
HAL Id: hal-00125277
https://hal.science/hal-00125277

Preprint submitted on 18 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Penalizations of the Brownian motion by a functional of
its local times

Joseph Najnudel

To cite this version:
Joseph Najnudel. Penalizations of the Brownian motion by a functional of its local times. 2007.
�hal-00125277�

https://hal.science/hal-00125277
https://hal.archives-ouvertes.fr
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Abstract : In this article, we study the family of probability measures (in-
dexed by t ∈ R

∗
+), obtained by penalization of the Brownian motion by a given

functional of its local times at time t.
We prove that this family tends to a limit measure when t goes to infinity if the
functional satisfies some conditions of domination, and we check these condi-
tions in several particular cases.
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Introduction

Brownian penalizations have been studied in several articles, in particular in
[RVY03], [RVY06], [RVY05]. The general principle of these penalizations is the
following : let W be the Wiener measure on C(R+,R), (Xt)t≥0 the canonical
process, and (Γt)t≥0 a family of positive weights such that 0 < W[Γt] < ∞ ;
we consider the family of probability measures (Wt)t≥0, obtained from W, by
“penalization” with the weight Γ :

Wt =
Γt

W[Γt]
.W

In many different particular cases, the family (Wt)t≥0 tends to a limit measure
W∞ as t → ∞, in the following sense : for all s ≥ 0, and for Λs measurable
with respect to Fs = σ{Xu, u ≤ s} :

Wt(Λs) →
t→∞

W∞(Λs)

Up to now, there does not exist a general theorem which covers all the different
cases for which convergence holds. On the other hand, we remark that in many
of these cases, one has :

Γt = F ((lyt (X))y∈R)

where (lyt (X))y∈R is the family of the local times of (Xs)s≤t, and F is a mea-
surable functional from C(R,R+) to R+.

These two facts led us to prove that if Γ is of this form, the limit measure

1



W∞ exists for a “large” class of functionals F .

This proof is the main topic of our article, which is divided into six sections.

In the first one, we define and explain the notations we need to prove our main
theorem, which is stated at the end of the section.

In Section 2, we prove an equality satisfied by an approximation of a given
functional of local times, and in Section 3, we majorize the error term corres-
ponding to this approximation.

This allows us to obtain, in Section 4, the asymptotic behaviour of the ex-
pectation of functionals which satisfy some particular conditions, and finally we
prove the main theorem in Section 5.

In Section 6, we study the four following examples, for which the Theorem
applies :

1) F ((ly)y∈R) = φ(l0) (which corresponds to Γt = φ(l0t (X))), where φ is a
function from R+ to R+, dominated by an integrable and decreasing function
ψ.

2) F ((ly)y∈R) = φ(inf{y ≥ 0, ly = 0}) (which corresponds to the weight
Γt = φ(sup{Xs, s ≤ t})), where φ is a function from R+ ∪{∞} to R+, domina-
ted by a decreasing function ψ, which is integrable on R.

3) F ((ly)y∈R) = exp
(

−
∫∞

−∞ V (y)ly dy
)

, where V is a positive measurable func-

tion, not a.e. equal to zero, and integrable with respect to (1 + y2)dy.

4) F ((ly)y∈R) = φ(ly1 , ly2), where y1 < y2 and φ(l1, l2) ≤ h(l1 ∧ l2), for a
decreasing and integrable function h.

The three first examples have been already studied by B. Roynette, P. Val-
lois and M. Yor.

As a help to the reader, we mention that Sections 2 and 3 are quite techni-
cal, but it is possible to read the details of these sections after Sections 4 and
5, which contain the principal steps of the proof of the Theorem.

1 Notations and statement of the main theorem

In this article, (Bt)t≥0 denotes a standard one-dimensional Brownian motion,
(Ly

t )t≥0,y∈R the bicontinuous version of its local times, and (τa
l )l≥0,a∈R the fa-

mily of its inverse local times.

To simplify these notations, we put Ta = τa
0 (first hitting time at a of B)

and τ0
l = τl.

For every l ∈ R+, (Y y
l,+)y∈R denotes a random process defined on the whole real
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line, such that its “positive part” (Y y
l,+)y≥0 is a 2-dimensional squared Bessel pro-

cess (BESQ(2)), its “negative part” (Y −y
l,+ )y≥0 is an independent 0-dimensional

squared Bessel process (BESQ(0)), and its value at zero Y 0
l,+ is equal to l. In

particular, by classical properties of BESQ(0) and BESQ(2) processes, there
exists a.s. y0 ≤ 0 such that Y y

l,+ = 0 iff y ≤ y0.

We define also (Y y
l,−)y∈R as a process which has the same law as (Y −y

l,+ )y∈R, the

process obtained from (Y y
l,+)y∈R by “reversing the time”.

In one of the penalization results shown in [RVY05], B. Roynette, P. Vallois
and M. Yor obtain a limit process (Z l

t)t≥0, such that Z l
t = Bt for t ≤ τl,

(|Z l
τl+u|)u≥0 is a BES(3) process independent of B, and ǫ = sgn(Z l

τl+u) (u > 0)
is an independent variable such that P(ǫ = 1) = P(ǫ = −1) = 1/2. This process
can be informally considered to be a Brownian motion conditionned to have a
total local time equal to l at level zero. By applying Ray-Knight theorems for
Brownian local times (see [RY99a]) to (Z l

t)t≥0, it is possible to show that the
law of the family of its total local times is the half-sum of the laws of (Y y

l,+)y∈R

and (Y y
l,−)y∈R ((Y y

l,+)y∈R corresponds to the paths of (Z l
t)t≥0 such that ǫ = 1,

and (Y y
l,−)y∈R corresponds to the paths such that ǫ = −1).

This explains why the processes (Y y
l,+)y∈R and (Y y

l,−)y∈R occur naturally in the
description of the asymptotic behaviour of Brownian local times.

We also need to define some modifications of (Y y
l,+)y∈R and (Y y

l,−)y∈R : for

l ≥ 0, a ≥ 0, (Y y
l,a)y∈R denotes a process such that (Y y

l,a)y≥0 is markovian with
the infinitesimal generator of BESQ(2) for y ≤ a and the infinitesimal genera-
tor of BESQ(0) for y ≥ a, (Y −y

l,a )y≥0 is an independent BESQ(0) process, and

Y 0
l,a = l. For a ≤ 0, (Y y

l,a)y∈R has the same law as (Y −y
l,−a)y∈R.

Now, let F be a functional from C(R,R+) to R+, which is measurable with
respect to the σ-field generated by the topology of uniform convergence on
compact sets. We consider the following quantities, which will naturally appear
in the asymptotics of E[F ((Ly

t )y∈R)] :

I+(F ) =

∫ ∞

0

dlE[F ((Y y
l,+)y∈R)]

I−(F ) =

∫ ∞

0

dlE[F ((Y y
l,−)y∈R)]

I(F ) = I+(F ) + I−(F )

We observe that I(F ) is the integral of F with respect to the σ-finite measure
I on C(R,R+), defined by :

I =

∫ ∞

0

dl Pl,+ +

∫ ∞

0

dl Pl,−

where Pl,+ is the law of (Y y
l,+)y∈R and Pl,− is the law of (Y y

l,−)y∈R.

At the end of this section, we give some conditions on F which turn out to
be sufficient to obtain our penalization result.
Unfortunately, these conditions are not very simple and we need three more
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definitions before stating the main Theorem :

Definition 1 (a condition of domination) : Let c and n be in R+ (generally n
will be an integer). For every decreasing function h from R+ to R+, we say that
a measurable function F from C(R,R+) to R+ satisfies the condition C(c, n, h)
iff the following holds for every continuous function l from R to R+ :

1) F ((ly)y∈R) depends only on (ly)y∈[−c,c].

2) F ((ly)y∈R) ≤
(

sup
y∈[−c,c]

ly+c

inf
y∈[−c,c]

ly+c

)n

h

(

inf
y∈[−c,c]

ly
)

Intuitively, a functional of the local times satisfies the above condition if it
depends only on the local times on a compact set, and if it is small when these
local times are large and don’t vary too much.

Now, let us use the notation :

Nc(h) = ch(0) +

∫ ∞

0

h(y)dy

If Nc(h) < ∞, it is possible to prove our main theorem for all functionals F
which satisfies the condition C(c, n, h), but this condition is restrictive, since
the functional F must not depend on the local times outside of [−c, c].

In order to relax this restriction, we need the following definition :

Definition 2 (a less restrictive condition of domination) : Let n be in R+

and F be a positive and measurable function from C(R,R+) to R.
For all M ≥ 0, let us say that F satisfies the condition D(n,M) iff there exists
a sequence (ck)k≥1 in [1,∞[, a sequence (hk)k≥1 of decreasing functions from
R+ to R+, and a sequence (Fk)k≥0 of measurable functions from C(R+,R) to
R+, such that :

1) F0 = 0 and (Fk)k≥1 tends to F pointwise.

2) For all k ≥ 1, |Fk − Fk−1| satisfies the condition C(ck, n, hk).

