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Abstract  

The cross-correlation relaxation rate constant between dipolar interaction and chemical shift 

anisotropy (interference term) is of considerable interest for structural and dynamical 

determinations. The present study focuses on methods related to its impact on longitudinal 

nuclear relaxation and especially to a procedure based on the applications of a train of 

 pulses applied to both nuclei involved in such a process (M.H. Levitt and L. Di Bari, Bull. 

Magn. Reson. 16, 94-114 (1994)). The resulting steady state leads in principle to a 

straightforward determination of the relevant interference term. Simulations taking into 

account inhomogeneity of the radio-frequency (rf) field show that artifacts are responsible for 

instabilities which in practice preclude such a determination. An alternative method making 

use of a very limited number of rf pulses, combined with an appropriate filter, proves to be 

rather robust in view of achieving a proper measurement of the required interference term.  
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INTRODUCTION 

Besides classical nuclear relaxation rate constants (longitudinal, 1R , and transverse, 2R ), cross-

relaxation rate constants (depending solely on the dipolar interaction between two nuclei 

denoted for instance by H and C  in such a way that we can use the notation CH for the 

corresponding cross-relaxation rate constant), there exists a variety of other relaxation rate 

constants called cross-correlation rates (or, alternatively, interference terms) which involve 

two different relaxation mechanisms (hence the alternative terminology). These quantities 

have proved to be of considerable interest due to the nature of the information they hold
1
. For 

instance, we shall be interested in this paper in cross-correlation between the dipolar 

interaction CH and the so-called chemical shift anisotropy (csa) which arises from a shielding 

tensor (say at nucleus C) having non-identical diagonal elements. The corresponding cross-

correlation rate, denoted in the following by )(),( CHdCcsa ,  thus involves, in addition to a 

dynamic part, information about the dipolar interaction (in 
3/1 CHr , r being the internuclear 

distance) but also about the shielding tensor (usually expressed as C , which is the 

difference between parallel and perpendicular components of the shielding tensor supposed to 

be of axial symmetry), and ultimately depends on the relative orientation of csa and dipolar 

tensors. From such interference terms, it is indeed possible to determine the characteristics of 

shielding tensors in the liquid state
2
. The influence of csa-dipolar interference terms on NMR 

experiments is well understood
3
. In particular, as far as transverse relaxation

4
 is concerned 

and provided that the two involved nuclei are J coupled, this phenomenon manifests itself by 

a differential broadening of the two lines in the corresponding doublet. This is the basis of 

transverse interference term measurements, especially for the amide 
15

N-
1
H pair in proteins

5-8
, 

and also of the TROSY experiment
9
 which selects the sharpest line of the 

15
N-

1
H doublet (its 

width being governed by the difference of two relaxation contributions) thus making feasible 

NMR investigation of larger proteins. The longitudinal counterpart, although often 
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considered
10-14

 in the past, is not so easily accessible and is less frequently used for dynamical 

studies in proteins
7
. The subject of this paper is precisely the determination of heteronuclear 

longitudinal csa-dipolar cross-correlation rates, in particular with regard to an appealing 

method published some time ago by Levitt and Di Bari
15

. This method rests on the application 

of  pulse trains which lead to a steady state depending on the considered interference term. 

After some theoretical developments confirming the validity of the method, it will be shown 

by appropriate simulations that pulse imperfections have unfortunately a deleterious effect on 

experimental results. It is then concluded that transient experiments, because they require a 

limited number of radio-frequency pulses, are to be preferred and we shall propose such an 

experiment which is based on a gradient filter and yields directly the csa-dipolar cross-

correlation rate. 

