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Construction of harmonic diffeomorphisms

and minimal graphs

By Pascal Collin and Harold Rosenberg
(version1 / January 2007)

Abstract: We study complete minimal graphs in IH × IR, which take
asymptotic boundary values plus and minus infinity on alternating sides
of an ideal inscribed polygon Γ in IH. We give necessary and sufficient
conditions on the ”lenghts” of the sides of the polygon (and all inscribed
polygons in Γ) that ensure the existence of such a graph. We then apply
this to construct entire minimal graphs in IH× IR that are conformally the
complex plane lC. The vertical projection of such a graph yields a harmonic
diffeomorphism from lC onto IH, disproving a conjecture of Rick Schoen.

Mathematics Subject Classification: 53A10, 53C43.

1. Introduction.

In 1952, E. Heinz proved there is no harmonic diffeomorphism from a disk
onto the complex plane lC, with the euclidean metric [He]. He used this to give
another proof of Bernstein’s theorem: an entire minimal graph over the euclidean
plane is a plane.

Later, R. Schoen and S.T. Yau, asked whether Riemannian surfaces which
are related by a harmonic diffeomorphism are quasi-conformally related. In that
direction, R. Schoen conjectured there is no harmonic diffeomorphism from lC onto
the hyperbolic plane IH [S], [S-Y] and [M].

In this paper we will construct harmonic diffeomorphisms from lC onto IH.
We will use entire minimal graphs to construct these examples (E. Heinz used
the non-existence of harmonic diffeomorphisms from IH onto lC to prove the non-
existence of non-trivial entire minimal euclidean graphs).

Consider the Riemannian product IH × IR and entire minimal graphs Σ
defined over IH. The vertical projection Σ −→ IH is a surjective harmonic
diffeomorphism, so we will solve the problem by constructing entire minimal graphs
Σ that are conformally lC (Theorem 3). Notice that the horizontal projection
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Σ −→ IR is a harmonic function on Σ when Σ is a minimal surface. Hence if this
height function is bounded on Σ, Σ is necessarily hyperbolic (conformally the unit
disc). So we must look for unbounded minimal graphs.

Here is the idea of the construction. Let Γ be an ideal geodesic polygon in IH
with an even number of sides (the vertices of Γ are at infinity). We give necessary
and sufficient conditions on the geometry of Γ which ensure the existence of a
minimal graph u over the polygonal domain D bounded by Γ, which takes the
values plus and minus infinity on alternate sides of Γ (§ 3). This is a Jenkins-
Serrin type theorem at infinity [J-S]. We call such graphs u over D ideal Scherk
graphs and we show their conformal type is lC (§ 5).

We attach certain ideal quadrilaterals to all of the sides of Γ (outside of D)
so that the extended polygonal domain D1 admits an ideal Scherk graph. We do
this so that D1 depends on a small parameter τ , and a minimal Scherk function
u1(τ) defined over D1 satisfies the following. Given a fixed compact disk K0 in the
domain D, u1(τ) is as close as we wish to u over K0, for τ sufficiently small. Also
ideal Scherk graphs are conformally lC so there is a compact disk K1 ( containing
K0) in each D1, so that the conformal type of the annulus in the graph of u1(τ),
over K1 − K0, is greater than one. Now fix τ and do the same process to enlarge
D1, attaching certain ideal quadrilaterals to all of the sides to obtain a domain,
admitting an ideal Scherk graph u2(τ

′), which is as close as we want to u1(τ)
on K1 for τ ′ sufficiently small ; then the conformal moduli of the annulus in the
graph of u2(τ

′) over K1 − K0 remains greater than one. As before take K2 with
the same condition on modulus for u2(τ

′) over K2−K1. The entire minimal graph
Σ is obtained by continuing this process and choosing a convergent subsequence.
The conformal type of Σ is lC because we write IH as the union of an increasing
sequence of compact disks Kn, and each annulus in Σ over each Kn+1 − Kn has
conformal modulus at least one.

2. Structure of the divergence set.

First we will state some properties of solutions established in [J-S] and [N-
R]. By solution in D we mean a solution of the minimal surface equation in a
domain D of the hyperbolic plane. We make no assumptions here on ∂D. Starting
with curvature estimates for stable minimal surfaces, we give new proofs of the
results of this section in an appendix.

Compactness Theorem. Let {un} be a uniformly bounded sequence of solutions
in D. Then a subsequence converges uniformly on compact subsets of D, to a
solution in D.
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Monotone Convergence Theorem. Let {un} be a monotone sequence of
solutions in D. If the sequence {|un|} is bounded at one point of D, then there
is a non-empty open set U ⊂ D (the convergence set) such that {un} converges
to a solution in U . The convergence is uniform on compact subsets of U and the
divergence is uniform on compact subsets of D−U = V . V is called the divergence
set.

Now assume ∂D is an ideal polygon with a finite number of vertices at
∂∞IH, composed of geodesic arcs A1, . . . , Ak, B1, . . . , Bk′ joining the vertices,
together with convex arcs (convex towards D), C1, . . . , Ck′′ . We assume D is simply
connected, ∂D, together with the vertices, homeomorphic to S1, and no two A’s
(or B’s) have a vertex in common.

Divergence Structure Theorem. Let {un} be a monotone sequence of solutions
in D, each un continuous on D. If the divergence set V 6= ∅, then int V 6= ∅, and ∂V
is composed of ideal geodesics among the Ai and Bj, and interior ideal geodesics
C ⊂ D, joining two vertices of ∂D. No two interior geodesics C1, C2 of ∂V go to
the same vertex at infinity.

Remark 1: With the exception of the last sentence in the above theorem the
proofs are in the papers cited at the beginning of this section. We will prove the
last statement after stating the flux relations.

Now let {un} be a sequence defined in D satisfying the hypothesis of the
Divergence Structure Theorem. For each n, let Xn = ∇un

Wn

be the vector field on

D, W 2
n = 1 + |∇un|2. For W ⊂ D, and α a boundary arc of W, we define the flux

of un across α to be Fn(α) =
∫

α
〈Xn, ν〉 ds ; here α is oriented as the boundary of

W and ν is the outer conormal to W along α. More generaly, for any solution u in
D and an oriented arc α, we write Fu(α) the flux of the associate field X = ∇u

W ,

W = (1 + |∇u|2)1/2.

Flux Theorem. Let W be a domain in D. Then

i) if ∂W is a compact cycle, then Fn(∂W) = 0 ;

ii) if W ⊂ U (the convergence set) and α is a compact arc of ∂W on which the
un diverge to +∞, then α is a geodesic and

lim
n→∞

Fn(α) = |α|.

If the un diverge to −∞ on α, then α is a geodesic and

lim
n→∞

Fn(α) = −|α|.
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iii) if W ⊂ V , and the un remain uniformly bounded on α, then

lim
n→∞

Fn(α) = −|α|, if un → +∞ on V,

and
lim

n→∞
Fn(α) = |α|, if un → −∞ on V.

Remark 2: In ii of the Flux Theorem, the fact that α (contained in ∂W) is a
geodesic when the un diverge on α, is called the Straight Line Lemma.

Now we can prove the last statement of the Divergence Structure Theorem.

Suppose on the contrary, that ∂V has two interior arcs C1, C2 going to the
same vertex at infinity of D. Let W ⊂ D be a bounded domain, with ∂W a simple
closed curve composed of two horocycle arcs γ1, γ2 and two arcs α1, α2 contained
in C1, C2 respectively.

By part i of the Flux Theorem, Fn(∂W) = 0, i.e.,

Fn(α1) + Fn(γ1) + Fn(α2) + Fn(γ2) = 0.

First assume the un diverge to +∞ on W ; i.e. W ⊂ V , cf. figure 1. Since U is on
the other side from W along α1 and α2, we have

lim
n→∞

Fn(α1) = −|α1| = lim
n→∞

Fn(α2),

by part iii of the Flux Theorem. But Fn(γi) ≤ |γi| for i = 1, 2, and the length
of γ2 can be chosen arbitrarily small, the length of the αi arbitrarily large, which
contradicts the flux equality along ∂W.

If the un diverge to −∞ in W, one obtains a similar contradiction.

U

1

α2α1

C1 C2

γ2

V

U

γ

W

Figure 1
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When W is not contained in V , then W ⊂ U and the same flux equa-
tion gives a contradiction ; the only change is the sign of limn→∞ Fn(α1) =
limn→∞ Fn(α2).