3)
∑

k≥1

Nck
(hk) ≤M .

We define the quantity N (n)(F ) as the infimum of M ≥ 0 such that F sa-
tisfies the condition D(n,M).

Intuitively, if N (n)(F ) < ∞, it means that F can be well-approximated by
functionals which satisfy conditions given in Definition 1.
In particular, if F satisfies the condition C(c, n, h) for c ≥ 1, one has :N (n)(F ) ≤
Nc(h) (one can prove that F satisfies the condition D(n,Nc(h)), by taking in
Definition 2 : ck = c, hk = h1k=1, F0 = 0 and Fk = F if k ≥ 1).
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Now, for a given functional F , we need to define some other fonctionals, in-
formally obtained from F by “shifting” the space and adding a given function
to the local time family.

More precisely, let us consider the following definition :

Definition 3 (local time and space shift) : Let x be a real number. If F is
a measurable functional from C(R+,R) to R+, and if (ly0)y∈R is a continuous

function from R to R+, we denote by F (ly0)y∈R,x the functional from C(R,R+)
to R+ which satisfies :

F (ly0)y∈R,x((ly)y∈R) = F ((ly0 + ly−x)y∈R)

for every function (ly)y∈R.

This notation and the functionals defined in this way appear naturally when we
consider the conditional expectation : E[F ((Ly

t )y∈R)|(Bu)u≤s], for 0 < s < t,
and apply the Markov property.

We are now able to state the main theorem of the article :

Theorem : Let F be a functional from C(R,R+) to R+ such that I(F ) > 0
and N (n)(F ) <∞ for some n ≥ 0.
If W denotes the standard Wiener measure on C(R+,R), (Xt)t≥0 the canonical
process, and (lyt (X))t∈R+,y∈R the continuous family of its local times (W-a.s.
well-defined), the probability measure :

W
F
t =

F
(

(lyt (X))y∈R

)

W

[

F
(

(lyt (X))y∈R

)] .W

is well-defined for every t which is large enough, and there exists a probability
measure W

F
∞ such that :

W
F
t (Λs) →

t→∞
W

F
∞(Λs)

for every s ≥ 0 and Λs ∈ Fs = σ{Xu, u ≤ s}.

Moreover, this limit measure satisfies the following equality :

W
F
∞(Λs) = W

(

1Λs .
I
(

F (lys (X))y∈R,Xs
)

I(F )

)

Remark 1.1 : A consequence of the Theorem is the fact that if I(F ) > 0 and

N (n)(F ) < ∞ for some n ≥ 0, the process
(I(F (L

y
s )y∈R,Bs ))s≥0

I(F ) is a martingale.

In three of the four examples studied in Section 6, we compute explicitly this
martingale, and in the two first ones, we check that this computation agrees
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with the results obtained by B. Roynette, P. Vallois and M. Yor.

Remark 2.1 : We point out that our notation, lyt (X), for the local times
given in the Theorem, differs from the notation Ly

t , which is used for the local
times of (Bs)s≤t. This is because, in one case, we consider the canonical process
(Xt)t≥0 on a given probability space, and in the other case, we consider a Brow-
nian motion on a space which is not made precise. Hence, the two mathematical
objects deserve different writings, despite the fact that they are strongly related.

2 An approximation of the functionals of local

times

In order to prove the Theorem, we need to study the expectation of F ((Ly
t )y∈R),

where F is a function from C(R,R+) to R+.

However, in general, it is difficult to do that directly, so in this section, we
will replace F ((Ly

t )y∈R) by an approximation.

For the study of this approximation, we need to consider the following quanti-
ties :

Ic
l,+ =

∫ c

−c

Y y
l,+dy, Ic

l,− =

∫ c

−c

Y y
l,−dy, Ic

l,a =

∫ c

−c

Y y
l,ady

for c ∈ R+ or c = ∞, a ∈ R ;

Yc
l,+ =

1

2
(Y c

l,+ + Y −c
l,+ ), Yc

l,− =
1

2
(Y c

l,− + Y −c
l,− ), Yc

l,a =
1

2
(Y c

l,a + Y −c
l,a )

for c ∈ R+, a ∈ R ;

Ic,t,+(F ) =

∫ ∞

0

dlE



F ((Y y
l,+)y∈R)

e−(Yc
l,+)2/2(t−Ic

l,+)

√

1 − Ic
l,+/t

φ

(Ic
l,+

t

)





Ic,t,−(F ) =

∫ ∞

0

dlE



F ((Y y
l,−)y∈R)

e−(Yc
l,−)2/2(t−Ic

l,−)

√

1 − Ic
l,−/t

φ

(Ic
l,−

t

)





and
Ic,t(F ) = Ic,t,+(F ) + Ic,t,−(F )

for c ∈ R+, t > 0, where φ denotes the function from R+ to R+ such that
φ(x) = 1 in x ≤ 1/3, φ(x) = 2−3x if 1/3 ≤ x ≤ 2/3 and φ(x) = 0 if x ≥ 2/3 (in
particular, this function is continuous with compact support included in [0, 1[).

We observe that the expression e
(Yc

l,+)2/2(t−Ic
l,+)√

1−Ic
l,+/t

is not well-defined if Ic
l,+ ≥ t ;

but this is not important here, since φ(Ic
l,+/t) = 0 in that case.

Now, the main result of this section is the following proposition :

Proposition 2 : For all measurable functionals from C(R+,R) to R+, such
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that F ((ly)y∈R) depends only on (ly)y∈[−c,c] for some c ≥ 0, the following equa-
lity holds :

√
2πtE

[

F ((Ly
t )y∈R)1|Bt|≥cφ

(

1

t

∫ c

−c

Ly
t dy

)]

= Ic,t(F )

for all t > 0.

Proof : Let G0 be a functional from C(R+,R) × R+ to R+, such that the
process : (G0((Xs)s≥0, t))t≥0, defined on the canonical space C(R+,R), is pro-
gressively measurable.

For every continuous function ω from R+ to R, G0((ωs)s≥0, t) depends only
on (ωs)s≤t ; let us take :

G((ωs)s≤t) = G0((ωs)s≥0, t)

Now, by results by C. Leuridan (see [Leu98]), P. Biane and M. Yor (see [BY88]),
one has :

∫ ∞

0

dtG((Bs)s≤t) =

∫ ∞

0

dl

∫ ∞

−∞

daG((Bs)s≤τa
l
)

By using invariance properties of Brownian motion for time and space reversals,
one obtains :

∫ ∞

0

dtE[G((Bs)s≤t)] =

∫ ∞

0

dl

∫ ∞

−∞

daE[G((Z l,a
s )s≤τl+Ta→0)]

where (Z l,a
s )s≤τl+Ta→0 denotes a process such that Z l,a

s = Bs for s ≤ τl and

(Z l,a
τl+u)u≤Ta→0 is the time-reversed process of a Brownian motion starting from

a, independent of B, and considered up to its first hitting time of zero (denoted
by Ta→0).

Therefore, for all Borel sets U of R
∗
+, if we define Jc,U (F ) by :

Jc,U (F ) =

∫

U

dtE

[

F ((Ly
t )y∈R)1|Bt|≥cφ

(

1

t

∫ c

−c

Ly
t dy

)]

we have, by taking G0 and G such that G((Bs)s≤t) = F ((Ly
t )y∈R) :

Jc,U (F ) =

∫ ∞

0

dtE

[

F ((Ly
t )y∈R)1|Bt|≥cφ

(
∫ c

−c
Ly

t dy
∫∞

−∞
Ly

t dy

)

1R ∞
−∞

Ly
t dy∈U

]

=

∫ ∞

0

dl

∫

R\[−c,c]

daE

[

F ((Ly,l,a)y∈R)φ

(
∫ c

−c
Ly,l,ady

∫∞

−∞
Ly,l,ady

)

1
R

∞
−∞

Ly,l,ady∈U

]

where (Ly,l,a)y∈R is the continuous family of the total local times of Z l,a.

Hence, by Ray-Knight theorem applied to the independent processes
(Bs = Zs)s≤τl

and (Zτl+u)u≤Ta→0 , and classical additivity properties of squared
Bessel processes :

Jc,U (F ) =

∫ ∞

0

dl

∫

R\[−c,c]

daE

[

F ((Y y
l,a)y∈R)φ

(

Ic
l,a

I∞
l,a

)

1I∞
l,a∈U

]

7



=

∫ ∞

0

dl

∫

R\[−c,c]

daE

[

F ((Y y
l,a)y∈R)E

[

φ

(

Ic
l,a

I∞
l,a

)

1I∞
l,a

∈U

∣

∣

∣
(Y y

l,a)y∈[−c,c]

]]

since F ((Y y
l,a)y∈R) depends only on (Y y

l,a)y∈[−c,c].

Now, if θ is a given continuous function from [−c, c] to R+, the integrals :
∫∞

c Y y
l,ady and

∫ −c

−∞ Y y
l,ady are independent conditionally on (Y y

l,a = θy)y∈[−c,c]

and their conditional laws are respectively equal to the laws of
∫∞

0 Y y
θc,(a−c)+

dy

and
∫∞

0 Y y
θ−c,(−a−c)+

dy.

