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IMPROVED HASHIN-SHTRIKMAN BOUNDS FOR ELASTIC MOMENT
TENSORS AND AN APPLICATION

YVES CAPDEBOSCQ AND HYEONBAE KANG

ABsTrACT. This paper is devoted to the derivation of trace bounds for elastic moment
tensors. Starting from the integral equation formulation of the elastic moment tensor, we
establish that its trace can be obtained as a sum of minimal energies. We then recover
the so-called Hashin-Shtrikman bounds, and show that these bounds can be tightened for
inclusions which have some local thickness. As an application, we show that the volume
of the inclusion can be estimated by the elastic moment tensor.

1. INTRODUCTION

To each inclusion which occupies a bounded Lipschitz domain in R?, d = 2,3, various
geometric quantities are associated: eigenvalues and the capacity are among them. In this
paper we deal with one of such quantities, namely, the elastic polarization tensor or the
elastic moment tensor (EMT), which is a 4-tensor associated with elastic inclusions. This
paper, in particular, is devoted to the derivation of optimal bounds for the trace of the
EMT, and to the improvement of the bounds depending on the particular geometry of given
inclusions.

Ag its name indicates the EMT is relevant in physics when studying the elastic properties
of a given medium. There is an analogous notion in electromagnetism called the polarization
tensor (PT). The PT is a 2-tensor or d x d matrix, and simpler to deal with. Thus, in order
to motivate our work in this paper, we shall briefly review recent developments in the study
of the PT and regard the present work as its analogy for the EMT.

Consider an inclusion D in R¢, a bounded Lipschitz domain, being inserted into a homo-
geneous medium of conductivity 1 in which there existed a uniform electric field E = —a,
where a is a constant vector. We assume that the conductivity of D is k # 1. Due to the
presence of the inclusion the uniform electric field is perturbed and the perturbed electric
field is given by F = —Vu where the potential u is the solution to

{ V- ((1+(k—11p)Vu) =0  inR?

1.1
(1) u(z) —a-x = O(|z|' %) as |x| — oc.

Here and throughout this paper 1p denotes the indicator function of D. The solution u to
(1.1) has a multipole asymptotic expansion at infinity, with a dipolar leading term:
1 {a, Mz)

(1.2) u(z) :a~w+w—dw+0(\x|7d), as |x| — oo.

2000 Mathematics Subject Classification. 35J50, 35R30, 35Q72, 74Q20.

corresponding author: Y. Capdeboscq, LMV, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France.
Tel: +33 1 39 25 46 40. Fax : +33 1 39 25 46 45.

H.K. is partially supported by the grant KOSEF R01-2006-000-10002-0.

1



2 YVES CAPDEBOSCQ AND HYEONBAE KANG

Here wy is the area of the d — 1 dimensional unit sphere and M is a constant d X d matrix
independent of @ and z. The matrix M = M (D) := (M,;) is called the polarization tensor
associated with the inclusion D. We emphasize that M depends only on the inclusion D
and conductivity contrast k. See [3, 24].

The concept of polarization tensor appears in various contexts such as the theory of
homogenization [20, 24, 26] (see [24] for an extensive list of references). In particular, the
notion of PT appears as the low volume fraction limit of the effective properties of the dilute
two phase composites [8, 21, 22, 25, 27]. This concept also appears in the context of inverse
boundary value problems where it is used to detect diametrically small inclusions by means
of boundary measurements. One can approximately detect, by boundary measurements, the
location and the polarization tensor of the inclusion. Since the polarization tensor carries
important geometric information, such as the volume of the inclusion, we are able to recover
that information from boundary measurements. It was Friedman & Vogelius [13] who first
used the polarization tensor for the detection of small inclusions. After that there have been
many significant development in this direction [2, 5, 9, 11]. We refer to recent books [3, 4]
and references therein for recent developments of this theory.

Recently, the notion of PT associated with quite general type of inclusions has be de-
fined [11, 12], together with upper and lower bounds for the trace of the PT based on the
variational argument in [18]. The same bounds were also obtained by Lipton [20], for the
low volume fraction limit of the homogenized conductivity. These bounds are known as
Hashin-Shtrikman bounds in homogenization literature, see e.g. [24], after the names of
the scientists who first found the optimal bounds on the effective conductivity of isotropic
two-phase composites [14]. The PT bounds are given as follows: Let |D| denote the volume
of D. Then

(1.3) tr(M) < |D|(k — 1)(d — 1+ %),
and

1 d—1+k
(1.4) [Dltr(M™7) < TE_1

where tr denotes the trace. It should be noted that the PT in this paper is (k — 1) times
that in [11].

These bounds are optimal in two dimensions in the sense that any PT within the bounds
is realized by a domain: by a coated ellipse [12] and a thin cross [1]. In both works, as the
trace of the PT approaches to the upper bound (1.3), the corresponding domains get thinner.
Thus a natural question is whether the upper bound can be improved if the domain has some
‘thickness’. Since these estimates of the trace of the PT contains a significant information on
estimation of the volume of the corresponding inclusion [12], this question has an important
implication in estimation of the size of the inclusion; See the last section of this paper.
This question for the improved Hashin-Shtrikman bounds for thick domains was answered
affirmatively by the authors in [10]. It is worth noting that while the interior points of
the Hashin-Shtrikman bounds can be realized by various shapes of inclusions, e.g., coated
ellipses and various thin crosses [1], the lower bound (1.4) is rigid. It is proved in [16, 17] that
if the lower bound is attained by a simply connected domain D, then D must be an ellipse
in two dimensions and an ellipsoid in three dimensions. As an immediate consequence, the
Polya-Szegd conjecture [28], which asserts that the inclusion whose PT has the minimal
trace takes the shape of a disk or a ball, has been proved.
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While the PT describes the dipole expansion of the perturbation of the electric field due to
the presence of the inclusion, the EMT does that for the elastic field. The precise definition
of the EMT will be given in the next section. The EMT was introduced by Maz’ya and
Nazarov in relation to the asymptotic expansion for energy due to existence of a small hole
or cavity [23]. See also [19, 26] for various applications of EMT. The definition of EMT has
been extended to include the case when inclusions are not holes or hard ones and used for
reconstruction of unknown inclusions via boundary measurements [7, 15].

