Spin® Manifolds and Complex Contact
Structures

Andrei Moroianu!

Abstract - In this paper we extend our notion of projectable spinors ([9], Ch.1) to the frame-
work of Spin® manifolds and deduce the basic formulas relating spinors on the base and the
total space of Riemannian submersions with totally geodesic one-dimensional fibres. Some ge-
ometric applications concerning positive Kdhler-Einstein complex contact manifolds (e.g. their
characterisation as twistor spaces over positive quaternionic Kihler manifolds) are also given.

1 Introduction

Projectable spinors for Riemannian submersions of spin manifolds arose in a quite
natural way ([9], Ch.1) and have led to important geometric applications, as the
classification of Ké&hler manifolds admitting Kahlerian Killing spinors ([8]) or
results on the spectrum of the Dirac operator for certain classes of Riemannian
manifolds ([10]).

In this paper we introduce projectable spinors for Riemannian submersions of
Spin¢ manifolds, motivated by the following facts: K.-D. Kirchberg and U. Sem-
melmann discovered that every complex contact manifold of complex dimension
4l + 3 admitting a Kahler-Einstein metric of positive scalar curvature carries a
canonical spin structure with Kédhlerian Killing spinors [4]. Using this together
with the results in [8], we were able to prove the following characterisation of
twistor spaces over positive quaternionic Kahler manifolds in half of the possible
dimensions:

Theorem A. (cf. [12]) Let M be a compact spin Kdhler manifold of positive
scalar curvature and complex dimension 4l + 3. Then the following statements
are equivalent:

(i) M is the twistor space of some quaternionic Kdhler manifold;

(ii) M is Kdhler-Einstein and admits a complex contact structure;
(ili) M admits Kdhlerian Killing spinors.

By different methods, C. LeBrun independently obtained the following

Theorem B. (cf. [7]) Let Z be a Fano contact manifold. Then Z is a twistor
space iff it admits a Kdahler—Einstein metric.
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In complex dimensions 4] + 3, this is a direct corollary of Theorem A. The rea-
sons for which our Theorem A fails to hold in complex dimensions 4/ + 1 are of a
topological nature: neither the twistor spaces, nor the complex contact manifolds
of complex dimensions 4/ + 1 are spin (with one exception: the complex projec-
tive space). On the other hand, each Kéhler manifold admits a natural Spin®
structure; it is thus natural to try to extend the above notions to the framework
of Spin® structures, and to generalise the results in [12] to this case.

In order to keep the computations as simple as possible, we do not construct here
the whole theory of projectable spinors on Spin® manifolds, and restrict ourselves
to a particular situation which is of special interest to us. Generalisations of the
constructions described below can be easily obtained.

The author is very indebted to Jean Pierre Bourguignon for the careful reading
of a preliminary version of this paper, and to Uwe Semmelmann for many helpful
discussions.

2 Preliminaries

Definition 2.1 A Spin° structure on an oriented Riemannian manifold (M™, g)
is given by a U(1) principal bundle PyyM and a Spin;, principal bundle Pspne M
together with a projection 6 : Psyine M — PsomyM x PyayM (PsomyM means
the SO(n) principal bundle of oriented orthonormal frames on M ), satisfying

0(ua) = 0(u)¢(a),

for every @ € Pspime M and a € Spin,, where £ is the canonical 2-fold covering
of Spin;, over SO(n) x U(1).

Recall that Spin{ = Spin,, Xz, U(1), and that & is given by &([u, a]) = (¢(u), a?),
where ¢ : Spin,, — SO(n) is the canonical 2—fold covering.

