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Abstract

We present a new family of model selection algorithms based on

the resampling heuristics. It can be used in several frameworks, do not

require any knowledge about the unknown law of the data, and may

be seen as a generalization of local Rademacher complexities and V -

fold cross-validation. In the case example of least-square regression on

histograms, we prove oracle inequalities, and that these algorithms are

naturally adaptive to both the smoothness of the regression function

and the variability of the noise level. Then, interpretating V -fold

cross-validation in terms of penalization, we enlighten the question

of choosing V . Finally, a simulation study illustrates the strength

of resampling penalization algorithms against some classical ones, in

particular with heteroscedastic data.

1 Introduction

Choosing between the outputs of many learning algorithms, from the predic-
tion viewpoint, remains to estimate their generalization abilities. A classical
method for this is penalization, that comes from model selection theory. Ba-
sically, it states that a good choice can be made by minimizing the sum of
the empirical risk (how does the algorithm fits the data) and some com-
plexity measure of the algorithm (called the penalty). The ideal penalty for
prediction is of course the difference between the true and empirical risks of
the output, but it is unknown in general. It is thus crucial to obtain tight
estimates of such a quantity.
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Many penalties or complexity measures have been proposed, both in the
classification and regression frameworks. Consider for instance regression
and least-square estimators on finite-dimensional vector spaces (the models).
When the design is fixed and the noise-level constant equal to σ, Mallows’
Cp penalty [16] (equal to 2n−1σ2D for a D-dimensional space, and it can
be modified according to the number of models [5, 17]) has some optimality
properties [18, 15, 2]. However, such a penalty linear in the dimension may
be terrible in an heteroscedastic framework (as shown by (2) and experiment
HSd2 in Sect. 6).

In classification, the VC-dimension has the drawback of being indepen-
dent of the underlying measure, so that it is adapted to the worst case.
It has been improved with data-dependent complexity estimates, such as
Rademacher complexities [13, 3] (generalized by Fromont with resampling
ideas [11]), but they may be too large because they are still global complexity
measures. The localization idea then led to local Rademacher complexities
[4, 14] which are tight estimates of the ideal penalty, but involve unknown
constants and may be very difficult to compute in practice. On the other
hand, the V -fold cross-validation (VFCV) is very popular for such purposes,
but it is still poorly understood from the non-asymptotic viewpoint.

In this article, we propose a new family of penalties, based on Efron’s
bootstrap heuristics [10] (and its generalization to weighted bootstrap, i.e.
resampling). It is a localized version of Fromont’s penalties, which does not
involve any unknown constant, and is easy to compute (at the price of some
loss in accuracy) in its V -fold cross-validation version. We define it in a much
general framework, so that it has a wide range of application. As a first the-
oretical step, we prove the efficiency of these algorithms in the case example
of least-square regression on histograms, under reasonable assumptions. In-
deed, they satisfy oracle inequalities with constant almost one, asymptotic
optimality and adaptivity to the regularity of the regression function. This
comes from explicit computations that allow us to deeply understand why
these penalties are working well. Then, we compare the “classical” VFCV
with the V -fold penalties, enlightening how V should be chosen. Finally, we
illustrate these results with a few simulation experiments. In particular, we
show that resampling penalties are competitive with classical methods for
“easy problems”, and may be much better for some harder ones (e.g. with a
variable noise-level).
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2 A general model selection algorithm

We consider the following general setting : X × Y is a measurable space, P
an unknown probability measure on it and (X1, Y1), . . . , (Xn, Yn) ∈ X × Y
some data of common law P . Let S be the set of predictors (measurable
functions X 7→ Y) and γ : S × (X × Y) 7→ R a contrast function. Given a
family (ŝm)m∈Mn

of data-dependent predictors, our goal is to find the one
minimizing the prediction loss Pγ(t). We will extensively use this functional
notation Qγ(t) := E(X,Y )∼Q[γ(t, (X, Y ))], for any probability measure Q on
X × Y . Notice that the expectation here is only taken w.r.t. (X, Y ), so
that Qγ(t) is random when t = ŝm is random. Assuming that there exists a
minimizer s ∈ S of the loss (the Bayes predictor), we will often consider the
excess loss l(s, t) = Pγ(t) − Pγ(s) ≥ 0 instead of the loss.

Assume that each predictor ŝm may be written as a function ŝm(Pn)
of the empirical distribution of the data Pn = n−1

∑n
i=1 δ(Xi,Yi). The ideal

choice for m̂ is the one which minimizes over Mn the true prediction risk
Pγ(ŝm(Pn)) = Pnγ(ŝm(Pn)) + penid(m) where the ideal penalty is equal to

penid(m) = (P − Pn)γ(ŝm(Pn)) .