 

THEORY 

Consider a 
13

C-
1
H two spin ½ system; its longitudinal magnetization modes are governed by 

the extended Solomon equations
16

 (
H

zI and 
C

zI are respectively proton and carbon longitudinal 

magnetization, while 
C

z

H

z II2 is the so-called longitudinal order, zero at equilibrium and which 

can be created by relaxation or by manipulation of antiphase transverse magnetization): 
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As indicated above, 1R  refer to specific relaxation rate constants, CH is the cross-relaxation 

rate constant and dcsa,  are the cross-correlation rates we are interested in. Because dHcsa ),( is 

generally negligibly small, it can be dropped from eq. (1) whereas eq. (3) simplifies as: 
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Suppose that we have at hand a procedure capable of maintaining C

zI at zero without affecting 

the evolution of the longitudinal order C

z

H

z II2 . Eq. (4) becomes  
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At long times, a steady state is reached 
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This result is consistent with the findings of Levitt and Di Bari
15

 within the HME 

(Homogeneous Master Equation) approach; the experimental procedure that they proposed for 

achieving this goal consists of a train of  pulses applied simultaneously to proton and 

carbon-13. The steady state can be characterized by taking into account the three (extended) 

Solomon equations. It will be assumed that the inter-pulse intervals   are short enough (with 

respect to relaxation times) so that the relevant differential equations can be solved by means 

of a first order expansion, i.e. (G standing for 
H

zI , 
C

zI or 
C

z

H

z II2 ) 

   0)()0()( t
dt

dG
GG         (7) 

The steady state condition can be written as 

  )()0( GGGss           (8) 

where denotes the action of the  pulses on the considered quantity, i.e.   H

z

H

z II  , 

  C

z

C

z II  ,   C

z

H

z

C

z

H

z IIII 22  . It can be noticed that  )(G  can be expressed according 

to the steady state value of the three quantities involved in this problem. It is then possible to 

establish an equation such as (8) for these three quantities and to arrive at a set of three 
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equations yielding their steady state values. We can write (with CH  , dCcsa ),('    and 

with the simplified notations C

eqss

H

z IIZ /)(1  , C

eqss

C

z IIZ /)(2  , C

eqss

C

z

H

z IIIZ /)2(3  ).  
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Solving this system of three linear equations leads to 
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It is interesting to go back to the third of eqs. (9) and to notice that 2Z is negligible (this can 

be understood from the fact that carbon magnetization is almost entirely saturated, and could 

be confirmed by a numerical evaluation of the second of eqs. (10)). We thus obtain  

 
HCHC R

Z
R

Z
1

2

1

3

'
)1(

' 
         (11) 

This result is entirely analogous to eq. (6) and indicates the possibility of determining 

dCcsa ),( from the measurement of the longitudinal spin order which is better achieved with 

proton detection so as to take advantage of the highest possible sensitivity. In principle, due to 

the zeroing of proton longitudinal magnetization (through the  pulse train), main signals 

arising from protons bonded to carbon-12 should be absent. This should allow for the easy 

observation of an antiphase doublet (occurring at the position of carbon-13 satellites in the 

proton spectrum) which would result from the application of a /2 proton read pulse (this 

pulse converts the longitudinal spin order 
C

z

H

z II2  into C

z

H

y II2 ). Moreover,  pulse 
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imperfections should not be cumulative as far as the detection of 3Z  is concerned. They just 

result in a slight modification in 3Z  values in the right-hand side of the third of eqs. (9) and 

tend to slightly lower the result given by (11). It turns out that this intuitive view is 

incomplete and that refocusing of transverse magnetization will severely alter the final result. 

This can be assessed by simulations the principle of which is detailed in the next section. 

