On the Infinitesimal Isometries of Manifolds with Killing Spinors[END_REF]. We will include here a short proof using the considerations in Section 2.

Theorem 3.5. Let M be a Sasakian manifold.

• If M is neither 3-Sasakian nor a space form, then every infinitesimal isometry of M is an infinitesimal automorphism of the Sasakian structure (i.e. g = g 0 ). • If M is 3-Sasakian but has non-constant sectional curvature, then there is a Lie algebra decomposition g = g ′ ⊕ su 2 , where su 2 is generated by the three Sasakian vector fields and g ′ consists of the automorphisms of the 3-Sasakian structure (i.e. Killing vector fields commuting with the Sasakian vector fields).

Proof. 1. From Section 2 it follows that g = g 0 ⊕ g 2 (since dη • dη = -4). Let X be a non-zero element of g 2 and

Y := 1 2 L ξ X. Then L Y ξ = -L ξ Y = -2L 2 ξ X = 2X
, so taking the Lie derivative with respect to Y in (4) yields that X satisfies (4), too. From Lemma 3.4 we deduce that either M is a space form, or X has constant length (and consequently defines a Sasakian structure). By Lemma 3.3, this implies that M is 3-Sasakian, a contradiction. So g 2 = ∅.

2. Let now M be 3-Sasakian. From the first part of the above proof, we deduce that for each i = 1, 2, 3, g can be decomposed as g = g i 0 ⊕g i 2 . Now suppose that there is some vector field in say g 1 2 which is not a linear combination of ξ 2 and ξ 3 . The arguments above show that X defines a Sasakian structure, so the cone M admits both a hyperkähler structure and another Kähler structure. On the other hand, the cone is either irreducible or flat (see [START_REF] Gallot | Équations différentielles caractéristiques de la sphère[END_REF]). In the last case, M has to be a space form. Otherwise, it cannot be locally symmetric (being Ricci-flat), so the existence of another Kähler structure on a hyperkähler manifold yields a further holonomy reduction, which is impossible from the Berger Holonomy Theorem. This proves that for every permutation {i, j, k} of {1, 2, 3}, g i 2 = ξ j , ξ k . Denote by g ′ := ∩g i 0 . It is clear that each ξ i preserves g ′ and that g = g ′ ⊕ ξ 1 , ξ 2 , ξ 3 . 

K-contact manifolds

ϕ 2 = -1 + η ⊗ ξ.
In other words, ϕ defines a complex structure on the distribution orthogonal to ξ.

2. A contact metric structure (M, g, ξ, ϕ) is called K-contact if ξ is Killing.
3. A contact metric 3-structure is an orthonormal frame of contact metric structures (ξ 1 , ξ 2 , ξ 3 ) such that for each permutation (i, j, k) of signature δ, the tensors ϕ i := -∇ξ i and η i := g(ξ i , .) are related by ϕ i ϕ j = (-1) δ ϕ k + η j ⊗ ξ i . Equivalently, the endomorphisms ϕ i satisfy the quaternionic relations on the distribution orthogonal to {ξ 1 , ξ 2 , ξ 3 }.

It is well-known (and straightforward to prove) that M has a contact metric structure if and only if the cone M is almost Kähler. As remarked in [START_REF] Boyer | Einstein manifolds and contact geometry[END_REF], using this observation one can easily retrieve (with a shorter proof) the following result of Kashiwada [START_REF] Kashiwada | On a contact 3-structure[END_REF]: a contact metric 3-structure is necessarily 3-Sasakian! Indeed, the cone M of a contact metric 3-structure M is almost hyperkähler and a lemma by Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF] (see below) states that every almost hyperkähler manifold is hyperkähler. So M is hyperkähler, i.e. M is 3-Sasakian.

We now construct a family of examples of Riemannian manifolds admitting 3 orthogonal (non-integrable) K-contact metric structures which will play an important role in this section. This construction makes essential use of pseudo-Riemannian geometry.

