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A short and versatile route to chiral spiroketal skeletons

Ahmatjan Tursun, Isabelle Canet,” Bettina Aboab and Marie-Eve Simibaldi®

Laborawire de Syachése Ev Erude de Systémes g Invérér Biologigue (SEESIB), UMR CNRS 6504,
Universiré BlaisePascal, 63177 Aubiére Cedex, France

Abstract—Different chiral spiroketal skeletons are obtained, in a versatile manner, by iterative alkylations of acetone N N-dimeth-
vlhydrazone with iodides 2 followed by a one-pot deprotection/spirocyclization sequence. This methodology has been applied suc-
cessfully to the synthesis of 1,7-dioxaspiro[5.5jundecane and 1,6-dioxaspiro[4.5)decane systems.

The 1, 7-dioxaspiro[3.5)undecane and the 1,6-dioxa-
spiro[4. S]decane systems are important subunits of nat-
ural products from various sources, including insects,
microbes, plants, fung and marine organisms.! In par-
ticular, these moteties oceur in a large number of biologi-
cally active compounds such as polyether iwonophores,
insect pheromones and antibiotic macrolides. They have
also been employed as scaffold in the synthesis of con-
formationally restrained glycomimetics®
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As a part of our research programme is devoted to the
synthesis of novel antimitotic spiroketal derivatives, we
focused our attention on the epidermal growth factor
inhibitors reveromycins A and B2 In contrast with other
natural antitumour compounds bearing a spiroketal
framework in their skeleton (fe, spongistating these
products show a more simplified structure while main-
taining interesting activity. Additionally, it was recently
reported that poorly substituted spiroketals exhibit bio-
logical effects such as tubulin modulation? (Spiket P)
and eytotoxicity against tumour cell lines® (Fig. 1).

Therefore, in order to prepare analogues (modulations
of sizes and substituents) of spiroketal units, we devel-
oped a short and versatile synthesis of frameworks 1.
The key step of our approach is based upon an acdic
spirocyclization of a chiral diketalketone 4 obtained in
three steps from N N-dimethylhydrazones and isopropyl-
idene 1odides 2 (Scheme 1)

To check the validity of our approach, we first addressed
the synthesis of unsubstituted spiroketals 1 (Scheme 1,
R =H).

First part of our work was devoted to the preparation of
synthons 2a and 2b. lodide 2a was synthesized from
L-malic acid using an improved sequence (Scheme 2),
inspired from the procedure previously described by
Mori and Watanabe ® Thus, 2a was obtained in six
steps in 47% overall yield. Compound 2b was prepared
in two steps from commercially available ( S)-solketal”

Alkﬁ'l.ﬂitm of the lithiated acetone N, N-dimethylhydraz-
one® with { §)-iodide 2a provided, nearly quantitatively,
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Scheme 1.

the monealkylated hydrazone 3, which was immediately
used in the next step without further purification. A sec-
ond alkylation using aither 1odide (8)-2a, or (R)-2b led,
after Si0s-induced cleavage® of the hydrazone function,
to the appropriate ketones 4ab' in 43% and 64% over-
all yield, respectively (Scheme 3).

Deprotection of the two acetal groups concomitant with
spirocyclization was achieved by simple treatment of
4a.b with Amberlyst® 15 in MeOH at room temperature
during 48 h {Scheme 3).

In this way, the (25,6585)-1a isomer' was efficiently
obtained from 4a as the sole product. The absolute con-
figuration at the central spirocarbon of 1a is controlled
by steric and anomeric effects’’ whereas the configura-

Ib and le were obtained, in 84% yield, as an inseparable
mixture of isomers (3/2 ratio determined from quantita-
tive "'C NMR spectrum). This mixture was then treated
with TEDPSCl in DMF in the presence of imidazole,
furnishing silylated derivatives le and 1f, which could
be separated by flash chromatography. Transformation
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Figure 2. Caleulated structures for (2558 75F and (25,557 5)-1,6-
dioxaspiro|4 5 decanes. Hydrogen bonds are represented by a line.

of compounds le and 1f to the corresponding aleohols
1" and 1e' was achieved by a classical method using
BuyWNF in THF [ Scheme 3).

For the same reasons as la, the configuration of com-
pound 1b is (35,685 88) as confirmed by the equatorial
position of the hydroxyl group at Cy (Hy gave a triplet
of triplet, J = 10.0 and 4.5 Hz)." We assumed that by
taking into account the factors that determine the ste-
reochemistry of la the major isomer le has configura-
tion (25,55.75). In order to confirm this hypothesis,
we compared the experimental data to those obtained
by molecular modeling (Fig. 2).1%

The isomer I of (25,5R,78) configuration (highest energy,
ﬁHE’. = —189.57 keal mol™") presented a structure in
which the lost of one anomeric effect is counterbalanced
by an intercyclic hydrogen bond (caleulated distance be-
tween OF and Og: 1.82 A). The somer 11 of (25.55,75)
configuration, is the more stable isomer (AH? =
—19342 kealmol™") exhibiting the attempted double
anomeric structure (Fig. 2). In this isomer, the existence
of an 1,3-diaxial relatonship between Hq, Hy,, and Oy
should lead to a deshielded position of the resonances
for these two hydrogens. Both caleulated structures were
in close agreement with the experimental NMR data'?
as illustrated by (i) the chemical shifts observed for
H; and Hg (le: g7 =391 ppm, dpgy, = 1.82 ppm,
dHgeg = L70 ppm; 1d: 6z = 3.70 ppm, dye = 1.52 and
1.31 ppm) supporting a frans-configured tetrahydropy-
ran ring for e, (i) the caleulated and measured scalar
coupling constants { Table 1)

In summary, we have developed an efficient and stereo-
selective approach to 1,7-dioxaspiro|5.5]undecane and
to 1,6-dioxaspiro[4. 5]decane ligands labe.d from read-

Tahble 1. Selected caleulated and observed scalar coupling constants
for 1c and 14

Calculated  Caleulated  Ohserved
dihedral J{Hz) J(Hz)
angle {(deg)
Isomer 1(14d) HxHaia 1.7 9.6 &0
HoHa, 1204 4.7 25
lsomer I (1e)  H:—Hi, 6.7 9.5 &0
Hy-Ha, 1252 5.5 5.0
H7-Hza 1723 122 12.0
HrHy 551 19 10

ily available starting materials. By this route, la, 1b, le
and 1d were obtained, from todides 2a and 2b, in 32%
(four steps), 29% (six steps), 14% (six steps) and 6%
(six steps) overall yield, respectively. Furthermore, as
the enantiomers of the starting materials are readily
available, this approach is also applicable to the synthe-
sis of the antipode spiroketals.

Application of this methedology to the synthesis of
substituted spiroketals from modified iodide derivatives
2 1s actually in progress in our laboratory. In addition,
the antitumoural activity of all synthesized spiroketals
will be evaluated in due course.
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