If M has a Spin® structure, we denote by XM the associated complex spinor
bundle and by L the complex line bundle associated to Py(1)M, which is called
the auxiliary bundle. On XM there is a canonical Hermitian product (.,.), with
respect to which the Clifford multiplication by vectors is skew—Hermitian:

Every connection form A on Py )M defines, together with the Levi-Civita con-
nection of M, a covariant derivative on XM denoted by V4. Correspondingly,
we define the Dirac operator as the composition 7o V4, where v denotes the Clif-
ford contraction. The Dirac operator can be expressed using a local orthonormal
frame {ey,---,e,} as
n
D=>Y ¢ V2

i=1
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Suppose now that (M 2m g J) is a Kahler manifold. We define the twisted Dirac
operator D by

2m
D= Z‘](el) ) Vei = _Zei ) VJ(&;)J
] =1

which satisfies

D*=D? and DD+ DD =0. (2)
We also define the complex Dirac operators D := (D FiD), and (2) becomes
D*=D%=0 and D*=D,D_+D_D,. (3)

Consider a local orthonormal frame {X,,Y,} such that Y, = J(X,). Then
Zy = 3(Xo — 1Y,) and Z; = 1(X, + iY,) are local frames of T"%(M) and
T%'(M), and DL can be expressed as

D, =2%2,-Vy ., D_=2% 7,-Vj. (4)
a=1 a=1
A k-form w acts on XM by
w- U= Z Wiy 5 €i) €iy - o€y - U,

i1 <<

where {e;} is a local orthonormal frame on M. With respect to this action, the
Kihler form Q (defined by Q(X,Y) = g(X, JY)) satisfies

12m

1 2m

For later use let us note that
Ui i m Ui 1 m
Lo lig=—-Q—— | ZgZo==-0——,
agl 2 2 ; 2 2
where Z, and Z, are local frames of TH%(M) and T%*(M) as before.
The action of €2 on ¥ M yields an orthogonal decomposition
XM =" 2. M,

where Y. M is the eigenbundle associated to the eigenvalue i pu, =i (m — 27r) of
Q. If we define ¥ 1M =%, .1 M = {0}, then

DiI (S, M) C T(S11 M). (7)

The complex volume element,

(6)

We ‘= ’l.me]_ C .t €om

acts on XM by Clifford multiplication and its square is the identity. We denote
by ¥*M the eigenbundles corresponding to the eigenvalues £1, and it is easy
to see that ¥,M C XM (.M C ™M) iff r is even (respectively odd). If,
with respect to the decomposition XM = Xt M @ X~ M, a spinor 1) is written as
Y = 1), +1)_, then we define its conjugate v := 1h, — 1_.
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3 Projectable spinors to Spin‘~-Manifolds

As in the case of spin manifolds, projectable spinors may be defined for arbitrary
Riemannian submersions of Spin® manifolds with 1-dimensional totally geodesic
fibres, but for the sake of simplicity we treat only a particular case here.

Let Py1)M be the principal U(1) bundle associated to a Spin® structure on a
Riemannian manifold (M", g) of even dimension and suppose that on Py M a
connection form A is given. Denote by M := Pyq)yM and by 7 the canonical
bundle projection. It is well-known that there exists an unique 2-form « on M
whose pull-back is just ¢ times the curvature form dA of the connection A (note
that A and dA are imaginary-valued forms on M). Let T be the (1,1) tensor on
M associated to a (defined by a(X,Y) = g(X,TY)).

The manifold M carries a canonical 1-parameter family of Riemannian metrics
g; which make the bundle projection 7 : M — M into a Riemannian submersion
with totally geodesic fibres. These metrics are given by

#(X)Y) = g(n. X, mY) — PAX)AY), Yz €M, X,Y € T,M,

and we denote by V! the covariant derivative of the Levi-Civita connection of
g: and by V' the unit vertical vector field on (M, g) satisfying A(V) = i/t. This
choice of V fixes an orientation for M.

Before proceeding, we mention here a simple result relating spin and Spin® struc-
tures, that will be used in a moment.

Lemma 3.1 A Spin° structure with trivial auziliary bundle is canonically iden-
tified with a spin structure. Moreover, if the connection A of the auziliary bundle
L is flat, then by this identification V4 corresponds to V on the spinor bundles.

PROOF. One first remarks that since the U(1) bundle associated to L is trivial,
we can exhibit a global section of it, that we will call 0. Denote by Pgp;,, M
the inverse image by 6 of Pso(,)M X o. It is straightforward to check that this
defines a spin structure on M, and that the connection on Psp;,c M restricts to
the Levi-Civita connection on Psy,,, M if o can be chosen to be parallel, i.e. if A
defines a flat connection.