When we establish existence theorems for unbounded boundary data, we
need to know solutions take on the boundary values prescribed. This is guaranteed
in our situation by the following result.

Boundary Values Lemma. Let D be a domain and let C be a compact convex
arc in ∂D. Suppose {un} is a sequence of solutions in D that converges uniformly
on compact subsets of D to a solution u in D. Assume each un is continuous in
D ∪ C and that the boundary values of un on C converge uniformly to a function
f on C. Then u is continuous in D ∪ C and u equals f on C.

Proof: One needs to show that for each p ∈ C, the sequence {un} is uniformly
bounded in a neighborhood of p in D ∪ C ; then standard local barriers show U
takes on the correct boundary values.

When C is strictly convex in a neighborhood of p then one places a Scherk
surface defined over a geodesic triangle over the graph of u ; cf. figure 2.

C

+

MM

D

p

∞

Figure 2

Here M is the maximum of f on C. Since the boundary values of this
Scherk surface are above those of un, the Scherk surface is above the graph of un

on the region in the triangle over D. Thus the Scherk surface is above u, and this
uniformly bounds u in a smaller compact neighborhood of p inside the triangle.

When the arc C contains a geodesic segment in a neighborhood of p, one
uses an analogous Scherk barrier.
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Consider a quadrilateral P composed of two (“vertical”) geodesics A1, A2,
and two geodesic curves C1, C2 (“horizontal”) ; cf. figure 3.

M

+ ∞+

C2

1A A2

C1

M

∞

Figure 3

If |A1|+ |A2| < |C1|+ |C2|, then there is a minimal solution v defined inside
P taking the boundary values +∞ on A1∪A2 and any prescribed continuous data
on C1 ∪ C2.

Now place the quadrilateral in D, putting C1 into C, and the rest of P
inside D ; cf. figure 4.

p

1

C2

A2

A1

C

C

Figure 4

Let M be the maximum of u on C2 and f on C1. Let v be the solution in
P that equals M on C1 ∪ C2 and +∞ on A1 ∪A2. Then v ≥ un on ∂P so v ≥ un

in P. Thus v bounds u in a smaller compact neighborhood of p inside P.

We complete this section by stating the existence theorem for compact
domains.
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Existence Theorem. Let W be a bounded domain with ∂W a Jordan curve.
Assume there is a finite set E ⊂ ∂W and ∂W − E is composed of convex
(towards W) arcs. Then there is a solution to the Dirichlet problem in W taking
on arbitrarily prescribed continuous data on ∂W−E. The arcs need not be strictly
convex.

3. The Dirichlet Problem on Unbounded Domains.

Let Γ be an ideal polygon of IH ; i.e., Γ is a geodesic polygon all of
whose vertices are at infinity ∂∞(IH). We assume Γ has an even number of sides
A1, B1, A2, B2, . . . , Ak, Bk, ordered by traversing Γ clockwise. Let D be the interior
of the convex hull of the vertices of Γ ; so that ∂D = Γ and D is a topological disk.

We consider the Dirichlet problem for the minimal surface equation in D
where one prescribes the data +∞ on each Ai, and −∞ on each Bj.

When D is a relatively compact domain in IR2, with boundary composed of
line segments {Ai} and {Bj}, and convex arcs {Cl}, this type of Dirichlet problem
was solved completely by H. Jenkins and J. Serrin [J-S] (allowing continuous data
on the {Cl}). They found necessary and sufficient conditions – in terms of the
geometry of ∂D – that guaranty a solution to the Dirichlet problem, for the
minimal surface equation in IR2.

The Jenkins-Serrin theorem was extended to IH× IR, for compact domains
D ⊂ IH, and minimal graphs over some non-compact domains were considered
[N-R].

When Γ is an ideal polygon, we will find necessary and sufficient conditions,
in terms of the “lengths” of the edges, which enable us to solve the Dirichlet
problem. Since the lengths of the edges are infinite, we proceed as follows.

At each vertex ai of Γ, place a horocycle Hi ; do this so Hi∩Hj = ∅ if i 6= j.
Let Fi be the convex horodisk with boundary Hi.

Each Ai meets exactly two horodisks. Denote by Ãi the compact arc of
Ai which is the part of Ai outside the two horodisks, ∂Ãi is two points, each on
a horocycle ; |Ai| is the distance between these horocycles, i.e. the length of Ãi.
Define B̃i and |Bi| in the same way.
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Define

a(Γ) =

k
∑

i=1

|Ai|, and

b(Γ) =
k
∑

i=1

|Bi|.

Observe that a(Γ) − b(Γ) does not depend on the choice of horocycles (assuming
they are pairwise disjoint).

Definition 1. An ideal geodesic polygon P is said to be inscribed in D if the
vertices of P are among the vertices of Γ ; P is a simple closed polygon whose
edges are either interior in D or equal to an Ai or Bj.

Notice that the definition of a(Γ) and b(Γ) extends to inscribed polygons.
Also, to each inscribed polygon P in Γ and a choice of horocycles at the vertices,
we associate a Jordan curve P̃ in IH as follows.

Let α and β be geodesic edges of P with the same vertex ai. Let γi denote
the compact arc of Hi joining α ∩ Hi to β ∩ Hi. Then P̃ is obtained from P
by removing the non-compact arcs of α and β in Hi and replacing them by γi ;
cf. figure 5. Denote by |P| the length of the boundary arcs of P exterior to the
horocycles at the vertices of P ; we call this the truncated length of P.

β

i

γ i

Hi

α

a

P

Figure 5

We can now state the result.

Theorem 1. There is a solution to the minimal surface equation in the polygonal
domain D, equal to +∞ on each Ai and −∞ on each Bj, if and only if the following
two conditions are satisfied

1. a(Γ) = b(Γ). (1)
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2. for each inscribed polygon P in Γ, P 6= Γ, and for some choice of the
horocycles at the vertices, one has

2a(P) < |P| and 2b(P) < |P|. (2)

The solution is unique up to an additive constant.

Remark 3: It is easy to check that if the inequalities of condition 2 hold for
some choice of horocycles, then they continue to hold for “smaller” horocycles
(the inequalities get better) ; cf. Remark 8. Thus for a given Γ, a finite number of
choices of horocycles suffice to check the inequalities are satisfied.

Definition 2. An inscribed polygon P that satisfies the conditions of Theorem 1
is said to be admissible.

First we fix some notation. At each vertex ai of Γ, let Hi(n) be a sequence
of nested horocycles at ai, converging to ai as n → ∞ ; Fi(n) the convex horodisk
bounded by Hi(n).

Hi(n) ∩ Γ consists of two points and we noted by γi(n) the compact arc
of Hi(n) joining these two points. We now need to work in convex domains so to
form the Jordan curves Γ̂(n), we will not attach γi(n) but the geodesic arc γ̂i(n),
having the same end-points as γi(n).

Then Γ̂(n) is the convex Jordan curve:

Γ̂(n) = [Γ −
⋃

i

(Γ ∩ Fi(n))] ∪ [
⋃

i

γ̂i(n)].

Let D(n) denote the disk of IH bounded by Γ̂(n) ; so that
⋃

n
D(n) = D.

We establish several lemmas for the proof of the Theorem 1.

Lemma 1. For each i = 1, . . . , k, there is a solution to the Dirichlet problem on
D with boundary data +∞ on Ai, zero on the rest of Γ.

Proof: For each n, define un to be the minimal graph on D(n), which is equal to
n on ∂D(n)∩Ai, and zero on the rest of ∂D(n). By the maximum principle, un is
a monotone increasing sequence on D(ℓ) for n ≥ ℓ. Thus it suffices to show the un

are uniformly bounded on compact subsets of D(ℓ)−Ai ; then a diagonal process
yields the solution to Lemma 1.

In the upper half-plane model of IH consider the function [A], [SE]:

h(x, y) = ln

(

√

x2 + y2 + y

x

)

, x > 0, y > 0.
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Consider h defined in the domain of IH defined by y > 0, x > 0 ; it satisfies the
minimal surface equation, has asymptotic values zero on the arc at ∂∞IH, given
by x > 0, y = 0. Also it converges to +∞ on x = 0, y > 0.