Fundamental example. Let (Q, h) be a pseudo-Riemannian manifold with holonomy Sp p,q • Sp 1 ⊂ SO 4p,4q . The simplest examples of such manifolds are, as in the Riemannian case, discrete quotients of the pseudo-Riemannian quaternionic hyperbolic spaces HH p,q := Sp p,q+1 /Sp p-1,q+1 • Sp 1 (the case p = 0, which is excluded in these examples, can be thought of as being the quaternionic projective space (HP q , -can), with the negative metric). Other explicit homogeneous examples were constructed by Alekseevski and Cortes (see [START_REF] Alekseevsky | Classification of N -(super)-extended Poincaré algebras and bilinear invariants of the spinor representation of Spin(p, q)[END_REF]).

The holonomy condition is equivalent to the existence of a parallel sub-bundle E of End(Q) locally spanned by three endomorphisms satisfying the quaternionic relations.

The Konishi construction (see [START_REF] Konishi | On manifolds with Sasakian 3-structure over quaternion Kähler manifolds[END_REF]) carries over verbatim to the pseudo-Riemannian situation. The SO 3 -principal bundle S associated to E admits a pseudo 3-Sasakian metric of signature (4p, 4q + 3). (The definition of a pseudo 3-Sasakian structure is the same as that of a 3-Sasakian structure, except that the metric is pseudo-Riemannian and the 3 Killing vector fields are time-like).

Let us now choose an orthogonal decomposition of the tangent space of Q, T Q = D + ⊕ D -, such that h is positive on D + and negative on D -. On S there is an induced orthogonal decomposition T S = D * + ⊕ D * -⊕ V , where V denotes the vertical distribution. Obviously, this decomposition is invariant under each of the Sasakian Killing vector fields. We define a Riemannian metric g by changing the sign of h on D * -⊕ V . The Sasakian vector fields, say ξ i , are still Killing vector fields for g, and the endomorphisms associated to 1 2 dη i via the new metric are still complex structures on ξ ⊥ i .

Nevertheless, this change of metric has definitely altered the integrability of the contact structures (ξ i , 1 2 dη i ), and moreover, the three K-contact structures ξ i on (Q, g) do not define a contact metric 3-structure, since the corresponding endomorphisms ϕ i do not satisfy the quaternionic relations on the horizontal distribution (they satisfy the quaternionic relations on D -and the anti-quaternionic relations on D + ). The Riemannian structures obtained in this way are called weakly K-contact 3-structures.

The following result was proved by Hitchin in the Riemannian case [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF]. The proof given in [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF] works without changes in the pseudo-Riemannian setting. Lemma 4.2. (pseudo-Riemannian Hitchin Lemma) A pseudo-Riemannian almost hyperkähler manifold is hyperkähler.

(Three almost complex structures J i on a pseudo-Riemannian manifold (M, h) define an almost hyperkähler structure if the J i satisfy the quaternionic relations and the associated Kähler forms h(J i •, •) are closed.) Consider now a K-contact structure, denoted ξ 1 for later convenience, on a compact manifold M. The results in Section 2 show that one can decompose the Lie algebra iso(M) as iso(M) = g 0 ⊕ g 2 , where

L ξ 1 | g 0 = 0 and (L ξ 1 • L ξ 1 )| g 2 = -4.
Theorem 4.3. Let (M, g, ξ 1 , η 1 , ϕ 1 ) be a K-contact manifold and let iso(M) = g 0 ⊕ g 2 be the above decomposition of the Lie algebra of infinitesimal isometries of M. Then g 2 contains a Killing vector field of constant length if and only if M admits a weakly K-contact 3-structure.