Therefore, by additivity properties of BESQ processes, the conditional law of :

I∞
l,a − Ic

l,a =

∫ −c

−∞

Y y
l,ady +

∫ ∞

c

Y y
l,ady

given (Y y
l,a = θy)y∈[−c,c], is equal to the law of :

∫ ∞

0

Y y
θc+θ−c,0dy +

∫ ∞

0

Y y
0,(|a|−c)+

dy

where (Y y
θc+θ−c,0)y≥0 and (Y y

0,(|a|−c)+
)y≥0 are supposed to be independent.

By Ray-Knight theorem,
∫∞

0
Y y

θc+θ−c,0dy has the same law as the time spent in

R+ by (Bs)s≤τθc+θ−c , therefore :

∫ ∞

0

Y y
θc+θ−c,0dy

(d)
= τ(θc+θ−c)/2

(d)
= T(θc+θ−c)/2

Moreover :
∫ ∞

0

Y y
0,(|a|−c)+

dy
(d)
= T(|a|−c)+

Hence, the conditional law of I∞
l,a −Ic

l,a, given (Y y
l,a = θy)y∈[−c,c], is equal to the

law of T(|a|−c)++(θc+θ−c)/2. Consequently :

Jc,U (F ) =

∫ ∞

0

dl

∫

R\[−c,c]

daE

[

F ((Y y
l,a)y∈R)ψa(Ic

l,a,Yc
l,a)
]

where, for |a| > c :

ψa(I, θ) = E

[

φ

( I
I + T|a|−c+θ

)

1I+T|a|−c+θ∈U

]

Now, if, for all u > 0, pu denotes the density of the law of Tu, one has :

ψa(I, θ) =

∫

U

φ(I/t)p|a|−c+θ(t− I)dt

and :

Jc,U (F ) =

∫

U

dt

∫ ∞

0

dl

∫

R\[−c,c]

daE

[

F ((Y y
l,a)y∈R)φ

(Ic
l,a

t

)

p|a|−c+Yc
l,a

(t− Ic
l,a)

]
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By hypothesis, F ((Y y
l,a)y∈R) depends only on (Y y

l,a)y∈[−c,c]. Moreover, for a ≥ c,

(Y y
l,a)y∈[−c,c] has the same law as (Y y

l,+)y∈[−c,c], and for a ≤ −c, (Y y
l,a)y∈[−c,c]

has the same law as (Y y
l,−)y∈[−c,c].

Hence, we have :

Jc,U (F ) =

∫

U

dt

∫ ∞

0

dlE

[

F ((Y y
l,+)y∈R)φ

(Ic
l,+

t

)∫ ∞

c

pa−c+Yc
l,+

(t− Ic
l,+)da

]

+

∫

U

dt

∫ ∞

0

dlE

[

F ((Y y
l,−)y∈R)φ

(Ic
l,−

t

)∫ −c

−∞

p|a|−c+Yc
l,−

(t− Ic
l,−)da

]

Now, for θ ≥ 0, u > 0 :

∫ −c

−∞

p|a|−c+θ(u)da =

∫ ∞

c

pa−c+θ(u)da =

∫ ∞

θ

pb(u)db

=

∫ ∞

θ

b√
2πu3

e−b2/2udb =
1√
2πu

e−θ2/2u

Therefore :

Jc,U (F ) =

∫

U

dt
Ic,t(F )√

2πt

This equality is satisfied for every Borel set U . Hence, by definition of Jc,U (F ),
the equality given in Proposition 2 occurs for almost every t > 0.
In order to prove it for all t > 0, we begin to suppose that F is bounded and
continuous.
In this case, for all s, t > 0 :

∣

∣

∣

∣

E

[

F ((Ly
t )y∈R)1|Xt|≥cφ

(

1

t

∫ c

−c

Ly
t dy

)]

− E

[

F ((Ly
s)y∈R)1|Xs|≥cφ

(

1

s

∫ c

−c

Ly
sdy

)]∣

∣

∣

∣

≤ E

[∣

∣

∣

∣

F ((Ly
t )y∈R)φ

(

1

t

∫ c

−c

Ly
t dy

)

− F ((Ly
s)y∈R)φ

(

1

s

∫ c

−c

Ly
sdy

)∣

∣

∣

∣

]

+||F ||∞P(∃u ∈ [s, t], |Xu| = c)

If t is fixed, the first term of this sum tends to zero when s tends to t, by
continuity of F , φ and dominated convergence.
The second term tends also to :

||F ||∞P(|Xt| = c) = 0

Therefore, the function :

t→ E

[

F ((Ly
t )y∈R)1|Xt|≥cφ

(

1

t

∫ c

−c

Ly
t dy

)]

is continuous.

Now, let us prove that Ic,t(F ) is also continuous with respect to t.

9



For all t > 0 :

F ((Y y
l,+)y∈R)

e−(Yc
l,+)2/2(s−Ic

l,+)

√

1 − Ic
l,+/s

φ

(Ic
l,+

s

)

→
s→t

F ((Y y
l,+)y∈R)

e−(Yc
l,+)2/2(t−Ic

l,+)

√

1 − Ic
l,+/t

φ

(Ic
l,+

t

)

by continuity of φ (if Ic
l,+ < t, it is clear, and if Ic

l,+ ≥ t, the two expressions
are equal to zero for s ≤ 3t/2).

Moreover, for s ≤ 2t :

F ((Y y
l,+)y∈R)

e−(Yc
l,+)2/2(s−Ic

l,+)

√

1 − Ic
l,+/s

φ

(Ic
l,+

s

)

≤
√

3||F ||∞e−(Yc
l,+)2/4t ≤

√
3||F ||∞e−(Y c

l,+)2/16t

Recalling that the Lebesgue measure is invariant for the BESQ(2) process (Y y
l,+)y≥0,

we have :
∫ ∞

0

dlE
[

e−(Y c
l,+)2/16t

]

=

∫ ∞

0

dl e−l2/16t <∞

By dominated convergence, t→ Ic,t,+(F ) is continuous.

Similar computations imply the continuity of t → Ic,t,−(F ), and finally t →
Ic,t(F ) is continuous.

Consequently, for F continuous and bounded, the equality given in Proposi-
tion 2, which was proven for a.e. t > 0, remains true for every t > 0.
Now, by monotone class theorem (see [RY99b]), it is not difficult to extend this
equality to every measurable and positive function, which completes the proof
of Proposition 2. �

This proposition has the following consequence :

Corollary 2 : Let F be a functional which satisfies the condition of Pro-
position 2. The two following properties hold :

1) For all t > 0 :

√
2πtE

[

F ((Ly
t )y∈R)1|Bt|≥cφ

(

1

t

∫ c

−c

Ly
t dy

)]

≤
√

3 I(F )

2) When t goes to infinity :

√
2πtE

[

F ((Ly
t )y∈R)1|Bt|≥cφ

(

1

t

∫ c

−c

Ly
t dy

)]

→ I(F )

Proof : The first property is obvious, since φ(x)/
√

1 − x ≤
√

3 for all x ≥ 0.
In order to prove the second property, we distinguish two cases :

1) If I(F ) <∞, we observe that :

F ((Y y
l,+)y∈R)

e−(Yc
l,+)2/2(t−Ic

l,+)

√

1 − Ic
l,+/t

φ

(Ic
l,+

t

)

10



is smaller than
√

3F ((Y y
l,+)y∈R) and tends to F ((Y y

l,+)y∈R) when t goes to infi-
nity.
By dominated convergence, Ic,t,+(F ) → I+(F ).
Similarly, Ic,t,−(F ) → I−(F ) and finally :

Ic,t(F ) → I(F )

2) If I(F ) = ∞, we can suppose for example : I+(F ) = ∞.
In this case :

Ic,t(F ) ≥ Ic,t,+(F ) ≥
∫ ∞

0

dlE

[

F ((Y y
l,+)y∈R)e−(Yc

l,+)2/2(t−Ic
l,+)φ

(Ic
l,+

t

)]

which tends to I+(F ) = ∞ when t→ ∞, by monotone convergence. �

Now, the next step in this article is the majorization of the difference between
the quantity

√
2πtE[F ((Ly

t )y∈R)] and the expression given in Proposition 2.

3 Majorization of the error term

For every positive and measurable functional F , we denote by ∆c,t(F ) the error
term we need to majorize :

∆c,t(F ) =

∣

∣

∣

∣

√
2πtE

[

F ((Ly
t )y∈R)1|Bt|≥cφ

(

1

t

∫ c

−c

Ly
t dy

)]

−
√

2πtE [F ((Ly
t )y∈R)]

∣

∣

∣

∣

It is easy to check that :

∆c,t(F ) ≤ ∆
(1)
c,t (F ) + ∆

(2)
c,t (F )

where :
∆

(1)
c,t (F ) =

√
2πtE

[

F ((Ly
t )y∈R)1|Bt|≤c

]

and
∆

(2)
c,t (F ) =

√
2πtE

[

F ((Ly
t )y∈R)1R c

−c
Ly

t dy≥t/3

]

The following proposition gives some precise majorizations of these quantities,
when F satisfies the conditions of Definition 1.