Thus for any geodesic of IH, one has such a minimal graph. Apply this to
Ai: let h be defined on the part of IH, with boundary Ai, that contains D. Clearly
h is greater than each un by the maximum principle hence on any compact set
K ⊂ D(ℓ) − Ai, the un, n ≥ ℓ, are uniformly bounded.

Remark 4: This argument greatly simplifies the proofs of Theorem 2 and
Theorem 3, step 1, of [N-R] ; the barrier h shows the un of Theorem 2, and of
step 1 of Theorem 3, are uniformly bounded on compact sets.

Lemma 2. For each i = 1, . . . , k, there is a solution to the Dirichlet problem on
D with boundary data +∞ on each Aj, j 6= i, and zero on the rest of Γ.

Proof: We note by A = A1 ∪ A2 ∪ . . . ∪ Ak, B = B1 ∪ B2 ∪ . . . ∪ Bk, so that
Γ = A ∪ B. Ã(n) and B̃(n) denote the truncated A’s and B’s in Γ̂(n) = ∂D(n) ;
Γ̂(n) = Ã(n) ∪ B̃(n) ∪ γ̂(n), where γ̂(n) = γ̂1(n) ∪ γ̂2(n) ∪ . . .∪ γ̂k(n) is the union
of the remaining geodesic arcs. For convenience, suppose i = 1.

For each n, let un be the solution to the Dirichlet problem on D with
boundary data equal to n on A2 ∪ . . . ∪ Ak, and zero on the rest of Γ. This un

exists: first construct such a solution on each compact D(ℓ), then let ℓ → ∞ and
choose a convergent subsequence by a diagonal process.

By the generalized maximum principle (whose proof we give in Theorem 2),
{un} is a monotone sequence so the Divergence Structure Theorem applies. If the
divergence set is not empty, a connected component is an inscribed polygon in D
whose geodesic edges join two vertices of Γ. We show V = ∅ to prove Lemma 2.

First suppose V = D so ∂V = Γ.

We fix ℓ and consider n ≥ 0, and the function un on D(ℓ). Let Xn = ∇un

Wn

where ∇un is the gradient of un in IH and W 2
n = 1 + |∇un|2. Then div(Xn) = 0,

so the flux of Xn along ∂D(ℓ) = Γ̂(ℓ) is zero. For each arc α ⊂ Γ̂(ℓ), let
Fn(α) =

∫

α
〈Xn, ν〉 ds, where ν is the outer conormal to D(ℓ) along ∂D(ℓ).

Then the flux of Xn along ∂D(ℓ) yields:

0 = Fn(Ã1) + Fn(Ã2) + · · · + Fn(Ãk) + Fn(B̃1) + · · ·+ Fn(B̃k) +

k
∑

j=1

Fn(γ̂j(ℓ)),

where γ̂j(ℓ) are the small geodesic arcs in ∂D(ℓ). Now the un diverge uniformly
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to infinity on compact subsets of D and are bounded on A1 ∪ B1 ∪ . . . ∪ Bk, so

lim
n→∞

Fn(Ã1) = −|Ã1|, lim
n→∞

Fn(B̃j) = −|B̃j|

for j = 1, . . . , k. Also Fn(C) ≤ |C| for any arc C ⊂ ∂D(ℓ). Hence letting n → ∞,
we obtain

|γ̂(ℓ)| + |Ã2| + · · ·+ |Ãk| ≥ |Ã1| + |B̃1| + · · ·+ |B̃k|
where |γ̂(ℓ)| is the length of all the arcs γ̂j(ℓ) in ∂D(ℓ). But for any choice of ℓ,

a(Γ) = |Ã1| + · · ·+ |Ãk| = |B̃1| + · · ·+ |B̃k| = b(Γ)

by hypothesis and |γ̂(ℓ)| → 0, as ℓ → ∞ so this last inequality is impossible.

It remains to show V 6= D, V 6= ∅ is impossible. Suppose this were the case.
Fix ℓ and consider V ∩ D(ℓ) = V (ℓ). V (ℓ) is bounded by interior geodesic arcs
C1, C2, . . ., some arcs Ãi1 , Ãi2 , . . . , B̃j1 , B̃j2 , . . . of ∂D(ℓ), and some small geodesic

arcs γ̃1, γ̃2, . . . (all of these arcs depend on ℓ).

The flux of Xn along ∂V (ℓ) equals zero hence:

∑

Fn(Ãi) +
∑

Fn(B̃j) +
∑

Fn(Cl) +
∑

Fn(γ̃m) = 0

where the sums are taken over all the arcs in ∂V (ℓ). The arcs C1, C2, . . . , are
interior arcs of D so on each Cl,

lim
n→∞

Fn(Cl) = −|Cl|.

Similarly, for the B̃j in ∂V (ℓ),

lim
n→∞

Fn(B̃j) = −|B̃j |.

Let |γ̃| be the total length of the small geodesic arcs in ∂V (ℓ) = P, so |γ̃| ≥
∑

Fn(γ̃m). Similarly for the Ãi arcs we have a(P) ≥∑Fn(Ãi).

The flux equality yields

a(P) + |γ̃| ≥ b(P) + |C|

where |C| is the sum of the lengths of the arcs Cm in P. This last inequality can
be rewritten:

2a(P ) − a(P) − b(P) − |C| ≥ −|γ̃|.

Combining the previous inequality and the definition of the truncated
length, one obtains

2a(P) − |P| ≥ −|γ̃|.

11



The inscribed polygon P satisfies the condition 2 for some choice of horocycles, so
2a(P)−|P| < 0 for this choice of horocycles. For smaller horocycles, this quantity
decreases, so the above inequality 2a(P) − |P| ≥ −|γ̃| is impossible for ℓ large
enough.

Remark 5: Clearly Lemma 2 also proves there is a solution on D which is −∞
on each Bj, j 6= i, and zero on the rest of the boundary of D.

Proof of Theorem 1: Let vn be the solution on D which is n on each Ai and
zero on each Bj. This vn is easily constructed by solving this Dirichlet problem on
the disks D(ℓ) and taking the limit as ℓ → ∞.

For 0 < c < n, define

Ec = {vn > c} and Fc = {vn < c}.

Let Ei
c be the component of Ec whose closure contains Ai and let F j

c be the
component of Fc whose closure contains Bj .

We can separate any two of the Ai by a curve joining two of the Bj’s, on
which vn is bounded away from n. Hence for c sufficiently close to n, the sets Ei

c

are pairwise disjoint. Let µ(n) be the infimum of the constants c such that the sets
Ei

c are pairwise disjoint.

We claim that each component of Ec is equal to some Ei
c. Also, there is a

pair Ei
µ and Ej

µ, i 6= j, µ = µ(n), such that Ei
µ ∩Ej

µ = ∅ and Ei
µ ∩Ej

µ 6= ∅. Hence,

given any F i
µ, there is some F j

µ disjoint from it.

To see this claim, consider the level curves {vn = c}, for some 0 < c < n.
There are no compact level curves by the maximum principle. Each connected
level curve is proper hence each end of the level curve is asymptotic to exactly one
vertex of Γ.

Suppose W is a component of Ec and W 6= Ei
c for each i. Then vn ∂W

= c
and ∂W is composed of level curves of vn contained in D. We know ∂W is not
compact, so it enters the ends of D and is asymptotic to the vertices at these
ends. Form a compact cycle β from ∂W by attaching short arcs in W joining two
branches of the curve of ∂W asymptotic to the same vertex ; cf. figure 6.

Let Xn = ∇vn

Wn

. The flux of Xn along β is zero. On the arcs of β in ∂W, the
flux is bounded away from zero. Since the flux on the “short” arcs of β “inside” D
is bounded by their lengths, and the lengths can be chosen arbitrarily small, this
is impossible.

12



D

β
∂W

W

Figure 6

Now is a good time to make a slight digression.

Theorem 2. (Generalized Maximum Principle) Let D be a domain with ∂D
an ideal geodesic polygon. Let U ⊂ D be a domain and u, v ∈ C0(U), two solutions
of the minimal surface equation in U with u ≤ v on ∂U . Then u ≤ v in U .

Proof: If this were not true, then we can suppose (after a possible small vertical
translation of the graph of v) that W = {p ∈ U|u(p) > v(p)} is a non-empty
domain with smooth boundary. W is not compact by the maximum principle, so
W has branches going into the ends of D. As in the previous argument, we form
a compact cycle β composed of (long) arcs on ∂W and (short) arcs in the ends of
D ∩W ; cf. figure 6.