In this paper, we first derive bounds of Hashin-Shtrikman type for the EMT. The exact
Hashin-Shtrikman bounds are not new: they were already derived by Lipton [20]. We show
here that an additional term can be added to the upper bounds, which is especially relevant
when some general information is known about the shape of the inclusions. We show for
example that when the inclusion has some ‘thickness’, this additional term leads us to an
explicit strict upper bound. We define the thickness of a domain D as a dimensionless
number 7 €]0, 1] given by

D]
| B ()]

where the maximum is taken over all r > 0 and = € R? such that D C B,(x). Here and
throughout this paper B,.(z) denotes the open ball of radius r centered at x. Note that
7 = 1 for and only for the balls, and that 7 is close to zero for very thin domains. For
example, for an ellipsoid with d — 1 major axis equal to a and a minor axis equal to b < a,
T="b/a.

This paper is organized as follows. In the next section we set up some notation and
review basic facts on the Layer potentials. We then review some results on the EMT from
[7] and show that the EMT can be obtained a sum of minimal energies. Section 3 is devoted
to derivation of pointwise bounds for EMT, while section 4 is for Hashin-Shtrikman bounds
with additional terms. In section 5, we estimate this additional term in terms of the thickness
of the inclusion. We then conclude the paper with an application of the bounds for EMT to
the estimation of the volume of the inclusion.

(1.5) T = max

2. ELasTic MOMENT TENSOR
We begin by introducing some common notation. In R%, d = 2,3, let

12 = 57',]'81; ® e;,
1
I = 5(5“@(‘)‘]1 + 5il(5jk)ei Ke; Qe e
Here and throughout this paper the Einstein convention for summation is used. Iy is d x d
identity matrix or 2-tensor while 1, is the identity 4-tensor. The following notations are also
convenient:

1
A= 312 ®RI, Ay :=14— A4

Let a : b denote the contraction of two matrices a and b, i.e., a : b = a;;b;; = tr(a’b) where
tr(a) denotes the trace of @ and a” denotes the transpose of a. Since for any d x d symmetric
matrix a
12 X IQ(Q) = (a : 12)12 = trace(a)12
and
Li(a) = a,
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one can immediately see that
(2.1) AA; =A1, AAs=As AjA=0.

Let D be a bounded Lipschitz domain in R? which occupies an isotropic elastic body
with the Lamé constants (\, ) satisfying

w>0 and dA+2p>0.
Then the elasticity tensor for D is given by
C = )\IQ ® 12 + 2/1]:4 = dKJA]_ + 2,uA2,

where k = A+ 2p/d denotes the bulk modulus of D. For a given displacement vector u, the
strain is defined to be

E(u) = %(Vu + vu®).

The elastostatic system corresponding to the Lamé constants A, v is defined by

(2.2) Leu:=V - (CE(n) =pAu+ A+ p)VV - u,

and the corresponding co-normal derivative du/dv on 9D is defined to be

(2.3) g—u = CE)N = NV -u)N + u(Vu+Vu')N on oD,
1%

where N is the outward unit normal to 0D.

The Kelvin matrix of fundamental solutions I' = (Fij)f,j:l for the Lamé system L is
defined to be

ar
(2.4) Iy (z) :== ATo(2);; — ijTO(m) . x40,
L
where I’y is the fundamental solution for the Laplacian, i.e.,
1
— log|z|, it d=2,
27
- if d =3,
47 |z
and
1/1 1 1/1 1
(2.5) A=-|—+ , B==-(—-- .
2\p 2u+ A 2\p 2u+ A

The single layer potentials of the density function ¢ on D associated with the Lamé
parameters (A, ) are defined by

(2.6) Sl = | Te—yewdaty) . o,

Let D be a E)unded Lipschitz domain in R?. Let CY := M, ® I, 4 211, be the elasticity
tensoiof R?\ D and C! := M, ® I, + 2jiI4 be that of D. Let x and % be bulk modulus of
R?\ D and D, respectively. It is always assumed that

(2.7) >0, dA+2u>0, >0 and d\+21>0.

We also assume that
(A= N)(u—fi) >0,
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in other words, either C* > C? or C* < C°. Let L1 and 9% be the Lamé system and the
co-normal derivative associated with (), fi), respectively. We also denote the single layer
potential corresponding to (X, i) on D by S.

