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Abstract

In this paper we consider the problem of determining the boundary perturbations of

an object from far-field electric or acoustic measurements. Assuming that the unknown

object boundary is a small perturbation of a circle, we develop a linearized relation

between the far-field data that result from fixed Dirichlet boundary conditions, entering

as parameters, and the shape of the object, entering as variables. This relation is used

to find the Fourier coefficients of the perturbation of the shape and makes use of an

expansion of the Dirichlet-to-Neumann operator.
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1 Introduction

The field of inverse shape problems has been an active area of research for several decades.
Several related scalar problems belong to this field: electric and acoustic scattering form
two large classes. In direct problems one wants to calculate the field outside a given object.
In two common situations, one knows either the values of the field on the object (the
Dirichlet problem), or the values of the normal derivative of the field on the boundary (the
Neumann problem). Direct problems are usually well posed. Inverse shape problems involve
reconstructing the shape of an object from measurements of the electric or acoustic field.
These problems are ill posed: the solution has an unstable dependence on the input data.

The formulation of the electric scattering problem is based on the quasi-static approx-
imation and the related Laplace equation for the electric scalar potential. When a perfect
conductor is exposed to extremely low-frequency electric fields the problem is equivalent to
the Dirichlet boundary value problem for the Laplace operator.

The sound-soft acoustic scattering problem is characterized by the condition that the
total field vanishes on the boundary of the scatterer. Thus, acoustic scattering is equivalent
to the Dirichlet boundary value problem for the Helmholtz operator, with the scattered field
equal to the negative of the known incident field.

These two problems are frequently solved by methods of potential theory. The single-
and double-layer potentials relate a charge density on the boundary of the object to the
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limiting values of the field and its normal derivative. The resulting integral equations are
then solved in an appropriate function space, a common choice being the Lebesgue space
L2.

In this paper, assuming that the unknown object boundary is a small perturbation
of a unit circle, we develop for both electric and acoustic problems a linearized relation
between the far-field data that result from fixed Dirichlet boundary conditions, entering as
parameters, and the shape of the object, entering as variables. This relation is used to find
the Fourier coefficients of the perturbation. Suppose that the angular oscillations in the
perturbation are less than 1/n. In order to detect that perturbation, it turns out that one
needs to use the first n eigenvectors of the Dirichlet-to-Neumann operator corresponding
to the unperturbed shape as Dirichlet boundary data. We may think that this result is
quite general. Our asymptotic formulae for the Dirichlet-to-Neumann operator in terms of
the small perturbations of the shape of the scatterer follow the expansions of Dirichlet-to-
Neumann operators for rough non-periodic surfaces [8, 4] and for periodic interfaces [9].

Our approach relies on asymptotic expansions of the far-field data with respect to the
perturbations in the boundary, in much the same spirit as the recent work [2] and the text
[1]. It makes use of an expansion of the Dirichlet-to-Neumann operator. We consider only
the two-dimensional case, the extension to three dimensions being obvious. In connection
with our work, we should also mention the paper by Kaup and Santosa [6] on detecting
corrosion from steady-state voltage boundary perturbations and the work by Tolmasky and
Wiegmann [10] on the reconstruction of small perturbations of an interface for the inverse
conductivity problem.

2 Formulation of the Electric Problem

Let D be a unit disk in R
2. When the boundary value is given by Ψ ∈ C∞(∂D) satisfying∫

Ψds = 0, the voltage potential outside the disk is given by the harmonic function u0 which
satisfies the following:





∆u0 = 0, in R
2 \ D,

u0 = Ψ, on ∂D,

u0(x) −→ 0, as |x| −→ +∞.

(2.1)

We consider the boundary perturbation of D given by a Lipschitz function f and a small
number ǫ. Define D̃ by

∂D̃(= ∂D + ǫfν) :=

{
(1 + ǫf(θ))eθ , θ ∈ [0, 2π]

}
,

where ν is the outward unit normal vector to ∂D and eθ = (cos θ, sin θ).

Let u be the voltage potential outside the perturbed domain D̃ with the fixed Dirichlet
data Ψ on the boundary, i.e.,





∆u = 0, in R
2 \ D̃,

u(xθ) = Ψ, on ∂D̃,

u(x) −→ 0, as |x| −→ +∞,

(2.2)

where xθ = (1 + ǫf(θ))eθ.
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2.1 Representation Formula

It is known that a fundamental solution to the Laplacian in R
2 is given by

Γ(x) =
1

2π
ln |x|.

