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Introduction

Natural gas is supplied through a million miles of vast pipeline network. Pipeline companies have an impressive safety record due to the proactive role of standards and inspection of pipelines. Since the pipelines are getting old, there is a great need to identify corrosion, cracks, and other defects that can cause potential problems. Stress corrosion cracking can occur under a range of pipeline field conditions including soil type, stress, cathode potential, coating conditions and temperature. This type of defect is usually oriented along the lengthwise direction of the pipe. If not found and conditions persist, the cracks may grow and/or coalesce and eventually result in a leak or pipe rupture. There are also other types of defects that can occur in pipe structures. They are either critical to the safety of the pipeline like corrosion, welding cracks, pits, etc., or benign stringer-like internal inclusions. Non-destructive Inspection systems are strongly needed to be able to locate the defects early without false alarms from benign inclusions, and to characterize and size the defects for repair or replacement management.

Our approach may be considered as a first step towards design of real-time, accurate and robust algorithms for corrosion detection from ultrasonic guided waves.

Formal derivations

To set up our inverse eigenvalue problem mathematically, we consider a simply connected bounded C 2 domain U in R 2 , and a simply connected C 2 domain D compactly contained in U . Let Ω = U \ D represent the specimen to be inspected. We define Γ e = ∂U and Γ i = ∂D so that ∂Ω = Γ i ∪ Γ e . Suppose that the inaccessible surface Γ i contains a corrosive part I. The surface impedance (the corrosion coefficient) of I is a positive constant γ. The domain Ω may be considered as a cross section of a pipe inside which there is a corrosive part. We assume that the one-dimensional Hausdorff measure |I| of I is small and denote it by .

We now introduce the following functional spaces. Let H 1 (Ω) denote the set of functions w ∈ L 2 (Ω) such that ∇w ∈ L 2 (Ω). Let H 1/2 (Γ e ) be the set of traces of functions in H 1 (U ). Further, we define H 2 (Ω) as the space of functions u ∈ H 1 (Ω) such that ∂ 2 u ∈ L 2 (Ω) and the space

H 3/2 (Ω) as the interpolation space [H 1 (Ω), H 2 (Ω)] 1/2 .
The eigenvalue problem in the presence of corrosion consists of finding ω > 0 such that there exists a nontrivial solution v to

                 (∆ + ω 2 )v = 0 in Ω, - ∂v ∂ν + γχ(I)v = 0 on Γ i , v = 0 on Γ e , Ω v 2 = 1, (2.1) 
where ν is the outward unit normal to D and χ(I) denotes the characteristic function on I. Throughout this paper the normal vector ν defined on either Γ i or Γ e is assumed to be directed outward to the relevant domain D or U . So, it is directed inward to Ω on Γ i . It is well known that all eigenvalues of (2.1) are real, of finite multiplicity, have no finite accumulation points, and there are corresponding eigenfunctions which make up an orthonormal basis of L 2 (Ω). See for example [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]. Let ω 0 > 0 be for simplicity a simple eigenvalue for the Helmholtz equation in the absence of any corrosion. Let v 0 denote the corresponding eigenfunction, that is, the solution to

           (∆ + ω 2 0 )v 0 = 0 in Ω, - ∂v 0 ∂ν = 0 on Γ i , v 0 = 0 on Γ e , (2.2) 
such that Ω v 2 0 = 1. The aim of this work is to detect the corrosive part I, in particular, its location z ∈ I and its extend , from variations of the modal parameters

ω -ω 0 , ∂ ∂ν (v -v 0 ) Γe . (2.3)
We seek a solution of (2.1) for small, for which ω → ω 0 as goes to zero. The expansion of ω must begin with ω 0 , and the expansion of v must begin with v 0 ; so we write:

ω = ω 0 + ω 1 + 2 ω 2 + . . . , v = v 0 + v 1 + 2 v 2 + . . . in Ω, (2.4) 
where v 1 , v 2 , . . . and ω 1 , ω 2 , . . . are to be found. Now we substitute (2.4) into the Helmholtz equation (2.1) and equate terms of each power in . This yields:

           (∆ + ω 2 0 )v 1 = -2ω 0 ω 1 v 0 in Ω, ∂v 1 ∂ν = 1 χ(I)γv 0 on Γ i , v 1 = 0 on Γ e .
(2.5)

Observe that since |I| = , 1 χ(I) is of order 1. Since Ω v 2 = Ω v 2 0 , we also have an orthogonality condition:

Ω v 1 v 0 dx = 0.
(2.6) Multiplying (2.5) by v 0 and integrating by parts yields that

2ω 0 ω 1 = - Ω (∆ + ω 2 0 )v 1 • v 0 dx = - Γe ∂v 1 ∂ν v 0 -v 1 ∂v 0 ∂ν + Γi ∂v 1 ∂ν v 0 -v 1 ∂v 0 ∂ν = γ I v 2 0 .
So far we formally drove the following theorem, a rigorous proof of which will be given at the end of this paper.

Theorem 2.1 The following asymptotic expansion holds:

ω = ω 0 + γ 2ω 0 I v 2 0 + O( 2 ) (2.7) as → 0. Furthermore, v = v 0 + O( ) (2.8)
where O( ) is in H 3/2 (Ω) norm.

Reconstruction method

For h ∈ H 1/2 (Γ e ) such that Γe h ∂v0 ∂ν = 0, let w h ∈ H 1 (Ω) be the solution to

           (∆ + ω 2 0 )w h = 0 in Ω, ∂w h ∂ν = 0 on Γ i , w h = h on Γ e . (3.1) 
Applying Green's formula, we obtain

γ I w h v = Γi w h ∂v ∂ν = Γe h ∂v ∂ν + (ω 2 -ω 2 0 ) Ω v w h . (3.2)
Dividing (3.2) by ω 2 -ω 2 0 and using (2.7) we induce

I w h v I v 2 0 = 1 ω 2 -ω 2 0 Γe h ∂v ∂ν + Ω v w h + O( ). (3.3) 
By (2.8), we have

I w h v = I w h v 0 + O( 2 ), Ω v w h = Ω v 0 w h + O( ).
Therefore, we have

w h v 0 (z) ≈ 1 2ω 0 (ω -ω 0 ) Γe ∂v ∂ν h + Ω v 0 w h . (3.4)
This is the key observation on which our reconstruction procedure is based. Since we are in possession of ω -ω 0 and ∂v ∂ν | Γe , the reconstruction algorithm is as follows. Let h = h 1 , h 2 , . . . , h n , where {h i } n i=1 is a set of n independent functions satisfying Γe h i ∂v0 ∂ν = 0 for i = 1, . . . , n. For any y ∈ Γ i such that v 0 (y) = 0 compute (w hi /v 0 )(y). The point z can be found as the unique point where

w hi v 0 (z) = 1 2ω 0 (ω -ω 0 ) Γe ∂v ∂ν h i + Ω v 0 w hi , ∀ i = 1, . . . , n. (3.5) 
The justification of our method is quite simple and natural. Let , 1 2 ,-1 2 denote the duality pair between H 1/2 (Γ i ) and H -1/2 (Γ i ). Observe first that the following density result holds.

Lemma 3.1 If v 0 , φ = 0, then w h , φ = 0 for all h ∈ H 1/2 (Γ e ) such that Γe h ∂v0 ∂ν = 0 implies that φ = 0. Proof. For φ ∈ H -1/2 (Γ i ) such that v 0 , φ = 0, let u φ be the solution to            (∆ + ω 2 0 )u φ = 0 in Ω, ∂u φ ∂ν = φ on Γ i , u φ = 0 on Γ e .
An integration by parts shows that Γe h ∂u φ ∂ν = 0 and therefore, by the unique continuation, u φ = cv 0 in Ω, for some constant c. Thus, φ = 0, as desired.