In [7], the first order elastic moment tensor is defined as follows:

Definition 2.1 (Elastic moment tensors). For ¢,j = 1,...,d, let (f;;,8;;) be the solution
of the integral equation

Slfi;1- — Slgijll+ = wie;

(2.8) 9 ~ B)

N N 8(xiej) on 3D7
%«S[fz ] B - 7S[g23]

ov

+

ov

where the subscripts + and — denote the limit from outside and inside D, respectively.
Then, the EMT M = (m;j,,) associated with D and A, u, A, fi is defined by

(2.9) Mijpg = / Tpeq - gijdo, i,j,p,q=1,...,d
aD

We note that this tensor is exactly the one defined by Maz’ya and Nazarov for holes (see
[7]). Moreover, the definition (2.9) covers the case when [ is nonzero and finite.
Let

(2.10) Cp:=(1-1p)C° +1pC*,

where 1p is the indicator function for D. For a given d X d symmetric matrix a, let u be
the solution to

2.11) V- (CpE)) =0 inR?,
. u(z) —az = O(|z|'~%) as |z| — .
Then Vu represents the elastic field perturbed due to the presence of the inclusion D under

the uniform loading given by V(ax). It is known [7] that the solution u has the following
asymptotic expansion:

d
(2.12) u(z)=ar+ Y a0 kg(x)mijpg + O(|z[™%) as |z — oo.
,9,0,9=1
The EMT also appears in the low volume fraction limit of the effective elastic property [6].
The following identity is proved in [7].

Proposition 2.2. Suppose that p # fi. Given a nonzero symmetric matriz a = (a;;), define
$a, fa, and g, by

(213) Pa = (aij)x = aijxjei s fa = aijfij s 84 = aijgij .
Let
E+K i+
2.14 P(a) := A A .
(2.14) (@) = —— 1(a)+ﬁ—u 2(a)
Then,

(2.15) Pa;Ma:/Dcls(§fa):5(§fa)+/R COS(Sga):f(Sga)—f—/D C8(pa) : E(a) -

d,\ﬁ
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As a consequence of Proposition 2.2, the following symmetry is obtained in [7]:
(2.16) Mijpqg = Mijqp 5 Mijpqg = Mjipq » and Mijpq = Mpqij, i7j,p, q = 1,..., d.

The symmetry (2.16) implies that M is a symmetric linear transformation on the space M dS
of d x d symmetric matrices. It is also proved that M is positive-definite if A > A and
[ > u, and negative-definite if A < A and it < p. Let us assume that A > X and g > u for

convenience. Let k;, j = 1,...,Ng := d(d;l), be eigenvalues of M on M(f and A; be the
corresponding eigen-matrix of the unit length. Then, M can be written as

Ng
(2.17) M= kiA;®A;.

j=1

Lemma 2.3. For any a € M’f,

(i) Aqa: Ma=a: A1Ma=a: MAa.
(ii) Aga: Ma=a:AsMa=a: MAsa.

Proof. Because of (2.17), we may assume that M = A ® A for some A € M&g We first get

t 1
Aja:Ma= %(12 : Ma) = Etr(a)tr(Ma) =a: A Ma.

On the other hand, since Ma = (A : a)A, we get
AMa=(A:a)(A: ).
It then follows that
a:AMa=(A:a)(A:LI)Iz:a)=a:((A:I3)(Iz:a)A) =a: MAja.

This proves (i). (ii) follows immediately from (i) and the proof is complete. O

3. A PAIR OF ENERGY AND GEOMETRY INDEPENDENT POINTWISE BOUNDS

Observe that ¢,, f,, g, in (2.13) satisfy the following relation:

gfa‘f —88al+ = ¢a
(3.1) d B

% - Esga

a(pa on 8D
- Ov

St,

+
Define v by

(3.2) V@%{&um—¢am7 z €D,

Sga(x), r € R4\ D.
Then one can see from (3.1) that v satisfies the following transmission condition along 0D:

ELV ov

_Ov| _ 9%a
ol ov|,

ov |_

_ 9%
ov

vl[_—v[, =0 and on 0D,

+ +

and it is the unique solution to the following transmission problem for the elastostatic system:

V- (CpE(v+¢a) =0 inR?,
33 T 260 S
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Note that v(z) = O(|z|'~%) as |z| — oo because [, g.do = 0. Writing (3.3) in variational
form, we obtain

(34) Cp(E(V)+1p(Iy — (CHTICNa) : E(W)dz =0
R4
for any w € H'(R?), and hence v is the minimizer in H'(R?) of the energy form

(3.5) Cp(E(V)+1p(Iy — (CHTIC%a) : (E(v) + 1p(Iy — (CH7ICY)a)dx.
Rd

Let

(3.6) G:=1,—(CH) 'c.

Observe that G is invertible on M f . In fact, we have

(3.7) G l= (- tch

We can now rewrite (2.15) as

(3.8 a:PMa= Cp(E(V)+ 1pa) : (E(V) + 1pa)dz + (C°a : a) |D|.

Rd

We now express the identity (3.8) as a sum of minimal energies. To this end, we introduce
the following notation: for a domain D and d x d symmetric matrix a, let

(3.9 E(D,a)= min Cp (E(v)+1pGa) : (E(v) + 1pGa) dzx,
veH! (R4 JRrd
where v is defined by (3.1) and (3.2).

Proposition 3.1. The EMT M satisfies the following identity:

1 /7 -
a:PMa<7+”+@+“)EUIM
2\R—K [O—p

L/iE+Kk p+p
K=K [—p

: ) (B (D.A1@) - E(D.As(@)

(3.10) +[D] (CO+C) (€)' C%: a.

Proof. Let a; = Aj(a), j = 1,2, and define v; by (3.1) and (3.2) with a replaced with a;.
Then by linearity, we have v = v; + v5. Decompose G uniquely as

(3.11) G = g1A1 + g2 As.