Proof. The reverse implication is clear from the previous example. Conversely, let ξ 2 ∈ g 2 be a Killing vector field of unit length, and denote by ξ 3 := 1 2 L ξ 1 ξ 2 , which obviously has unit length, too. By the definition of g 2 we have L ξ 1 ξ 3 = -2ξ 2 . The Killing vector field ζ := [ξ 2 , ξ 3 ] can be computed as follows. On one hand, by the Jacobi identity we have L ξ 1 ζ = 0, and

-ζ, ξ 1 = dη 1 (ξ 2 , ξ 3 ) = 2 ∇ ξ 2 ξ 1 , ξ 3 = -2.
Finally, for every Y ⊥ ξ 1 , we have

ζ, ∇ Y ξ 1 = -∇ Y ζ, ξ 1 = ∇ ξ 1 ζ, Y = ∇ ζ ξ 1 , Y = -ϕ 1 (ζ), Y = ζ, ϕ 1 (Y ) = -ζ, ∇ Y ξ 1 ,
thus showing that ζ = 2ξ 1 . Consequently, for each permutation (i, j, k) of (1, 2, 3) of signature δ we have [ξ i , ξ j ] = 2δξ k . Now, if we denote by η i := ξ i , • , ϕ i := -∇ξ i = 1 2 dη i , and take the Lie derivative with respect to ξ 2 and ξ 3 in ( 5) we get ( 6)

ϕ 1 ϕ 3 + ϕ 3 ϕ 1 = η 1 ⊗ ξ 3 + η 3 ⊗ ξ 1 ,
and ( 7)

ϕ 1 ϕ 2 + ϕ 2 ϕ 1 = η 1 ⊗ ξ 2 + η 2 ⊗ ξ 1 .
Taking L ξ 2 in (6) and using ( 5) yields ϕ 2 2 = -1 + η 2 ⊗ ξ 2 and similarly ϕ 2 3 = -1 + η 3 ⊗ ξ 3 . Finally, taking L ξ 3 in ( 6) gives ( 8)

ϕ 2 ϕ 3 + ϕ 3 ϕ 2 = η 2 ⊗ ξ 3 + η 3 ⊗ ξ 2 ,
which shows that the ϕ i 's are three anti-commuting complex structures on the distribution D orthogonal to ξ 1 , ξ 2 , ξ 3 . From now on we restrict our attention to the distribution D. The endomorphism ϕ 1 ϕ 2 ϕ 3 has square 1, so we can decompose D as D = D + ⊕ D -, where D ± is the eigenspace of ϕ 1 ϕ 2 ϕ 3 corresponding to the eigenvalue ±1. That is, the restrictions of ϕ i to D + (resp. D -) satisfy the anti-quaternionic (resp. quaternionic) relations. If D + is empty, we are done, since in that case (ξ 1 , ξ 2 , ξ 3 ) define a contact metric 3-structure, so by the theorem of Kashiwada, M has to be 3-Sasakian.

The interesting case is when D + is not empty. We then define a pseudo-Riemannian metric h on M by changing the sign of g on D + . The three vector fields ξ i are still Killing vector fields for h and the endomorphisms associated to 1 2 dη i via h satisfy the quaternionic relations on D. The cone ( M, h) is then a pseudo-Riemannian almost hyperkähler manifold. From Lemma 4.2 we deduce that ( M , h) is hyperkähler, so (M, h) is pseudo 3-Sasakian. From the construction of h it follows immediately that (M, g) has a weakly K-contact 3-structure.

In the Sasakian case we have seen that the component g 2 of the Lie algebra of Killing fields is either 0-or 2-dimensional, or the manifold has constant sectional curvature. Moreover, in the first case, any Killing vector field in g 2 has constant length. The K-contact structures do not have, in general, such a rigidity property: Proposition 4.4. There exist deformations of the round metric on S 2n+1 , n ≥ 3, which are non Sasakian K-contact structures for which the component g 2 of the Lie algebra of the isometry group contains Killing fields of non-constant length.

Proof. Let V = V 1 ⊕ V 2 ≃ R 2n+2 ,
be decomposed in the (2n -2)-dimensional subspace generated by the first coordinates, and the 4-dimensional subspace generated by the last ones, and let S 2n+1 be the standard sphere in V .