Suppose now that

w h v 0 (y) = 1 2ω 0 (ω -ω 0 ) Γe ∂v ∂ν h + Ω v 0 w h ,
for all h ∈ H 1/2 (Γ e ) such that Γe h ∂v0 ∂ν = 0. By integrating by parts and using Theorem 2.1, we see that

Γi ∂v ∂ν w h ≈ -γv 0 (y)w h (y) on Γ i , ∀ h ∈ H 1/2 (Γ e ) such that Γe h ∂v 0 ∂ν = 0.
and therefore, by the density result in Lemma 3.1,

∂v ∂ν ≈ -γv 0 (y)χ(I y ) on Γ i ,
where |I y | = and y ∈ I y , from which (2.5) yields y ≈ z. This shows that for n large enough z is uniquely determined by our algorithm. Once z is determined, the Hausdorff measure of the corrosive part can be estimated by

≈ 2ω 0 (ω 0 -ω ) γv 2 0 (z) . (3.6)
Note that we can not estimate separately from γ. We need to have an a prior knowledge of one of these two parameters in order to determine the other.

Numerical Results

This section presents results of some numerical experiments using the reconstruction method of the previous section. In the following, U and D are assumed to be the disks centered at the origin (0, 0), and of radii r e and r i , respectively. We set Ω = U \ D, as before.

First we find the eigenvalue and eigenvector for (2.1) and (2.2). For convenience, using polar coordinates, we rewrite the equations in the following form:

                     ∂ 2 ∂r 2 + 1 r ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 + ω 2 v = 0 in Ω := [0, 2π] × [r i , r e ], - ∂v ∂r + γχ(I)v = 0 on Γ i := [0, 2π] × {r i }, v = 0 on Γ e := [0, 2π] × {r e }, Ω v 2 = 1, and                      ∂ 2 ∂r 2 + 1 r ∂ ∂r + 1 r 2 ∂ 2 ∂θ 2 + ω 2 0 v 0 = 0 in Ω, - ∂v 0 ∂r = 0 on Γ i , v 0 = 0 on Γ e , Ω v 0 2 = 1.
We solve these equations using the finite difference method. To do this, we discretize the equations at the node points on Ω given by

(θ n , r m ) = 2π n -1 N , r i + (r e -r i ) m M + 1 , for n = 1, 2, • • • , N, and m = 1, 2, • • • , M, with N = 128, M = 16.
Using the first eigenvalue and eigenvector computed, we solve (3.1) using the following h,

h k (θ) = a 0 + a 1 sin θ + a 2 sin 2θ + • • • + a k sin kθ, θ ∈ Γ e ,
for k = 1, 2, . . . , 10. Based on (3.5), the location z of the corrosion is determined as the minimum point of the function

J(z) := 10 i=1 w hi (z) v 0 (z) - 1 2ω 0 (ω -ω 0 ) Γe ∂v ∂ν h i - Ω v 0 w hi . (4.1) 
We then compute γ using (3.6).

Examples 1, 2, 3 show the results of numerical experiments with various γ and some noise added to the data. They clearly demonstrate the viability of our reconstruction approach.

Example 1. We implement the reconstruction method for two-dimensional disks using Matlab and finite difference method. U and D are the disks centered (0, 0) of radii 0.2 and 0.1, respectively, and the corrosion coefficient is set to be 2. Table 1 and Figure 1 Example 2. In this example, U and D are the disks centered (0, 0) of radii 1.0 and 0.8, respectively. We test the algorithm with various corrosion coefficients γ = 0.01, 2, 5, while the size of the corrosion is fixed at ≈ 0.04. We also add 1%, 5%, 10% noise when we compute the eigenvectors. It turns out that larger the corrosion coefficient is, better is the performance, which is quite natural. The results also show that our algorithm works fairly well even in the presence of noise provided that the corrosion coefficient is large enough. See Figure 2.

