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INTRODUCTION

Besides classical nuclear relaxation rate constants (longitudinal, 1 R , and transverse, 2 R ), crossrelaxation rate constants (depending solely on the dipolar interaction between two nuclei denoted for instance by H and C in such a way that we can use the notation CH  for the corresponding cross-relaxation rate constant), there exists a variety of other relaxation rate constants called cross-correlation rates (or, alternatively, interference terms) which involve two different relaxation mechanisms (hence the alternative terminology). These quantities have proved to be of considerable interest due to the nature of the information they hold 1 . For instance, we shall be interested in this paper in cross-correlation between the dipolar interaction CH and the so-called chemical shift anisotropy (csa) which arises from a shielding tensor (say at nucleus C) having non-identical diagonal elements. The corresponding crosscorrelation rate, denoted in the following by

) ( ), ( CH d C csa



, thus involves, in addition to a dynamic part, information about the dipolar interaction (in 3 / 1 CH r , r being the internuclear distance) but also about the shielding tensor (usually expressed as C   , which is the difference between parallel and perpendicular components of the shielding tensor supposed to be of axial symmetry), and ultimately depends on the relative orientation of csa and dipolar tensors. From such interference terms, it is indeed possible to determine the characteristics of shielding tensors in the liquid state 2 . The influence of csa-dipolar interference terms on NMR experiments is well understood 3 . In particular, as far as transverse relaxation 4 is concerned and provided that the two involved nuclei are J coupled, this phenomenon manifests itself by a differential broadening of the two lines in the corresponding doublet. This is the basis of transverse interference term measurements, especially for the amide 15 N-1 H pair in proteins [5][6][7][8] , and also of the TROSY experiment 9 which selects the sharpest line of the 15 N-1 H doublet (its width being governed by the difference of two relaxation contributions) thus making feasible NMR investigation of larger proteins. The longitudinal counterpart, although often considered [10][11][12][13][14] in the past, is not so easily accessible and is less frequently used for dynamical studies in proteins 7 . The subject of this paper is precisely the determination of heteronuclear longitudinal csa-dipolar cross-correlation rates, in particular with regard to an appealing method published some time ago by Levitt and Di Bari 15 . This method rests on the application of  pulse trains which lead to a steady state depending on the considered interference term.

After some theoretical developments confirming the validity of the method, it will be shown by appropriate simulations that pulse imperfections have unfortunately a deleterious effect on experimental results. It is then concluded that transient experiments, because they require a limited number of radio-frequency pulses, are to be preferred and we shall propose such an experiment which is based on a gradient filter and yields directly the csa-dipolar crosscorrelation rate.

THEORY

Consider a 13 C-1 H two spin ½ system; its longitudinal magnetization modes are governed by the extended Solomon equations 16 is the so-called longitudinal order, zero at equilibrium and which can be created by relaxation or by manipulation of antiphase transverse magnetization):
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As indicated above, 
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are the cross-correlation rates we are interested in. Because
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 is generally negligibly small, it can be dropped from eq. ( 1) whereas eq. ( 3) simplifies as:
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Suppose that we have at hand a procedure capable of maintaining C z I at zero without affecting the evolution of the longitudinal order
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. Eq. ( 4) becomes
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At long times, a steady state is reached

eq C HC d C csa ss C z H z I R I I 1 ), ( ) 2 (   (6) 
This result is consistent with the findings of Levitt and Di Bari 15 within the HME (Homogeneous Master Equation) approach; the experimental procedure that they proposed for achieving this goal consists of a train of  pulses applied simultaneously to proton and carbon-13. The steady state can be characterized by taking into account the three (extended) Solomon equations. It will be assumed that the inter-pulse intervals  are short enough (with respect to relaxation times) so that the relevant differential equations can be solved by means of a first order expansion, i.e. (G standing for
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The steady state condition can be written as
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where  denotes the action of the  pulses on the considered quantity, i.e.  
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can be expressed according to the steady state value of the three quantities involved in this problem. It is then possible to establish an equation such as (8) for these three quantities and to arrive at a set of three equations yielding their steady state values. We can write (with
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Solving this system of three linear equations leads to
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It is interesting to go back to the third of eqs. ( 9) and to notice that 2