We then have

» (E(v) +1pa) : (E(v) + 1pa) dx

|
<MM é)

( Cpé(v;):E(vj)dz+2 | Cplpa;: S(Vj)dx> +(C'a:a)|D|
Rd

| R4

@]

|
ZMM

2
( Cp&(v;) :E(vj)de+ — | CplpGa; : E(Vj)dx) +(C'a:a)|D|.
R4 9i JRre

1,7=1

Since v; is the minimizer of the energy

Cp (E(v;) + 1pGa;) : (E(v;) + 1pGa;) dx
Rd
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for ¢ = 1,2, we have
/ CplpGa; : E(vj)dx = 7/ Cp&(v;) : E(vj)dz, i,5=1,2.
Rd Rd
This in turn yields

Cp (E(v)+1pa): (E(v) + 1pa)dx

= - — Vi) V;)ax 1(1:&
=3 (1-2) [ eottv: ewpte + (Clas o).

—_(=_ ) Cp&(vy) : E(vi)dz — (1 — 1) Cp&(vz) : E(va)dx
Rd g2 g1 Rd
9 g

Using again the minimizing properties of v, vo and v = v; + va, we get

_ ( 1,1 1) [ OpE(v): E()dr + (C'a:a)|D|.

/ Cp (E(V) +1pGa) : (E(v) + 1pGa)dx
Rd
=— | Cp&(v):&v)dr+ [ Cp(1pGa): (1pGa)dx
Rd R4
and the same identities with v and a replaced with v; and a;, j = 1,2. Since C! is isotropic,
A;C'Aj =0if i # j, and hence
Cla:a=Clay: a1 +Clas: as.

It then follows that

y Cp(E(V)+1pa): (E(V)+ 1pa)dx

— (1 + L 1> E(D,a) + <1 - 1) (E(D,A(a)) — E(D,Az(a)))

g1 g2 g1 g2
+ (g1 — 1)*C'ay 1 ay D] + (92 — 1)* Cas : az | D).

Finally, note that
(gl — 1)2 C’lai La; = Z (gZ — 1)2 AZ'CIAZ'(I ta

1 =1
= (GC'G —2C*"G+CYa:a

— ()’ (¢ 'aza.

2 2

7

Since
1 1 _LlEtw lptp
gl gQ 2,'%_"{/ Qﬂ_u
and
_ _ le+rk 1p+p
T R e i Y

2k—K 20—
and thanks to (3.8) we obtain (3.10), which completes the proof. O
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Note that
(3.12) (CO+CH(C)1C = d(f+ R) = Ay +2 i+ p) %A27
(3.13) (C" = CO)(C IO = d( — W)= A1 +2 (i — 1) %Az :

Therefore, we can write in condensed form

S (OO OO IO = (€ = (O T COA
Z;Z(CO +CY(CHTICOA, = (C - C0)(CY) 1 COAs

and we obtain the following corollary from (2.14).

Corollary 3.2. If a = Aq(a) or a = Ax(a), we have

(3.14) a:Ma= min Cp (E(v)+ 1pGa) : (E(v) 4+ 1pGa) dx
veH(RY) Jpa

+[D| (C* =) (€)' C%: a.
The energy formulation (3.14), yields a priori bounds on M.
Corollary 3.3. The following bounds hold

(3.15) d|D|(% — k) =Ay < A\MA; < d|D| (7 — k)Aq,
K

and

(3.16) 2|D| (i — ) %Az < AsMA; < 2|D| (i — ) Ao

Note that upper bounds in (3.15) and (3.16) are obtained by the choice v = 0 in (3.14).
We emphasize that (3.15) and (3.16) hold even if C' < C°.

4. HASHIN-SHTRIKMAN BOUNDS WITH AN ADDITIONAL TERM

In this section we shall use the so-called Hashin-Shtrikman variatioga}l method, as de-
scribed by Kohn & Milton in [18], to prove inequalities on the 4-tensor M defined by

(4.1) a:Ma= min Cp (E(v)+1pGa) : (E(v) + 1pGa) dx

veH1(RY) Jpa

+[D|(C* =) (¢M) ' % : a.
With the help of Proposition 3.1 and Corollary 3.2 this will in turn yield bounds on the
EMT, since M = M if a = A1(a) or a = Az(a).

Let us first define an operator which will be used afterwards. For w € L? (Rd : M(f), let ®
be the unique solution in H' (Rd : Mf) to

Lo (P)=V - w,
and then define the linear operator F¢ by
Fo(w) =& (D).

In other words, F¢ is defined by
(4.2) Fo(w) := 5£gl(v -w).
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As a first step in deriving the trace bounds of EMT, we see, by comparing the background
medium Cy with a reference medium, that the energy formula (3.9) can be reformulated
as a minimum or a maximum of a certain functional, as it is explained by the following
proposition.

Proposition 4.1. Let M be given by formula (4.1). Let C denote a constant (isotropic)
elasticity tensor given by C = 2u.dy + AIo ® Is. For any such tensor C' < Cp we have,

(43)  a:Ma=|Dla: (C'=C°) (C-CY ' (C=C%a+ sup W.(C,a),
o€L?(RE:MS)

where

(4.4) Wa(C’,U):/Rda:FCU—&—/Rd(C’—CD)_lo:g+2/DU:(Cl_c)—l(Cl_CO)a.