Using Green’s theorem, the solution u to (2.2) can be expressed as

u(x) =

∫

∂D̃

Γ(x − y)
∂u

∂νy

(y)dσy −
∫

∂D̃

∂Γ

∂νy

(x − y)u(y)dσy, for x ∈ R
2 \ D̃. (2.3)

We change the variable from y to y = (1 + ǫf(θ))eθ. The outward normal vector νy is

νy =
Nθ

|Nθ|
, (2.4)

where
Nθ = (1 + ǫf(θ))eθ − ǫḟτθ, τθ = (− sin θ, cos θ). (2.5)

Here ḟ is the derivative of f with respect to θ. Note that since f is Lipschitz continuous, it
is differentiable almost everywhere. Moreover,

|ḟ | ≤ M,

where M is the Lipschitz constant of f . We also have

dσy = |Nθ|dθ.

Now we define the operator Nǫf using polar coordinates by

Nǫf (Ψ)(θ) :=
∂u

∂Nθ

(1 + ǫf(θ), θ). (2.6)

Then (2.3) becomes

u(x) =
1

2π

∫ 2π

0

[
ln |x − (1 + ǫf(θ))eθ|Nǫf (Ψ) − 〈(1 + ǫf(θ))eθ − x,Nθ〉

|(1 + ǫf(θ))eθ − x|2 Ψ
]
dθ. (2.7)

Letting f = 0, we have

u0(x) =
1

2π

∫ 2π

0

[
ln |x − eθ|N0(Ψ) − 〈eθ − x, eθ〉

|x − eθ|2
Ψ

]
dθ, (2.8)

where
N0(Ψ)(θ) = ∂ru0(1, θ).

Note that N0 is the Dirichlet-to-Neumann operator of the unit disk in R
2.

In the next section, we expand Nǫf in terms of ǫ, f and Ψ.

2.2 Expansion of Nǫf using the field expansions method

In this section, we use the polar coordinates. We start by the simple computation:

Nǫf (Ψ)(θ) =

(
∂u
∂r

1
r

∂u
∂θ

)∣∣∣∣
r=1+ǫf(θ)

·
(

(1 + ǫf(θ))

−ǫḟ(θ))

)

= (1 + ǫf(θ))
∂u

∂r

∣∣∣
r=1+ǫf(θ)

− ǫḟ(θ)

1 + ǫf(θ)

∂u

∂θ

∣∣∣
r=1+ǫf(θ)

= (1 + ǫf(θ))
∂u

∂r

∣∣∣
r=1+ǫf(θ)

− ǫḟ
∂u

∂θ

∣∣∣
r=1+ǫf(θ)

+ O(ǫ2)

=: A(ǫ, f) + O(ǫ2).
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Here O(ǫ2) depends on ‖f‖∞ and the Lipschitz constant of f .

To derive an asymptotic expansion of A(ǫ, f), we apply the method of field expansion
(F.E) (see [9]). Firstly, we expand u only in powers of ǫ, i.e.,

u(r, θ) =

∞∑

n=0

un(r, θ)ǫn, Nǫf (Ψ) =

∞∑

n=0

Nn
f (Ψ)(r, θ)ǫn.

Now expanding in terms of r and evaluating the derivatives of u at r = 1 + ǫf , we obtain
that

∂u

∂r

∣∣∣
r=1+ǫf(θ)

=

∞∑

n=0

n∑

l=0

∂l+1
r un−l(1, θ)

f l

l!
ǫn,

and
∂u

∂θ

∣∣∣
r=1+ǫf(θ)

=

∞∑

n=0

n∑

l=0

∂l
r∂θun−l(1, θ)

f l

l!
ǫn.

Putting together these expansions, we arrive at

A(ǫ, f) =

∞∑

n=0

n∑

l=0

∂l+1
r un−l(1, θ)

f l(θ)

l!
ǫn + f(θ)

∞∑

n=0

n∑

l=0

∂l+1
r un−l(1, θ)

f l(θ)

l!
ǫn+1

− ḟ(θ)

∞∑

n=0

n∑

l=0

∂l
r∂θun−l(1, θ)

f l(θ)

l!
ǫn+1,

and therefore

Nǫf (Ψ)(θ) = ∂ru0(1, θ) + ǫ
(
∂ru1(1, θ) (2.9)

+ ∂2
ru0(1, θ)f(θ) + ∂ru0(1, θ)f(θ) − ∂θu0(1, θ)ḟ(θ)

)
+ O(ǫ2).

Here O(ǫ2) depends on ‖f‖∞ and the Lipschitz constant of f .