Z is negligible (this can be understood from the fact that carbon magnetization is almost entirely saturated, and could be confirmed by a numerical evaluation of the second of eqs. ( 10)). We thus obtain
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This result is entirely analogous to eq. ( 6) and indicates the possibility of determining
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 from the measurement of the longitudinal spin order which is better achieved with proton detection so as to take advantage of the highest possible sensitivity. In principle, due to the zeroing of proton longitudinal magnetization (through the  pulse train), main signals arising from protons bonded to carbon-12 should be absent. This should allow for the easy observation of an antiphase doublet (occurring at the position of carbon-13 satellites in the proton spectrum) which would result from the application of a /2 proton read pulse (this pulse converts the longitudinal spin order

C z H z I I 2 into C z H y I I 2
). Moreover,  pulse imperfections should not be cumulative as far as the detection of 3 Z is concerned. They just result in a slight modification in 3 Z values in the right-hand side of the third of eqs. ( 9) and tend to slightly lower the result given by (11). It turns out that this intuitive view is incomplete and that refocusing of transverse magnetization will severely alter the final result.

This can be assessed by simulations the principle of which is detailed in the next section.

SIMULATIONS OF PULSE SEQUENCES TAKING INTO ACCOUNT RF FIELD INHOMOGENEITY

The principle of such simulations has been published in a previous paper 17 for the case of a single spin. The radio-frequency field ( 1 B ) variation along the sample tube axis is assumed to be the main cause of inhomogeneity. This corresponds to an experimental arrangement where the rf coil is of the saddle shaped design, the static magnetic field being produced by a vertical cryomagnet. 1 B inhomogeneity can be specified either by a series of number related to 1 B values from top to bottom of the sample (measured experimentally) or by a Gaussian curve supposed to represent the 1 B evolution along the tube axis. The sample is decomposed into elementary slices (in practice, between 100 and 500 slices are defined), the flip angle  associated with a given rf pulse being supposed to be perfectly defined for each of them:
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is the maximum value in this list and m ax  is the corresponding flip angle ( in our case). The objective is to determine the evolution of spin quantities in each slice and eventually calculate an average over all slices. This is easily performed for a single spin system because, in that case, this amounts to rotations of the magnetization components in the rotating frame (around x or y for rf pulses;

around z for evolution periods, according to resonance frequency in the rotating frame).

In the case of J-coupled spin systems, it is well known that a proper description of the various spin states requires other quantities than the three magnetization components. For example, if

i x
I is appropriate for describing an in-phase doublet (i assumed to be J coupled with j), we must resort to the quantity

j z i x I I 2
for describing the corresponding antiphase doublet (obtained after an evolution period of duration equal to

ij J 2 / 1
). In fact, any spin state can be described by an expansion over a proper basis of cartesian operator products of the form 16
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where ) (r j S is j E (identity), j x I , j y I or j z I (spin operators of spin j), n being the number of spins in the considered system and r N a normalization factor such as the set of r G operators is normalized and orthogonal ( rs  being the Kronecker symbol)
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As, for a given slice, rf pulses are not pure  pulses, a variety of spin states are created and one has to deal with the evolution of r G under the application of rf pulses and of evolution periods. Concerning rf pulses, the situation is quite simple as spin operators are simply rotated according to the actual flip angle pertaining to the considered slice (see (12)). For example, under an
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Evolution periods, i.e. transformation between rf pulses due to chemical shifts and J coupling constants are more difficult to handle. For the sake of simplicity, we have dealt here with a first order hamiltonian
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which can be written as an expansion over the r U basis

  r r r G a H ( 16 
)
It can be noticed from ( 15) that all operators in the expansion ( 16) commute. Now, let us define the density operator at the beginning of the considered evolution period as
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We have to establish the form of the density operator ) (t  at the end of this period in order to find out which quantities are present and therefore the state of the spin system prior to the next pulse(s). One has
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which can be rewritten as (according to the expansions ( 16) and ( 17) and owing to the fact that all operators in (16) commute)
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Two situations can be encountered: 
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Again, the way in which (19) is written is made possible by the fact that . With the help of ( 19) to (21), we obtain  in equation ( 18) for the subsequent evolution interval. The procedures outlined above lead to the density operator   pertaining to the next pulse… The process is repeated step by step until the end of the sequence.
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RESULTS AND DISCUSSION (THE LEVITT AND DI BARI SEQUENCE)