The resampling heuristics (introduced by Efron [10]) states that the ex-
pectation of any functional F (P, Pn) is close to its resampling counterpart
EW F (Pn, P W

n ), where P W
n = n−1

∑n
i=1 Wiδ(Xi,Yi) is the empirical distribu-

tion Pn weighted by an independent random vector W ∈ [0; +∞)n, with∑
i E[Wi] = n. The expectation EW [·] means that we only integrate w.r.t.

the weights W .
We suggest here to use this heuristics for estimating penid(m), and plug

it into the penalized criterion Pnγ(ŝm) + pen(m). This defines m̂ ∈ Mn as
follows.

Algorithm 1 (Resampling penalization). 1. Choose a resampling scheme,
i.e. the law of a weight vector W .

2. Choose a constant C ≥ CW ≈
(
n−1

∑n
i=1 E (Wi − 1)2)−1

.

3. Compute the following resampling penalty for each m ∈ Mn :

pen(m) = CEW

[
Pnγ

(
ŝm

(
P W

n

))
− P W

n γ
(
ŝm

(
P W

n

))]
.

4. Minimize the penalized empirical criterion to choose m̂ and thus ŝm̂ :

m̂ ∈ arg min
m∈Mn

{Pnγ(ŝm(Pn)) + pen(m)} .
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Remark 1. 1. There is a constant C 6= 1 in front of the penalty, although
there isn’t any in Efron’s heuristics, because we did not normalize W .
The asymptotical value of the right normalizing constant CW may be
derived from Theorem 3.6.13 in [21]. In the case example of histograms,
we give a non-asymptotic expression for it (3). In general, we suggest
to use some data-driven method to choose C (see algorithm 3), whereas
the resampling penalty only estimates the shape of the ideal one.

2. We allowed C to be larger than CW because overpenalizing may be
fruitful in a non-asymptotic viewpoint, e.g. when there is few noisy
data.

3. Because of this plug-in method, algorithm 1 seems to be reasonable
only if Mn is not too large, i.e. if it has a polynomial complexity
: Card(Mn) ≤ cMnαM . Otherwise, we can for instance group the
models of similar complexities and reduce Mn to a polynomial family.

3 The histogram regression case

As studying algorithm 1 in general is a rather difficult question, we focus
in this article on the case example of least-square regression on histograms.
Although we do not consider histograms as a final goal, this first theoretical
step will be useful to derive heuristics making the general algorithm 1 work.

We first precise the framework and some notations. The data (Xi, Yi) ∈
X × R are i.i.d. of common law P . Denoting s the regression function, we
have

Yi = s(Xi) + σ(Xi)ǫi (1)

where σ : X 7→ R is the heteroscedastic noise-level and ǫi are i.i.d. centered
noise terms, possibly dependent from Xi, but with variance 1 conditionally
to Xi. The feature space X is typically a compact set of R

d. We use the
least-square contrast γ : (t, (x, y)) 7→ (t(x) − y)2 to measure the quality
of a predictor t : X 7→ Y . As a consequence, the Bayes predictor is the
regression function s, and the excess loss is l(s, t) = E(X,Y )∼P (t(X) − s(X))2.
To each model Sm, we associate the empirical risk minimizer ŝm = ŝm(Pn) =
arg mint∈Sm

{Pnγ(t)} (when it exists and is unique).
Each model in (Sm)m∈Mn

is the set of piecewise constant functions (his-
tograms) on some partition (Iλ)λ∈Λm

of X . It is thus a vector space of di-
mension Dm = Card(Λm), spanned by the family (1Iλ

)λ∈Λm
. As this basis is

orthogonal in L2(µ) for any probability measure on X , we can make explicit
computations that will be useful to understand algorithm 1. The following
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notations will be useful throughout this article.

pλ := P (X ∈ Iλ) p̂λ := Pn(X ∈ Iλ) p̂W
λ = p̂λWλ := P W

n (X ∈ Iλ)

sm := arg min
t∈Sm

Pγ(t) =
∑

λ∈Λm

βλ1Iλ
βλ = EP [Y |X ∈ Iλ]

ŝm := arg min
t∈Sm

Pnγ(t) =
∑

λ∈Λm

β̂λ1Iλ
β̂λ =

1

np̂λ

∑

Xi∈Iλ

Yi

ŝW
m := arg min

t∈Sm

P W
n γ(t) =

∑

λ∈Λm

β̂W
λ 1Iλ

β̂W
λ =

1

np̂W
λ

∑

Xi∈Iλ

WiYi

Remark that ŝm is uniquely defined if and only if each Iλ contains at least one
of the Xi, and the same problem arises for ŝW

m . This is why we will slightly
modify the general algorithm for histograms. Before this, we compute the
ideal penalty (assuming that minλ∈Λm

p̂λ > 0 ; otherwise, the model m should
clearly not be chosen) :

penid(m) = (P − Pn)γ(ŝm) =
∑

λ∈Λm

(pλ + p̂λ)
(
β̂λ − βλ

)2

+ (P − Pn)γ(sm) .