Example 3. This example provides the results of numerical tests with larger size of the corrosive part, ≈ 0.15. The results show that the algorithm works equally as well, or even better, in detecting the location of the corrosion. However, its performance in detecting γ is poorer than in the case of shorter corrosion. See Figure 3.

Justification of the Asymptotic Expansion

In this section we review the main results of Gohberg and Sigal in [START_REF] Gohberg | Operator extension of the logarithmic residue theorem and Rouché's theorem[END_REF] and give a rigorous proof of Theorem 2.1 which was driven formally. Let G and H be two Banach spaces and let L(G, H) be the set of all bounded operators from G to H. Let U be an open set in C. Suppose that A(ω) is an operator-valued function from U to L(G, H). ω 0 is a characteristic value of A(ω) if

• A(ω) is holomorphic in some neighborhood of ω 0 , except possibly for ω 0 ;

• There exists a function φ(ω) from a neighborhood of ω 0 to G, holomorphic and nonzero at ω 0 such that A(ω)φ(ω) is holomorphic at ω 0 and A(ω 0 )φ(ω 0 ) = 0.

The function φ(ω) in the above definition is called a root function of A(ω) associated to ω 0 and φ(ω 0 ) is called an eigenvector. The closure of the space of eigenvectors corresponding to ω 0 is denoted by Ker A(ω 0 ). Let φ 0 be an eigenvector corresponding to ω 0 . Let V (ω 0 ) be a complex neighborhhod of ω 0 . The rank of φ 0 is the largest integer m such that there exist φ :

V (ω 0 ) → G and ψ : V (ω 0 ) → H holomorphic satisfying A(ω)φ(ω) = (ω -ω 0 ) m ψ(ω), φ(ω 0 ) = φ 0 , ψ(ω 0 ) = 0.
Suppose that n = dim Ker A(ω 0 ) < +∞ and the ranks of all vectors in Ker A(ω 0 ) are finite. A system of eigenvectors φ j 0 , j = 1, • • • , n, is called a canonical system of eigenvectors of A(ω) associated to ω 0 if the rank of φ j 0 is the maximum of the ranks of all eigenvectors in some direct complement in Ker A(ω 0 ) of the linear span of the vectors

φ 1 0 , • • • , φ j-1 0 . Then Φ ω (x -y)ϕ(y) dσ(y), x ∈ R 2 , D ω Γ [ϕ](x) = Γ ∂Φ ω (x -y) ∂ν y ϕ(y) dσ(y) , x ∈ R 2 \ Γ, for ϕ ∈ L 2 (Γ).
The following formulae give the jump relations obeyed by the double layer potential and by the normal derivative of the single layer potential:

(D ω Γ [ϕ]) ± (x) = ∓ 1 2 I + K ω Γ [ϕ](x) a.e. x ∈ Γ, (5.2) ∂(S ω Γ [ϕ]) ∂ν (K ω Γ ) * [ϕ](x) = p.v. Γ ∂Φ ω (x -y) ∂ν x ϕ(y)dσ(y).
Here p.v. stands for the Cauchy principal value. The singular integral operators K ω Γ and (K ω Γ ) * are known to be bounded on L 2 (Γ). Here and throughout this paper the subscripts ± as in (5.2) denote the limits from outside and inside of Γ.

In order to investigate the eigenvalues of the problem (2.2), we consider the operator

A ω 0 : L 2 (Γ e ) × H 1 (Γ i ) → H 1 (Γ e ) × H 1 (Γ i ) defined by A ω 0 :=   S ω Γe D ω Γi S ω Γe 1 2 I + K ω Γi   .
Here H 1 (Γ e ) denotes the set of functions f ∈ L 2 (Γ e ) such that ∂f /∂T ∈ L 2 (Γ e ), where ∂/∂T is the tangential derivative. H 1 (Γ i ) is defined likewise. Observe that ω → A ω 0 is an operator valued holomorphic function. The relation between the eigenvalues of (2.2) and the characteristic values of A ω 0 is given by the following theorem.