This sequence can be schematized as follows
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As explained in the theory section, it is rather appealing in the sense that a steady state is normally reached (as far as the number n of cycles is sufficient) and should lead to the csadipolar term without ambiguity (see ( 6) and ( 11)) through the amplitude of the longitudinal two-spin order which is transformed into an antiphase doublet by the

) ( 2 / 1 H  read-pulse.
However, this statement implies ideal  pulses and this is far from being warranted due to the (more or less) inevitable inhomogeneity of the 1 B field generated by the rf coil of any NMR probe. Actually, this inhomogeneity is responsible for the creation of transverse magnetization just because the flip angle is not 180° in all the regions of the sample; in turn, this transverse magnetization evolves under chemical shifts and coupling constants with the possibility of refocusing by subsequent rf pulses. This process is unpredictable on the basis on simple arguments and, to be fully understood, requires simulations as the ones described in the previous section.

As a matter of fact, although the antiphase doublet originating from the longitudinal two-spin order is generally observable in satisfactory conditions (fig. 1), various experimental observations reveal serious difficulties for reaching the expected steady state (the relevant signal amplitude can indeed be evaluated by means of the values of relaxation parameters, known from conventional experiments). An especially disturbing result is shown in figure 2 where the amplitude of the antiphase doublet (thus of the longitudinal two-spin order created by the sequence) is plotted as a function of the cycles in the pulse train. The experimental result is seen to be quite different of the expected regular build-up such as the one shown at the top of figure 3. The use of composite pulses in place of standard  pulses does not seem to improve this result. The experiment has been repeated showing that reproducibility cannot be questioned, at least for the asymptotic behavior, which is for a large number of cycles. This seemingly anomalous behavior arises therefore from the experimental conditions and, as explained above, the only way to discover the sensitive parameter(s) is to perform extensive simulations. In the case of perfect 1 B homogeneity, normal results (see the top curve of figure 3) are obtained as expected. This is also true when 1 B inhomogeneity is taken into account provided that the on-resonance condition is respected (i.e. identical resonance and transmitter frequencies). However, an offset between these two frequencies, even as low as 1 Hz, produces dramatic changes. This is shown in figure 3 and it can be noticed that the lower trace exhibits the same trend as the experimental results of figure 2. In fact, this is not the only manifestation of instability as revealed by simulations performed for different  values (see ( 22)). Although one observes an asymptotic behavior in every case, it is the asymptotic value itself which exhibits a sort of chaotic evolution. This is illustrated by the plots of figure 4 which definitely preclude the use of the method as far as quantitative results are required.

Rather than striving to reduce rf field inhomogeneity to an hypothetical low level, we propose in the next section another approach, hopefully and more robust and much less sensitive to such an inhomogeneity.

A NOVEL APPROACH FOR MEASURING THE LONGITUDINAL CSA-DIPOLAR INTERFERENCE TERM (PRELIMINARY)