The last term in the sum being centered, it is estimated as zero by the
resampling version of penid. The first term is a sum of Dm terms, each one
depending only on the restrictions of P and Pn to Iλ. Thus, if we assume
that p̂λ > 0 and if we compute separately all those terms, conditionally to
p̂W

λ > 0, we can define the resampling version of penid(m). This leads to the
following algorithm.

Algorithm 2 (Resampling penalization for histograms). 0. Choose
a threshold An ≥ 1 and replace Mn by

M̂n =

{
m ∈ Mn s.t. min

λ∈Λm

{np̂λ} ≥ An

}
.

1. Choose a resampling scheme L(W ).

2. Choose a constant C ≥ CW (An) where CW is defined by (3).

3’. Compute the following resampling penalty for each m ∈ M̂n :

pen(m) = C
∑

λ∈Λm

EW

[(
p̂λ + p̂W

λ

) (
β̂W

λ − β̂λ

)2 ∣∣∣Wλ > 0

]
.
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4’. Minimize the penalized empirical criterion to choose m̂ and thus ŝm̂ :

m̂ ∈ arg min
m∈M̂n

{Pnγ(ŝm(Pn)) + pen(m)} .

Remark 2. 1. The two modifications of the algorithm for histograms do
not affect much the result if An is of the order ln(n). Indeed, models
with very few data are not relevant in general, and if minλ∈Λm

{np̂λ} ≥
An is not too small, the event {Wλ = 0} has a very small probability.

2. We allow C to depend on An since the “optimal” constant CW may de-
pend on it, but this dependence is mild according to our computations.

When the resampling weights are exchangeable (see definition below), we
are able to compute pen explicitly. It is enlightening to compare it with penid

in expectation, conditionally to (p̂λ)λ∈Λm
(we denote by E

m [·] this conditional
expectation) :

E
m [penid(m)] =

1

n

∑

λ∈Λm

(
1 +

pλ

p̂λ

) (
(σr

λ)2 +
(
σd

λ

)2
)

(2)

E
m [pen(m)] =

C

n

∑

λ∈Λm

(R1,W (n, p̂λ) + R2,W (n, p̂λ))
(

(σr
λ)2 +

(
σd

λ

)2
)

with (σr
λ)2 := E[σ(x)2|X ∈ Iλ] ;

(
σd

λ

)2
:= E[(s(X) − sm(X))2|X ∈ Iλ]

and for k = 1, 2 Rk,W (n, p̂λ) = E

[
(Wi − Wλ)2

W 3−k
λ

∣∣∣Wλ > 0

]
.

Hence, contrary to Mallows’ penalty (with σ2 known or estimated), resam-
pling penalties really take into account the heteroscedasticity of the noise (σr

λ

depends on λ) and the bias terms
(
σd

λ

)2
. We then define

CW (An) := sup
np̂λ≥An

{
2

R1,W (n, p̂λ) + R2,W (n, p̂λ)

}
(3)

and C ′
W (An) is the infimum of the same quantity.

Examples of resampling weights

In this article, we consider resampling weights W = (W1, . . . , Wn) ∈ [0; +∞)n

such that E[Wi] = 1 for all i and E[W 2
i ] < ∞. We mainly consider the follow-

ing exchangeable weights (i.e. such that for any permutation τ , (Wτ(1), . . . , Wτ(n))
(d)
=

(W1, . . . , Wn)).
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1. Efron (q) : multinomial vector with parameters (q; n−1, . . . , n−1). Then,
R2,W (n, p̂λ) = (n/q) × (1 − (np̂λ)−1). A classical choice is q = n.

2. Rademacher : Wi i.i.d., 2 times Bernoulli(1/2). Then, R2,W (n, p̂λ) = 1.

3. Random hold-out (q) (or cross-validation) : Wi = n
q
1i∈I with I uniform

random subset (of cardinality q) of {1, . . . , n}. R2,W (n, p̂λ) = (n/q)−1.
A classical choice is q = n/2.

4. Leave-one-out = Random hold-out (n − 1). Then, R2,W (n, p̂λ) = (n −
1)−1.

In each case, we can show that R1,W = R2,W (1 + δ
(W )
n,p̂λ

) for some explicit

small term δ
(W )
n,p̂λ

(numerically of the same order as E[pλ/p̂λ|p̂λ > 0] − 1 in
expectation for the three first resamplings, and slightly smaller in the Leave-
one-out case). Thus, CW ≈ C ′

W ≈ R−1
2,W (asymptotically in An).

For computational reasons, it is also convenient to introduce the following
V -fold cross-validation resampling weights : given a partition (Bj)1≤j≤V of
{1, . . . , n} and W B ∈ R

V leave-one-out weights, we define Wi = W B
j for each

i ∈ Bj. The partition should be taken as regular as possible, and then we
can compute E[pen(m)] and show that CW ≈ V − 1.