Theorem 5.3 Suppose that -ω 2 is not a Dirichlet eigenvalue of ∆ on D. Then, -ω 2 is an eigenvalue of (2.2) if and only if ω is a characteristic value of A ω 0 .

Proof. Suppose that ω 2 is an eigenvalue of (2.2) so that there is a nontrivial solution v to (2.2). Then by Green's representation formula we have

v(x) = -S ω Γe ∂v ∂ν Γe (x) -D ω Γi [v| Γi ] (x), x ∈ Ω. Put ϕ := ∂v ∂ν | Γe and ψ := v| Γi . Then (ϕ, ψ) ∈ L 2 (Γ e ) × H 1 (Γ i ) is not zero and satisfies S ω Γe [ϕ] + D ω Γi [ψ] = 0 on Γ e . (5.4) 
On the other hand, by (5.2), we have

S ω Γe [ϕ] + D ω Γi [ψ] + -S ω Γe [ϕ] + D ω Γi [ψ] -= -ψ = -v| Γi on Γ i , and hence (S ω Γe [ϕ] + D ω Γi [ψ])| -= 0 on Γ i , or equivalently, S ω Γe [ϕ] + 1 2 I + K ω Γi [ψ] = 0 on Γ i . (5.5) 
Combining (5.4) and (5.5) shows that ω is a characteristic value of A ω 0 . Conversely, suppose that w is a characteristic value of A ω 0 so that there is a non-zero

(ϕ, ψ) ∈ L 2 (Γ e ) × H 1 (Γ i ) satisfying A ω 0 ϕ ψ = 0, (5.6) 
or equivalently (5.4) and (5.5). Define

v(x) := -S ω Γe [ϕ](x) -D ω Γi [ψ](x), x ∈ Ω. (5.7) 
Then v = 0 on Γ e by (5.4). On the other hand, (5.5) shows that ψ ∈ C 1,α (Γ i ) for some α > 0. In fact, by (5.5), we have

ψ = 2S ω Γe [ϕ] -2K ω Γi [ψ]. (5.8) Since Γ i is C 2 , K ω Γi maps L 2 (Γ i ) into L ∞ (Γ i ), L ∞ (Γ i ) into C α ( 
Γ) for all α < 1, and C α (Γ) into C 1,α (Γ). Thus by bootstrapping using (5.8), we have ψ ∈ C 1,α (Γ i ). Now ∂ ∂ν D ω Γi [ψ] is well-defined and it does not have a jump along Γ i , i.e.,

∂ ∂ν D ω Γi [ψ] + = ∂ ∂ν D ω Γi [ψ] -on Γ i .
Since ω 2 is not a Dirichlet eigenvalue of -∆ on D, (5.5) implies that S ω Γe

[ϕ] + D ω Γi [ψ] = 0 in D, and hence ∂ ∂ν S ω Γe [ϕ] + D ω Γi [ψ] -= 0 on Γ i .
We thus obtain

∂v ∂ν Γi = ∂ ∂ν S ω Γe [ϕ] + D ω Γi [ψ] + = ∂ ∂ν S ω Γe [ϕ] + D ω Γi [ψ] -= 0.
In other words, v is an eigenfunction of the problem (2.2). This completes the proof. In a similar way, one can prove the following theorem for the problem (2.1).

Theorem 5.4 Define the operator

A ω : L 2 (Γ e ) × H 1 (Γ i ) → H 1 (Γ e ) × H 1 (Γ i ) by A ω :=   S ω Γe D ω Γi -S ω Γi M S ω Γe 1 2 I + K ω Γi -S ω Γi M   ,
where M means the multiplication by γχ(I). Assume that -ω 2 is not a Dirichlet eigenvalue of ∆ on D. Then -ω 2 is an eigenvalue of (2.1) if and only if ω is a characteristic value of A ω .