 

SIMULATIONS OF PULSE SEQUENCES   TAKING INTO ACCOUNT RF FIELD 

INHOMOGENEITY 

The principle of such simulations has been published in a previous paper
17 

for the case of a 

single spin. The radio-frequency field ( 1B ) variation along the sample tube axis is assumed to 

be the main cause of inhomogeneity. This corresponds to an experimental arrangement where 

the rf coil is of the saddle shaped design, the static magnetic field being produced by a vertical 

cryomagnet. 1B inhomogeneity can be specified either by a series of number related to 

1B values from top to bottom of the sample (measured experimentally) or by a Gaussian curve 

supposed to represent the 1B evolution along the tube axis. The sample is decomposed into 

elementary slices (in practice, between 100 and 500 slices are defined), the flip angle 

 associated with a given rf pulse being supposed to be perfectly defined for each of them: 

 max

max1

1

)(

)(


B

B slice

slice            (12) 

sliceB )( 1  is extracted from the list of 1B values, max1 )(B is the maximum value in this list and 

max is the corresponding flip angle ( in our case). The objective is to determine the 

evolution of spin quantities in each slice and eventually calculate an average over all slices. 

This is easily performed for a single spin system because, in that case, this amounts to 
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rotations of the magnetization components in the rotating frame (around x or y for rf pulses; 

around z for evolution periods, according to resonance frequency in the rotating frame). 

In the case of J-coupled spin systems, it is well known that a proper description of the various 

spin states requires other quantities than the three magnetization components. For example, if 

i

xI is appropriate for describing an in-phase doublet (i assumed to be J coupled with j), we 

must resort to the quantity j

z

i

x II2  for describing the corresponding antiphase doublet 

(obtained after an evolution period of duration equal to ijJ2/1 ). In fact, any spin state can be 

described by an expansion over a proper basis of cartesian operator products of the form
16

  

 



n

j

r

jrr SG
1

)(N          (13) 

where )(r

jS is jE (identity), 
j

xI , j

yI or j

zI (spin operators of spin j), n being the number of spins 

in the considered system and rN a normalization factor such as the set of rG operators is 

normalized and orthogonal ( rs being the Kronecker symbol) 

 rssrGGTr )(          (14) 

As, for a given slice, rf pulses are not pure   pulses, a variety of spin states are created and 

one has to deal with the evolution of rG under the application of rf pulses and of evolution 

periods. Concerning rf pulses, the situation is quite simple as spin operators are simply rotated 

according to the actual flip angle pertaining to the considered slice (see (12)). For example, 

under an x)( pulse, zI  transforms into  sincos yz II  . 

Evolution periods, i.e. transformation between rf pulses due to chemical shifts and J coupling 

constants are more difficult to handle. For the sake of simplicity, we have dealt here with a 

first order hamiltonian 
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i
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i IIJIH 
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which can be written as an expansion over the rU basis 

 
r

rrGaH           (16) 

It can be noticed from (15) that all operators in the expansion (16) commute. Now, let us 

define the density operator at the beginning of the considered evolution period as 

 s

s

sGb)0(          (17) 

We have to establish the form of the density operator )(t  at the end of this period in order to 

find out which quantities are present and therefore the state of the spin system prior to the 

next pulse(s). One has 

 )exp()0()exp()( iHtiHtt          (18) 

which can be rewritten as (according to the expansions (16) and (17) and owing to the fact 

that all operators in (16) commute) 

  
r

rr

r

srr

s

s GaitGGaitbt )]exp([)]exp([)(     (19) 

Two situations can be encountered: 

- sG commutes with each rG of the hamiltonian; it therefore remains as it was at the 

beginning of the evolution period and the contribution ssGb is unchanged. 

- sG does not commute with one (or more) of the operator products in (16) and some 

calculations are necessary. 

In order to illustrate this latter point, let us denote by 1rG and 2rG  two operators that, 

supposedly, do not commute with sG . In (19) sG is transformed according to the following 

expression 

 )exp()]exp())[exp(exp( 11222211 rrrrsrrrrs GaitGaitGGaitGatiG   (19) 
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Again, the way in which (19) is written is made possible by the fact that 1rG and 