The Rademacher weights lead to penalties close in spirit to local Rademacher
complexities (the link between global Rademacher complexities and global re-
sampling penalties with Rademacher weights can be found in [11]). The links
with the classical leave-one-out and VFCV algorithms are given in Sect. 5.

4 Main results

In this section, we prove that algorithm 2 has some optimality properties
under the following restrictions for some non-negative constants αM, cM, cA,
crich :

(P1) Polynomial complexity of Mn : Card(Mn) ≤ cMnαM .

(P2) Richness of Mn : ∀x ∈ [1, nc−1
rich], ∃m ∈ Mn s.t. Dm ∈ [x; crichx].

(P3) The weights are exchangeable, among the examples given in Sect. 3.

(P4) The threshold is large enough : CA ln(n) ≥ An ≥ (26 + 7αM) ln(n).

Assumption (P1) is almost necessary, since too large families of models need
larger penalties than polynomial families [5, 2, 17]. Assumption (P2) is
necessary but it is always satisfied in practice. Assumption (P3) is only here
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to ensure that we have an explicit formula for the penalty, and sharp bounds
on R1,W and R2,W . The constant (26 + 7αM) in (P4) is quite large due to
technical reasons, but much smaller values (larger than 2) should suffice in
practice.

Theorem 1. Assume that the (Xi, Yi)’s satisfy the following assumptions :

(Ab) Bounded data : ‖Yi‖∞ ≤ A < ∞.

(An) Noise-level bounded from below : σ(Xi) ≥ σmin > 0 a.s.

(Ap) Polynomial decreasing of the bias :

∃β1 ≥ β2 > 0, Cs, cs > 0 s.t. csD
−β1

m ≤ l(s, sm) ≤ CsD
−β2

m .

(Ar) (pseudo)-Regular histograms : ∀m ∈ Mn, minλ∈Λm
{pλ} ≥ cregD

−1
m .

Let m̂ be the model chosen by algorithm 2 (under restrictions (P1–4)),
with η′C ′

W (An) ≥ C ≥ ηCW (An) for some η, η′ > 1
2
. It satisfies, with proba-

bility at least 1 − L(A),(P)n
−2 (L(A),(P) may depend on constants in (A) and

(P), but not on n),

l(s, ŝm̂) ≤ K(η, η′) inf
m∈Mn

{l(s, ŝm)} . (4)

At the price of enlarging L(A),(P), the constant K(η, η′) can be taken close
to (1 + 2(η′ − 1)+)(1 − 2(1 − η)+)−1, where x+ := max(x, 0). In particular,
K(η, η′) is almost 1 if η and η′ are close to 1.

Moreover, we have the oracle inequality

E [l(s, ŝm̂)] ≤ K(η, η′)E

[
inf

m∈Mn

{l(s, ŝm)}
]

+
A2L(A),(P)

n2
. (5)

sketch. By definition of m̂,

∀m ∈ M̂n, (pen− pen′
id)(m̂) + l(s, ŝm̂) ≤ l(s, ŝm) + (pen− pen′

id)(m)

where we replaced penid by pen′
id := penid −(Pn −P )γ(s). In order to obtain

(4) with M̂n instead of Mn, we show concentration inequalities for pen(m)−
pen′

id(m) around zero, with remainders ≪ l(s, ŝm) if Dm is large (larger than
some power of ln(n)). We use the following steps :

1. explicit computation of pen′
id and pen when W is exchangeable.
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2. accurate bounds on R1,W and R2,W , so that (1 − δ(An))Em[2p2(m)] ≤
E

m[pen(m)] ≤ (1+δ(An))Em[2p2(m)] with p2(m) = Pn (γ(sm) − γ(ŝm))
and limAn→∞ δ = 0. This needs sharp bounds on E[Z−1|Z > 0] with
L(Z) = L(Wλ|p̂λ), for each resampling scheme introduced in Sect. 3.

3. moment inequalities for pen, p2 and p1(m) = P (γ(ŝm) − γ(sm)), condi-
tionally to (p̂λ)λ∈Λm

, around their conditional expectations. This step
uses results from [7], or can be derived from [12], since all those quan-
tites are U-statistics of order 2 (this last fact is not true without the
conditioning). This implies (unconditional) concentration inequalities.

4. concentration inequality for (Pn − P )(γ(sm) − γ(s)) (Bernstein’s in-
equality suffices in the bounded case).

5. since E
m [p2(m)] = E [p2(m)], it only remains to prove that E

m [p1(m)] ≈
E [p1(m)] and p2 ≈ p1 with high probability. We here use the Cramér-
Chernoff method (it can be used since the (p̂λ)λ∈Λm

are negatively as-
sociated [9]), together with estimates of the exponential moments of
the inverse of a binomial random variable. Controlling the remainder
needs a lower bound on minλ∈Λm

{npλ} that comes from (P4) (and
Bernstein’s inequality).