If C > Cp, we have
(45)  a:Ma=|Dla: (C'=C°) (C-C) T (C=C%a+ inf  W.(C,o0).

o€L?(RE:M5)

Proof. We give a proof only when C' > C°. Let C be a constant elasticity tensor given by
C =2up.d4 + NIz ® Ir as before and suppose that C < Cp. Then we have

Cp (E(v)+1pGa) : (E(v) + 1pGa) dx

R4
= / (Cp —C)(&E(v)+1pGa) : (E(v) +1pGa)dx
Rd
+ C(E(v)+1pGa): (E(v) +1pGa) dx.
Rd

Using the positivity of Cp — C' and the convex duality, the first term in the right-hand-side
of the above identity can be written as

sup {—/ (CD—C)717;:77d:L‘—|—2/ n:(E(V)+1pGa)dzx| .
neL?(R4:MS) R4 R4

Interchanging the order of the minimization and maximization (see [18]), we obtain

min Cp (E(v)+1pGa) : (E(v) + 1pGa) dx
veH! (RY) Jpa

= sup {—/ (CD—C)_ln:n—/ C™'n:n
neL2(R4:MS) Re R

(4.6) + inf / C(E(V)+1pGa+C'n): (E(v) +1pGa+C'n)| .
vEH(RY) Jrd

One can easily see that the infimum of the last term in (4.6) is attained by the solution in
H' (R*: M) of

-V - (CEWV)) =V -(1pCG,+n),
i.e., by

(4.7) v=—-L'V-(1pCGa+n).
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Let 0 := 1pCGa + n. Then, due to the minimizing property of Fo(o), we have the
following identity

CFqo(o) : Fo(o)dz = —/ o: Fo(o)dz.

R4 R4

Consequently, we have

min Cp (E(V) +1pGa) : (E(v) + 1pGa)dx
vEH(RY) Jrd

= sup [—/ (Cp —C) " nda +/ CGa : Gadzx
R4 D

neL?(R4:MF)

—I—Q/ n:Gada:+/ G:FC(U)]
D R4

=|D|a:GC(C - CYH *CGa— |D|a: GCGa + sup W, (C, o),
oeL?(RE:M5)

where

Wa(Coo) = [

R
:/ J:FCU—I—/ (C’—C’D)*la:a—i—Q/U:(Cl—C)_l(Cl—CO)a7
Rd Rd D

as was given in (4.4). Since

JIFcU+/ (C—CD)710:0+2/ o: (Cl—C)_lClGa
d Rd D

|D|a: GC(C —C")"'CGa— |D|a: GCGa+|D| (C' — C°) (01)71 C% :a
—|Dla: (C'=C%) (C—CY) ' (C—=C%a,

we have proved (4.3).

The case when C > Cp can be treated similarly. Writing Cp = —C + Cp + C, using
the negativity of Cp — C, convex duality, and interchanging the order of minimization we
obtain (4.5). This completes the proof. O

We now derive trace bounds for EMT from identities (4.3) and (4.5). To state the bounds,
let us fix some notation. Given a constant elasticity tensor C' = 2u.dy + Ay ® Io, let F.
denote the symmetric positive definite tensors given by

1
Fel) = gy [ Fellp)da.

where Fe is defined by (4.2), i.e.,

1
(4.8) Fol(a) = 7] /D EL;'V - (1pa)dx,
and let Go be the quadratic form given by
1
(4.9) (Gea,a) = ﬁ (Cl — CO) Fo(1pa): Fe (1pa)dx
R4 \D

for a € Mj. The main result of this paper is as follows.
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Theorem 4.2. Let M be the EMT associated with the domain D, and (X, i) and (X, j1) be
Lamé parameters of D and the background, respectively. Then, we have

ds+2(d—1)x 2

(410) = tr(As MA;) < d(i — ﬁ)m

|D| (I%—H)2t7’(A1gclA1),

1 ) 2 +d—2 ~ d—2 d—1

(4.11) ﬁtr(AQJVIAz)SNM—M) 2_2(”_“)< 2fi +dl%+2(d_1)/1>:|
— d*(k — K)*tr (A2Ger Asg)

(4.12)

_ 1 di+2(d—1)pu
D|tr(A\M~TA;) <
[Dltr (A 1>_d(f€—/€)dl€—|—2(d—l)u’

(4.13)
1 d*+d—2 d—2 d—1

D|tr(AsM~Ay) < 2 (i — )

Pl (oM 10) < g | 2 2 (5 )|
Here tr denotes the trace and tr(ArGoiAy), k= 1,2, is defined by

d
(4.14) tT(AkgclAk) = Z <chAkEij,AkEij>,
i,j=1

where Eij = %(5ik5jl + 51‘153‘1@)%71:1-

A few words on Theorem 4.2 are in order before proving it. We first note that if C* > CY
as we assumed, then (GoiAg, Ag) > 0 for k = 1,2, and therefore inequalities (4.10) and
(4.11) imply that
di+2(d—1)ix
di +2(d —1)i’

1 ?+d—2 d—2 d—1

—tr (Ao MA 2(n— — —2(p— .
Bt (AaMAY) <2(i- ) |5 - (5 s
The bounds (4.12), (4.13), (4.15), and (4.16) are called Hashin-Shtrikman bounds for the
EMT, and they were derived by Lipton [20]. The method of this paper yields those additional
terms for the upper bounds and they will provide us with improved Hashin-Shtrikman
bounds for thick domains (see the next section).

It is interesting to see whether the Hashin-Shtrikman bounds for EMTs are optimal or
not. It is equally interesting to find a class of domains whose EMTs attain the lower bounds

(4.12) and (4.13). For the PT the lower Hashin-Shtrikman bounds are attained by and only

by ellipses and ellipsoids [16, 17]. The situation for the EMT is much more complicated.
d(d+1)
2

1 -
(4.15) ﬁtr(AlM'Al) < d(k—K)

(4.16)

Since the EMT has @ eigenvalues, those class must have degree of freedom, and
at this moment it is not clear what this class of domains must be. This question has an
important application in the inverse problems to detect small elastic inclusions. For related
work for the electrical impedance tomography, see [3, 5, 9].