2rG commute: (19) amounts to calculations of the type )exp()exp( rrsrr GaitGGait  which 

are easily performed
18

 with the help of the two following relations 
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in addition to the ones below, which are valid only for spins 1/2 
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As an example, let us consider that rrGa  corresponds to j

z

i
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evolution of i
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Thus it becomes possible to run simulations for any complicated experiment. Calculations are 

performed independently for each slice starting from the equilibrium density operator 


i

i

zieq I ( : gyromagnetic ratio). Each pulse in the sequence possibly rotates the 

operators involved in the expression of the density operator which prevails just before the 

pulse (denoted  , identical to eq at the beginning of the simulation). This results in a new 

density operator denoted  which serves as )0( in equation (18) for the subsequent 

evolution interval. The procedures outlined above lead to the density operator  pertaining to 

the next pulse… The process is repeated step by step until the end of the sequence. 
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 RESULTS AND DISCUSSION (THE LEVITT AND DI BARI SEQUENCE) 

This sequence can be schematized as follows 

 )()(2/])()([ 11113 HAcqHHC n         (22) 

As explained in the theory section, it is rather appealing in the sense that a steady state is 

normally reached (as far as the number n of cycles is sufficient) and should lead to the csa-

dipolar term without ambiguity (see (6) and (11)) through the amplitude of the longitudinal 

two-spin order which is transformed into an antiphase doublet by the )(2/ 1 H read-pulse.  

However, this statement implies ideal  pulses and this is far from being warranted due to the 

(more or less) inevitable inhomogeneity of the 1B  field generated by the rf coil of any NMR 

probe. Actually, this inhomogeneity is responsible for the creation of transverse magnetization 

just because the flip angle is not 180° in all the regions of the sample; in turn, this transverse 

magnetization evolves under chemical shifts and coupling constants with the possibility of 

refocusing by subsequent rf pulses. This process is unpredictable on the basis on simple 

arguments and, to be fully understood, requires simulations as the ones described in the 

previous section. 

As a matter of fact, although the antiphase doublet originating from the longitudinal two-spin 

order is generally observable in satisfactory conditions (fig. 1), various experimental 

observations reveal serious difficulties for reaching the expected steady state (the relevant 

signal amplitude can indeed be evaluated by means of the values of relaxation parameters, 

known from conventional experiments). An especially disturbing result is shown in figure 2 

where the amplitude of the antiphase doublet (thus of the longitudinal two-spin order created 

by the sequence) is plotted as a function of the cycles in the pulse train. The experimental 

result is seen to be quite different of the expected regular build-up such as the one shown at 

the top of figure 3. The use of composite pulses in place of standard  pulses does not seem to 

improve this result. The experiment has been repeated showing that reproducibility cannot be 
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questioned, at least for the asymptotic behavior, which is for a large number of cycles. This 

seemingly anomalous behavior arises therefore from the experimental conditions and, as 

explained above, the only way to discover the sensitive parameter(s) is to perform extensive 

simulations. In the case of perfect 1B homogeneity, normal results (see the top curve of figure 

3) are obtained as expected. This is also true when 1B  inhomogeneity is taken into account 

provided that the on-resonance condition is respected (i.e. identical resonance and transmitter 

frequencies). However, an offset between these two frequencies, even as low as 1 Hz, 

produces dramatic changes. This is shown in figure 3 and it can be noticed that the lower trace 

exhibits the same trend as the experimental results of figure 2. In fact, this is not the only 

manifestation of instability as revealed by simulations performed for different  values (see 

(22)). Although one observes an asymptotic behavior in every case, it is the asymptotic value 

itself which exhibits a sort of chaotic evolution. This is illustrated by the plots of figure 4 

which definitely preclude the use of the method as far as quantitative results are required. 

Rather than striving to reduce rf field inhomogeneity to an hypothetical low level, we propose 

in the next section another approach, hopefully and more robust and much less sensitive to 

such an inhomogeneity. 