Proposition 3 : Let F be a functional from C(R,R+) to R+ which satis-
fies the condition C(c, n, h) for a positive, decreasing function h and c, n ≥ 0.
For all t ≥ 0, one has the following majorizations :

1) ∆
(1)
c,t (F ) ≤ An

Nc(h)
1+(t/c2)1/3

2) ∆
(2)
c,t (F ) ≤ An

ch(0)
1+(t/c2) ≤ An

Nc(h)
1+(t/c2)

3) ∆c,t(F ) ≤ An
Nc(h)

1+(t/c2)1/3

4) I(F ) ≤ AnNc(h)

where An > 0 depends only on n.

11



In order to prove Proposition 3, we will need some inequalities about the pro-
cesses (Ly

t )y∈[−c,c] and (Y y
l,+)y∈[−c,c].

More precisely, if we put : Σc
t = sup

y∈[−c,c]

Ly
t , σ

c
t = inf

y∈[−c,c]
Ly

t , Θc
l,+ = sup

y∈[−c,c]

Y y
l,+,

θc
l,+ = inf

y∈[−c,c]
Y y

l,+, Θc
l,− = sup

y∈[−c,c]

Y y
l,−, θc

l,− = inf
y∈[−c,c]

Y y
l,−, the following state-

ment hold :

Lemma 3 : For all c, t > 0 :

1) If a ≥ 0 :

P

(

Σc
t + c

σc
t + c

≥ a

)

≤ Ae−λa

2) If a ≥ 4 :

P

(

Θc
l,+ + c

θc
l,+ + c

≥ a

)

≤ Ae−λ(a+ l
c )

3) If a ≥ 4 :

P

(

Θc
l,− + c

θc
l,− + c

≥ a

)

≤ Ae−λ(a+ l
c )

where A > 0, 0 < λ < 1 are universal constants.

Proof of Lemma 3 : 1) Let us suppose a ≥ 8, c > 0.
In that case :

P

(

Σc
t + c

σc
t + c

≥ a, L0
t ≥ ac

4

)

≤ P

(

Σc
t + c

σc
t + c

≥ 8, L0
t ≥ ac

4

)

≤
∑

k∈N

P

(

Σc
t

σc
t

≥ 8, L0
t ∈ [2k−2ac, 2k−1ac]

)

≤
∑

k∈N

P(Σc
t ≥ 2kac, L0

t ∈ [2k−2ac, 2k−1ac])

+
∑

k∈N

P(σc
t ≤ 2k−3ac,Σc

t ≤ 2kac, L0
t ∈ [2k−2ac, 2k−1ac])

≤
∑

k∈N

[

P(Σc
τ
2k−1ac

≥ 2kac) + P(σc
τ
2k−2ac

≤ 2k−3ac, Σc
τ
2k−2ac

≤ 2kac)
]

=
∑

k∈N

[

αc(2
k−1ac) + βc(2

k−2ac)
]

where for l ≥ 0, αc(l) = P(Σc
τl
≥ 2l) and βc(l) = P(σc

τl
≤ l/2,Σc

τl
≤ 4l).

Now, by Ray-Knight theorem, αc(l) ≤ 2P

(

sup
y∈[0,c]

Y y
l,0 ≥ 2l

)

, and by Dubins-

Schwarz theorem, Y y
l,0 = l + βR y

0
4Y z

l,0dz, where β is a Brownian motion.

12



Hence, if S = inf{y ≥ 0, Y y
l,0 ≥ 2l}, one has : sup

u≤
R

S
0

4Y z
l,0dz

βu = l, and if we

suppose sup
y∈[0,c]

Y y
l,0 ≥ 2l, we have S ≤ c,

∫ S

0 4Y z
l,0dz ≤

∫ S

0 8ldz ≤ 8lc, and finally :

sup
u≤8lc

βu ≥ l.

Consequently :

αc(l) ≤ 2P

(

sup
u≤8lc

βu ≥ l

)

= 2P(|β8lc| ≥ l) ≤ 4P(β8lc ≥ l) ≤ 4e−l/16c

By the same kind of argument, one obtains :

βc(l) ≤ 4e−l/128c

and finally :

P

(

Σc
t + c

σc
t + c

≥ a, L0
t ≥ ac

4

)

≤ 4
∑

k∈N

(

e−2k−1a/16 + e−2k−2a/128
)

≤ 8
∑

k∈N

e−2ka/512 ≤ 8
∑

k∈N∗

e−ka/512 ≤ 8e−a/512

(

∑

k∈N

e−k/64

)

≤ 520e−a/512

On the other hand :

P

(

Σc
t + c

σc
t + c

≥ a, L0
t ≤ ac

4

)

≤ P

(

Σc
t + c ≥ ac, L0

t ≤ ac

4

)

≤ P

(

Σc
τac/4

≥ (a− 1)c
)

≤ P

(

Σc
τac/4

≥ 7ac

8

)

≤ αc

(ac

4

)

≤ 4e−a/64

Consequently :

P

(

Σc
t + c

σc
t + c

≥ a

)

≤ 524e−a/512

for all a ≥ 8.
This inequality remains obviously true for a ≤ 8 or c = 0, so the first part of
Lemma 3 is proven.

2) Let a be greater than 4. If l ≥ ac/4 :

P

(

Θc
l,+ + c

θc
l,+ + c

≥ 4

)

≤ P
(

Θc
l,+ ≥ 2l

)

+P
(

Θc
l,+ ≤ 2l, θc

l,+ ≤ l/2
)

≤ 2α̃c(l) + β̃c(l)

where

α̃c(l) = P

(

sup
y∈[0,c]

Y y
l,+ ≥ 2l

)

and

β̃c(l) = P

(

sup
y∈[−c,c]

Y y
l,0 ≤ 2l, inf

y∈[−c,c]
Y y

l,0 ≤ l/2

)
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.

Now, (Y y
l,+)y≥0 is a BESQ(2) process, hence, if (βy = (β

(1)
y , β

(2)
y ))y≥0 is a stan-

dard two-dimensional Brownian motion :

α̃c(l) = P

(

sup
y∈[0,c]

Y y
l,+ ≥ 2l

)

= P

(

sup
y≤c

||βy + (
√
l, 0)|| ≥

√
2l

)

≤ P

(

sup
y≤c

||βy|| ≥
√
l(
√

2 − 1)

)

≤ 2P

(

sup
y≤c

|β(1)
y | ≥

√
l

(√
2 − 1

2

))

≤ 8P

(

β(1)
c ≥

√
l

(√
2 − 1

2

))

≤ 8e−l/50c

Moreover :

β̃c(l) ≤ P

(

sup
y∈[−c,c]

Y y
l,0 ≤ 4l, inf

y∈[−c,c]
Y y

l,0 ≤ l/2

)

= βc(l) ≤ 4e−l/128c

Therefore, if l ≥ ac/4 :

P

(

Θc
l,+ + c

θc
l,+ + c

≥ a

)

≤ 20e−l/128c

Now, let us suppose l ≤ ac/4. In this case :

P

(

Θc
l,+ + c

θc
l,+ + c

≥ a

)

≤ P

(

Θc
ac/4,+ ≥ 3ac/4

)

≤ 2α̃c(ac/4) ≤ 16e−a/200

Hence, for every l ≥ 0, a ≥ 4 :

P

(

Θc
l,+ + c

θc
l,+ + c

≥ a

)

≤ 20e−(a+(l/c))/1024

which proves the second inequality of the lemma.
The proof of the third inequality is exactly similar. �

Now, we are able to prove the main result of the section, which was presen-
ted in Proposition 3.

Proof of Proposition 3 : 1) For c = 0, ∆
(1)
c,t (F ) = 0, so we can suppose c > 0.

The functional F satisfies the condition C(c, n, h) ; hence, for all a ≥ 1 :

∆
(1)
c,t (F )√
2πt

= E
[

F ((Ly
t )y∈R)1|Bt|≤c

]

≤ E

[(

Σc
t + c

σc
t + c

)n

h(σc
t )1|Bt|≤c

]
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≤ E

[(

Σc
t + c

σc
t + c

)n

h(0)1Σc
t+c

σc
t +c

≥a

]

+ an
E

[

h(σc
t )1|Bt|≤c1Σc

t+c

σc
t +c

≤a

]

Now, if
Σc

t+c
σc

t +c ≤ a,
L0

t+c
σc

t +c ≤ a and σc
t ≥

(

L0
t

a − c
)

+
.