Let g ∼ = so(V 1 ) ⊕ Rξ be the Lie subalgebra of so(V ) consisting of the Killing vector fields of S 2n+1 depending only on the first 2n -2 coordinates, plus the Killing vector field ξ, defined by the standard Sasakian structure of the sphere (and corresponding to the standard complex structure J on R 2n+2 ∼ = C n+1 ). We will deform the metric on S 2n+1 , keeping it G-invariant (where G is the associated Lie subgroup to g). Because 2n -2 ≥ 4, there are elements in g which do not commute with ξ. On the other hand, these Killing vector fields do not have constant length, because they all vanish on some totally geodesic 3-sphere.

We proceed as follows: Let X 0 , J 0 X 0 be non-trivial vector fields on S 3 , seen as the standard sphere in V 2 ∼ = R 4 , commuting with and orthogonal to ξ 0 , the Killing field defined by the standard Sasakian structure on S 3 (and corresponding to the matrix J 0 , the standard complex structure on R 4 ). Such vectors exist, and are the lifts of some vector fields on S 2 , the orbit space of ξ 0 on S 3 . We consider now the vector fields X, JX on S 2n+1 , depending only on the last 4 coordinates in R 2n+2 , and which project onto X 0 , J 0 X 0 via the projection V → V 2 . The vectors X, JX are then G-invariant. Let U be the open set of S 2n+1 where X and JX do not vanish, and let F : S 2n+1 → R be a non-trivial smooth G-invariant function whose support lies in U.

We construct a new metric, g F , on S 2n+1 defined by the field A of symmetric endomorphisms of T S 2n+1 relating it to the standard metric. On U, A has eigenvalues e F , e -F and 1, corresponding respectively to the eigenvectors X, JX and the vectors orthogonal to them, and on S 2m+1 U, A is the identity. Since A is clearly G-invariant, g F is a G-invariant metric. The pair (g F , ξ) is a K-contact structure because ξ (viewed both as a vector and as a 1-form) and dξ (viewed as a 2-form) remain the same after the above deformation, and the endomorphism φ F of ξ ⊥ , identified with the form dξ, changes on X and on JX, but remains a complex structure on ξ ⊥ (namely, φ F (X) = e -2F JX and φ F (JX) = -e 2F X).

Of course, this induces an almost complex structure on CP n , the space of orbits of ξ, which is never integrable, because it is not analytic (it coincides with the standard complex structure on the non-empty interior of the set where F vanishes, and is different on the open set where F = 0). So the constructed K-structure is not Sasakian (this is also a consequence of Theorem 3.5).

Irregular Sasakian manifolds

In this section (M, g, ξ) denotes an irregular Sasakian manifold. Consider the exponential orbit O of ξ in G := Iso(M) and denote by T the closure of O in G. Since G is compact, T is a compact subgroup of G. As the closure of an Abelian subgroup, T is itself Abelian, thus isomorphic to a quotient of a torus T by a finite subgroup Γ ⊂ T . Let Λ ⊂ g be the Lie algebra of T and T .

Lemma 5.1. The subalgebra Λ is central in g.

Proof.

As every 3-Sasakian manifold (or Sasakian space form) is at least quasi-regular, Theorem 3.5 shows that g = g 0 . Thus, for every X ∈ g and t ∈ R, Ad exp(tξ) X = 0. By continuity we obtain Ad g X = 0 for every g ∈ T , so ad Y X = 0 for every Y ∈ Λ. A classical and non-trivial result by Boothby and Wang [START_REF] Boothby | On Contact Manifolds[END_REF] states that any contact structure whose automorphism group acts transitively has to be regular. We give here a simple proof of a slightly stronger version of this result for the case of Sasakian structures.

Proposition 5.3. An irregular Sasakian manifold is not homogeneous as Riemannian manifold.