6. using the assumptions, all the remainders in our concentration inequal-
ities are much smaller than E[l(s, ŝm̂)] when Dm ≥ D0(n) = c1(ln(n))c2

(with c1, c2 depending on the constants in the assumptions).

Let m⋆ be a minimizer of l(s, ŝm) over Mn (with an infinite loss when
ŝm is not uniquely defined). It remains to prove that, with large probability,

Dm̂ ≥ D0(n), Dm⋆ ≥ D0(n) and m⋆ ∈ M̂n. These hold for n large enough
thanks to (Ap) and (Ar) (we did not use (Ar) before).

We finally show that (4) implies (5) : let Ωn be the event of probability
1 − L(A),(P)n

−2 on which (4) occurs. On Ωc
n, l(s, ŝm̂) is bounded by A2, so

that

E [l(s, ŝm̂)] = E [l(s, ŝm̂)1Ωn
] + E

[
l(s, ŝm̂)1Ωc

n

]

≤ K(η, η′)E

[
inf

m∈Mn

l(s, ŝm)

]
+ L(A),(P)A

2n−2 .

Theorem 1 implies the a.s. asymptotic optimality of algorithm 3 in this
framework. This means that if s and σ(X) do not make the model selection
problem too hard, the resampling penalization algorithm is working, without
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any knowledge on the smoothness of s, the heteroscedasticity of σ or any
property that the unknown law P may satisfy. In that sense, it is a naturally
adaptive algorithm.

The lower bound in assumption (Ap) may seem strange, but it is intuitive
that when the bias is decreasing very fast, the optimal model is of quite small
dimension. Then, bounds relying on the fact that this dimension is large can
not work. The same kind of assumption has already been used in the density
estimation framework for the same reason [20].

Moreover, we can prove that non-constant hölderian functions satisfy
(Ap) when X has a lower-bounded density w.r.t. the Lebesgue measure
on X ⊂ R. The following result states that resampling penalization is adap-
tive to the hölderian smoothness of s in an heteroscedastic framework, since
it attains the minimax rate of convergence n−2α/(2α+1) [19].

Theorem 2. Let X be a compact interval of R and Y ⊂ R. Assume that
(Xi, Yi) satisfy (Ab), (An) and the following assumptions :

(Ad) Density bounded from below : ∃cX
min > 0, ∀I ⊂ X , P (X ∈ I) ≥

cX
min Leb(I).

(Ah) Hölderian regression function : there exists α ∈ (0; 1] and R > 0 s.t.

s ∈ H(α, R) i.e. ∀x1, x2 ∈ X , |s(x1) − s(x2)| ≤ R |x1 − x2|α .

Let Mn be the family of regular histograms of dimensions 1 ≤ D ≤ n,
m̂ the model chosen by algorithm 2, with (P3-4) satisfied (αM = 0) and
C like in Theorem 1. Then, denoting σmax = supX |σ| ≤ A, there are some
constants L2,(A),(P) (that may depend on all the constants in the assumptions)
and L1(η, η′, α) such that

E [l(s, ŝm̂)] ≤ L1n
−2α/(2α+1)R2α/(2α+1)σ4α/(2α+1)

max + L2,(A),(P)n
−2 . (6)

Moreover, if σ is Kσ-Lipschitz, the constant σ2
max may be replaced by

∫
X

σ(t)2dt
(at the price of enlarging L2,(A),(P)).

sketch. 1. Since α ∈ (0; 1], any non-constant function s ∈ H(α, R) sat-
isfies (Ap) with β2 = 2α and β1 = 1 + α−1 (the lower bound uses
(Ad)).

2. Assumptions (P1), (P2) and (Ar) are automatically satisfied by the
regular family, so we can use (5). From the proof of Theorem 1, we
obtain estimations of E [l(s, ŝm)]. Optimizing in Dm gives (6) for non-
constant functions.
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3. When s is constant, a direct proof shows that Dm̂ is at most of order
ln(n)ξ1 with large probability. This ensures that E [l(s, ŝm̂)] is at most
of order (ln(n))ξ2n−1 ≪ n−2α/(2α+1) for every α > 0.

Other results like Theorem 1 may be proved under other assumptions :
unbounded data (with moment inequalities for the noise, regularity assump-
tions on s and an upper bound on σ), σ(x) that can vanish (with the un-
bounded assumptions, E[σ2(X)] > 0 and some regularity on σ), etc. We skip
their detailed statements in order to focus on the last two sections, where
we give a new look on V -fold cross-validation (seen from the penalization
viewpoint) and illustrate theoretical results with a simulation study.