Q.E.D.

Proposition 3.1 Every Spin® structure on M induces a canonical spin structure
on M.

PrOOF. By enlargement of the structure groups, the two-fold covering

0 : PSpin%M — PSO(n)M X PU(I)M7
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gives a two-fold covering
0 : Pspins, M — Psom+1)M x PyayM,

which, by pull-back through , gives rise to a Spin® structure on M
PSpinc M L> Psz'nC M

n+1 n+1

0 | 01
Psom+yM x PyyM 5 Psom+1yM X PyayM

+ +
M — M

Using Lemma 3.1 we see that this construction actually yields a spin structure
on M. Indeed, the pull back of a G principal bundle (Py )M, in our situation)
with respect to its own projection map is always trivial:

*P~PxG I P

m*m md

P - M
Nevertheless, we will continue to call this spin structure the induced Spin® struc-

ture on M.
Q.E.D.

The next step is to relate the covariant derivatives of spinors on M and M. We
point out an important detail here: since we are actually interested in M as spin
manifold, the connection on Py(1yM (which defines the covariant derivative of
spinors on M) that we consider, will not be the pull-back connection, but the flat
connection on the canonically trivial bundle PU(l)M . The following result relates
an arbitrary connection on a principal bundle 7 : P — M and the flat connection

on P — P.

Lemma 3.2 The connection form Aq of the flat connection on w* P can be related
to an arbitrary connection A on P by

AO((W*S)*(U)) = _A(U)v (8)
Ao((m7s).(X™)) = A(s.X), (9)

where U is a vertical vector field on P, X* is the horizontal lift (with respect to
A) of a vector field X on M, and s is a local section of P — M.
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PROOF. The identification P x U(1) ~ #«*P is given by (u,a) — (u,ua), for
all (u,a) € P x U(1). For some fixed u € P, take a path u; in the fiber over
x := m(u) such that vy = u and 4y = U. We define a; € U(1) by u; = s(z)ay, so
via the above identification we have

(m"5) (ue) = (ur, s(2)) = (ur, (@) ),

and thus
Ao((75),(U)) = —ag"ag = —A(iio) = —A(U).

Similarly, for x € M and X € T, M, take a path z; in M such that oy = x and
ig = X. Let u € 7 !(z) and wu; the horizontal lift of x; such that ug = u. We
define a; € U(1) by s(x;) = usay, which by derivation gives s,.(X) = Rg, %o+ uodo-
Then

(7"s) (ue) = (ug, s(ze)) = (e, ar),

and thus, using the fact that g is horizontal,
Ao(("8).(X7)) = a5 do = A(s.(X)).
Q.E.D.
Recall that the complex Clifford representation ¥, can be made into a Cl(n+1)—

representation by defining

N o) ey forj<n
nles) w_{z'@b forj=n+1

Corresponding to this, we obtain an identification of the pull back 7*XM with

M, and with respect to this identification, if X is a vector and % a spinor on
M, then

X*emtp=m(X - 9), (10)

V- w*h = 7 (i), (11)

where V' is the unit vertical vector field defined at the beginning of this section.

Definition 3.1 The sections of M which can be written as pull-back of sections
of XM are called projectable spinors.

We now compute the covariant derivative of projectable spinors on M in terms
of the covariant derivative of spinors on M.

Proposition 3.2 The covariant derivative Vt on ¥ M induced by the Levi-Civita
connection on (M, g;) and the flat connection on m* Py M satisfies

Vi (1) = 7 (Ve — z&T(X) J) VX eTM, (12)
Vi) = —71'*(%& 1+ 2it¢) (13)



PROOF. Recall that the curvature form dA of the principal U(1) bundle M — M
satisfies
dA = —it*a. (14)

The metric g; is given by
a@(X,Y) = g(m,X,m,Y) - t2A(X)A(Y), VX,Y € TM. (15)

If V' denotes as before the unit vertical vector field, then A(V) = i/t, and we
obtain
t * 1 * * t2 * *

= DA(X YY) = AKX, V)

t t
so finally
t
ViV = 5T(X)*. (16)

Consider the pull-back 7*1 of a spinor field ¢ = [0,¢], where £ : U C M — %,
is a vector valued function, and o is a local section of Pgy;,c M whose projection
onto Pgo(yM is a local orthonormal frame (X1, ..., X;,) and whose projection onto
Py1yM is alocal section 5. Then 7*4 can be expressed as 7*1) = [1*0, 7*¢], and it
is easy to see that the projection of 7*o onto Pso(,4.1)M is the local orthonormal
frame (X7,..., X}, V) and its projection onto PyyM is just 7*s.