We express the equation (2.9) in terms of Ψ and f . At first, we have

∂θu0(1, θ) = Ψ̇. (2.10)

To change ∂ru1(1, θ), ∂2
ru0(1, θ) and ∂ru0(1, θ), we start from the Fourier series of Ψ:

Ψ(θ) =

+∞∑

n=1

[
ân(Ψ) cos(nθ) + b̂n(Ψ) sin(nθ)

]
,

where

ân(Ψ) =
1

π

∫ 2π

0

Ψ(θ) cos(nθ)dθ, b̂n(Ψ) =
1

π

∫ 2π

0

Ψ(θ) sin(nθ)dθ. (2.11)

By the uniqueness of a solution to (2.1), u0 satisfies

u0(r, θ) =

∞∑

n=1

[
ân(Ψ)

cos(nθ)

rn
+ b̂n(Ψ)

sin(nθ)

rn

]
.

Hence the Dirichlet-to-Neumann operator N0 of D is given by

N0(Ψ)(θ)(= ∂ru0(1, θ)) = −
+∞∑

n=1

[
nân(Ψ) cos(nθ) + nb̂n(Ψ) sin(nθ)

]
. (2.12)

4



We also define the operator D0 by

D0(Ψ)(θ) := −
+∞∑

n=1

[
(n + 1)ân(Ψ) cos(nθ) + (n + 1)b̂n(Ψ) sin(nθ)

]
, (2.13)

to write
∂2

ru0(1, θ) = D0N0(Ψ)(θ). (2.14)

Lemma 2.1 For a given Lipschitz function f and Ψ ∈ C∞([0, 2π]), we have

Nǫf (Ψ) = N 0
f (Ψ) + ǫN 1

f (Ψ) + O(ǫ2),

where

N 0
f (Ψ) = N0(Ψ),

and

N 1
f (Ψ) = D0N0(Ψ)f −N0(N0(Ψ)f) + N0(Ψ)f − ḟΨ̇. (2.15)

Here the remainder O(ǫ2) depends on ‖f‖∞ and the Lipschitz constant of f .

Proof. From (2.10), (2.12) and (2.13), we are left to calculate ∂ru1(1, θ). From the field
expansion method, we have

u(r, θ)
∣∣∣
r=1+ǫf(θ)

=

∞∑

n=0

n∑

l=0

∂l
run−l(1, θ)

f l

l!
ǫn.

Therefore
u(1 + ǫf(θ), θ) = u0(1, θ) + (u1(1, θ) + ∂ru0(1, θ)f)ǫ + O(ǫ2).

Since u(1 + ǫf(θ), θ) = u0(1, θ) = Ψ(θ), we deduce that u1(r, θ) satisfies





∆u1 = 0, in R
2 \ D̃,

u1(1, θ) = −N0(Ψ)(θ)f(θ), on ∂D̃,

u1(r, θ) −→ 0, as r −→ +∞.

Therefore we have
∂ru1(1, θ) = −N0(N0(Ψ)f), (2.16)

which completes the proof. ¤

It is worth mentioning, in connection with our asymptotic expansion in Lemma 2.1, the
expansions of Dirichlet-to-Neumann operators for rough non-periodic surfaces [8, 4] and for
periodic interfaces [9].

2.3 Far Field Expansion

Define Ω̃ := {x ∈ R
2, dist(x,D) > d0} and suppose that ||f ||∞ < c0. For x ∈ Ω̃, we have

|x − eθ − ǫf(θ)eθ|2 = |x − eθ|2
(

1 − 2ǫf(θ)
〈x − eθ, eθ〉
|x − eθ|2

)
+ O(ǫ2).

Using this, we obtain

ln |x − eθ − ǫf(θ)eθ| = ln |x − eθ| − ǫf(θ)
〈x − eθ, eθ〉
|x − eθ|2

+ O(ǫ2), (2.17)
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and

〈eθ − x + ǫf(θ)eθ, Nθ〉
|x − eθ − ǫf(θ)eθ|2

=
〈eθ − x, eθ〉
|x − eθ|2

(2.18)

+ ǫf(θ)
〈eθ − x, eθ〉
|x − eθ|2

+ ǫ
f(θ)

|x − eθ|2

− ǫḟ(θ)
〈eθ − x, τθ〉
|x − eθ|2

− 2ǫf(θ)
(〈eθ − x, eθ〉)2

|x − eθ|4
+ O(ǫ2).

Here O(ǫ2) is bounded by cǫ2 where c depends only on d0, c0 and the Lipschitz constant of f .