Observe that we can write

A ω = A ω 0 + B ω , (5.9) 
where

B ω :=    0 - 1 S ω Γi M 0 - 1 S ω Γi M    . (5.10) 
Since M is of order , the operator B ω is of order 1.

Lemma 5.5 A ω 0 is a Fredholm operator of index 0 and every eigenvector of A ω 0 has rank one provided that -ω 2 0 is not a Dirichlet eigenvalue of ∆ on D.

Proof.

Since, written in the following manner, A ω 0 is clearly a compact perturbation of Fredholm operator of index 0

A ω 0 =   S ω Γe 0 0 1 2 I + K ω Γi   + 0 D ω Γi S ω Γe 0 , hence it is Fredholm of index 0.
Suppose that ϕ ψ is an eigenvector of A ω 0 with rank m associated with the characteristic value ω 0 , i.e., there exist ϕ ω and ψ ω , holomorphic as functions of ω, such that ϕ ω0 = ϕ, ψ ω0 = ψ, and

A ω 0 ϕ ω ψ ω = (ω -ω 0 ) m ϕ ω ψ ω , (5.11) 

Conclusion

We have designed a simple and accurate method for detecting small internal corrosion by vibration analysis. Our method is based on asymptotic formulae for the resonance frequencies and mode shapes perturbations caused by internal corrosive parts of small Hausdorff measure.

To rigorously prove our asymptotic formulae we have reduced the problem to the study of the characteristic values of integral operators in the complex plane and made use of powerful techniques from the theory of meromorphic operator-valued functions.

We test the algorithm numerically on various situation and demonstrate its viability. It is worth noticing the fact that it is impossible to extract the size of the corrosive parts and the impedance coefficient using the first order approximation. We can only reconstruct the product of these two quantities. It is likely that from a certain level of signal-to-noise ratio, higher-order asymptotic expansions of the resonances and mode shapes perturbations yield such important information. 

  summarize the computational results. The first figure shows the actual domain where the red part is the corrosion. The second figure is the graph of the function J whose minimal point is the detected center of corrosion. The figures in the right-hand side are the eigenvectors with and without corrosion, v and v 0 . The errors are |z s -z c s | = 0 and |γ -(γ ) c | = 0.0035 where z c s and (γ ) c are the detected location of the corrosion and the corrosion coefficient.

Figure 1 :

 1 Figure 1: Reconstruction result without noise. z s and γ are actual location and coefficients of the corrosion and z c s and (γ ) c are detected ones.

Figure 2 : 1 - 1 Figure 3 :

 2113 Figure 2: r i = 0.8, r e = 1

(1) 0 (ω|x|), for x = 0, where H(1) 0 is the Hankel function of the first kind of order 0. Let Γ be either Γ i or Γ e , and define S ω Γ and D ω Γ be the single and double layer potentials defined by Φ ω , that is,S ω Γ [ϕ](x) = Γ

± (x) = ± 1 2 I + (K ω Γ ) * [ϕ](x) a.e. x ∈ Γ,(5.3)for ϕ ∈ L 2 (Γ), where K ω Γ is the operator defined byK ω Γ [ϕ](x) = p.v. Γ ∂Φ ω (x -y) ∂ν y ϕ(y)dσ(y),and (K ω Γ ) * is the L 2 -adjoint of K ω Γ , that is,
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we define the null multiplicity of the characteristic value ω 0 of A(ω) to be the sum of ranks of φ j 0 , j = 1, • • • , n, which is denoted by N (A(ω 0 )). Suppose that A -1 (ω) exists and is holomorphic in some neighborhood of ω 0 , except possibly at this point itself. Then the number

is called the multiplicity of the characteristic value ω 0 of A(ω).