Using Lemma 3.2 and (16) we obtain

Vi.my = [r*0, X*(m*)] + = th V&*X;‘,X,’;)X;-X;-W*@D

]<Ic

1 1
+3 Y (V- X VXF -V miy + 5AO((w*s)*x*)w*w
J

= o (X(@)] + ; 3 g(Vx X, Xom' (X5 Xi-9)

LS (), X)) (X ) 4 LA X))
= (I (X( ngx VX)X Xi 4
't 1
—iLT(X) ¢+§A(5*X)¢)
= (V4 — iy T(X) )



and similarly,

Vir sy = [n*0, V(7€) + th (Vi X )X;-X;-W*w

]<k

1
+ th (VX7 V)X; -V + §A0((W*3)*V)W*¢

= Y 7 (X; - i) = S AV )

]<k

= =47 (04'¢)—2—t7fw

(s do)
Q.E.D.

We now particularise the above results to the case where M is a Kéahler-Einstein
manifold (M", g, J) of positive scalar curvature, and the auxiliary bundle L of
the Spin® structure on M is a root of the canonical bundle K, i.e. L®" = K for
some r € N*. The canonical connection on K, whose curvature form is just —ip
(p is the Ricci form), induces then a connection A on L, whose curvature form
w satisfies w = —ip/r. As before, we denote by M the U(1) principal bundle
associated to L. By rescaling the metric on M if necessary, we can suppose that
the scalar curvature of M is equal to n(n+2), and thus p = (n+2)Q. The 2-form
a on M defined at the beginning of this section is given in this case by

n+2
r

Q, (17)

a =
so the above proposition becomes

Proposition 3.3 If M is a Spin® Kdahler-Einstein manifold of positive scalar
curvature and the auxiliary bundle L of the Spin‘ structure on M is a r-root of
the canonical bundle K, then the covariant derivative V' on XM induced by the
Levi-Civita connection on (M, g;) and the flat connection on T PyyM satisfies

Vt*(ﬂ'*iﬁ):ﬂ' (V 1/) (nTj:Z) (X)JJ) VX eTM, (18)
Vo= o (U gy Ly (19)

The formula (16) allows us to compute the Ricci tensor Ric’ of the Riemannian
manifold (M, g;). If we denote by a := (n+2) , then

Ric!(V,V) =na® , Ric/(X*, V) =0, (20)
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Ric/(X*,Y*) = (n+ 2 — 2a%)g(X,Y). (21)

Let us take t, = n2—+rz and denote g := gy,, V := V. The vertical vector field V
defines then an Einstein—Sasakian structure on the manifold (M, g) (cf. [2]). We

can synthetise the above results in the following

Theorem 3.1 Let (M",g,J) be a Kdhler-Finstein manifold with scalar curva-
ture R=mn(n+2), L := K+ a root of the canonical bundle K and M the asso-
ciated U(1) principal bundle with connection form A, induced by the Levi-Civita
connection on K. Then the following hold:

(i) There is a canonical metric g on M making the bundle projection m : M — M

into a Riemannian submersion with totally geodesic fibres, and satisfying V x-V =
J(X)*.

(ii) With respect to the metric g, V' defines a regular Einstein—-Sasakian structure
on M. The length of the fibres of the corresponding S*—action is constant and
4nr

equal to 55

(iii) The Spin® structure on M defined by (L, A) induces a canonical spin structure
on M and every spinor field on M induces a projectable spinor field n* on M,
satisfying '

V- (n')) = 7 (Vi — s J(X) ) VX € TM, (22)

=, 1, t(n+2
Vv7r¢=—§7r Q-9+ (27" )

). (23)

4 Complex contact structures

Definition 4.1 (cf. [5]) Let M®™ be a complex manifold of complex dimension
m = 2k + 1. A complex contact structure is a family C = {(U;,w;)} satisfying
the following conditions:

(i) {U;} is an open covering of M.