If d = 2, then (4.12) and (4.13) read

_ K+ p
D|tr (A\M7'A)) < ———
[Dltr (As 1>*2(R—m)(ﬁ+u)’
1 1
|D|t1" (Agj\/filAQ) S = +

=g 2(k+p)



IMPROVED HASHIN-SHTRIKMAN BOUNDS FOR EMTS 13

If D is a two dimensional disk, it is proved in [5] that the corresponding EMT is isotropic
and given by

f%—fﬂ)(ffﬂﬁ)

MZQ‘DI( A1+2|D\WA

R+pu 26+ p+fi
Thus the equality in (4.12) and (4.13) are attained by a disk.

Proof of Theorem 4.2. Suppose that C° < C!. For C' < C°, using test functions of the
form o = 1pb, we obtain from (4.3),

a: (;1\7— (' —c% (c-c)H(C— 00)) a
(4.17) +2a: (C'=C%) (C—C) o> (C—CY) " bib—b: Fob
Because of (3.15) and (3.16), (ﬁﬁf (ct-c%) (C - C’l)f1 (C - C’O)) is invertible on

the subspace spanned by I, or that of the trace-free matrices. Therefore, if either a = Aja
or a = Asa, we can choose b so that

a=— (&M— (ct - ¢ (C - 01)71 (- CO)> (- (C - Cl)flb,
and (4.17) becomes

<|11)|]‘7 (ct-c%) -y (CCO)>1 (€' = (C =) Pbb
<(C' =) bib+b: Fob.

Taking the limit as C tends to C? yields

1\ -
(4.18) <DM> b:b< (C'=C%) " bib+b: Foob,
or equivalently,
(4.19) ID|A;M7'A; < A; (C1 = CO) ' Ay + AjFoohy, j=1,2.
Therefore, we obtain
1
(4.20) |D| tr (AlM_lAl) < ———trAq + tr (A]_]:C(JA]_) ,
d(k — k)
1
(4.21) |D[tr (A2M'As) < ﬁtrA2 +tr (AaFeoAs).
fi —p

Since trA; =1 and trAg = %, (4.20), (4.21), and Lemma 4.3 below lead us to (4.12)
and (4.13).

We now prove (4.10)-(4.11). Let U be an open subset of R? disjoint with D. Given
op € L? (R?: M3) with the support in D and given C' > Cp, let o* be given by

0" =—-CF¢(op),

and let
oy =1y (C — CD)Cilo'*.
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Then one can easily see from (4.4) that
Wo(C,op +ouy) =Wa(C,op) + Wa(C,ou) + 2/ oy : Foop,
R4

=W,(C,op) —|—/ oy : Fooy —/ c'(C-Cp)Clo* o,
Rd U
Since F¢ is negative definite, this yields that
W, (C,0) < Wo(C,op) —/ cl(c-cY)Clor ot
U

If we use test functions of the form op = 1pb where b € Mds, we obtain from (4.5), for
C > C! that
1 —~ — _
oo Ma< (' = (C-c) T (C-Caa-2(C"=C%) (C—C") "a:b

(4.22) +((c-e) = Fe)bin- |D|/ (C -l i o”

where F. is given by (4.8). If C(> C!) is sufficiently close to C!, then ((C - C’l)_1 - .7-"0)
is invertible, and hence we can choose

1

b ((C—Cl)_l—}'c>_1 (c'—c%) (c-cY)la

-1

= (=)= (c-c) (- Fe)
Then the right hand side of (4.22) equals to

a:(Is— (C—=C°) Fo)b— — /C (C-c)Clo* o™

[D]
Taking the limit as C' tends to C* gives b = (C* —C")a and o* = —C*& (@), where
@€ H' (RY: M7) satisfies

—Lc (@) ==V (1p (C'=C") a).
We have proved that

ﬁa:ﬂaga:(147(01700)]-'01)(0 Co)a—ﬁ (Ct=C)€E(a): € (a).

Since U is arbitrary open subset of R\ D, we have

%'a Ma<a:(Ii— (C'—C% Fer) (CF — %) a— (Ges (C* — C®)a, (CT — C°) ).

So far we have shown that for j = 1,2,
ﬁAjMAj <A (CH=C)YA;—A; (CT = C) Fou (CT = CO) A
(4.23) —(Ger (CT = C°) Ay, (C = CO) Ay).
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Since C* and C° commute with A, j = 1,2, and A (C' — C%) = d(k — k)A; and Ax(C* —
C%) = 2(ji — pu)As, it follows from (4.23) that

(424) ﬁtf (AlMAl) é d(/% - Ii) [tI‘Al - d(/~<& - Ii)tl" (AlfclAl)]
— d2(l~£ - Ii)ztr (AlgclAl) s
(4.25) ﬁtr (AsMAs) < 2(ji — 1) [trAs — 2(ji — p)tr (AsFer As)]

— 4(f1 = p)*tr (A2Gor As) -

Here again, since trA; = 1 and trAs = , we obtain the desired estimates from
(4.24), (4.25), and Lemma 4.3 below. This completes the proof. O

d(d+1)—2
2

We now compute the trace of the symmetric operator Fo which has been used in the
proof of Theorem 4.2. We include a detailed computation for the sake of completeness, (see
[24] for example for another proof).