 

A NOVEL APPROACH FOR MEASURING THE LONGITUDINAL CSA-DIPOLAR 

INTERFERENCE TERM (PRELIMINARY) 

A simple way for accessing to the csa-dipolar interference term rests on the consideration of 

extended Solomon equations and more especially on eq. (3) which tells us that, starting from 

equilibrium, the longitudinal two-spin order can be created via relaxation phenomena, based 

primarily on this interference term. Thus, the latter can be directly deduced from the 

measurement of the longitudinal two-spin order, at least at short times so as to avoid 

contributions from carbon longitudinal magnetization, itself coupled to the longitudinal two-
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spin order by this interference term and also coupled to proton magnetization by cross-

relaxation. For obvious sensitivity reasons, it is better to measure the longitudinal two-spin 

order from the antiphase doublet which results from the application of a )(2/ 1 H pulse. This 

implies however that all other contributions have been filtered out. An easy way to achieve 

this objective is shown in figures 5 and 6; first, perturb the longitudinal 
13

C magnetization (for 

instance by saturation), then let the longitudinal two-spin order to develop under the relevant 

interference term (mixing interval m ), eliminate all contributions but the longitudinal two-

spin order by an appropriate filter and finally apply a )(2/ 1 H read-pulse in order to measure 

the antiphase doublet. The filter can be made with radio-frequency field gradient pulses 

according to a methodology previously published
19

 (figure 5). Basically, it consists in 

applying, to both nuclei, rf field gradient ( 1B  gradient) pulses originating from the same coil 

and satisfying the Hartmann-Hahn condition CCHH BB 11    so that these two nuclei undergo 

identical nutation angles. Of course, a mismatch of this condition would have deleterious 

effects since it corresponds to the vital part of the experiment. Because one is dealing with 

gradient pulses, longitudinal magnetization is destroyed whereas half the longitudinal two-

spin order is preserved (by virtue of the identical nutation angles). The efficiency of this filter 

is assessed by the experimental results shown in figure 6 for two different mixing times. 

However, the rf field inhomogeneity does not correspond to a true rf field gradient. Thus, it is 

worthwhile to reconsider this experiment with uniform gradients. 

Thanks to the formal equivalence
20

 between 1B  gradients and 0B  gradients (static field 

gradients), it is possible to devise a sequence homologous to the one of figure 5 and which 

can be run with spectrometers equipped with 0B  gradients, more widespread than those 

possessing 1B  gradient capabilities. Such a sequence involving a 0B  gradient filter is shown 

in figure 7 with (optional) refocusing of the antiphase doublet which can then be decoupled 
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from 
13

C (for improving the signal-to-noise ratio and simplifying the spectrum). Before the 

first )(2/ 1 H  pulse there is no proton transverse magnetization; consequently, the gradient 

acts first on carbon-13 which is subsequently taken back to the z axis (second 

)(2/ 13C pulse). Thereafter proton is flipped to the x,y plane and is subjected to a gradient 

four times more intense as the first one. We can thus notice a perfect analogy with the 1B  

gradient filter, recognizing that we end up with the desired antiphase doublet which can be 

possibly refocused. Experimental results obtained with this sequence are reported in figure 8 

along with a recalculated build-up curve. The excellent agreement between theory and 

experiment illustrates the efficiency and the robustness of the present method.  

 

CONCLUSION 

In NMR experiments involving pulse trains, inhomogeneity of the radio-frequency field has 

always been a plague. It can sometimes be compensated for by judicious phase combinations. 

Concerning the Levitt Di Bari sequence, aimed at determining the csa-dipolar term and which 

seems at first sight of real interest because it is based on a steady state situation, 

autocompensated pulses appear to be of little help. This is due to spurious transverse 

components which evolve in a complicated manner, difficult to rationalize. The only tractable 

approach is to simulate the fate of the different spin states which build up in the course of the 

sequence. These simulations have revealed a rather chaotic behavior which makes this 

experimental method difficult to use on a routine basis. We therefore tried to devised 

procedures employing a limited number of rf pulses, leaving to a proper filter the task of 

selecting the relevant information. We have shown that a simple gradient filter (employing  