(il) w; is a holomorphic 1-form on U;.
(iii) w; A (Ow;)F € T(A™® M) is different from zero at every point of U;.
(iv) w; = fijw; in U; NU;, where f;; is a holomorphic function on U; N Uj.

Let C = {(U;,w;)} be a complex contact structure. Then there exists an associ-
ated holomorphic line sub-bundle Le C AM°(M) with transition functions {f;;"}
and local sections w;. It is easy to see that

D:={ZecT""M |w(Z)=0, Vw € L¢}
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is a codimension 1 maximally non—integrable holomorphic sub—bundle of T%%M,
and conversely, every such bundle defines a complex contact structure. From
condition (iii) immediately follows the isomorphism L™ = K, where K =
A™O(M) denotes the canonical bundle of M.

From now on, M will denote a Kahler—Einstein manifold of odd complex dimen-
sion m = 4l 4+ 1 with positive scalar curvature, admitting a complex contact
structure C. The manifold M is compact, by Myers’” Theorem. By rescaling the
metric on M if necessary, we can suppose that the scalar curvature of M is equal
to 2m(2m + 2), and thus the Ricci form p and the Kéhler form Q are related
by p = (2m + 2)Q. The main objective of this section is to construct the ana-
logues of Kéhlerian Killing spinors ([3], [4], [8]) for a certain Spin® structure on
M, determined by C. This is done just as in [4].

The collection (U;, w; A (Ow;)!) defines a holomorphic line bundle L; ¢ AZ+500,
and from the definition of C we easily obtain

L= LG (24)
We now fix some (U,w) € C and define a local section v¢ of A% M ® L5 by

770(,’|U = ‘57‘727__(3577 (25)

where 7 := w A (Qw)! and &, is the element corresponding to 7 through the
isomorphism (24). The fact that 1 does not depend of the element (U,w) € C
shows that it actually defines a global section t¢ of A®?+1M @ LL.

We now recall ([6], Appendix D) that A%*M is just the spinor bundle associated
to the canonical Spin® structure on M, whose auxiliary line bundle is K1, so
that A*M ® Llc+1 is actually the spinor bundle associated to the Spin® structure
on M with auxiliary bundle L = K= @ L2 = [, ®*) @ [2HD > [, The
section ¢ is thus a spinor lying in A%?*1M @ LS = ¥y 1 M, so

Q- e = —itfe. (26)

Proposition 4.1 The spinor field ¢ satisfies Vzipc =0, VZ € THM (in par-
ticular D_1¢ = 0), and

[+1 1

D*pe = D_Ditpe = ——(=
Ye +Ye 2l+1(2

Rype —ip- ), (27)
where R is the scalar curvature of M.

Proor. This is actually a variant of Proposition 5 from [4], the only difference

being that & (U, in their notations) is not any more a section of K'/2, but

of KU+1/+1) "so the coefficients 1/2 in formulas (8) and (9) of [4] have to be
1+1

replaced by 575
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Q.E.D.

Using (26), (27) and the fact that p = g5 RQ = (8] + 4)Q, we obtain

Corollary 4.1 The spinor field 1¢ is an eigenspinor of D? with respect to the
eigenvalue 161(1 + 1).

Let us introduce some notations

Vo= € TS M) .y = Mlﬂpzpc ET(SwiaM).  (28)

By integration over M we immediately obtain from the above Corollary

[+1

- = Sl e (29

Proposition 4.2 The following relations hold
V- =0, VZ € T M,

Ve +7Z -4, =0 YZ €T M,
Vs, =0, VZ € T M,
Ve +7Z-9_ =0, ¥Z € T M.