From Lemma 2.1, (2.7) and (2.8), we have

u(x) − u0(x) =
ǫ

2π

∫ 2π

0

[
ln |x − eθ|N 1

f (Ψ) +
〈eθ − x, eθ〉
|x − eθ|2

N0(Ψ)f

− x · τθ

|x − eθ|2
Ψḟ+

(x · eθ − 2

|x − eθ|2
+

(2〈eθ − x, eθ〉)2
|x − eθ|4

)
Ψf

]
dθ + O(ǫ2).

Integration by parts yields the following lemma.

Lemma 2.2 For x ∈ Ω̃(= {x ∈ R
2, dist(x, D) > d0}), we have

u(x) − u0(x) =
ǫ

2π

∫ 2π

0

ln |x − eθ|
(
D0N0(Ψ)f −N0(N0(Ψ)f) + N0(Ψ)f

)
dθ (2.19)

+
ǫ

2π

∫ 2π

0

〈eθ − x, eθ〉
|x − eθ|2

N0(Ψ)fdθ +
ǫ

2π

∫ 2π

0

ln |x − eθ|Ψ̈fdθ

+
ǫ

2π

∫ 2π

0

(
− 2

|x − eθ|2
+

2(x · τθ)
2 + 2(〈eθ − x, eθ〉)2
|x − eθ|4

)
Ψfdθ + O(ǫ2),

where O(ǫ2) is bounded by cǫ2 with c depending on d0 and ‖f‖∞.

Rewrite (2.19) as
u(x) − u0(x) = ǫH(x) + O(ǫ2).

By a change of coordinates from Cartesian to polar in (2.19), we get the following asymptotic
formula for H when |x| ≫ 1.

Lemma 2.3 For x = reϕ, r ≫ 1, we have

H(x) = − 1

2r
â1

[
D0N0(Ψ)f −N0(N0(Ψ)f) + 2N0(Ψ)f + Ψ̈f

]
cos(ϕ) (2.20)

− 1

2r
b̂1

[
D0N0(Ψ)f −N0(N0(Ψ)f) + 2N0(Ψ)f + Ψ̈f

]
sin(ϕ) + O(

1

r2
),

where â1 and b̂1 are defined by (2.11).

Proof. Since

|reϕ − eθ| = r(1 − 1

r
〈eϕ, eθ〉 + O(

1

r2
)),

we have

ln |reϕ − eθ| = ln(r) − 1

r
〈eϕ, eθ〉 + O(

1

r2
), (2.21)
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and
1

|reϕ − eθ|
=

1

r
+ O(

1

r2
). (2.22)

Substituting these equations into (2.19), we obtain

H(r, ϕ) = − 1

2πr

∫ 2π

0

〈eϕ, eθ〉
(
D0N0(Ψ)f −N0(N0(Ψ)f) + 2N0(Ψ)f + Ψ̈f

)
dθ + O(

1

r2
),

as desired. ¤

Now we rewrite (2.20) in terms of the Fourier coefficients of Ψ and f .

Lemma 2.4 We have

∞∑

k=0

(
−b̂k+1(Ψ̇) − b̂k−1(Ψ̇) âk+1(Ψ̇) + âk−1(Ψ̇)

âk+1(Ψ̇) − âk−1(Ψ̇) b̂k+1(Ψ̇) − b̂k−1(Ψ̇)

) (
âk(f)

b̂k(f)

)
=

(
c1

d1

)
,

where

c1(Ψ) := 2 lim
r→+∞

â1(rH(r, θ)),

d1(Ψ) := 2 lim
r→+∞

b̂1(rH(r, θ)).

Proof. Note that â1(N0(N0(Ψ)f)) = −â1(N0(Ψ)f). From (2.12) and (2.13), we get

âk

(
D0N0(Ψ) + 3N0(Ψ) + Ψ̈

)
= (k(k + 1) − 3k − k2)âk(Ψ)

= −2kâk(Ψ),

b̂k

(
D0N0(Ψ) + 3N0(Ψ) + Ψ̈

)
= −2kb̂k(Ψ).

Moreover, we have
kâk(Ψ) = −b̂k(Ψ̇) and kb̂k(Ψ) = âk(Ψ̇).