Let X =
∇u

Wu
and Y =

∇v

Wv
. The flux of X − Y across β is 0. On the short

arcs of β, this flux is bounded by twice the length of the short arcs, hence can be
made arbitrarily small. It remains to prove the flux of X −Y on the long arcs of β
is bounded away from zero. This is a well known argument which we repeat here.

Since u− v > 0 in W, u = v on ∂W, we have ∇(u− v) = λη on ∂W, where
η, the inner pointing conormal to ∂W in W , orients the level curve ; λ is a strictly
positive function on ∂W, by the boundary maximum principle.

13



An algebraic identity (cf. appendix or [N-R]) shows 〈∇(u − v), X − Y 〉 ≥ 0
with equality if and only if ∇(u−v) is zero. Thus 〈X−Y, η〉 is bounded away from
zero on the long arcs of β, which proves the generalized maximum principle.

Remark 6: Theorem 2 extends to possible infinite boundary values for the
solutions along geodesic arcs α of ∂U . It is immediate if the data are distinct
by restricting U . If u and v take the same infinite value along α, a careful analysis
of X and Y in a neighborhood of α (analogous to the one of the proposition in the
appendix) gives X = Y along α and the arc α can not generate flux, which allows
us to conclude as above. In particular, this proves the unicity part of Theorem 1.

Now the existence proof of Theorem 1 proceeds as in Jenkins-Serrin [J-S].

Let u+
i , i = 1, . . . , k be the solutions which take the value +∞ on Ai and

zero on the rest of Γ. Similarly, let u−

i be the solution in D which takes the value
−∞ on B1, . . .Bi−1, Bi+1, . . .Bk, and zero on the rest of Γ ; they exist by Lemma 1
and Lemma 2. Define un = vn − µ(n) and, for each p ∈ D,

u+(p) = max
i

{u+
i (p)}, u−(p) = min

i
{u−

i (p)}.

Observe that
u− ≤ un ≤ u+ in D.

To see this, notice that if, for some p ∈ D, un(p) > 0 then p ∈ Ei
µ for some

i ∈ {1, . . . , k} and by the generalized maximum principle we have un ≤ u+
i in Ei

µ.

If un(p) < 0, then p ∈ F i
µ for some i. There is some j 6= i such that F i

µ ∩ F j
µ = ∅.

Then the generalized maximum principle in F i
µ yields un(p) ≥ u−

j (p).

Thus the sequence un is uniformly bounded on compact subsets of D, so a
subsequence of the un converges to a solution u in D. It remains to show u = +∞
on each Ai, and u = −∞ on each Bj .

Observe that the sequence of constants µ(n) diverges to infinity. Otherwise
we would have a subsequence (again called un) such that un converges to u, u is
+∞ on the Ai, and u = −µ0 on the Bj .

Fix ℓ and calculate the flux of u along ∂D(ℓ) ; this gives
∑

i

Fu(Ãi) +
∑

i

Fu(B̃i) +
∑

i

Fu(γ̂i(ℓ)) = 0.

Here Ãi, B̃i, γ̂i(ℓ) are the arcs on ∂D(ℓ) = Γ̂(ℓ) ; the γ̂i(ℓ) are short geodesic arcs.
We have, using the Flux Theorem:

∑

i

Fu(Ãi) = a(Γ) = |Ã1| + · · ·+ |Ãk|,
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∑

i

Fu(γ̂i(ℓ)) ≤ |γ̂(ℓ)| = |γ̂1(ℓ)| + · · · + |γ̂k(ℓ)|,

and
∑

i

Fu(B̃i) ≤ b(Γ) − δ for some δ > 0.

Since |γ̂(ℓ)| → 0, as ℓ → ∞, and δ can be chosen independent of ℓ, this contradicts
a(Γ) = b(Γ).

In the same way, one concludes n−µ(n) diverges to infinity. This completes
the proof of Theorem 1.

4. Ideal Polygons with Convex Arcs.

Now let Γ be an ideal polygon with a finite number of vertices at infinity and
geodesic sides (Ai)i=1,...,k , (Bj)j=1,...,k′ as before, but we also allow convex arcs
(Cl)l=1,...,k′′ in Γ, joining vertices of Γ at infinity. We assume the Cl are convex
with respect to the domain D bounded by Γ and we do not require the Cl to be
strictly convex.

We make an important assumption: when a convex arc C in Γ, has a point
b ∈ ∂∞IH as a vertex, then the other arc α of Γ having b as vertex is asymptotic
to C at b. This means that for a sequence xn ∈ α, converging to b, one has
distIH(xn, C) → 0 as n → ∞.

This assumption is what we need to assure the Generalized Maximum
Principle (Theorem 2) holds in D. Its proof is similar to the proof we gave when
there are no convex arcs in Γ.

We now state the expected result.

Theorem 3. Let Γ be as described above and let f be continuous on the convex
arcs Cl of Γ ( we assume there are convex arcs Cl). Then there is a unique solution
in D which is +∞ on each Ai, −∞ on each Bj and f on the Cl, if and only if

2a(P) < |P|,

and
2b(P) < |P|,

for all inscribed polygons P in Γ.

Recall that we constructed an exhaustion of D by compact convex disks
D(ℓ) using geodesic arcs at the vertices of Γ, when there were no convex arcs
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in Γ. Now we construct D(ℓ) as follows. At each vertex b of Γ with an Ai and
Cj asymptotic to b, choose points xℓ ∈ Ai converging to b and let γ(ℓ) be the
minimizing geodesic joining xℓ to Cj . Clearly the γ(ℓ) are pairwise disjoint. An
analogous sequence can be constructed when there are B’s and C’s at the some
vertex b or two arcs Ci, Cj at b. Then D(ℓ) is defined to have boundary the γ(ℓ)
together with the compact arcs on the A’s, B’s and C’s they bound ; cf. figure 7.

Cj

xℓ′

xℓ γ(ℓ)

γ(ℓ)

D(ℓ)

Figure 7

First we solve the Dirichlet problem of Theorem 3 when there are no B’s,
and f is bounded below.

In each D(ℓ), let un(ℓ) be the solution that equals n on the Ai in ∂D(ℓ),
zero on the γ(ℓ)’s and min(n, f) on the Cl in ∂D(ℓ). By the maximum principle,
un(ℓ) ≤ un(ℓ′) on D(ℓ) for ℓ ≤ ℓ′. Then locally, un(ℓ) is an increasing bounded
sequence as ℓ tends to infinity and therefore, by the Monotone Convergence
Theorem, it converge to a solution un in D that equals n on the Ai and min(f, n)
on the Cl.

By the generalized maximum principle, {un} is a monotone increasing
sequence which is uniformly bounded in a neighborhood of strictly convex arcs
Cl by the Boundary Values Lemma. Hence if the sequence {un} has a non-empty
divergence set V , then a connected component of V is bounded by an inscribed
polygon P whose edges are geodesics (some of the C’s may be in P) joining vertices
of Γ. Then the same flux calculation we did in Lemma 2 contradicts our hypothesis
2a(P) < |P|.

Thus the un converge to a solution u in D that equals +∞ on the Ai and
f on the Cl from the Boundary Values Lemma. The same argument shows that if
there are no A’s in Γ and f is bounded above, then there is a solution in D that
equals −∞ on the Bj and f on Cl.
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Let us now prove the theorem when there are A’s, B’s and C’s.

Let u+ be the solution in D equal to +∞ on the Ai, zero on the Bj , and
max(f, 0) on Cl ; and similarly, let u− be the solution in D equal to zero on the
Ai, −∞ on the Bj, and min(f, 0) on Cl. These solutions exist by our previous
discussion.

Let vn be the solution in D equal to n on the Ai, −n on the Bj and fn on
Cl ; where fn is f truncated above by n and below by −n.

By the generalized maximum principle,

u− ≤ vn ≤ u+ in D.

Therefore the sequence {vn} is uniformly bounded on compact subsets of D so
a subsequence converges uniformly on compact sets to a solution v in D. By the
Boundary Values Lemma v takes on the desired boundary values on Γ.

5. Conformal type.

We present here the main result of this paper concerning harmonic dif-
feomorphisms. Clearly, any conformal representation of the graphs given by the
following theorem gives rise to a diffeomorphism by projection.