A simple way for accessing to the csa-dipolar interference term rests on the consideration of extended Solomon equations and more especially on eq. ( 3) which tells us that, starting from equilibrium, the longitudinal two-spin order can be created via relaxation phenomena, based primarily on this interference term. Thus, the latter can be directly deduced from the measurement of the longitudinal two-spin order, at least at short times so as to avoid contributions from carbon longitudinal magnetization, itself coupled to the longitudinal two-spin order by this interference term and also coupled to proton magnetization by crossrelaxation. For obvious sensitivity reasons, it is better to measure the longitudinal two-spin order from the antiphase doublet which results from the application of a ) ( 2 / 1 H  pulse. This implies however that all other contributions have been filtered out. An easy way to achieve this objective is shown in figures 5 and 6; first, perturb the longitudinal 13 C magnetization (for instance by saturation), then let the longitudinal two-spin order to develop under the relevant interference term (mixing interval m  ), eliminate all contributions but the longitudinal two- spin order by an appropriate filter and finally apply a ) ( 2 / 1 H  read-pulse in order to measure the antiphase doublet. The filter can be made with radio-frequency field gradient pulses according to a methodology previously published [START_REF] Brondeau | [END_REF] (figure 5). Basically, it consists in applying, to both nuclei, rf field gradient ( 1 B gradient) pulses originating from the same coil and satisfying the Hartmann-Hahn condition
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so that these two nuclei undergo identical nutation angles. Of course, a mismatch of this condition would have deleterious effects since it corresponds to the vital part of the experiment. Because one is dealing with gradient pulses, longitudinal magnetization is destroyed whereas half the longitudinal twospin order is preserved (by virtue of the identical nutation angles). The efficiency of this filter is assessed by the experimental results shown in figure 6 for two different mixing times.

However, the rf field inhomogeneity does not correspond to a true rf field gradient. Thus, it is worthwhile to reconsider this experiment with uniform gradients.

Thanks to the formal equivalence 20 between 1 B gradients and 0 B gradients (static field gradients), it is possible to devise a sequence homologous to the one of figure 5 and which can be run with spectrometers equipped with 0 B gradients, more widespread than those possessing 1 B gradient capabilities. Such a sequence involving a 0 B gradient filter is shown in figure 7 with (optional) refocusing of the antiphase doublet which can then be decoupled way to the production of diagrams yielding site by site the value of longitudinal csa-dipolar interference terms. (ambient temperature; measurements at 400 MHz): 
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 1 Figure 1. Proton spectrum (400 MHz) of formic acid (non labeled) obtained by a simple read-
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 2 Figure 2. Experimental intensity of the longitudinal two-spin order (in %, relatively to

Figure 3 .

 3 Figure 3. Simulations corresponding to experimental results such as those of figure 2. The
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 43 Figure 4. Evolution of the asymptotic values (such as those in figure 3) as a function of the
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 5 Figure 5. A pulse sequence for measuring the csa-dipolar interference (cross-correlation) term
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 6 Figure 6. Experimental results obtained on pure13 C labeled formic acid (degree of labeling:
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 7 Figure 7. The homologous sequence of the one in figure 5 with static field gradient pulses.
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 8 Figure 8. Experimental data (dots) obtained on13 C labeled formic acid (degree of labeling:
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from 13 C (for improving the signal-to-noise ratio and simplifying the spectrum). Before the first ) ( 2 / 1 H  pulse there is no proton transverse magnetization; consequently, the gradient acts first on carbon-13 which is subsequently taken back to the z axis (second 13 C  pulse). Thereafter proton is flipped to the x,y plane and is subjected to a gradient four times more intense as the first one. We can thus notice a perfect analogy with the 1 B gradient filter, recognizing that we end up with the desired antiphase doublet which can be possibly refocused. Experimental results obtained with this sequence are reported in figure 8 along with a recalculated build-up curve. The excellent agreement between theory and experiment illustrates the efficiency and the robustness of the present method.

CONCLUSION

In NMR experiments involving pulse trains, inhomogeneity of the radio-frequency field has always been a plague. It can sometimes be compensated for by judicious phase combinations.

Concerning the Levitt Di Bari sequence, aimed at determining the csa-dipolar term and which seems at first sight of real interest because it is based on a steady state situation, autocompensated pulses appear to be of little help. This is due to spurious transverse components which evolve in a complicated manner, difficult to rationalize. The only tractable approach is to simulate the fate of the different spin states which build up in the course of the sequence. These simulations have revealed a rather chaotic behavior which makes this experimental method difficult to use on a routine basis. We therefore tried to devised procedures employing a limited number of rf pulses, leaving to a proper filter the task of selecting the relevant information. We have shown that a simple gradient filter (employing 1 B or 0 B gradients) constitute a reliable alternative. The preliminary results presented here are encouraging and should be easily extended to two-dimensional experiments opening the