Letting â−n = 0 for n ≥ 1 and b̂−n = 0 for n ≥ 0, we observe that

â1(FG) =

∞∑

k=0

âk(F )

2

[
âk+1(G) + âk−1(G)

]
+

∞∑

k=0

b̂k(F )

2

[
b̂k+1(G) + b̂k−1(G)

]
,

b̂1(FG) =

∞∑

k=0

âk(F )

2

[
b̂k+1(G) − b̂k−1(G)

]
+

∞∑

k=0

b̂k(F )

2

[
âk−1(G) − âk+1(G)

]
.

This completes the proof. ¤

2.4 Algorithm for the Inverse Shape Problem

Define Ψn and Φn, for n ∈ N, by

Ψn(θ) =
1

n
sin(nθ),Φn(θ) = − 1

n
cos(nθ).

From Lemma 2.4, it follows that

(
0 1
1 0

)(
ân−1(f)

b̂n−1(f)

)
+

(
0 1
−1 0

)(
ân+1(f)

b̂n+1(f)

)
=

(
c1(Ψn)
d1(Ψn)

)
, (2.23)
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(
−1 0
0 1

)(
ân−1(f)

b̂n−1(f)

)
+

(
−1 0
0 −1

) (
ân+1(f)

b̂n+1(f)

)
=

(
c1(Φn)
d1(Φn)

)
. (2.24)

Thus we obtain that

b̂n−1(f) + b̂n+1(f) = c1(Ψn), ân−1(f) − ân+1(f) = d1(Ψn),

and
b̂n−1(f) − b̂n+1(f) = d1(Φn), −ân−1(f) − ân+1(f) = c1(Φn).

Therefore, we arrive at

b̂n−1(f) =
c1(Ψn) + d1(Φn)

2
,

and

ân−1(f) =
d1(Ψn) − c1(Φn)

2
, n ≥ 1.

This simple calculation shows that in order to detect a perturbation that has oscillations
of order 1/n, one needs to use the first n eigenvectors (eilθ, l = 1, . . . , n,) of the Dirichlet-to-
Neumann operator N0 as Dirichlet boundary data. This is a relatively simple but quite deep
observation. We conjecture that this result holds for general domains. Another observation
is that our asymptotic formula is in fact a low-frequency expansion which holds for fixed
n as ǫ goes to zero. It would be interesting to derive an expansion which is valid for high-
frequencies, not just for finite n.

3 Formulation of the Acoustic Problem

We study the Helmholtz problem analogously to the Laplacian one. Let D be a unit disk in
R

2 centered at 0, and u0 be the solution to the Helmholtz problem with prescribed boundary
Dirichlet data Ψ ∈ C∞(∂D), i.e.,





∆u0 + k2u0 = 0, in R
2 \ D,

u0(1, θ) = Ψ(θ), on ∂D,

∂

∂r
u0(r, θ) − iku0(r, θ) = o(r−

1

2 ), r −→ +∞.

(3.1)

Here we used the polar coordinates x = r(cos θ, sin θ). As before we consider the solution u

corresponding to the perturbed domain D̃:




∆u + k2u = 0, in R
2 \ D̃,

u(1 + ǫf(θ), θ) = Ψ(θ), on ∂D̃,

∂

∂r
u(r, θ) − iku(r, θ) = o(r−

1

2 ), r −→ +∞,

(3.2)

where
∂D̃(= ∂D + ǫfν) := {(1 + ǫf(θ))eθ , θ ∈ [0, 2π]}.

3.1 Representation Formula

The outgoing fundamental solution to the Helmholtz operator (∆ + k2) in R
2 is given by

Φk(x, y) = − i

4
H

(1)
0 (k|x − y|),

8



for x 6= 0, where H
(1)
0 is the Hankel function of the first kind of order 0. In other words, Φk

satisfies
(∆ + k2)Φk(·, y) = δy in R

2,

and
∂

∂r
Φk(·, y) − ikΦk(·, y) = o(r−

1

2 ) as r → ∞.

Using Green’s formula, we have

u(x) =

∫

∂D̃

Φk(y, x)
∂u

∂νy

(y)dσy −
∫

∂D̃

∂Φk

∂νy

(y, x)u(y)dσy, for x ∈ R
2 \ D̃. (3.3)

Note that
d

dz
H

(1)
0 (z) = −H

(1)
1 (z). (3.4)

From (2.4) and (2.5), we get

u(x) = − i

4

∫ 2π

0

[
k
〈(1 + ǫf(θ))eθ − x,Nθ〉
|(1 + ǫf(θ))eθ − x| H

(1)
1 (k|(1 + ǫf(θ))eθ − x|)Ψ(θ) (3.5)

+ H
(1)
0 (k|(1 + ǫf(θ))eθ − x|)Nǫf (Ψ)(θ)

]
dθ,

and

u0(x) = − i

4

∫ 2π

0

[
k
〈eθ − x, eθ〉
|eθ − x| H

(1)
1 (k|eθ − x|) + H

(1)
0 (k|eθ − x|)N0(Ψ)(θ)

]
dθ, (3.6)

where

Nǫf (Ψ)(θ) :=
∂u

∂Nθ

(1 + ǫf(θ), θ),

and
N0(Ψ)(θ) := ∂ru0(1, θ).