Theorem 3. In IH × IR, there exists entire minimal graphs over IH which are
conformally the complex plane lC.

Proof: In a first step, we recursively use Proposition 1 and Proposition 2 to

construct an exhaustion of IH by compact disks Kn with Kn ⊂
◦

Kn+1, and a
sequence of minimal graphs un over Kn (the restriction of ideal Scherk graphs
defined over ideal polygonal domains Dn containing Kn) satisfying the following:

i) ‖ un+1 − un ‖C2(Kn)< εn, for some sequence εn > 0, with
∑∞

n=0 εn < +∞,

ii) For each j, 0 ≤ j < n, the conformal modulus of the annulus in the graph

of un over the domain Kj+1 −
◦

Kj is greater than one.

For that, let εn be a sequence of positive real numbers such that
∑∞

n=0 εn <
+∞. We assume (Dj , uj, Kj) are constructed for 0 ≤ j ≤ n and satisfy the
properties i and ii we require above.

Using Proposition 2, attach (perturbed) elementary quadrilaterals Eτ , E′
τ ,

to all of the pairs of sides of ∂Dn, to obtain an ideal Scherk graph un+1 over
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an enlarged polygonal domain Dn+1. The Eτ , E′
τ are attached successively to

the pairs of sides of ∂Dn ; the parameter τ of each pair attached depends on the
previous expanded polygons.

Also, to be sure we will be able to construct an exhaustion, we need to choose
carefully the initial non perturbed regular quadrilateral of Proposition 2. For that,
consider at each side γ of ∂Dn, the reflexion across the geodesic orthogonal to γ
and passing through a fixed point O ∈ K0, and the special regular quadrilateral
along this side γ which is invariant by the corresponding reflexion ; cf. figure 8.
Then use these quadrilaterals to construct the Eτ and E′

τ .

Moreover, in the Proposition 2, we can choose ε small enough to get un+1 as
close as we want to un in the C2-topology on the compact Kn, so that properties
i and ii are satisfied. For we can easily ensure that first ‖ un+1 − un ‖C2(Kn)< εn,

and secondly, as for un, the graph of un+1 over each annulus Kj+1−
◦

Kj, 0 ≤ j < n,
has conformal modulus greater than one, since the closer the graphs are, the closer
are the conformal moduli.

Now the graph of un+1 is conformally lC by Proposition 1, so there is a
compact E in this graph satisfying:

- E is a disk that contains F in its interior, and

- the conformal modulus of the annulus E − F is greater than one.

Here F is the graph of un+1 over
◦

Kn.

Then define Kn+1 to be the vertical projection of E ; eventually enlarge
E in order that Kn+1 has its boundary in a tubular neighborhood of radius one
of ∂Dn+1. By the above construction, this Kn+1 satisfies property ii. Then the
sequence is constructed and the argument will be complete if we prove the Kn

exhaust IH.

For each n, using the particular geometry of the perturbed quadrilateral we
attach to all of the sides of ∂Dn, we get that the boundary of Dn+1 is a fixed
constant farther from the fixed point O we have chosen in K0 (if the quadrilateral
we add were regular, it would be at least ln(1+

√
2) by an elementary computation ;

cf. figure 8, where the equidistant curves H and H ′ are two parallel horocycles).
Hence ∂Dn diverge to infinity with n. But we constructed Kn so that ∂Kn is
uniformly close to ∂Dn.

Now the second step: we let n tend to infinity. We obtain an entire graph u,

since at any x ∈ IH, the un(x) form a Cauchy sequence. Since on each Kj+1 −
◦

Kj ,
the un converge uniformly to u in the C2-topology, the modulus of the graph of
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Figure 8

u over Kj+1 − Kj is at least one. Hence, by Grötzsch Lemma [V], the conformal
type of the graph of u is lC.

Proposition 1. The conformal type of an ideal Scherk graph is lC.

Proof: Let Γ be an ideal Scherk polygon, D the convex hull of Γ and let u be a
minimal solution defined in D taking the values +∞ on the Ai in Γ and −∞ on
the Bj . Let Σ be the graph of u.

Σ is stable so has uniformly bounded curvature by Schoens’ curvature
estimates (Σ is complete).

Then there is a δ > 0 such that for each x ∈ Σ, Σ is a graph (in a
neighborhood of x) over Dδ(x) ⊂ TxΣ ; where Dδ(x) is the disk of radius δ in
the tangent space TxΣ of Σ at x, centered at the origin of TxΣ. Moreover this
local graph has bounded geometry, independent of x ∈ Σ. Let Gδ(x) denote this
local graph, Gδ(x) ⊂ Σ.

For p ∈ D, we denote by Σδ(p) the local graph Gδ(x) translated vertically
so that x goes to height zero ; here x = (p, u(p)).

Let γ be one of the geodesic components of Γ (an Ai or Bj) and let pn ∈ D,
q ∈ γ and lim

n→∞
pn = q.
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We claim the local surfaces Σδ(pn) converge uniformly to γ × IR as pn → q.

More precisely, they converge uniformly to γδ(q) × [−δ, δ], where γδ(q) is
the δ-interval of γ centered at q.

Suppose this claim were not the case. First observe the tangent planes to
Σδ(pn), at pn, must converge to the vertical plane γ × IR at q. If not, let qn

denote a subsequence of pn such that the Tqn
Σδ(qn) converge to a plane P at q,

distinct from Q = γ × IR. Since the graphs Σδ(qn) have bounded geometry, for
n large, Σδ(qn) is a graph over the δ/2 disk in P , centered at q ; noted Pδ/2(q).
A subsequence of these graphs converges uniformly to a minimal graph F over
Pδ/2(q). Since P 6= Q, there are points of F near q whose horizontal projection to

IH is outside of D. But the Σδ(qn) converge uniformly to F so for n large, Σδ(qn)
would not be a vertical graph over a domain in D ; a contradiction.

Thus the tangent planes at pn to Σδ(pn), converge to the tangent plane
to γ × IR at q. A reasoning similar to the previous arguments shows the Σδ(pn)
converge to γδ(q) × [−δ, δ]. A subsequence of the Σδ(pn) converges to a minimal
graph F over γ × IR. Were F different from γ × IR, F would have points near q
whose horizontal projection is outside of D. But then Σδ(pn) as well, for n large.

Now let ℓ > 0 and suppose γ(ℓ) is a segment of γ of length ℓ. For ε > 0,
there exists a height h = h(ℓ, ε) and a tubular neighborhood T of γ(ℓ) in D, such
that the graph of u over T is ε-close in the C2-topology, to γ(ℓ) × [h, +∞) when
γ is an Ai, and Σ is ε-close over T to γ(ℓ)× (−∞, h] when γ is a Bj. This follows
from our previous discussion by analytic continuation of the disks of radius δ on
Σ that converge to δ-disks on γ × IR as one converges to γ.

We denote by Σ(γ(ℓ)) this part of Σ, above (or below) height h, that is
ε-close to γ(ℓ) × [h,∞) (or to γ(ℓ)× (−∞, h]). As one goes higher (or lower), the
Σ(γ(ℓ)) converge to γ(ℓ) × IR. In particular, the horizontal projection of Σ(γ(ℓ))
to γ(ℓ)× IR is a quasi-isometry.

Now consider a vertex of Γ and let Ai and Bi be the edges of Γ at this
vertex. Let Fi be a horocycle at the vertex and Ei ⊂ D the inside of the horocycle
Hi ; cf. figure 9.

By choosing Hi (“small”) we can guarantee that each point of Fi is as close
to Ai ∪ Bi as we wish. Then for ε > 0, there exists an Hi such that the part of Σ
over Fi (we call Σ(Fi)) is ε-close to Ai × IR (and to Bi × IR). We choose ε small
so that the horizontal projection of Σ(Fi) to Ai × IR is a quasi-isometry onto its
image.

Let H1, . . . , H2k be small horocycles at each of the vertices of Γ (we assume

20



D

i

Fi

BiA i

H

Figure 9

Γ has 2k vertices) so that each Σ(Fi) is quasi-isometric to Ai × IR.

Let Ãi and B̃i denote the compact arcs on each Ai and Bi outside of each

Fi. For |h| sufficiently large and T a small tubular neighborhood of
k
⋃

i=1

(Ãi ∪ B̃i),

each component of the part of Σ over T projects horizontally to Ãi × [h,∞) or to
B̃i × (−∞, h], quasi-isometrically.