Therefore :

∆
(1)
c,t (F )√
2πt

≤ h(0)E

[(

Σc
t + c

σc
t + c

)n

1Σc
t+c

σc
t +c

≥a

]

+ an
E

[

h

(

(

L0
t

a
− c

)

+

)

1|Bt|≤c

]

By Lemma 3 :

E

[(

Σc
t + c

σc
t + c

)n

1Σc
t+c

σc
t +c

≥a

]

= an
P

(

Σc
t + c

σc
t + c

≥ a

)

+

∫ ∞

a

nbn−1
P

(

Σc
t + c

σc
t + c

≥ b

)

db

≤ A

(

ane−λa +

∫ ∞

a

nbn−1e−λbdb

)

= Aane−λa

(

1 + n

∫ ∞

0

(a+ b)n−1

an
e−λbdb

)

≤ Aane−λa

(

1 + n

∫ ∞

0

(1 + b)ne−λbdb

)

≤ A

(

6

λ

)n+1

(n+ 1)! ane−λa

On the other hand, by using the probability density of (L0
t , |Bt|) (given for

example in [Naj07], Lemma 2.4) :

E

[

h

(

(

L0
t

a
− c

)

+

)

1|Bt|≤c

]

=

√

2

πt3

∫ ∞

0

dl

∫ c

0

dxh

(

(

l

a
− c

)

+

)

(l + x)e−(l+x)2/2t

=

√

2

πt3
h(0)

∫ ac

0

dl

∫ c

0

dx (l + x)e−(l+x)2/2t

+

√

2

πt3

∫ ∞

ac

dl

∫ c

0

dxh

(

l

a
− c

)

(l + x)e−(l+x)2/2t

=

√

2

π

c2

t
h(0)

∫ a

0

dl

∫ 1

0

dx
c(l + x)√

t
e−c2(l+x)2/2t

+

√

2

π

ac2

t

∫ ∞

0

dl

∫ 1

0

dxh(cl)
c(al + a+ x)√

t
e−c2(al+a+x)2/2t

For all θ ≥ 0, θe−θ2/2 ≤ e−1/2 ≤ 1. Hence :

E

[

h

(

(

L0
t

a
− c

)

+

)

1|Bt|≤c

]

≤
√

2

π

ac2

t

(

h(0) +

∫ ∞

0

h(cl)dl

)

=

√

2

π

ac

t
Nc(h)

Moreover, for 0 < t ≤ c2 :

E

[

h

(

(

L0
t

a
− c

)

+

)

1|Bt|≤c

]

≤ h(0) ≤ Nc(h)

c
≤ aNc(h)√

t

15



The majorizations given above imply :

∆
(1)
c,t (F ) ≤ A

(

6

λ

)n+1

(n+ 1)! ane−λa
√

2πt h(0) +
√

2π an+1

(

c√
t
∧ 1

)

Nc(h)

Now, let us choose a as a function of t.

For t ≤ c2, we take a = 1 and obtain :

∆
(1)
c,t (F ) ≤ A

(

6

λ

)n+1

(n+ 1)! e−λ
√

2π ch(0) +
√

2πNc(h)

≤
√

2π

(

1 +A

(

6

λ

)n+1

(n+ 1)! e−λ

)

Nc(h)

For t ≥ c2, we take a = (t/c2)1/6(n+1) :

∆
(1)
c,t (F ) ≤ A

(

6

λ

)n+1

(n+1)!

(

t

c2

)1/6

e−λ( t
c2

)1/6(n+1)√
2πt h(0)+

√
2π

(

t

c2

)1/6
c√
t
Nc(h)

≤
√

2π

(

1 +A

(

6

λ

)n+1

(n+ 1)!

)

Nc(h)

(

t

c2

)−1/3(

1 +
t

c2
e−λ( t

c2
)
1/6(n+1)

)

≤
√

2π

(

1 +A

(

6

λ

)n+1

(n+ 1)!

)

(

1 + sup
u≥1

ue−λu1/6(n+1)

)(

t

c2

)−1/3

Nc(h)

where sup
u≥1

ue−λu1/6(n+1)

is finite and depends only on n (we recall the λ is a

universal constant).

In the two cases, the first inequality of Proposition 3 is satisfied.

2) For c = 0, ∆
(2)
c,t (F ) = 0, so we can again suppose c > 0.

For a ≥ 1 :

∆
(2)
c,t (F )√
2πt

= E

[

F ((Ly
t )y∈R)1R c

−c
Ly

t dy≥t/3

]

≤ E

[(

Σc
t + c

σc
t + c

)n

h(σc
t )1Σc

t≥t/6c

]

≤ h(0)

(

E

[(

Σc
t + c

σc
t + c

)n

1Σc
t+c

σc
t +c

≥a

]

+ an
P

(

L0
t ≥ t

6ac
− c

))

≤ A

(

6

λ

)n+1

(n+ 1)! ane−λah(0) + 2anh(0)e
− 1

2t(
t

6ac −c)
2

+

If t ≤ 12c2, we take a = 1 :

∆
(2)
c,t (F ) ≤ ch(0)

√
24π

(

2 +A

(

6

λ

)n+1

(n+ 1)! e−λ

)

If t ≥ 12c2, we take a =
(

t
12c2

)1/3
:

∆
(2)
c,t (F ) ≤

√
2πt h(0)

[

A

(

6

λ

)n+1

(n+ 1)!

(

t

12c2

)n/3

e−λ( t
12c2

)1/3

...
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...+ 2

(

t

12c2

)n/3

e−
c2

2t (2(t/12c2)2/3−1)
2

]

≤
(

c2

t

)

ch(0)
√

2π 123/2

(

2 +A

(

6

λ

)n+1

(n+ 1)!

)

(

t

12c2

)
n
3 + 3

2
(

e−λ( t
12c2

)
1/3

+ e−
1
24 (

t
12c2

)
1/3
)

The second inequality of Proposition 3 holds, since sup
u≥1

u
n
3 + 3

2

(

e−λu1/3

+ e−
1
24 λu1/3

)

is finite and depends only on n.

3) This inequality is an immediate consequence of 1) and 2).

4) For every l ≥ 0 :

E[F ((Y y
l,+)y∈R)] ≤ E

[(

Θc
l,+ + c

θc
l,+ + c

)n

h(θc
l,+)

]

≤ h(0)E

[(

Θc
l,+ + c

θc
l,+ + c

)n

1Θc
l,+

+c

θc
l,+

+c
≥4

]

+ 4nh

(

(

l

4
− c

)

+

)

Now, by Lemma 3 :

E

[(

Θc
l,+ + c

θc
l,+ + c

)n

1Θc
l,+

+c

θc
l,+

+c
≥4

]

= 4n
P

(

Θc
l,+ + c

θc
l,+ + c

≥ 4

)

+

∫ ∞

4

nbn−1
P

(

Θc
l,+ + c

θc
l,+ + c

≥ b

)

db

≤ Ae−λl/c

(

4ne−4λ +

∫ ∞

4

nbn−1e−λbdb

)

≤ Ae−λl/c

(

6

λ

)n+1

(n+ 1)! 4ne−4λ

Hence :

E[F ((Y y
l,+)y∈R)] ≤ Ah(0)e−λl/c

(

6

λ

)n+1

(n+ 1)! 4ne−4λ + 4nh

(

(

l

4
− c

)

+

)

and, by integrating with respect to l :

I+(F ) ≤ A

λ

(

6

λ

)n+1

(n+ 1)!4ne−4λch(0) + 4n+1ch(0) + 4n+1

∫ ∞

0

h(l)dl

≤ 4n+1

(

1 +
A

λ

(

6

λ

)n+1

(n+ 1)!

)

Nc(h)

By symmetry, the same inequality holds for I−(F ), and :

I(F ) ≤ 22n+3

(

1 +
A

λ

(

6

λ

)n+1

(n+ 1)!

)

Nc(h)

which completes the proof of Proposition 3. �
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4 An estimation of the quantity : E[F ((Ly
t )y∈R)]

In this section, we majorize E[F ((Ly
t )y∈R)] by an equivalent of this quantity

when t goes to infinity. The following statement holds :

Proposition 4.1 : Let F be a functional from C(R,R+) to R+, which satisfies
the condition C(c, n, h), for a positive, decreasing function h, and c, n ≥ 0.
The following properties hold :

1) For all t > 0 : √
2πtE[F ((Ly

t )y∈R)] ≤ KnNc(h)

where Kn > 0 depends only on n.

2) If Nc(h) <∞ : √
2πtE[F ((Ly

t )y∈R)] →
t→∞

I(F )

Proof : We suppose Nc(h) <∞.
Proposition 3 implies the following :

∆c,t(F ) ≤ AnNc(h)

∆c,t(F ) →
t→∞

0

Moreover, by Corollary 2 :

√
2πtE

[

F ((Ly
t )y∈R)1|Bt|≥cφ

(

1

t

∫ c

−c

Ly
t dy

)]

→
t→∞

I(F )

√
2πtE

[

F ((Ly
t )y∈R)1|Bt|≥cφ

(

1

t

∫ c

−c

Ly
t dy

)]

≤
√

3 I(F ) ≤
√

3AnNc(h)

for all t > 0.