3.2 Expansion of Nǫf

We parametrize the unit circle S, which is the boundary of D, by θ ∈ [0, 2π] and expand
the 2π-periodic function Ψ(= u|S) as

Ψ(θ) =
∑

n∈Z

ĉneinθ.

Now we consider the Dirichlet-to-Neumann operator N0 with respect to D:

N0 : u0|S → ∂ru0|S .

By the uniqueness of a solution to (3.1), we find that

u0(r, θ) =
∑

n∈Z

H
(1)
|n| (kr)

H
(1)
|n| (k)

ĉn(Ψ)einθ.

Therefore, in a pseudodifferential fashion, N0 can be written as follows (see [7]):

N0(Ψ)(θ) =
∑

n∈Z

σ1(n, k)ĉneinθ, (3.7)
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where the so-called discrete symbol σ1 of N0 is given by

σ1 = k
H

(1)′

|n| (k)

H
(1)
|n| (k)

= −k
H

(1)
|n+1|(k)

H
(1)
|n| (k)

+ |n|.

We also define
D0(Ψ)(θ) :=

∑

n∈Z

σ2(n, k)ĉn(Ψ)einθ, (3.8)

with

σ2(n, k) = k
H

(1)′′

|n| (k)

H
(1)′

|n| (k)
.

With this notation, we have the following asymptotic expansion for Nǫf .

Lemma 3.1 For any 2π-periodic function Ψ ∈ C∞([0, 2π]), we have that

Nǫf (Ψ) = N 0
f (Ψ) + ǫN 1

f (Ψ) + O(ǫ2),

where

N 0
f (Ψ) = N0(Ψ),

and

N 1
f (Ψ) = D0N0(Ψ)f −N0(N0(Ψ)f) + N0(Ψ)f − ḟΨ̇.

Proof. Note that (2.9), (2.10) and (2.16) are also valid in the case of the Helmholz problem.
We finish the proof by computing ∂2

ru0(1, θ):

∂2
ru0(1, θ) =

∑

n∈Z

k2
H

(1)′′

|n| (k)

H
(1)
n (k)

ĉn(Ψ)einθ

=
∑

n∈Z

σ2(n, k)σ1(n, k)ĉn(Ψ)einθ = D0N0(Ψ)(θ).

¤

3.3 Far-Field Asymptotic Formula

We define Ω̃ := {x ∈ R
2, dist(x,D) > d0} and assume that ||f ||∞ < c0.

Lemma 3.2 As ǫ tends to 0 and x ∈ Ω̃, we have

u(x) − u0(x) =
iǫ

4
H(x) + O(ǫ2),

where

H(x) =

∫ 2π

0

H
(1)
0 (k|x − eθ|)

[
− (D0N0(Ψ) + N0(Ψ) + Ψ̈)f + N0(N0(Ψ)f)

]
(θ)dθ

− k2

∫ 2π

0

H
(1)
0 (k|x − eθ|)

(x · τθ)
2 + (1 − x · eθ)

2

|x − eθ|2
Ψ(θ)f(θ)dθ

+ k

∫ 2π

0

H
(1)
1 (k|x − eθ|)

1 − x · eθ

|x − eθ|
N0(Ψ)(θ)f(θ)dθ

− k

∫ 2π

0

H
(1)
1 (k|x − eθ|)

( 2

|x − eθ|
− 2

(x · τθ)
2 + (1 − x · eθ)

2

|x − eθ|3
)
Ψ(θ)f(θ)dθ.

Here O(ǫ2) is bounded by cǫ2 with c depending only on c0 and d0.
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Proof. For any x ∈ Ω̃, we have that

H
(1)
0 (k|x − eθ − ǫf(θ)eθ|) = H

(1)
0 (k|x − eθ|)

+ ǫkf(θ)
〈x − eθ, eθ〉
|x − eθ|

H
(1)
1 (k|x − eθ|) + O(ǫ2),

and

H
(1)
1 (k|x − eθ − ǫf(θ)eθ|) = H

(1)
1 (k|x − eθ|)

− ǫf(θ)
〈x − eθ, eθ〉
|x − eθ|

[
kH

(1)
0 (k|x − eθ|) −

H
(1)
1 (k|x − eθ|)
|x − eθ|

]
+ O(ǫ2).