5 Links with V -fold cross-validation

The results of Sect. 4 assume that the weights are exchangeable. However,
computing exactly the resampling penalties with such weights may be quite
long : without a closed formula for pen, ŝW

m has to be computed for at least
n (and up to 2n) different weight vectors. Using the V -fold idea, we defined
VFCV weights in Sect. 3, that allows to compute each penalty by considering
only V different weight vectors. We call the resulting algorithm penVFCV.

It is quite enlightening to compare penVFCV to a more classical version
of VFCV, where the final estimator is ŝm̂ with

m̂ ∈ arg min
m∈Mn

{critVFCV(m)} = arg min
m∈Mn

{
1

V

V∑

j=1

P (j)
n γ(ŝ(−j)

m )

}
. (7)

The superscript (j) (resp. (−j)) above means that Pn and ŝm are computed
with the data belonging to the block Bj (resp. to Bc

j ). Assuming that the

V blocks have the same size (and forgetting unicity issues of ŝ
(−j)
m , that may

be solved as before), we have (for any j)

E [critVFCV(m)] = Pγ(sm) + E
[
Pγ(ŝ(−j)

m ) − Pγ(sm)
]

(8)

= Pγ(sm) +
V

(V − 1)n

∑

λ∈Λm

(
1 + δ(V )

n,pλ

) (
(σr

λ)2 +
(
σd

λ

)2
)

where δ
(V )
n,pλ

is typically small and non-negative (when npλ is large enough).
On the other hand, we can compute exactly the expectation of the pen-

VFCV criterion (with a constant C = CW = V − 1) when the blocks have
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the same size :

E [critpenVFCV(m)] = Pγ(sm) +
1

n

∑

λ∈Λm

(
1 + δ(penV )

n,pλ

) (
(σr

λ)2 +
(
σd

λ

)2
)

(9)

for some typically small non-negative δ
(penV )
n,pλ

.

Comparing (8) and (9) with (2), one can see that up to small terms, both
criterions are in expectation the sum of the bias and a variance term. The
main difference between them lies in the constant in front of the variance : it
is equal to C/(V −1) = 1 for penVFCV, whereas it is equal to V/(V −1) > 1
for VFCV.

The classical V -fold cross-validation is thus “overpenalizing” within a
factor V/(V −1) because it estimates the generalization ability of ŝ

(−j)
m , which

is built upon less data than ŝm. This enlightens some clues for the choice of
V : computational issues (the smaller V , the faster will be the algorithm),
stability of the algorithm (V = 2 is known to be quite unstable, and leave-
one-out much more stable), and overpenalization (V/(V − 1) should not be
too far from 1). Our analysis do not quantify the stability issue, but it
is sufficient to explain why the asymptotic optimality of leave-p-out needs
p ≪ n for a prediction purpose [15] and p ∼ n for an identification purpose
[22]. Indeed, the overpenalization factor is n/(n−p) = (1−p/n)−1 should go
to 1 for optimal prediction and to infinity for a.s. identification. Moreover,
from the non-asymptotic viewpoint (n small and σ large, or s irregular), it
is known that overpenalization (i.e. positively biased penalties) gives better
results. This means that the better V may not always be the largest one for
classical V -fold, independently from computational issues.

On the contrary, penVFCV is not overpenalizing, unless we explicitly
choose C > CW . We thus do not have to take into account the third fac-
tor for choosing V , so that it may be more accurate than VFCV within a
smaller computation time. In the non-asymptotic viewpoint (or for an iden-
tification purpose), it is also easier to overpenalize when we need to, without
destabilizing the algorithm by taking a small V .

A refined analysis of the “negligible” terms such as δ
(penV )
n,pλ

, compared to
the expectation of pλ/p̂λ, explains why the leave-one-out may be overfitting
a little (see the simulations hereafter). We do not detail this phenomenon
since it disappears when V/(V − 1) stays away from 1.

6 Simulations

To illustrate the results of Sect. 4 and the analysis of Sect. 5, we compare
the performances of algorithm 2 (with several resampling schemes), Mallows’
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Figure 1: s(x) = sin(πx)
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Figure 2: S1
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Figure 3: S2
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Figure 4: s = HeaviSine
(see [8])
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Figure 5: HSd1
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Figure 6: HSd2

Cp and VFCV on some simulated data.
We report here four experiments, called S1, S2, HSd1 and HSd2. Data

are generated according to (1) with Xi i.i.d. uniform on X = [0; 1] and
ǫi ∼ N (0, 1) independent from Xi. They differ from the regression function
s (smooth for S, see Fig. 1 ; smooth with jumps for HS, see Fig. 4), the noise
type (homoscedastic for S1 and HSd1, heteroscedastic for S2 and HSd2), the
number n of data, and are repeated N = 1000 times. Instances of data sets
are given in Fig. 2-3 and 5-6. Their last difference lies in the families of
models Mn :

S1 regular histograms with 1 ≤ D ≤ n
ln(n)

pieces.