Now, by definition, one has :
∣

∣

∣

∣

√
2πtE[F ((Ly

t )y∈R)] −
√

2πtE

[

F ((Ly
t )y∈R)1|Bt|≥cφ

(

1

t

∫ c

−c

Ly
t dy

)]∣

∣

∣

∣

= ∆c,t(F )

Therefore : √
2πtE[F ((Ly

t )y∈R)] →
t→∞

I(F )

√
2πtE[F ((Ly

t )y∈R)] ≤ (1 +
√

3)AnNc(h)

which proves Proposition 4.1. �

The following result is an extension of Proposition 4.1 to a larger class of func-
tionals F :

Proposition 4.2 : Let F : C(R,R+) → R+ be a positive and measurable
functional. The following properties hold for all n ≥ 0 :

1) For all t > 0 : √
2πtE[F ((Ly

t )y∈R)] ≤ KnN
(n)(F )
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2) If N (n)(F ) <∞ :

√
2πtE[F ((Ly

t )y∈R)] →
t→∞

I(F )

Proof : We suppose N (n)(F ) <∞.

1) Let us take M such that N (n)(F ) < M .
By definition, F satisfies the condition D(n,M), so there exists (ck)k≥1,(hk)k≥1,
(Fk)k≥0 as in Definition 2.

One has : F =
∑

k≥1

(Fk − Fk−1), hence :

√
2πtE[F ((Ly

t )y∈R)] ≤
∑

k≥1

√
2πtE[|Fk − Fk−1|((Ly

t )y∈R)]

≤ Kn

∑

k≥1

Nck
(hk) ≤ KnM

By taking M → N (n)(F ), one obtains the first part of Proposition 4.2.

2) In order to prove the convergence, let us consider the equality :

√
2πtE[F ((Ly

t )y∈R)] =
∑

k≥1

√
2πtE[(Fk − Fk−1)+((Ly

t )y∈R)]

−
∑

k≥1

√
2πtE[(Fk − Fk−1)−((Ly

t )y∈R)]

where the two sums are convergent.

By Proposition 4.1, the two terms indexed by k tend to I((Fk − Fk−1)+) and
I((Fk − Fk−1)−) when t goes to infinity, and they are bounded by KnNck

(hk).

Hence, by dominated convergence :

√
2πtE[F ((Ly

t )y∈R)] →
t→∞

∑

k≥1

I((Fk − Fk−1)+) −
∑

k≥1

I((Fk − Fk−1)−)

Now, by definition of I :

∑

k≥1

I((Fk − Fk−1)+) = I





∑

k≥1

(Fk − Fk−1)+





∑

k≥1

I((Fk − Fk−1)−) = I





∑

k≥1

(Fk − Fk−1)−





Therefore, if G =
∑

k≥1

(Fk − Fk−1)+, and H =
∑

k≥1

(Fk − Fk−1)−, one has :

∑

k≥1

I((Fk − Fk−1)+) −
∑

k≥1

I((Fk − Fk−1)−) = I(G) − I(H)
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where :
I(G) − I(H) = I(G−H) = I(F )

since I(G) + I(H) ≤ 2Kn

∑

k≥1

Nck
(hk) <∞. �

Proposition 4.2 is proven, and we now have all we need for the proof of the
main Theorem, which is given in Section 5.

5 Proof of the main Theorem

Our proof of the Theorem starts with a general lemma (which does not involve
Wiener measure) :

Lemma 5 : If F : C(R,R+) → R+ is a measurable functional, l0 ∈ C(R,R+),
x ∈ R, and n ≥ 0 :

N (n)
(

F (ly0 )y∈R,x
)

≤ 2n

(

1 +

(

sup
z∈R

lz0

)n)

(1 + |x|)n+1N (n)(F )

Proof of Lemma 5 : Let M be greater than N (n)(F ).
There exists a sequence (ck)k≥1 in [1,∞[, a sequence (hk)k≥1 of decreasing
functions from R+ to R+, and a sequence (Fk)k≥0 of measurable functions :
C(R,R+) → R+, such that :

1) F0 = 0, and Fk →
k→∞

F .

2) (|Fk − Fk−1|)((ly)y∈R) depends only on (ly)|y|≤ck
, and :

(|Fk − Fk−1|)((ly)y∈R) ≤





sup
|y|≤c

ly + ck

inf
|y|≤c

ly + ck





n

hk

(

inf
|y|≤c

ly
)

3)
∑

k≥1

Nck
(hk) ≤M .

These conditions imply the following ones for the sequence
(

Gk = F
(ly0)y∈R,x
k

)

k≥1
:

1) G0 = 0, and Gk →
k→∞

F (ly0 )y∈R,x.

2) (|Gk −Gk−1|)((ly)y∈R) depends only on (lz)|z|≤ck+|x| and :

(|Gk−Gk−1|)((ly)y∈R) ≤







sup
z∈[−ck−x,ck−x]

(lz+x
0 + lz) + ck

inf
z∈[−ck−x,ck−x]

(lz+x
0 + lz) + ck







n

hk

(

inf
z∈[−ck−x,ck−x]

(lz+x
0 + lz)

)

≤







sup
z∈R

lz0 + sup
|z|≤ck+|x|

lz + ck + |x|

inf
|z|≤ck+|x|

lz + ck







n

hk

(

inf
|z|≤ck+|x|

lz
)

≤ 2n











sup
z∈R

lz0

ck





n

+







sup
|z|≤ck+|x|

lz + ck + |x|

inf
|z|≤ck+|x|

lz + ck + |x|







n


1 +
|x|

inf
|z|≤ck+|x|

lz + ck





n





hk

(

inf
|z|≤ck+|x|

lz
)
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≤ 2n

((

sup
z∈R

lz0

)n

+ (1 + |x|)n

)







sup
|z|≤ck+|x|

lz + ck + |x|

inf
|z|≤ck+|x|

lz + ck + |x|







n

hk

(

inf
|z|≤ck+|x|

lz
)

Therefore, |Gk−Gk−1| satisfies the condition C

(

ck + |x|, n, 2n

((

sup
z∈R

lz0

)n

+ (1 + |x|)n

)

hk

)

.

3) Now :

Nck+|x|

(

2n

((

sup
z∈R

lz0

)n

+ (1 + |x|)n

)

hk

)

≤ 2n

((

sup
z∈R

lz0

)n

+ (1 + |x|)n

)

ck + |x|
ck

Nck
(hk)

≤ 2n

(

1 +

(

sup
z∈R

lz0

)n)

(1 + |x|)n+1Nck
(hk)

and
∑

k≥1

Nck
(hk) ≤M .

Therefore :

N (n)
(

F (ly0)y∈R,x
)

≤ 2n

(

1 +

(

sup
z∈R

lz0

)n)

(1 + |x|)n+1M

By taking M → N (n)(F ), we obtain the majorization stated in Lemma 5. �

Proof of the Theorem :
√

2πtW
[

F
(

(lyt (X))y∈R

)]

tends to I(F ) > 0

when t goes to infinity, so it is strictly positive if t is large enough, and W
F
t is

well-defined.

If t is large enough, by Markov property :

W
F
t (Λs) = W



1Λs

W

[

F
(

(lyt (X))y∈R

)

|σ{Xu, u ≤ s}
]

W

[

F
(

(lyt (X))y∈R

)]





= W



1Λs

Ψt−s ((lys (X))y∈R, Xs)

W

[

F
(

(lyt (X))y∈R

)]





where, for all continuous functions l from R to R+, and for all x ∈ R, u > 0 :

Ψu ((ly)y∈R, x) = W

[

F (ly)y∈R,x ((lyu(X))y∈R)
]

By Proposition 4.2 :

Ψt−s ((lys(X))y∈R, Xs)

W

[

F
(

(lyt (X))y∈R

)] →
t→∞

I
(

F (lys (X))y∈R,Xs
)

I(F )

Moreover, for t ≥ 2s :

√
2πtΨt−s ((lys (X))y∈R, Xs) ≤

√

t

t− s
N (n)

(

F (lys (X))y∈R,Xs

)
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≤ 2n+1/2

(

1 +

(

sup
z∈R

lzs(X)

)n)

(1 + |Xs|)n+1
N (n)(F )

and for t large enough :

√
2πtW [F ((lyt (X))y∈R)] ≥ I(F )/2

Hence, for t large enough :

Ψt−s ((lys(X))y∈R, Xs)

W

[

F
(

(lyt (X))y∈R

)] ≤
2n+3/2

(

1 +

(

sup
z∈R

lzs(X)

)n)

(1 + |Xs|)n+1N (n)(F )

I(F )

Now :

W

[(

1 +

(

sup
z∈R

lzs(X)

)n)

(1 + |Xs|)n+1

]

≤
(

W

[

(

1 +

(

sup
z∈R

lzs(X)

)n)2
])1/2

(

W

[

(1 + |Xs|)2n+2
])1/2

<∞

since sup
z∈R

lzs(X) and |Xs| have moments of any order.

By dominated convergence, we obtain the Theorem. �

6 Examples

In this section, we check that the conditions of the Theorem are satisfied in
three examples studied by B. Roynette, P. Vallois and M. Yor, and one more
particular case.

I) First example (penalization with local time at level zero)

We take F ((ly)y∈R) = φ(l0) where φ is bounded and dominated by a posi-
tive, decreasing and integrable function ψ.