From (3.5), (3.6), and Lemma 3.1, we obtain that

H(x) = −
∫ 2π

0

H
(1)
0 (k|x − eθ|)N 1

f (Ψ)(θ)dθ

+ k

∫ 2π

0

〈eθ − x, eθ〉
|x − eθ|

H
(1)
1 (k|x − eθ|)(N0 − I)Ψ(θ)f(θ)dθ

− k

∫ 2π

0

1

|x − eθ|
H

(1)
1 (k|x − eθ|)Ψ(θ)f(θ)dθ + k

∫ 2π

0

〈eθ − x, τθ〉
|x − eθ|

H
(1)
1 (k|x − eθ|)Ψ(θ)ḟ(θ)dθ

− k

∫ 2π

0

(〈eθ − x, eθ〉)2
|x − eθ|2

(
kH

(1)
0 (k|x − eθ|) −

1

|x − eθ|
H

(1)
1 (k|x − eθ|)

)
Ψ(θ)f(θ)dθ

+ k

∫ 2π

0

(〈eθ − x, eθ〉)2
|x − eθ|3

H
(1)
1 (k|x − eθ|)Ψ(θ)f(θ)dθ.

Integrating by parts, we get

∫ 2π

0

H
(1)
0 (k|x − eθ|)Ψ̇(θ)ḟ(θ)dθ

=

∫ 2π

0

[
H

(1)
1 (k|x − eθ|)

−kx · τθ

|x − eθ|
Ψ̇ − H

(1)
0 (k|x − eθ|)Ψ̈

]
fdθ,

and

k

∫ 2π

0

〈eθ − x, τθ〉
|x − eθ|

H
(1)
1 (k|x − eθ|)Ψ(θ)ḟ(θ)dθ

= −
∫ 2π

0

H
(1)
0 (k|x − eθ|)

k2(x · τθ)
2

|x − eθ|2
Ψfdθ +

∫ 2π

0

H
(1)
1 (k|x − eθ|)

kx · τθ

|x − eθ|
Ψ̇fdθ

−
∫ 2π

0

H
(1)
1 (k|x − eθ|)

[ kx · eθ

|x − eθ|
− 2k(x · τθ)

2

|x − eθ|3
]
Ψfdθ.

Here we have used (3.4) together with the identity

d

dz
H

(1)
1 (z) = H

(1)
0 (z) − 1

z
H

(1)
1 (z).

¤

Lemma 3.3 For any x = reϕ with r ≫ 1, we have

i

4
H(r, ϕ) =

ei π
4 eikr

√
8πkr

H̃(ϕ) + O(
1

r
),
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where

H̃(ϕ) =

∫ 2π

0

e−ik〈eθ,eϕ〉
[
− (D0N0(Ψ) + N0(Ψ) + Ψ̈)(θ)f(θ) + N0(N0(Ψ)f)(θ)

+ ik〈eϕ, eθ〉N0(Ψ)(θ)f(θ) − k2Ψ(θ)f(θ)
]
dθ. (3.9)

Proof. It is known that, for a fixed n, the Hankel function of the first kind satisfies

H(1)
n (x) =

√
2

πx
ei(x−π

4
−n π

2
) + O(|x|−1), x ≫ n.

We refer to [3] for more properties of the Hankel function.
Putting reϕ instead of x, we have

H
(1)
0 (k|reϕ − eθ|) =

√
2

πk|reϕ − eθ|
ei(k|reϕ−eθ|−

π
4
) + O(

1

r
).

From the fact that

|reϕ − eθ| = r − 〈eϕ, eθ〉 + O(
1

r
)

and
1

|reϕ − eθ|
=

1

r
+ O(

1

r2
),

we can obtain
i

4
H

(1)
0 (k|reϕ − eθ|) =

ei π
4 eikr

√
8πkr

e−ik〈eϕ,eθ〉) + O(
1

r
).

Similarly, we have

i

4
H

(1)
1 (k|reϕ − eθ|) = (−i)

ei π
4 eikr

√
8πkr

e−ik〈eϕ,eθ〉) + O(
1

r
).