To prove Σ is conformally the complex plane lC, we write Σ =
∞
⋃

j=0
Kj where

each Kj is a disk, Kj ⊂
◦

Kj+1 for each j, and the conformal modulus of each

annulus Kj+1 −
◦

Kj is at least one.

Let K0 be the part of Σ over D −
(

T ∪
(

2k
⋃

i=1
Fi

))

. Choose h1 large so

that Σ∩ (IH× [−h1, h1]) contains an annulus K1 −K0, K1 compact, of conformal
modulus at least one. Similarly, choose h2 > h1, so that Σ ∩ (IH × [−h2, h2])
contains an annulus K2 − K1 of conformal modulus at least one. The part of Σ
outside these Kj is converging to geodesics ×IR, so the Kj exist for all j. Thus
each ideal Scherk surface is conformally lC.

Remark 7: We now give another proof that an ideal Scherk graph is conformally
lC. A complete Riemannian surface of finite total curvature is conformally equiv-
alent to a compact Riemann surface punctured in a finite number of points [Hu].
Since a Scherk graph is complete and simply connected, it suffices to show the
graph has finite total curvature.

Recall the notation in the proof of Lemma 2: Γ̂(ℓ) = ∂D(ℓ) = Ã(ℓ)∪ B̃(ℓ)∪
γ̂(ℓ). For n fixed, we denote by vn(ℓ) the minimal solution on D(ℓ), which equals
n on Ã(ℓ) and zero on the rest of the boundary of D(ℓ). As ℓ goes to infinity, the
vn(ℓ) converge to the function vn on D which equals n on the Ai, i = 1, . . . , k, and
zero on the Bj, j = 1, . . . .k. By Gauss-Bonnet formula, the graphs of the vn(ℓ)
have total curvature equal to 2π − 4k π

2
. Since the vn(ℓ) converge uniformly on
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compact sets to vn, the absolute value of total curvature of the graph of vn is at
most |(2 − 2k)π|.

After renormalization (let un = vn − µn), the un converge uniformly on
compact sets to a Scherk graph u defined on D. Thus the graph of u has finite
total curvature. Our analysis of the geometry of the Scherk end shows the total
curvature equals (2 − 2k)π.

6. extending an Ideal Scherk surface.

We now identify IH with the unit disk in the complex plane {z ∈ lC / |z| <
1}, and ∂∞IH with the unit circle S1. Let (d1, d2, . . . , dn) be n distinct points of S1,
ordered clockwise, and denote by P (d1, d2, . . . , dn) the convex hull of the n points
in IH (for the hyperbolic metric). We say P (d1, d2, d3, d4) is a regular quadrilateral

when the cross ratio
(d1 − d3)(d2 − d4)

(d2 − d3)(d1 − d4)
equals 2. When n is even, we make the

convention that ideal Scherk graphs on P (d1, d2, . . . , dn) take the value +∞ on
the geodesic sides [di, di+1], i even, and −∞ on the other sides when i is odd. We
denote by (Ai) the geodesics [d2i, d2i+1], and by Bi the geodesics [d2i+1, d2i+2].

Let P = ∂P (d1, d2, . . . , dn) be an ideal polygon. As in the previous section,

place a horocycle Hi at each vertex di, and let |P| =

i=n−1
∑

i=0

|didi+1| denote

the truncated perimeter, where d0 = dn and |didj | is the distance between the
horocycles Hi and Hj . |P| represents the total length of arcs of P exterior to
all the horocycles. The quantity |P|, as the distances |didj |, extends naturally to
geodesic polygons with vertices in IH, place horocycles only at vertices which are
at infinity. The same extension can be done for the quantities a(P) and b(P) if the
polygon P comes from a Dirichlet problem.

Remark 8: The utilization of the truncated perimeter |P| gives rise practically
to quantities associated to P which are independent of the choice of the horocyle
at each vertex di. This allows us to check the conditions of Theorem 1 for a choice
of horocycles a priori, and a restricted class of inscribed polygons. For, under the
hypothesis of Theorem 1, let P be an inscribed polygon, P 6= Γ. Notice that, on
the one hand at a vertex of P with a side Ai (necessarily unique), the quantity
|P| − 2a(P) does not depend on the choice of the horocycle at that point ; on
the other hand, for the remaining vertices, this quantity increases arbitrarily for
a choice of horocycles 〈〈small 〉〉 enough. Consequently, if the sides Ai alternate
on P, the quantity |P| − 2a(P) depends only on P. Thus the polygon P will
satisfy the first inequality (2) if and only if |P| − 2a(P) > 0. In all the other
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cases, for a choice of horocycles 〈〈small 〉〉 enough at vertices where no Ai arrives,
the quantity |P| − 2a(P) becomes arbitrarily large. The first condition of (2) is
automatically satisfied. Similarly, the second inequality is equivalent to checking
that |P| − 2b(P) > 0, when the Bj alternate on P (then this quantity depends
only on P).

Proposition 2. Let u be an ideal Scherk graph on a polygonal domain D =
P (a1, . . . , a2k) and K a compact of D. Let D0 = P (b1, b2, a1, b3, b4, a2 . . . , a2k)
be the polygonal domain D to which we attach two regular polygons E =
P (b1, b2, a1, a0) and E′ = P (a1, b3, b4, a2) ; E is attached to the side [a0, a1] =
[a2k, a1] of D and E′ to the side [a1, a2], cf. figure 10.

Then for all ε > 0, there exists (b′i)i=2,3 and v an ideal Scherk graph on
P (b1, b

′
2, a1, b

′
3, b4, a2 . . . , a2k) such that:

|b′i − bi| ≤ ε and ‖ v − u ‖C2(K)≤ ε .

+

+

∞+

∞+

b1

b2

a1

b3

b4

a2
a3

∞−

∞−

∞−

∞−

a0=a2k

E

E’

D

∞

∞

Figure 10

We will show that D0 satisfies the conditions of Theorem 1 except for some
particular inscribed polygons. This will allow us, by a small variation of (bi)i=2,3,
to ensure them completely. Also, it is easy to check that the regularity of E and
E′ permits the choice, step by step, of the horocycles such that:

|a0b1| = |b1b2| = |b2a1| = |a1a0| = a,

|a1b3| = |b3b4| = |b4a2| = |a2a1| = a.
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First we establish a Triangle inequality at infinity, using horocycles as usual to
define lengths.

Lemma 3. (Triangle inequality at infinity) For any triangle with vertices p,
q, and r (ideal or not) and small enough pairwise disjoint horocycles placed at the
vertices at infinity, we have: |pq| ≤ |pr|+ |rq|. If p and q are in ∂∞IH, and r ∈ IH,
the inequality is true independently of disjoint horocycles placed at p and q.

Proof: If r ∈ ∂∞IH, the inequality is true for small enough horocycles placed at r.
If r is in IH, and if p (or q) is at infinity, the geodesic [r, p] (or [r, q]) is asymptotic
to [p, q] at p (or q). Then ∀α > 0, there exists horocycles small enough so that
|pq| ≤ |pr| + |rq| + α. However, the quantity |pr| + |rq| − |pq| does not depend
on the horocycles placed at p and q if any. Then, passing to the limit, we get a
triangle inequality at infinity 0 ≤ |pr| + |rq| − |pq|.

In the particular case where r ∈ IH, p and q at infinity, denote by Hp and
Hq, the horocycles placed at p and q respectively. If r is in the convex side of one
of these horocycles, Hp say, so that |pr| = 0, change Hq until touching Hp (on
the geodesic [p, q]). The Triangle inequality becomes 0 ≤ |rq| which is true. If r is
outside the horocycles, change them, Hp say until r ∈ Hp, and use the previous
computation.

Lemma 4. All the inscribed polygons of D0 are admissible except the boundaries
of E, E′ and their complements D0 \ E, D0 \ E′.

Proof: For the entire polygon D0, a simple computation gives that, as for the
initial polygon D, we have a(Γ0) = b(Γ0), where Γ0 = ∂D0. We only prove the
inequalities (2) for values +∞. Then by symmetry of the problem, we will get the
inequalities for the −∞ data on the boundary.