Lemma 4.3. Let C =2p.1y + Ay ® Io. We have

1 d—2
. = D
(4.26) tr(Fe) (/\c+2uc + 2 ) |D|,
1
. tr(A A)=————|D
(4 27) 7ﬁ( 1fc 1) d(>\0+2'uc)| |7
d—1 d—2
. A Aq) = D|.
(1.29 haFodn) = (o g + G ) D)

Proof. By taking the Fourier transform, we obtain

Lou(€) = —(peléPTa + (e + p1e) (€ ® ))a(€).

Let &' :=¢/|¢| and €7, j = 2...d, be unit vectors such that {¢!,..., ¢} forms an orthonor-
mal basis for R?. Then, we have

d
L=) dod.
j=1

It then follows that

d
Lou(€) = —[€]? | e +2u)' @ € +pe > & @ 67| (€),

=2

and hence

€17 | A + 20

I N O S S l¢f? }
R [()\c—i—?uc uc>5®f+ oL | 0(0).

1 P A
el =S ded|ag
Mcj:2
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Let a be a d x d symmetric matrix. Then,

o — o —

E(LTV - (1pa))(€) = — [6© £5'V - (Ipa) + £'V - (Ipa) £ ¢]

B 1 1 |§\2 —~
_2I§I4[§®((>\c+2uc Mc) )aﬂD

L 1 €2 _
i ((()\JrQu uc>f®f+ o 12) a£1D>®§}.

Since a is symmetric, we then get

— — 1 1 1
tpa: 1627710 = ToPa: € | (515~ 1) S + ga] ¢

( 1 1) (a€-&)" g’
Aet2pc pe) €A pelél? |
We now have

1 —~
/Rd 1Da : fc(].Da)dlE = (271‘)‘1/]]{(1 1Da : fo(lpa)dg

11 AN [l JJagf?
‘(%)d(xcmuc uc> 12 e e /“D' ez %

= [1pf?

Then

H(Fe) = Z/ IbEy : FollpEy)da

1,7=1

1 5 (&i&5)?
e )(A o >Z/ T =g
1 5 ( )

I Z/Rd' ol 4|5|2
1 1
= (Ac+2uc - u) D1+ 270 1D
1 d—2
- (/\c+2ﬂc+ 2fte ) DI

To prove (4.27), we apply the above formula to a = I, and (4.28) follows from (4.26)
and (4.27). This completes the proof. O

5. IMPROVED HASHIN-SHTRIKMAN BOUNDS FOR THICK DOMAINS

We now estimate the trace of G, in particular, the bulk part tr(A;GeA;) for thick
domains. We first have the following lemma.

Lemma 5.1. Let C =2p.14 + Ao ® Io. We have

(5.1) whaGen) =2 (Lot ) KO



IMPROVED HASHIN-SHTRIKMAN BOUNDS FOR EMTS 17
where

-y —w)\ _dy ",
(5:2) ~D| Z/Rd </ ( Y yP >Ifc—y|d> d'

7,7=1

Proof. For a given constant symmetric matrix a, Fo (1pa) can be written in terms of the
fundamental solution T' of the Lamé system Lc. In fact, let ® € H' (R?: M7) be the
solution of

Lc(®) =V (1pa).

Then, for all ¢ € {1,...,d},

d i
Pi(z) = Z/Rd Lij(z —y) [Z Em (lD(y)%‘k)] dy

j=1 k=1 k
d B
- -y / ~ Ty — 1) Ip (y)agudy
jh=1 RrRd OYk
L,
= > . (/ Lyj(x — y)lD(y)ajk-dy> :
j=1 Ok /R
If we define
(5.3) w(x)=/D1“($—y)dyv
we have q)z = Z] k (9LEk (@LJaJk) and
(Fo (1pa)) ZS;i ©) ajk,

where
1 Opij 1 Opy
2 0z,0x), 2 0x;0xy

SHOE

Let wq be the surface area of the unit sphere in R?, i.e., wy = 27 and w3 = 47. Then, we
have

Tl

82
wd|m\dml“ij(x) = Aé;; <5kl - d|:r2> — B (8ir015 + 0510a1)

d
+ W (Osrx iy + Ojpixy + Oy o) + 02Tk + Opiait;)

x

d(d+2)B
- T T
2|
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In particular, if 7 = [, the equation simplifies into

w mdir (2) = Adi; | G — A2 ) — By (1 +651)
d 3xk8x] ©j ij ik ‘x|2 ik ji
+ dBZE (25, + 655 + 1)
|
+dB (6 — (d+2)—5 | —5.
=" ) |
Consequently, we obtain
d
ol'y; 1 (A-DB) TrT; 1 1 TrTi
T kL) i [ S S S LA
— Dudr;  |of?  wa TR ) T el wa@pe + A T T el
Let 0(z) = ra7 for z # 0. Since Ai(a) = %Iz, we have
tr(a) d
Fo (LA (@), () = o 3™ €l )
k=1
tr(a) / dy
=7t 0;5 —dBi(x —y)0i(x —y .
dwd(2/1/c+Ac) D( J ( )]( )) |x_y|d

This last formula can be written as

Fe (pA(a)) (1) = — 2%“ (/x_ L - /Do(xy)@g)e(xy)'mfyyld).