S2 histograms regular on
[
0; 1

2

]
and on

[
1
2
; 1

]
, with D1 (resp. D2) pieces,

1 ≤ D1, D2 ≤ n
2 ln(n)

. The model of constant functions is added to Mn.

HSd1 dyadic regular histograms with 2k pieces, 0 ≤ k ≤ ln2(n) − 1.

HSd2 dyadic regular histograms with bin sizes 2−k1 and 2−k2, 0 ≤ k1, k2 ≤
ln2(n) − 1 (dyadic version of S2). The model of constant functions is
added to Mn.

We compare the following algorithms :
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Mal Mallows’ Cp penalty : pen(m) = 2σ̂2Dmn−1 where σ̂2 is the variance
estimator used in [1], Sect. 6.

VFCV Classical V -fold cross-validation, defined by (7), with V ∈ {2, 5, 10, 20}.

penEfr Efron (n) penalty, C = CW = 1.

penRad Rademacher penalty, C = CW = 1.

penRHO Random hold-out (n/2) penalty, C = CW = 1.

penLOO Leave-one-out penalty, C = CW = n − 1.

penVFCV V -fold penalty, with V ∈ {2, 5, 10, 20}. C = CW = V − 1.

For each of these except VFCV, we also consider the same penalties multi-
plied by 5/4 (denoted by a + symbol added after its shortened name). This
intends to test for overpenalization.

In each experiment, for each simulated data set, we first remove the mod-
els with less than An = 2 data points in one piece of their associated partition.
Then, we compute the least-square estimators ŝm for each m ∈ M̂n. Finally,
we select m̂ ∈ M̂n using each algorithm and compute its true excess risk
l(s, ŝm̂) (and the excess risk of each model m ∈ Mn). Since we simulate N
data sets, we can then estimate the two following benchmarks :

Cor =
E [l(s, ŝm̂)]

E [infm∈Mn
l(s, ŝm)]

Cpath−or = E

[
l(s, ŝm̂)

infm∈Mn
l(s, ŝm)

]

Basically, Cor is the constant that should appear in an oracle inequality like
(4), and Cpath−or corresponds to a pathwise oracle inequality like (5). As Cor

and Cpath−or approximatively give the same rankings between algorithms, we
only report Cor in Tab. 1.

We always observe that penRad and penRHO are competitive with Mal
(S1) and much better for more “difficult” problems (S2 is heteroscedastic ;
jumps in HSd1 and HSd2 induce much bias). On the other hand, VFCV is
a little worse than Mal for easy problems (S1) and better for more difficult
ones, but never better than penRad or penRHO.

The best resampling schemes (not taking overpenalization into account)
are penRad and penRHO, in view of S1 and S2 (dyadic models do not in-
duce much differences between them in HSd1 and HSd2). Then, penLOO
is slightly underpenalizing and penEfr strongly overfits. The comparison
penRad ≈ penRHO > penLOO ≫ penEfr can also be derived from Sect. 3.

In the four experiments, overpenalizing within a factor 5/4 leads to better
results, mainly because n is quite small for the noisy (S1, S2) or irregular
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(HSd1, HSd2) signals observed. This is no longer the case for some larger n
or smaller σ.

We consider now V -fold algorithms. VFCV is slightly better than pen-
VFCV, but worse than penVFCV+. The influence of V on Cor confirms the
discussion of Sect. 5. For VFCV, the best V may be V = 2 (which overpe-
nalizes, HSd1) or V = 20 (which is more stable, HSd2), or even both (S1,S2).
On the contrary, penVFCV (and penVFCV+) is always improved when V
increases, or at least it does not get worse. Then, the best one is penLOO
(or penLOO+), i.e. V = n, the small terms δ

(penV )
n,pλ

being far less important
than stability. This enlightens the interest of defining V -fold penalties, for
which it is easier to solve the complexity-accuracy trade-off.

Remark 3. We only report here the result of 4 experiments, but several other
ones (with n larger, σ smaller, σ(x) = 1x∈[ 1

2
;1] or other regression functions s

such as Doppler,
√· and a regular histogram) give the same kind of results.

The constants Cor and Cpath−or are decreasing to 1 when n increases and σ
decreases.

The overpenalization factor 5/4 is generally not optimal, and even not
always better than 1 (in particular when n is large or σ small). We have
for instance Cor(penLOO) < Cor(penRHO) < Cor(penRHO+) in S1 with
σ ≡ 0.1 (with only small differences).

On the tuning parameters

The above simulations confirm that the best weights (for accuracy) are
Random hold-out (n/2) and Rademacher, whereas V -fold or leave-one-out
weights may be of interest for computational purposes. The second tuning
parameter, An, may be taken equal to 2 (its “minimal” value because terms
of the penalty with np̂λ = 1 would be zero) without serious consequences on
Cor in practice.