We assume now that P = ∂P is an inscribed polygon of D0, P =
∂P (d1, . . . , dn) where the (di)i=1,...,n are vertices of D0, and moreover that P 6= D0,
P 6= E, P 6= E′, P 6= D0 \ E, P 6= D0 \ E′. By Remark 8, it is enough to prove
that we have |P| − 2a(P) > 0 for an a priori choice of disjoint horocycles Hi at di

(i = 1, . . . , n) when the sides Ai where v = +∞ alternate on P, we assume this
hypothesis from now on.

Moreover, some inequalities used in the proof of Lemma 4 implicitly assume
a further choice of horocycles at di (i = 1, . . . , n). This hypothesis allows us to
make that change ; cf. Remark 8.

Consider P ′ = ∂P , P ′ = P \ E′.

Claim: if |P ′| − 2a(P ′) > 0 then |P| − 2a(P) > 0.
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Proof of the claim: Consider P ′ ; if P ′ = P there is nothing to prove,
otherwise the geodesic [b3, b4] where v = +∞ is in P. For convenience, change
the notation so that P = ∂P (d1, b3, b4, d2 . . . , dn). Let q1 = [d1, b3] ∩ [a1, a2] and
q2 = [d2, b4] ∩ [a1, a2], cf. figure 11. Notice that if a1 ∈ P (resp. a2 ∈ P) then
q1 = a1 and |a1q1| = 0 by convention (resp. q2 = a2 and |a2q2| = 0). We have the
relations:

a(P) = a(P ′) + a,

|P| = |P ′| − |q1q2| + (|q1b3| + a + |q2b4|).
Now, |P ′| − 2a(P ′) > 0 hence by substitution:

|P| − 2a(P) > (|q1b3| + |q2b4|) − (a + |q1q2|)
= (|q1b3| + |q2b4|) − (2a − |a1q1| − |a2q2|)
= (|a1q1| + |q1b3| − a) + (|a2q2| + |q2b4| − a).

By the Triangle inequality at infinity (directly if q1 = a1 or q2 = a2):

|a1q1| + |q1b3| − a ≥ 0

|a2q2| + |q2b4| − a ≥ 0.

Hence, |P| − 2a(P) > 0 and the claim is proved.

P

a2

b4

q1

q2

a1

b3

∞+

∞+

∞+

∞−

∞−

E’

E

Figure 11

So it remains to prove |P ′| − 2a(P ′) > 0. For that, define P ′′ = ∂P ′′,
P ′′ = P ′ \ E.

The key point is a flux inequality for P ′′ coming from the initial solution u
defined on D. We have, P ′′ ⊂ D and there exists the divergence free field X = ∇u

W
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(W = (1 + |∇u|2)1/2) on P ′′. Moreover, on the arcs of P ′′, X = ν if u = +∞,
X = −ν if u = −∞, where ν is the outward normal of P ′′. Let us write P ′′ as
I0 ∪ I1 ∪ J : I0 is the union of all geodesics Ai (where u = +∞) contained in P ′′

and disjoint from [a0, a1], I1 = P ′′∩ [a0, a1] and J the union of the remaining arcs.

The flux of X along P ′′ = ∂P ′′ is zero, which yields:

0 = a(P ′′) + |I1| + Fu(J) + ρ.

Here the flux Fu(J) is taken on the compact part of J outside the horocycles and
ρ a residual term corresponding to the flux of X along some parts of horocycles.
Next we have the truncated perimeter of P ′′:

|P ′′| = a(P ′′) + |I1| + |J |.

Adding these last two equalities:

|P ′′| − 2(a(P ′′) + |I1|) = |J | + Fu(J) + ρ.

Remark that the condition on the Ai sides of P (alternate) yields: on the one
hand the quantity we have to estimate |P ′| − 2a(P ′) is independent of the choice
of horocycles, so this allows us to change this choice as necessary ; on the other
hand, we have that P ′′ 6= D and P ′′ 6= ∅. For, if P ′′ = D, a careful analysis of the
possibilities of inscribed polygons P with alternate Ai sides (using a0 and a1 are
vertices of P, cf. figure 10) leads to P = D0 or P = D0 \ E which are excluded
by hypothesis. Similarly, if P ′′ = ∅, then P ⊂ E or P ⊂ E′ and, in this case,
the only possibility of an inscribed polygon with alternate Ai sides is E which is
excluded too. Therefore J contains interior arcs and as the horocycles at vertices
of P ′′ diverge:

∃c0 > 0 so that |J | + Fu(J) ≥ c0.

We can ensure |ρ| < c0 for a suitable choice of horocycles. Hence we get the
following flux inequality:

|P ′′| − 2(a(P ′′) + |I1|) > 0. (3)

We have three cases to consider.

case 1. Suppose [a0, b1] ∪ [b2, a1] ⊂ P. In this case, E ⊂ P ′ and

a(P ′) = a(P ′′) + 2a,

|P ′| = |P ′′| + 2a,

|I1| = a.

The flux inequality (3) directly gives:

0 < (|P ′| − 2a) − 2(a(P ′) − a) = |P ′| − 2a(P ′).
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case 2. Suppose only one of the [a0, b1] or [b2, a1] is contained in P ; [a0, b1] say.
If we denote I1 = [a0, q] (cf. figure 12), we have:

a(P ′) = a(P ′′) + a,

|P ′| = |P ′′| − |I1| + a + |b1q|.

The flux inequality (3) yields:

0 < (|P ′| + |I1| − a − |b1q|) − 2(a(P ′) − a + |I1|),
0 < |P ′| − 2a(P ′) − |b1q| − |I1| + a

.

Hence, using the Triangle inequality at infinity (also valid if q = a1, which does
not occur), we obtain:

|P ′| − 2a(P ′) > |b1q| + |qa0| − a ≥ 0.

P 1

a0

b1

b2

a1

∞+

∞+

∞−

∞−

∞−

E

E’

q

I

Figure 12

case 3. The remaining case is for P ′ ⊂ D. Then the flux inequality (3) gives
directly the result for P ′ = ∂P ′. This completes the proof of Lemma 4.

The only obstructions to the existence of an ideal Scherk graph on D0 come
from the polygons E, E′ and their complements where we have some cases of
equality in (2). In the next lemma, we will ensure them by a perturbation of D0.

Lemma 5. There exists τ0 > 0 such that for all τ ∈ (0, τ0], there exist vτ , an ideal
Scherk graph on Dτ = P (b1, b2(τ), a1, b3(τ), b4, a2, . . . , a2k) with: |bi(τ) − bi| ≤ τ
for i = 2, 3.
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Proof: Let τ > 0 and consider moving b2 and b3 in the direction of a1, such
that |bi(τ) − bi| ≤ τ (i = 2, 3), cf. figure 13. By such variations, the quantities
(|a0a1| − |a1b2(τ)|+ |b2(τ)b1| − |b1a0|) and (|a2a1| − |a1b3(τ)|+ |b3(τ)b4| − |b4a2|),
which are independent of the choice of horocycles, increase. They are zero for the
initial polygons E et E′. Then there exists such variations b2(τ) and b3(τ) so that,
for τ > 0:

ϕ(τ) = |a0a1| − |a1b2(τ)| + |b2(τ)b1| − |b1a0| > 0,

ϕ(τ) = |a2a1| − |a1b3(τ)| + |b3(τ)b4| − |b4a2| > 0.

D

+

∞+

a0=an

b1

a1

b4

a2
a3

∞+

∞+
b3(  )τ

b2(  )τ

∞−

∞−

∞−

∞−

E

E’

∞

Figure 13

Hence, for the polygon Γτ = ∂Dτ , we have the condition (1) of Theorem 1,
a(Γτ ) = b(Γτ ) for all τ small. On the other hand, for this choice of variation, the
ϕ(τ)-perturbed polygons Eτ = P (b1, b2(τ), a1, a0) and E′

τ = P (a1, b3(τ), b4, a2)
satisfy

|∂Eτ | − 2a(∂Eτ) = |∂E′

τ | − 2b(∂E′

τ) = ϕ(τ) > 0,

and the inequalities (2) are true for these polygons (use Remark 8). A similar
computation gives the inequalities (2) for Dτ \ Eτ and Dτ \ E′

τ .

In order to prove the inequalities (2) for all other inscribed polygons of Dτ ,
we use the Lemma 4. For the inscribed polygons P of D0 (except ∂D0 and those
excluded by Lemma 4), the inequalities (2) are strict and so, are stable by small
enough perturbations of vertices (and attached horocycles). There are a finite
number of such admissible polygons ; thus there exists τ0 > 0 such that for all
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0 < τ ≤ τ0, and variations b2(τ) and b3(τ) as above, the conditions of Theorem 1
are satisfied. This ensures the existence of vτ on Dτ .