F satisfies the condition C(1, 0, ψ). Hence :

N (0)(F ) ≤ N1(ψ) = ψ(0) +

∫ ∞

0

ψ(y)dy <∞

On the other hand :

I(F ) = 2

∫ ∞

0

φ(l)dl

F (lys (X))y∈R,Xs((ly)y∈R) = l0s(X) + l−Xs

and :

I
(

F (lys (X))y∈R,Xs

)

=

∫ ∞

0

dl
(

E

[

φ(l0s(X) + Y −Xs

l,+ )
]

+ E

[

φ(l0s(X) + Y −Xs

l,− )
])
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Now, by using the fact that Lebesgue measure is invariant for BESQ(2) process,
we obtain :

∫ ∞

0

dlE
[

φ(l0s(X) + Y −Xs

l,−sgn(Xs))
]

=

∫ ∞

0

dl φ(l0s(X) + l) =

∫ ∞

l0s(X)

φ(l)dl

Moreover, the image of Lebesgue measure by a BESQ(0) process taken at time
x ≥ 0 is the sum of Lebesgue measure and 2x times Dirac measure at 0 ; more
precisely, for all measurable functions f : R+ → R+, one has :

∫ ∞

0

dlE[f(Y x
l,−)] = 2xf(0) +

∫ ∞

0

dyf(y)

Therefore :
∫ ∞

0

dlE
[

φ(l0s(X) + Y −Xs

l,sgn(Xs))
]

= 2|Xs|φ(l0s(X)) +

∫ ∞

l0s(X)

φ(l)dl

and finally :

I
(

F (lys (X))y∈R,Xs

)

= 2

(

|Xs|φ(l0s(X)) +

∫ ∞

l0s(X)

φ(l)dl

)

Consequently, if φ is not a.e. equal to zero, we can apply the Theorem, and for
s ≥ 0, Λs ∈ Fs = σ{Xu, u ≤ s} :

W
F
∞(Λs) = W

(

1Λs .
|Xs|φ(l0s(X)) + Φ(l0s(X))

Φ(0)

)

where Φ(x) =
∫∞

x
φ(l)dl.

This result is coherent with the limit measure obtained by B. Roynette, P.
Vallois and M. Yor in [RVY06].

II) Second example (penalization with the supremum)

We take F ((ly)y∈R) = φ(inf{y ≥ 0, ly = 0}), where φ is dominated by a decrea-
sing function ψ : R+ ∪ {∞} → R+ such that

∫∞

0
ψ(y)dy <∞.

Let us recall that for this choice of F , F ((lyt (X))y∈R) = φ(St), where St denotes
the supremum of (Xs)s≤t.

Now, we take for k ∈ N :

Fk((ly)y∈R) = φ2k−1(inf{y ≥ 0, ly = 0})

where φ2k−1 = φ.1]−∞,2k−1[.

1) One has F0 = 0 and Fk →
k→∞

F pointwise.

2) (|Fk − Fk−1|)((ly)y∈R) depends only on (ly)|y|≤2k−1 and :

(|Fk − Fk−1|)((ly)y∈R) ≤ φ(inf{y ≥ 0, ly = 0})1inf{y≥0,ly=0}∈[2k−1−1,2k−1[
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≤ ψ(2k−1 − 1)1 inf
|y|≤2k−1

ly=0

Hence, |Fk − Fk−1| satisfies the condition C(2k − 1, 0, ψ(2k−1 − 1)1{0}).

3) Therefore :

N (0)(F ) ≤
∑

k≥1

(2k − 1)ψ(2k−1 − 1) ≤ ψ(0) + 4

∫ ∞

0

ψ <∞

Moreover :

I(F ) =

∫ ∞

0

dlE
[

φ
(

inf{y ≥ 0, Y y
l,+ = 0}

)]

+

∫ ∞

0

dlE
[

φ
(

inf{y ≥ 0, Y y
l,− = 0}

)]

The first integral is equal to zero and inf{y ≥ 0, Y y
l,− = 0} is the inverse of an

exponential variable of parameter l/2.
Therefore :

I(F ) =

∫ ∞

0

dl

∫ ∞

0

dy
l

2y2
e−l/2yφ(y)dy

=

∫ ∞

0

dy φ(y)

∫ ∞

0

dl
l

2y2
e−l/2y = 2

∫ ∞

0

φ(y)dy

By similar computations, we obtain :

I
(

F (lys (X))y∈R,Xs

)

=

∫ ∞

0

dlE[φ(Ss ∨ (Xs + inf{y ≥ 0, Y y
l,− = 0}))]

= 2

(

(Ss −Xs)φ(Ss) +

∫ ∞

Ss

φ(y)dy

)

Consequently, if φ is not a.e. equal to zero, the sequence (WF
t )t≥0 satisfies for

every s ≥ 0, Λs ∈ Fs = σ{Xu, u ≤ s} :

W
F
t (Λs) →

t→∞
W

F
∞(Λs)

where

W
F
t =

φ(St)

W[φ(St)]
.W

and :

W
F
∞(Λs) = W

[

1Λs

(Ss −Xs)φ(Ss) + Φ(Ss)

Φ(0)

]

It corresponds to B. Roynette, P. Vallois and M. Yor’s penalization results for
the supremum (see [RVY06]).

III) Third example (exponential penalization with an integral of the local
times)

Let us take : F ((ly)y∈R) = exp
(

−
∫∞

−∞ V (y)lydy
)

, where V is a positive measu-

rable function, not a.e. equal to zero, and integrable with respect to (1 + y2)dy
(this condition is a little more restrictive than the condition obtained by B.
Roynette, P. Vallois and M. Yor in [RVY03]).
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In that case, there exists c ≥ 1 such that :
∫ c

−c

V (y)dy > 0

We consider the following approximations of F :

F0 = 0, and for k ≥ 1, Fk((ly)y∈R) = exp
(

−
∫ 2kc

−2kc V (y)lydy
)

.

The following holds :

1) F0 = 0 and Fk →
k→∞

F .

2) |Fk − Fk−1|((ly)y∈R) depends only on (ly)y∈[−2kc,2kc] and if k ≥ 2 :

|Fk − Fk−1|((ly)y∈R) ≤







∫

[−2kc,2kc]\[−2k−1c,2k−1c]

V (y)dy






...

...

(

sup
y∈[−2kc,2kc]

ly

)

exp

(

−
∫ 2k−1c

−2k−1c

V (y)lydy

)

≤







∫

[−2kc,2kc]\[−2k−1c,2k−1c]

V (y)dy













sup
y∈[−2kc,2kc]

ly + 2kc

inf
y∈[−2kc,2kc]

ly + 2kc







(

inf
y∈[−2kc,2kc]

ly + 2kc

)

...

... exp

[

−
(

∫ 2k−1c

−2k−1c

V (y)dy

)

(

inf
y∈[−2kc,2kc]

ly
)

]

Moreover :

|F1 − F0|((ly)y∈R) ≤ exp

[

−
(∫ 2c

2c

V (y)dy

)(

inf
y∈[−2c,2c]

ly
)]

Therefore, if we put ρ =
∫ c

−c
V (y)dy > 0, for every k ≥ 1, |Fk − Fk−1| satisfies

the condition C(2kc, 1, hk) where the decreasing function hk is defined by :

hk(l) =






1k=1 +

∫

[−2kc,2kc]\[−2k−1c,2k−1c]

V (y)dy






(l + 2kc+ ρ−1)e−ρl

3) One has :

N2kc(hk) ≤






1k=1 +

∫

[−2kc,2kc]\[−2k−1c,2k−1c]

V (y)dy






(22kc2 +2k+1cρ−1 +2ρ−2)

Hence :

∑

k≥1

N
(1)

2kc
(hk) ≤ (1 + ρ−1 + ρ−2)






4c2 +

∑

k≥1

22kc2
∫

[−2kc,2kc]\[−2k−1c,2k−1c]

V (y)dy
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≤ 4(1 + ρ−1 + ρ−2)

(

c2 +

∫

R

(1 + y2)V (y)

)

<∞

Moreover, by properties of BESQ processes, for all l ≥ 0, y ∈ R :

E

[

Y y
l,+

]

≤ l + 2|y|

and

E

[∫

R

Y y
l,+V (y)dy

]

≤
∫

R

(l + 2|y|)V (y)dy <∞

Therefore :

E

[

exp

(

−
∫

R

Y y
l,+V (y)dy

)]

> 0

and I(F ) > 0.

Consequently, the Theorem applies in this case and B. Roynette, P. Vallois
and M. Yor’s penalization result holds (see [RVY03]).

IV) Fourth example (penalization with local times at two levels)

This example is a generalization of the first one.
Let us take, for y1 < y2, F ((ly)y∈R) = φ(ly1 , ly2) where φ(l1, l2) ≤ h(l1 ∧ l2) for
a positive, integrable and decreasing function h.

In that case, F satisfies the condition C(|y1|∨ |y2|, 0, h), so the Theorem applies
if we have I(F ) > 0.