PROOF. The first relation is part of Proposition 4.1. In order to prove (31),
let us consider the local frames of T°(M) and T%!(M) introduced in Section 2:
Zo = 2(Xo —1Y,) and Zz = £(X, +1Y,), where Y, = J(X,), and {X,,Y,} is a
local orthonormal frame of TM. From (30) we find V¢ =Vx ¢ =iVy 9,

so using (6) and (28) gives

0 < Y|Vt + Zg - by |
a=1

= D IV ¥-P=2Re D (¥4, Za- Va00-) = D (b1, Za Za - )
a=1 a=1 a=1

1 1 .
= §\V¢,|2 — Re(y4, Dyyp) — §(¢+a (=i —m)yy)
1 1
= SITYP = (A O P+ oA+ Dl
The last expression is by construction a positive function, say |F|?, on M. In-

tegrating over M and using the generalised Lichnerowicz formula ([6], Appendix
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D), Corollary 4.1 and (29), we obtain

R = (VYoo )is — (44 4) [+ 5 (41 + 4) 9, 3

- 1(D2¢,__R¢ o i — 2L+ D[
_ ) (81 +2)(81+4)  i—i(81+4) _
= -l (804 ) - T ) -

thus proving that F' = 0 and consequently (31). In order to check the last two

equations one has to make use of the operator D. From D_1_ = 0 we find
1
=——D3¢y_=D 4
SO 3
Dy, = ~iDy,. (35)

We take a local orthonormal frame e; and write (using (1), (5), (28) and (35))

0 < Z|V6J¢++ ( iJ(ej)) - v

j=1
= |V1/J+|2 Re((D + iD)p, ¢-)
—= Z e; +iJ(ej)) - (ej —iJ(e;)) - Y-, 9_)
] 1
= |Vip|? — 2Re(Dyy, v_) + ((m — i) - p—, ¢_)
= |V, 2 =8l |+ 4l |? :=|GJ?

Just as before, we compute the integral over M of the positive function |G|?,
namely

Gl = V|l — dlfy-[3
(V*V¢+a¢+)L2—4l|¢ |L2

= (D4 — R¢++ ST sy )2 — Al [T

220 +1
B ) C(Bl+2)BI+4) | i —3i(8l+4)
= Wl <16l(l +1) 4 2 2+1

4+ 1)) =0,
thus proving G = 0. Consequently Vx9, + 3(X —iJ(X))-¢_ =0, VX € TM,

which is equivalent to (32) and (33).
Q.E.D.

The above proposition motivates the following
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Definition 4.2 A section v of the spinor bundle of a given Spin® structure on a
Kdihler manifold (M&+2, g, J) satisfying

1 ' -
v§¢:§x-¢+%JX-¢, VX € TM (36)
15 called a Kdahlerian Killing spinor.
Defining 1 := 1, — 1_ we immediately obtain the

Corollary 4.2 Let C be a complex contact structure on a Kdhler—Einstein mani-
fold (M8+2 g, J). Then the Spin° structure on M with auziliary bundle L¢ carries
a Kdhlerian Killing spinor ¢ € T'(Xo 1 M & Yoj o M).

5 Geometric consequences
We can now state the main application of the above results:

Theorem 5.1 Let M be a compact Kdhler manifold of positive scalar curvature
and complex dimension 4l + 1. Then the following statements are equivalent:

(i) M is the twistor space of some quaternionic Kdhler manifold;
(ii) M is Kdhler-Einstein and admits a complex contact structure;

(iii) There exist a Spin° structure on M with auziliary bundle L and spinor bundle
SM such that L2+ = AUHLON gnd M carries a Kihlerian Killing spinor
Y € I'(Bg1 M & g0 M).

ProoF. The implications (i)==>(ii) and (ii)==>(iii) follow directly from [13] and
Corollary 4.2 respectively.