Substituting these approximations into the integral expression of H in Lemma 3.2, we
arrive at the desired result. ¤

3.4 Algorithm for the Inverse Shape Problem

In this subsection we use the field H̃(θ) to find the shape of ∂D̃.
From the Jacobi-Anger Expansion (see for example [5], Section 3.4):

eik cos θ =

∞∑

n=−∞

inJn(k)einθ,

where Jn is the Bessel function of the first kind, we have

e−ik〈eθ,eϕ〉 =

∞∑

n=−∞

(−1)nJn(k)einϕe−inθ. (3.10)

From (3.9) and (3.10), we have

H̃(ϕ) =
∑

n∈Z

(−1)nJn(k)An(ϕ)einϕ, (3.11)
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where

An(ϕ) =

∫ 2π

0

e−inθ
[
− (D0N0(Ψ) + N0(Ψ) + Ψ̈)(θ)f(θ) + N0(N0(Ψ)f)(θ)

+ ik〈eϕ, eθ〉N0(Ψ)(θ)f(θ) − k2Ψ(θ)f(θ)
]
dθ.

Lemma 3.4 We have

H̃(ϕ) =
∑

n∈Z

(−1)nJn(k)ĉn(H̃)einϕ,

where

ĉn(H̃) = 2π
∑

p∈Z

Mn,pĉp(Ψ)ĉn−p(f),

and

Mn,p =
[
− σ1(p, k)σ2(p, k) + σ1(n, k)σ1(p, k) − σ1(p, k) + p2 − k2

]
− inσ1(p, k).

Proof. Let

An(ϕ) =

∫ 2π

0

e−inθ
[
−D0N0(Ψ)f + N0(N0(Ψ)f) −N0(Ψ)f − Ψ̈f − k2Ψf

]
dθ

+

∫ 2π

0

e−inθik〈eϕ, eθ〉N0(Ψ)fdθ

=: I(n) + II(n).

From (3.7) and (3.8), we have

ĉp

(
−D0N0(Ψ) −N0(Ψ) − Ψ̈ − k2Ψ

)

= [−σ1(p, k)σ2(p, k) − σ1(p, k) + p2 − k2]ĉp(Ψ).

Using the fact that

ĉn(fg) =
∑

p∈Z

ĉp(f)ĉn−p(g),

we can obtain

ĉn

[
N0(N0(Ψ)f)

]
= σ1(n, k)ĉn

[
N0(Ψ)f ]

=
∑

p∈Z

σ1(n, k)σ1(p, k)ĉp(Ψ)ĉn−p(f)

and

I(n) = 2π
∑

p∈Z

[−σ1(p, k)σ2(p, k) + σ1(n, k)σ1(p, k) − σ1(p, k) + p2 − k2]ĉp(Ψ)ĉn−p(f).

(3.12)

Note that

〈eϕ, eθ〉 =
eiϕe−iθ

2
+

e−iϕeiθ

2
.
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We have

II(n) = ikπeiϕĉn+1[N0(Ψ)f ] + ikπe−iϕĉn−1[N0(Ψ)f ]

= ikπeiϕ
∑

p∈Z

σ1(p, k)ĉp(Ψ)ĉn+1−p(f) + ikπe−iϕ
∑

p∈Z

σ1(p, k)ĉp(Ψ)ĉn−1−p(f).

Therefore

∑

n∈Z

(−1)nJn(k)II(n)einϕ

= ikπ
∑

n∈Z

(−1)nJn(k)ei(n+1)ϕ
∑

p∈Z

σ1(p, k)ĉp(Ψ)ĉn+1−p(f)

+ ikπ
∑

n∈Z

(−1)nJn(k)ei(n−1)ϕ
∑

p∈Z

σ1(p, k)ĉp(Ψ)ĉn−1−p(f)

= −ikπ
∑

n∈Z

(−1)n
[
Jn−1(k) + Jn+1(k)

]
einϕ

∑

p∈Z

σ1(p, k)ĉp(Ψ)ĉn−p(f)

= −ikπ
∑

n∈Z

(−1)n 2n

k
Jn(k)einϕ

∑

p∈Z

σ1(p, k)ĉp(Ψ)ĉn−p(f). (3.13)

Here we used recurrence relations of Bessel function, i.e.,

Jn−1(k) + Jn+1(k) =
2n

k
Jn(k).

From (3.12) and (3.13), we proves the lemma.
¤

Suppose now that
Ψ = eipθ.

Then from Lemma 3.4, for each n, we obtain the coefficient Mn,pĉn−p(f) from the far-field
measurements. This yields to stable reconstruction of the Fourier coefficients ĉn−p(f) for
all n, p, p ≤ n, such that Mn,p is not too small.
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