1B  or 0B  gradients) constitute a reliable alternative. The preliminary results presented here 

are encouraging and should be easily extended to two-dimensional experiments opening the 
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way to the production of diagrams yielding site by site the value of longitudinal csa-dipolar 

interference terms.  
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Figure Captions 
 

Figure 1. Proton spectrum (400 MHz) of formic acid (non labeled) obtained by a simple read-

pulse following the application of a double train of  pulses (acting on both proton and 

carbon-13, see (22)): 50 cycles separated by 50 ms. Note the antiphase doublet (of splitting 

JCH) reflecting the amplitude of the longitudinal two-spin order (created by the pulse train) 

and the relatively satisfactory elimination of the signal corresponding to protons bonded to a 

carbon-12. 

 

Figure 2. Experimental intensity of the longitudinal two-spin order (in %, relatively to 

equilibrium magnetization) created by the double train of  pulses, as a function of the 

number of cycles (50 ms between consecutive pulses). 

 

Figure 3. Simulations corresponding to experimental results such as those of figure 2. The 

three curves correspond (from top to bottom) to proton offset of 0 Hz, 1 Hz and 5 Hz, 

respectively. In addition to JCH = 220 Hz, the following relaxation parameters have been used 

(ambient temperature; measurements at 400 MHz): HR1 0.17 s
-1

, CR1 0.09 s
-1

, CH 0.035 

s
-1

, dCcsa ),( 0.018 s
-1

. 

 

Figure 4. Evolution of the asymptotic values (such as those in figure 3) as a function of the 

interval  between consecutive pulses in the double train of  pulses, considered in figures 1-

3. The curves have been obtained for the same offset values as in figure 3. 

 

Figure 5. A pulse sequence for measuring the csa-dipolar interference (cross-correlation) term 

with rf gradient filters. Gradients arise from the natural inhomogeneity of a standard rf coil 
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which has the peculiarity to be doubly tuned for both nuclei (
1
H and 

13
C). g1 (1 ms duration) 

and g2 (2ms duration) are just used for saturating carbon magnetization with a sufficient 

irradiation strength to avoid any off-resonance effect. The mixing interval m allows for the 

construction of longitudinal two-spin order through cross-correlation. The two 2/ pulses 

(along with the indicated phase cycle) are such that the sign of the longitudinal two-spin order 

is changed every second scan in synchronism with the acquisition sign (so as to eliminate 

spurious components). The filter includes the two rf gradient pulses g3 (1ms duration) which 

must satisfy the Hartmann-Hahn condition (see text). The last 2/  pulse converts the 

longitudinal two-spin order into an observable antiphase doublet. 

 

Figure 6. Experimental results obtained on pure 
13

C labeled formic acid (degree of labeling: 

99%) with the sequence of figure 5 for two different mixing times: 2 s (top) and 12 s 

(bottom). Experiments performed at ambient temperature with an home-made spectrometer 

(
1
H : 200 MHz); 64 scans were accumulated. The temperature of the sample was kept 

constant by an air flow. 

 

Figure 7. The homologous sequence of the one in figure 5 with static field gradient pulses. 

Bipolar gradients are used (for improving the experiment quality) with CH  /g/g 21  . The 

phase cycling has the same purpose as the one indicated in figure 5. At the level of the dotted 

vertical line, only the antiphase doublet exists. It can be (optionally) refocused by the sub-

sequence displayed on the right of the dotted vertical line. 

 

Figure 8. Experimental data (dots) obtained on 
13

C labeled formic acid (degree of labeling: 

99%) at ambient temperature with the sequence of figure 7 (Bruker DRX spectrometer 

operating at 9.4 T; proton resonance frequency: 400 MHz). These data represent the intensity 
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of the longitudinal two-spin order as a function of the mixing time. The theoretical curve has 

been calculated with the parameters given in the legend to figure 3. 
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