Proof. Let ζ ∈ Λ be as before and consider a point x ∈ M where ζ x is not collinear to ξ x (the existence of x follows from the previous lemma). Consider an arbitrary Killing vector field X. By Lemma 5.1 X, ξ and ζ are commuting Killing vector fields, hence ∇ ζ ξ, X = 0 (trivial application of the Koszul formula). In other words, every Killing vector field is orthogonal at x to the vector φ(ζ) x = -(∇ ζ ξ) x , which is non-zero by the assumption on ζ. Thus M cannot be homogeneous.

In the remaining part of this section we construct an example of irregular Sasakian manifold of cohomogeneity one, showing that the theorem above is optimal.

Examples of cohomogeneity one irregular Sasakian manifolds.

We use the following equivalent definition for a Sasakian structure: it is a K-contact structure for which the underlying CR structure is integrable. Recall that a CR structure isin the most general setting -a field of complex structures on a field of hyperplanes, and J := ∇ξ on Q := ξ ⊥ gives us such a structure on a K-contact manifold (M, g, ξ). Moreover, the integrability condition for the CR structure (M, Q, J) is given by

N(X, Y ) = 0, ∀X, Y ∈ Q, where N : Λ 2 Q → Q, 4N(X, Y ) := [JX, JY ] -J[JX, Y ] Q -J[X, JY ] Q -[X, Y ],
where X, Y are extended to vector fields contained in Q, and A Q denotes the component in Q of the vector field A. It is then clear that N ≡ 0 is equivalent to the integrability of the space of local orbits of ξ, which is almost Kähler for a K-contact structure, and Kähler for a Sasakian one.

Let C n+1 ∼ = V = V 1 ⊕ V 2
be a splitting in two complex vector spaces of dimensions 1, resp. n, and let J 0 be the element of u(n + 1) ⊂ so(2n + 2) corresponding to the multiplication by i on V , and let J 1 be the element of u(n + 1) corresponding to the multiplication by i on V 1 , and acting trivially on V 2 . They correspond to Killing vector fields on the round sphere (S 2n+1 , g 0 ) ⊂ C n+1 denoted by T 0 , resp. T 1 .

The first one is the Killing vector field associated to the standard Sasakian structure on S 2n+1 and it is easy to see that T := T 0 + aT 1 , where a ∈ R Q ∩ (0, 1) is a nowhere vanishing Killing vector field, whose generic orbits are dense in a torus generated by the action of T 0 and T 1 . Moreover, T is obviously transverse to Q := T ⊥ 0 and commutes with T 0 . We define a new metric g on the sphere such that T has unit length, is orthogonal to Q, and g| Q := αg 0 | Q , where α := g 0 (T, T 0 ) -1 and g 0 is the standard metric on S 2n+1 . This new metric is T 0 -and T -invariant, so ∇T is a skew-symmetric endomorphism of Q.

If we extend two arbitrary orthogonal vectors X, Y in Q by local vector fields contained in Q, orthogonal to each other and commuting with T 0 , we get by Koszul's formula

2g(∇ X T, Y ) = g([X, T ], Y ) -g([T, Y ], X) -g(T, [X, Y ]) = -g(T, [X, Y ]).
Here the other terms vanish as T is Killing and X is orthogonal to Y . Similarly we get 2g

0 (∇ 0 X T 0 , Y ) = -g 0 (T 0 , [X, Y ]), and we can decompose [X, Y ] = g 0 (T 0 , [X, Y ])T 0 + W , where W ∈ Q. Then g(T, [X, Y ]) = g 0 (T 0 , [X, Y ])g(T, T 0 ). It follows then that ∇ X T = ∇ 0
X T 0 = J 0 (X), i.e. it is the standard CR structure on the sphere, which is integrable. Hence g is Sasakian.

On the other hand, the metric g is invariant under the action of U(1) × U(n), where the two factors act on V 1 , resp. on V 2 , and the generic orbits of this group on S 2n+1 have codimension 1, thus g has cohomogeneity one, as claimed.

Homogeneous Sasakian Manifolds

The aim of this section is to prove the following classification result. Theorem 6.1. A simply connected compact Sasakian manifold is homogeneous (as Riemannian manifold) if and only if it is the canonical S 1 -bundle of a homogeneous simply connected compact Hodge manifold with the metric described in Lemma 2.2.