Proof of Proposition 2: The main step of the proof consists in establishing that
lim
τ→0

∇vτ D
= ∇u. For that, consider the divergence free fields associated to vτ and

u: Xτ =
∇vτ

Wτ
and X =

∇u

W
(with Wτ = (1 + |∇vτ |2)1/2, W = (1 + |∇u|2)1/2) ; we

will prove that lim
τ→0

Xτ D
= X .

On the boundary, let ν be the outer pointing normal to ∂D. On ∂D \
([a0, a1] ∪ [a1, a2]), vτ and u take the same infinite values. Hence Xτ = X = ±ν.
On [a0, a1], u = +∞ so X = ν. On the other side, consider the boundary of
the domain Eτ truncated by horocycles. Denote the four horocycle arcs by γ̃. An
estimate of the flux of Xτ yields:

0 = |a0b1| − |b1b2(τ)| + |b2(τ)a1| +
∫

[a′
0
,a′

1
]

〈Xτ , (−ν)〉 ds + Fvτ
(γ̃),

the integral is on [a′
0, a

′
1], the compact part of [a0, a1] joining the horocycles. Then

0 = −ϕ(τ) +

∫

[a′
0
,a′

1
]

(1 − 〈Xτ , ν〉) ds + Fvτ
(γ̃).

For a diverging sequence of nested horocycles, we get the convergence of the
integral on the whole geodesic and the equality:

∫

[a0,a1]

(1 − 〈Xτ , ν〉) ds = ϕ(τ).

In the same way, on [a1, a2] we get a convergent integral

∫

[a1,a2]

(1 + 〈Xτ , ν〉) ds = ϕ(τ).

Because of the value of X on [a0, a1] ∪ [a1, a2], for any family α of disjoint arcs of
∂D

∣

∣

∣

∣

∫

α

〈X − Xτ , ν〉 ds

∣

∣

∣

∣

≤
∫

[a0,a1]∪[a1,a2]

|〈X − Xτ , ν〉| ds = 2ϕ(τ). (4)

For the study of the field Xτ −X on the interior of D, we consider the flux
of Xτ − X along a level curve through an interior point p. This level curve goes
to the boundary of D where we create a closed cycle by attaching short curves
and a curve on the boundary of D to the level curve. Then the flux is zero along
the closed cycle, and small along the curve we attach to the level curve. Thus the
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flux is small along the level curve, which implies the tangent planes are close, then
bounded curvature of the graphs gives the solutions are close, we now make this
precise.

As in the previous section, Σ the graph of u and Στ the graph of vτ are
stable, complete and satisfy uniform curvature estimates. Then

∀µ > 0, ∃ρ > 0 (independent of τ) such that ∀p ∈ D :

q ∈ Στ ∩ B((p, vτ (p)), ρ) =⇒‖ nτ (q) − nτ (p) ‖≤ µ.

Here, nτ denotes the normal to Στ pointing down and B((p, vτ(p)), ρ) the ball of
radius ρ, centered at (p, vτ (p)) ∈ IH× IR. We have the same estimates for Σ.

Fix any µ > 0 and p ∈ D, this gives a ρ1 ≤ ρ/2 (independent of τ)
such that ∀q ∈ D(p, ρ1), the disk of IH with center p and radius ρ1, we have
|u(q) − u(p)| ≤ ρ/2.

Assume now that ‖ n(p) − nτ (p) ‖≥ 3µ. Let Ωτ (p) be the connected
component of {u−vτ > u(p)−vτ (p)} with p in its boundary, and Λτ the component
of ∂Ωτ containing p. Λτ , as level curve of u − vτ , is piecewise smooth. Above
Λτ ∩ D(p, ρ1), there are two parallel curves: σ ⊂ Σ and στ ⊂ Στ . Moreover on σ:

∀q ∈ Λτ ∩ D(p, ρ1), |(q, u(q))− (p, u(p))| ≤ ρ1 + ρ/2 ≤ ρ

Hence ‖ n(q) − n(p) ‖≤ µ.

By a vertical translation of height (vτ (p) − u(p)):

(q, vτ (q)) ∈ στ and vτ (q) − vτ (p) = u(q) − u(p).

Then
‖ (q, vτ (q)) − (p, vτ (p)) ‖≤ ρ and ‖ nτ (q) − nτ (p) ‖≤ µ.

Combining the two last estimates with the assumption on the normals at p, we
obtain:

∀q ∈ Λτ ∩ D(p, ρ1), ‖ n(q) − nτ (q) ‖≥‖ n(p) − nτ (p) ‖ −2µ ≥ µ.

Apply Lemma A.1 bellow to conclude
∫

Λτ∩D(p,ρ1)

〈X − Xτ , η〉 ds ≥ ρ1µ
2

2
.

As in the proof of the maximum principle, 〈X −Xτ , η〉 is non negative outside the
isolated points where ∇(u−vτ ) = 0 ; then for all compact arcs β ⊂ Λτ , containing
Λτ ∩ D(p, ρ1) we have:

∫

β

〈X − Xτ , η〉 ds ≥ ρ1µ
2

2
. (5)
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By the maximum principle, Λτ is non compact in D ; so its two infinite
branches go close to ∂D. Then there exists a connected compact part β of Λτ ,
containing Λτ ∩ D(p, ρ1), and two arcs γ̃ in D small enough and joining the
extremities of β to ∂D. Eventually truncating by a family of horocycles, the flux
formula for X − Xτ yields:

0 =

∫

β

〈X − Xτ , (−η)〉 ds +

∫

α

〈X − Xτ , ν〉 ds + Fu−vτ
(γ̃ ∪ γ̃′),

where α is contained in ∂D and γ̃′ is contained in the horocycles and correctly
oriented. Using (4) and (5) we obtain

ρ1µ
2

2
≤ 2ϕ(τ) + Fu−vτ

(γ̃ ∪ γ̃′).

When the length of γ̃ ∪ γ̃′ goes to zero, we conclude

ρ1µ
2

2
≤ 2ϕ(τ).

Hence,

ϕ(τ) ≤ ρ1µ
2

4
=⇒‖ X(p) − Xτ (p) ‖≤‖ n(p) − nτ (p) ‖≤ 3µ.

This gives precisely the behavior of Xτ and vτ for τ close to zero. After the
renormalisation vτ (p0) = u(p0) for a fixed p0 ∈ D, we have lim

τ→0
vτ D

= u. The

convergence being uniform and C∞ on compact sets, for τ small enough we can
ensure ‖ vτ −u ‖C2(K)≤ ε. Using Lemma 5, the existence of the ideal Scherk graph
of Proposition 2 is established.

We present here the geometric estimate of flux along level curves, we need
at the end of the proof of Proposition 2.

Lemma A.1. Let w and w′ be two minimal graphs of IH × IR, above a domain
Ω ⊂ IH ; n and n′ their respective normals. Then at any regular point of w′ − w:

〈X ′ − X, η〉IH ≥ ‖ n′ − n ‖2

4
≥ |X ′ − X |2

4
,

where X (resp. X ′) is the projection of n (resp. n’) on IH and η =
∇(w′ − w)

|∇(w′ − w)|
orients the level curve at this regular point.

Proof: We write X = ∇w
W , X ′ = ∇w′

W ′ (the normals point down). Classically
[Co-K],

〈X ′ − X,∇w′ −∇w〉IH = 〈n′ − n, W ′n′ − Wn〉IH×IR

= (W + W ′)
(

1 − 〈n, n′〉IH×IR

)

= (W + W ′)
‖ n′ − n ‖2

2
.
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Also
|∇w′ −∇w|

W ′ + W
≤ |∇w′|

W ′
+

|∇w|
W

≤ 2.

Hence 〈X ′ − X, η〉 =
W + W ′

|∇(w′ − w)|
‖ n′ − n ‖2

2
≥ ‖ n′ − n ‖2

4
.

The last inequality of Lemma A.1 simply arises by projection.

References.

[A] U. Abresch: Personal Communication.

[Co-K] P. Collin, R. Krust: Le problème de Dirichlet pour l’équation des surfaces
minimales sur des domaines non bornés ; Bull. Soc. Math. France 119
(1991), p.443–462.
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