Note that Fo (1pAi(a)) (z) is trace free, in other words,
(I ® Io)Fe (1pAi(a)) = 0.
Consequently, we have
(CT = C)Fo(1pAi(0)(@) = 2(i — 1) Fe(1pAs (a))(x)

since C1 — C% = (A = NIy @ I + 2(ji — )14
The computation of (GoA1(a), A1(a)) is now straightforward. If we set

. o =200 (Gma)
then
(GoAi(a), Ar(a))
1
- ﬁ R4\ D

) 2
St s (e o) ) e

2

(Cl - C’O)FC(lpAl(a)) : Fc(IDAl(a))

which in turn yields formula (5.1).
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We now derive a lower bound for K(D) depending on shape of D. The characteristic
feature of the shape that we shall use is its thickness. Suppose that D is of given thickness
7 as defined in (1.5). Then D is contained in B, (x) for some zy where

d|D|\?
(5.5) r= (' |>

TWd
One can easily see that

DIK(D Z/W </( 5= o= e ) lxdyyd>2dw

1,7=1

Je

A simple computation shows that the integrand of the above integral in x is non-negative.
Indeed, if we define

d

z_;l</De,;<xy>ej<xy>| W) o/ |m_yd) d.

2]

dy
Xi::/ﬂfa:—y , i=1,....d,
D ( )|$—y‘d

then

d
Y
=1 p lz =yl

and we have immediately

([ e-vpa) = 5 (] )
md —d \Jp |z -yl

Therefore, a lower bound on (D) is obtained by reducing the domain of integration, i.e.,

(5.6)
d 2 2
dy 1 dy
k(o) | (e =me-0z) =3 ([ 555m) |
DIKD) 2 R4\ By (o) sz:l D (= =183 y)|$—y|d d \Jp |z -yl

where t > 1 is a parameter to be chosen later. Note that

> 1</ I

_ Z /D ble )yl — )il )0y~ )

ij=1

dydy’
|z — y|d|z —y'|?

o 2 \2
pxp |7 = y|42 |z — y/|4+2
Since D C B,(zg), we have

2

t
(x—y,z—y) > Ix—mm—yl

241
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for all z € R%\ By,.(z0) and y,y’ € D, and consequently

> </D U —n)bile—ug iyy) S (i;) </D |xfyy|d>2'

4,5=1

We have obtained that

£2-1\" dy \>
(5.7) \D|K(D) > <2> / ( y d) da.
" +1 R\ By, (z0) \JD |T =Yl
Now remark that
1 t
(5.8) for all z € R? \ Bir(z0) and y € B,(xp).

>
[z =yl — i+ 1]z —
It then follows from (5.7) and (5.5) that
(5.9) K(D) >
(> + 1) (t+1)*

We now choose t to optimize estimate (5.9), and set

2 _ 1)24d
(5.10) Cy := max (t 5 )t o7
L +1)" (t+1)™

Inserting this result in (4.10) and (5.1) we have proved the following proposition.

(2 — 1) (“2y's

Proposition 5.2. Suppose that the thickness of D is 7. Then

1 _ de+2(d-1)i
A1 —tr(A{MA,) < —K)— —
(5.11) |D|t7’( 1 1) < d(R K)d/?;+2(d—1)ﬁ o,
where
. 2
192 — 20~ kTR )
(5.12) b= a1 (G177 )

6. SIZE ESTIMATION FOR AN INCLUSION

In this section we discuss one important application of the Hashin-Shtrikman bounds.
Suppose that an elastic body occupies a bounded domain 2 in R? whose boundary 0 is
Lipschitz. Suppose that € contains an inclusion D of small volume. Assume that D is of
the form

D =€eB+z,
where the small constant e represents the smallness of the volume of D, B is a reference
domain, and z represents the location of the inclusion. Suppose that the background (2
has the isotropic elasticity tensor C° = 2ul; + Mz ® Iy, while that of the inclusion is
C' = 20l + A, ® I,. We assume that either C* > C9 or €' < C°. Then the elasticity
tensor for 2 with the inclusion is given by

C= 1Q\DCO +1pC*.

We consider an inverse problem to identify the unknown inclusion D by the traction-
displacement measured on 0f).
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Given a traction g on 052, the displacement u, is the solution to
V- (C&(u.))=0 in Q,
(6.1) 9
al:j =g on 99).
Let u be the solution without the inclusion, i.e., V- (C°€(u)) = 0 in Q and % =g on 0N

Then it is proved in [7] that if g = % for a linear displacement u = az for some d x d
symmetric matrix a, then

d
(6.2) u (z) —u(@) + Y aij0pNeg(w — 2)mijpg + O(€7), z € 09,
,3,P,q=1
where M = (myjpq) is the EMT associated with the inclusion D and N is the Neumann
function for L& on Q. It then follows that if b is another d x d symmetric matrix, then

(6.3) /aQ[uE(x) —u(z)] - 8((9bj)do =a: Mb+ O(&%)

The formula (6.3) says that the EMT M associated with the single inclusion D can be
detected from the boundary measurement u. on 0X2. We then obtain the following theorem
from Theorem 4.2 and Proposition 5.2.

Theorem 6.1. Let M be the EMT detected from the boundary measurement via the for-
mula (6.8) and let ki, ko, k3, ke be the constants on the right hand sides of (4.10)-(4.12)
consecutively. Then

tr(AyMA,) tr(AoMA
max (A 1), (A 2) < |D| < min 3 , i

K1 ) tT‘(AlﬂfflAl) tr(AQMilAQ)

provided that C' > C°. If we know a priori an upper bound of the thickness of D, say r,
then we have

tr(A1 MAy) ) K3 K4
. —— 2 < |D| <L
(6:5) —or = |Dlsmin (tr(AlM—lAl)’ tr(AsM—1A) )’

where § is defined in Proposition 5.2. If C1 < C°, then inequalities are reversed.

(6.4)

We note that (6.4) and (6.5) are improved estimates of the size of D over those in [7, 15].

Acknowledgement. We thank Graeme W. Milton for pointing out to us the existence
of Lipton’s work [20].
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