Proof. If N is a homogeneous simply connected compact Hodge manifold, we can assume (after possibly rescaling the metric by an integer constant) that the cohomology class [F ] of the Kähler form is not an integer multiple of any class in H 2 (N, Z). The Gysin sequence then shows that the canonical S 1 -bundle M of N is simply connected. It is well-known that M has a Sasakian structure, and Lemma 2.3 shows that every Killing vector field X on N induces a Killing vector field X * on M, projectable onto X. As the vertical vector field is itself a (non-vanishing) Killing vector field, it follows that for every point x ∈ M and for every vector A ∈ T x M there exists a Killing vector field ζ on M such that ζ x = A. Thus the orbit through every point of the (compact) isometry group of M is open, hence M is homogeneous.

Conversely, let (M, g, ξ) be a homogeneous simply connected compact Sasakian manifold. We can assume that M is not 3-Sasakian, since in that case M has to be the canonical S 1 -bundle of a generalized flag manifold (see [START_REF] Boyer | Essays on Einstein manifolds[END_REF]). From Proposition 5.3, M is either regular or quasi-regular (i.e. the exponential orbit of ξ in the isometry group is a circle). Denote by ϕ t the isometry induced by exp(tξ) on M and let p be the least positive number such that ϕ p = Id M . If M is quasi-regular, there exists a positive number q < p and a point x ∈ M such that ϕ q (x) = x. For every vector A ∈ T x M there exists a Killing vector field ζ on M such that ζ x = A. By our assumption, every Killing vector field on M commutes with ξ, so (ϕ q ) * ζ = ζ. This shows that ϕ q has to be the identity on M, a contradiction.

We have thus proved that the Sasakian structure is regular. The quotient N of M by the Sasakian flow is Kähler (see [START_REF] Baum | Twistor and Killing Spinors on Riemannian Manifolds[END_REF]) and simply connected (by the exact homotopy sequence). From Lemma 2.3 and Theorem 3.5 we see that every Killing vector field on M is of the form X * + f ξ, where X is a Killing vector field on N. For every point x ∈ N and vector Y ∈ T x N, take some y in the fiber over x; as M is homogeneous, there exists a Killing vector field ζ on M such that ζ y = Y * . If we write ζ = X * + f ξ with X Killing vector field on N, this last equation shows that X x = Y . So N is homogeneous.

Remark. As Charles Boyer pointed out to us, the above result was also obtained in [START_REF] Boyer | On Sasakian-Einstein geometry[END_REF] under the slightly stronger assumption that the automorphism group of the Sasakian structure acts transitively.

Remark. The classification of simply connected compact homogeneous Kähler manifolds can be found in [START_REF] Besse | Einstein manifolds[END_REF]. Every such manifold has to be an orbit of the co-adjoint representation of a compact connected Lie group, endowed with its canonical complex structure. Note that every such co-adjoint orbit carries several homogeneous Kähler metrics, but there is always a canonically defined invariant Kähler-Einstein metric, thus at least one Hodge structure.

  Definition 4.1. 1. A contact metric structure on a Riemannian manifold (M, g) is a unit length vector field ξ such that the endomorphism ϕ defined by g(ϕ•, •) :=1 2 dη(•, •) and the 1-form η := ξ, • are related by[START_REF] Boothby | On Contact Manifolds[END_REF] 
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 52 The closure of the generic orbit on M of the Sasakian vector field has dimension larger than 1.Proof. This amounts to say that the generic orbit of the compact Lie group T defined above cannot be a circle. Let ζ ∈ Λ be not collinear to ξ. Suppose that the T -orbit of each point in an open set U of M is a circle. Then ζ is a multiple of ξ on U, say ζ = f ξ. As ζ is Killing as well, we deduce that the symmetric part of df ⊗ ξ vanishes on U, so ζ is a constant multiple of ξ on U, and hence on M, a contradiction.