For y > 0, z, z′ ≥ 0, let q
(0)
y (z, z′) be the density at z′ of a BESQ(0) pro-

cess starting from level z and taken at time y, Q
(0)
y (z, 0) the probability that

this process is equal to zero, and q
(2)
y (z, z′) the density at z′ of a BESQ(2)

process starting from z and taken at time y. If 0 < y1 < y2, one has :

I(F ) =

∫ ∞

0

dl

∫ ∞

0

dl1

∫ ∞

0

dl2 q
(2)
y1

(l, l1) q
(2)
y2−y1

(l1, l2)φ(l1, l2)

+

∫ ∞

0

dl

∫ ∞

0

dl1

∫ ∞

0

dl2 q
(0)
y1

(l, l1) q
(0)
y2−y1

(l1, l2)φ(l1, l2)

+

∫ ∞

0

dl

∫ ∞

0

dl1 q
(0)
y1

(l, l1)Q
(0)
y2−y1

(l1, 0)φ(l1, 0) +

∫ ∞

0

dl Q(0)
y1

(l, 0)φ(0, 0)

Now, by properties of time-reversed BESQ processes : q
(0)
y (z, z′) = q

(4)
y (z′, z)

(where q(4) is the density of the BESQ(4) process) and q
(2)
y (z, z′) = q

(2)
y (z′, z).

Hence :
∫ ∞

0

q(0)y (z, z′) dz =

∫ ∞

0

q(4)y (z′, z) dz = 1

and
∫ ∞

0

q(2)y (z, z′) dz =

∫ ∞

0

q(2)y (z′, z) dz = 1
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since q(2) and q(4) are probability densities with respect to the second variable.

Moreover :
∫ ∞

0

Q(0)
y (z, 0)dz =

∫ ∞

0

e−z/2ydz = 2y

Therefore :

I(F ) =

∫ ∞

0

dl1

∫ ∞

0

dl2 (q
(2)
y2−y1

(l1, l2) + q
(0)
y2−y1

(l1, l2))φ(l1, l2)

+

∫ ∞

0

dl1Q
(0)
y2−y1

(l1, 0)φ(l1, 0) + 2y1φ(0, 0)

for 0 ≤ y1 < y2.

Similar computations give for y1 < y2 ≤ 0 :

I(F ) =

∫ ∞

0

dl1

∫ ∞

0

dl2 (q
(2)
y2−y1

(l2, l1) + q
(0)
y2−y1

(l2, l1))φ(l1, l2)

+

∫ ∞

0

dl2Q
(0)
y2−y1

(l2, 0)φ(0, l2) + 2|y2|φ(0, 0)

For y1 < 0 < y2, we have :

I(F ) =

∫ ∞

0

dl

∫ ∞

0

dl1

∫ ∞

0

dl2 q
(2)
y2

(l, l2) q
(0)
|y1|

(l, l1)φ(l1, l2)

+

∫ ∞

0

dl

∫ ∞

0

dl2 q
(2)
y2

(l, l2)Q
(0)
|y1|

(l, 0)φ(0, l2)

+

∫ ∞

0

dl

∫ ∞

0

dl1

∫ ∞

0

dl2 q
(0)
y2

(l, l2) q
(2)
|y1|

(l, l1)φ(l1, l2)

+

∫ ∞

0

dl

∫ ∞

0

dl1Q
(0)
y2

(l, 0) q
(2)
|y1|

(l, l1)φ(l1, 0)

Now, for y′, y′′ > 0, and z, z′, z′′ ≤ 0, the two following equalities hold :

∫ ∞

0

q
(2)
y′ (z, z′)q

(0)
y′′ (z, z

′′) dz =
y′q

(2)
y′+y′′(z′, z′′) + y′′q

(0)
y′+y′′(z′, z′′)

y′ + y′′

∫ ∞

0

q
(2)
y′ (z, z′)Q

(0)
y′′ (z, 0) dz =

y′′

y′ + y′′
Q

(0)
y′+y′′(z

′, 0)

(the first one can be proven by using [War05], Lemma 3, and the relation :

q
(0)
y (z, z′) = q

(4)
y (z′, z) ; the second is a consequence of the equality : Q

(0)
y′′ (z, 0) =

e−z/2y′′

= 2y′′q
(2)
y′′ (0, z)).

Therefore :

I(F ) =

∫ ∞

0

dl1

∫ ∞

0

dl2

[

q
(2)
y2−y1

(l1, l2) +
|y1|q(0)y2−y1

(l2, l1) + y2q
(0)
y2−y1

(l1, l2)

y2 − y1

]

φ(l1, l2)
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+

∫ ∞

0

dl1
y2

y2 − y1
Q

(0)
y2−y1

(l1, 0)φ(l1, 0)

+

∫ ∞

0

dl2
|y1|

y2 − y1
Q

(0)
y2−y1

(l2, 0)φ(0, l2)

This computation of I(F ) implies the following :

1) For 0 < y1 < y2, the Theorem applies iff :

∫ ∞

0

dl1

∫ ∞

0

dl2 φ(l1, l2) +

∫ ∞

0

dl1 φ(l1, 0) + φ(0, 0) > 0

2) For 0 = y1 < y2, it applies iff :

∫ ∞

0

dl1

∫ ∞

0

dl2 φ(l1, l2) +

∫ ∞

0

dl1 φ(l1, 0) > 0

3) For y1 < 0 < y2, it applies iff :

∫ ∞

0

dl1

∫ ∞

0

dl2 φ(l1, l2) +

∫ ∞

0

dl1 φ(l1, 0) +

∫ ∞

0

dl2 φ(0, l2) > 0

4) For y1 < y2 = 0, it applies iff :

∫ ∞

0

dl1

∫ ∞

0

dl2 φ(l1, l2) +

∫ ∞

0

dl2 φ(0, l2) > 0

5) For y1 < y2 < 0, it applies iff :

∫ ∞

0

dl1

∫ ∞

0

dl2 φ(l1, l2) +

∫ ∞

0

dl2 φ(0, l2) + φ(0, 0) > 0

If the Theorem holds, it is possible to compute I(F (lys (X))y∈R,Xs) in order to
obtain the density, restricted to Fs, of W

F
∞ with respect to W.

For Xs ≤ y1 < y2, we have :

I(F (lys (X))y∈R,Xs) =

∫ ∞

0

dl1

∫ ∞

0

dl2 (q
(2)
y2−y1

(l1, l2)+q
(0)
y2−y1

(l1, l2))φ(ly1
s (X)+l1, l

y2
s (X)+l2)

+

∫ ∞

0

dl1Q
(0)
y2−y1

(l1, 0)φ(ly1
s (X) + l1, l

y2
s (X)) + 2(y1 −Xs)φ(ly1

s (X), ly2
s (X))

For y1 < Xs < y2 :

I(F (lys (X))y∈R,Xs) =

∫ ∞

0

dl1

∫ ∞

0

dl2

[

q
(2)
y2−y1

(l1, l2)...

...+
(Xs − y1)q

(0)
y2−y1

(l2, l1) + (y2 −Xs)q
(0)
y2−y1

(l1, l2)

y2 − y1

]

φ(ly1
s (X)+l1, l

y2
s (X)+l2)

+

∫ ∞

0

dl1
y2 −Xs

y2 − y1
Q

(0)
y2−y1

(l1, 0)φ(ly1
s (X) + l1, l

y2
s (X))
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+

∫ ∞

0

dl2
Xs − y1
y2 − y1

Q
(0)
y2−y1

(l2, 0)φ(ly1
s (X), ly2

s (X) + l2)

For y1 < y2 ≤ Xs :

I(F (lys (X))y∈R,Xs) =

∫ ∞

0

dl1

∫ ∞

0

dl2 (q
(2)
y2−y1

(l2, l1)+q
(0)
y2−y1

(l2, l1))φ(ly1
s (X)+l1, l

y2
s (X)+l2)

+

∫ ∞

0

dl2Q
(0)
y2−y1

(l2, 0)φ(ly1
s (X), ly2

s (X) + l2) + 2(Xs − y2)φ(ly1
s (X), ly2

s (X))

These formulae give an explicit expression for the limit measure obtained in our
last example.

Remark 5.1 : It is not difficult to extend this example to a functional of
a finite number of local times. We have only considered the case of two local
times in order to avoid too complicated notation.

Remark 5.2 : The main Theorem cannot be extended to every functional
F . For example, if we consider the functional :

F ((ly)y∈R) = exp

(

−
∫ ∞

−∞

(ly)2 dy

)

which corresponds to Edwards’ model in dimension 1 (see [vdHdHK97]), the
expectation E[F ((Ly

t )y∈R)] tends exponentially to zero, and I(F ) = 0, since for
all l > 0 :

∫ ∞

−∞

(Y y
l,+)2 dy = ∞

almost surely.

Therefore, it is impossible to study this case as the examples given above.
Another case for which the Theorem cannot apply is the functional :

F ((ly)y∈R) = φ(sup(ly)y∈R)

where φ is a bounded function with compact support.

It would be interesting to find another way to study this kind of penalizations.
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