If A(ω) is holomorphic at ω 0 and A(ω 0 ) is invertible, the point ω 0 is called a regular point of A(ω). A point ω 0 is called a normal point of A(ω) if there exists some neighborhood V (ω 0 ) of ω 0 in which all the points except ω 0 are regular points of A(ω) and A(ω) admits the Laurent expansion

where the operators A j , j = -s, • • • , -1, are finite dimensional and the operator A 0 is a Fredholm operator. An operator-valued function A(ω) is called normal with respect to ∂V (ω 0 ) if A(ω) is holomorphic and invertible in V (ω 0 ), except for a finite number of points of V (ω 0 ) which are normal points of A(ω).

Suppose that A(ω) is normal with respect to ∂V (ω 0 ) and ω i , i = 1, • • • , σ, are all its characteristic values and poles lying in V (ω 0 ), we put

The generalization of Rouché's theorem is stated below. Theorem 5.1 Let A(ω) be an operator-valued function which is normal with respect to ∂V (ω 0 ). If an operator-valued function S(ω) which is holomorphic in V (ω 0 ) and continuous at ∂V (ω 0 ) satisfies the condition

then A(ω) + S(ω) is also normal with respect to ∂V (ω 0 ) and

The generalization of the residue theorem is given by Theorem 5.2 Suppose that A(ω) is an operator-valued function which is normal with respect to ∂V (ω 0 ). Let f (ω) be a scalar function which is holomorphic in V (ω 0 ) and continuous in V (ω 0 ). Then we have

where ω j , j = 1, • • • , σ, are all the points in V (ω 0 ) which are either poles or characteristic values of A(ω).

for some (

) is invertible for ω in a neighborhood of ω 0 , and hence we have

and

By Green's formula, we immediately get

If m > 1, by dividing both sides by ω 2 -ω 2 0 and taking the limit as ω → ω 0 , we obtain Ω (u ω0 ) 2 = 0 which is a contradiction. Thus we have m = 1. This completes the proof.

By the above lemma and the generalized Rouché's theorem (Theorem 5.1), we know that A ω is normal with respect to a small neighborhood V of ω 0 and that the multiplicity of A ω in V is equal to the dimension of the eigenspace of (2.2) associated with ω 0 . Now we are ready to prove Theorem 2.1.

The following lemma was proved in [START_REF] Ammari | Layer potential techniques in spectral analysis[END_REF]. We include a proof for the readers' sake.

Lemma 5.6 Let V be a small neighborhood of ω 0 in a complex plane such that A ω has the simple characteristic value ω in V . Then

(5.12)

Proof. It follows from Theorem 5.2 and Lemma 5.5 that

(5.13) By (5.9), one can see that

where the series converges in the operator norm on

is sufficiently small. If we substitute (5.14) into (5.13), we have

we have

(5. 16)

We now substitute (5.16) into (5.15). Then the sum of the last two terms in (5.16) cancel each other and hence we have

Now (5.12) immediately follows and the proof is complete.

Then we have

Let 0 < µ 1 ≤ µ 2 ≤ . . . be the eigenvalues of (2.2) and u 1 , u 2 , . . . be the corresponding normalized orthogonal eigenfunctions. For φ ∈ L 2 (Γ i ), let

Then, by the definition of

Applying Green's formula, we have

and hence

where •, • Γi denotes the inner product in L 2 (Γ i ). By taking the trace on Γ i , we obtain

Then we have

since ω 2 0 is the only eigenvalue inside V . Therefore

This proves (2.7).

We now prove the (2.8). Choose ϕ ψ ∈ KerA ω . Let Ψ = ϕ ψ for convenience and assume that Ψ L 2 (Γe)×H 1 (Γi) = 1. Let us define P by

(5.17)

Then it is proved in [START_REF] Gohberg | Operator extension of the logarithmic residue theorem and Rouché's theorem[END_REF] that P is a projection (not necessarily orthogonal) from L 2 (Γ e ) × H 1 (Γ i ) onto KerA ω . It follows from (5.14) that

where O( ) is in the operator norm. Having both sides of (5.18) act on Ψ , we obtain

where O( ) is in L 2 (Γ e ) × H 1 (Γ i )-norm. Let P 0 Ψ = (ϕ 0 , ψ 0 ) and