Suppose now that (iii) holds. The proof of (iii)==(i) parallels that of [8]. We
first show that M is Kdhler-Einstein. Let ¢ € I'(X911 M @ Y9115 M) be a spinor
field on M which satisfies (36). Taking the covariant derivative with respect to
an arbitrary vector field Y we obtain

1 1 _
VaVay = Z(X-Y—G—JX-JY)-¢+Z(X-JY—JX-Y)-¢+VéYX¢, (37)
which easily implies

R xth = 5 (XY + X - JY +29(X,Y)) -6~ ig(X, V)b (39)
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A local computation shows that the curvature operator R4 on the spinor bundle
is given by the formula

RA=TR + %w, (39)
where 1w := —2lilp is the curvature form of the auxiliary bundle L, and
1
Rxy = §ZR(XaYa€j,€k)€j €k (40)
i<k

in a local orthonormal frame {e, ..., e, }. Using the first Bianchi identity for the
curvature tensor one obtains ([2], p.16)

1
S er R = LRic(0), )
so, by (39) and (41),

Zej'Ré‘,Xw = Zej-(Rej,X¢+%w(ej,X)¢) = %R]C(X)’lﬁ—%XJ w-¢. (42)
J J

On the other hand, a straightforward computation using (38) and the fact that
Y € I'(Bo1 M @ X142 M) yields

Yoo Roxth = M+2)X - Yp+iJX -9+ JX-Q-¢
] = (A+2)X -4 —2JX -,
which, together with (42), gives
1
20+1

1 1
<§Ric(X) _ 4 2)X) = J(ERic(X) _ 4+ 2)X> S (43)
As 1 never vanishes, if the equality A-y = ¢B-1 holds for some real vectors A, B,
then |A| = |B|. The above formula thus shows that Ric(X) = (8! +4)X, VX €
TM, so M is Kéhler-Einstein with scalar curvature R = (8 + 2)(8] + 4).

From Theorem 3.1 we deduce that the principal U(1) bundle M associated to L
admits a canonical metric g and a canonical spin structure such that the spinor
m*1p induced by v satisfies

Vxe(r'9) =n*(Viy = LI(X) ) = (X 9) VX E€TM, (44

Tumh =~ (@0 + por ) =7 (50, (15)

and (10), (11) show that 7*¢ is a Killing spinor on M.
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The spinor field 7*1) induces then a parallel spinor ¥ on the cone CM over M,
which is a Kdhler manifold (cf. [1], [8], [11]). Moreover, using (45) we can compute
the action of the Kéhler form of CM on VU, and obtain that ¥ € Egl+3C’M. From
C. Bér’s classification [1] we know that the restricted holonomy group of C'M is
one of the following: SU(4l + 2), Sp(2/+ 1) or 0. The fixed points of the spin
representation of SU(4l + 2) ly in ¥y and 3442, so as W is a parallel spinor in
Yo14+3C M, the restricted holonomy group of CM cannot be equal to SU(4l + 2).
This implies that the universal covering of C M is hyperkihler, and thus that the
universal covering of M is 3-Sasakian (see [1]).

Let us denote by M’ the U(1) bundle associated to some maximal root of L. Using
the Gysin exact sequence we deduce that M’ is simply connected (see [2], p.85).
Moreover, there exists a canonical covering projection M’ — M, thus proving
that M’ is the universal covering of M. Consequently, (M',§') is a 3-Sasakian
manifold, where ¢’ is the metric induced from g via the covering projection.
On the other hand, the unit vertical vector field V! on M’ defines a Sasakian
structure, since this is true for its projection V on M. It is well known that
any Sasakian structure on a 3-Sasakian manifold P*~! of non-constant sectional
curvature belongs to the 2-sphere of Sasakian structures. Indeed, the cone C'P
over P has restricted holonomy Sp(k), and since the centraliser of Sp(k) in U(2k)
is just Sp(1), every Kéhler structure on C'P must belong to the 2—sphere of Kahler
structures of C'P, which is equivalent to our statement.

Now, M’ is regular in the direction of V', so an old result of Tanno implies that
it is actually a regular 3—Sasakian manifold (cf. [14]). It is then well known that
the quotient of M’ by the corresponding SO(3) action is a quaternionic Kihler
manifold of positive scalar curvature, say N, and that the twistor space over N
is biholomorphic to the quotient of M’ by each of the S* actions given by the
Sasakian vector fields, so in particular to M, which is the quotient of M’ by the
St action generated by V.

Q.E.D.

From Theorem A and Theorem 5.1 we immediately obtain the result of LeBrun
mentioned in Section 1:

Corollary 5.1 Let Z be a Fano contact manifold. Then Z is a twistor space iff
it admits a Kahler—FEinstein metric.
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