On the contrary, the constant C ≥ CW is quite important, and the best
ratio C/CW strongly depends on n, σ, s and Mn. Moreover, there is no
reason for CW (histograms) to be the right non-asymptotic constant in the
general algorithm 1. Our suggest is to choose C with the so-called “slope
heuristics”, proposed by Birgé and Massart [6] for penalties linear in dimen-
sion. Their claim is that the optimal penalty is twice the minimal penalty,
i.e. the one under which the selected model is obviously too large. This leads
to estimating the shape of penid by resampling, and the constant C with the
slope heuristics, as follows.

15



Table 1: Accuracy indexes Cor for each algorithm in four experiments, ±
a rough estimate of uncertainty of the value reported (i.e. the empirical
standard deviation divided by

√
N). In each column, the more accurate

algorithms (taking the uncertainty into account) are bolded.

Experiment S1 S2 HSd1 HSd2

s sin sin HeaviSine HeaviSine
σ(x) 1 x 1 x
n (data) 200 200 2048 2048
Mn regular 2 bin sizes dyadic, regu-

lar
dyadic, 2 bin
sizes

Mal 1.928 ± 0.04 3.864 ± 0.02 1.606 ± 0.015 1.487 ± 0.011
Mal+ 1.800 ± 0.03 4.047 ± 0.02 1.606 ± 0.015 1.487 ± 0.011
2−FCV 2.078 ± 0.04 2.542 ± 0.05 1.002 ± 0.003 1.184 ± 0.004
5−FCV 2.137 ± 0.04 2.582 ± 0.06 1.014 ± 0.003 1.115 ± 0.005
10−FCV 2.097 ± 0.05 2.603 ± 0.06 1.021 ± 0.003 1.109 ± 0.004
20−FCV 2.088 ± 0.04 2.578 ± 0.06 1.029 ± 0.004 1.105 ± 0.004

penEfr 2.597 ± 0.07 3.152 ± 0.07 1.067 ± 0.005 1.114 ± 0.005
penRad 1.973 ± 0.04 2.485 ± 0.06 1.018 ± 0.003 1.102 ± 0.004
penRHO 1.982 ± 0.04 2.502 ± 0.06 1.018 ± 0.003 1.103 ± 0.004
penLOO 2.080 ± 0.05 2.593 ± 0.06 1.034 ± 0.004 1.105 ± 0.004
pen2−FCV 2.578 ± 0.06 3.061 ± 0.07 1.038 ± 0.004 1.103 ± 0.005
pen5−FCV 2.219 ± 0.05 2.750 ± 0.06 1.037 ± 0.004 1.104 ± 0.004
pen10−FCV 2.121 ± 0.05 2.653 ± 0.06 1.034 ± 0.004 1.104 ± 0.004
pen20−FCV 2.085 ± 0.04 2.639 ± 0.06 1.034 ± 0.004 1.105 ± 0.004

penEfr+ 2.016 ± 0.05 2.605 ± 0.06 1.011 ± 0.003 1.097 ± 0.004
penRad+ 1.799 ± 0.03 2.137 ± 0.05 1.002 ± 0.003 1.095 ± 0.004
penRHO+ 1.798 ± 0.03 2.142 ± 0.05 1.002 ± 0.003 1.095 ± 0.004
penLOO+ 1.844 ± 0.03 2.215 ± 0.05 1.004 ± 0.003 1.096 ± 0.004
pen2−FCV+ 2.175 ± 0.05 2.748 ± 0.06 1.011 ± 0.003 1.106 ± 0.004
pen5−FCV+ 1.913 ± 0.03 2.378 ± 0.05 1.006 ± 0.003 1.102 ± 0.004
pen10−FCV+ 1.872 ± 0.03 2.285 ± 0.05 1.005 ± 0.003 1.098 ± 0.004
pen20−FCV+ 1.898 ± 0.04 2.254 ± 0.05 1.004 ± 0.003 1.098 ± 0.004
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Algorithm 3 (Resampling penalization with slope heuristics). 1.
Choose a resampling scheme, i.e. the law of a weight vector W .

2. Compute the following resampling penalty for each m ∈ Mn :

pen0(m) = EW

[
Pnγ

(
ŝm

(
P W

n

))
− P W

n γ
(
ŝm

(
P W

n

))]
.

3. Compute the selected model m̂(C) as a function of C > 0

m̂(C) ∈ arg min
m∈Mn

{Pnγ(ŝm(Pn)) + C pen0(m)} .

4. Choose the minimal C = Ĉ such that Dm̂(C) is “reasonably small”, and

take m̂ = m̂(2Ĉ).

Step 4 may need to artificially introduce huge models in Mn, all the other
ones being considered as “reasonably small”. Finally, notice that C 7→ m̂(C)
is piecewise constant with at most Card(Mn) jumps, so that steps 3–4 have
a complexity O(Card(Mn)). As a consequence, the V -fold algorithm 3 is
fastly computable.
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