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In this article, we study the family of probability measures (indexed by t ∈ R * + ), obtained by penalization of the Brownian motion by a given functional of its local times at time t. We prove that this family tends to a limit measure when t goes to infinity if the functional satisfies some conditions of domination, and we check these conditions in several particular cases.

Introduction

Brownian penalizations have been studied in several articles, in particular in [START_REF] Roynette | Limiting laws associated with Brownian motion perturbated by normalized exponential weights[END_REF], [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time[END_REF], [START_REF] Roynette | Limiting laws for long Brownian bridges perturbed by their one-sided maximum[END_REF]. The general principle of these penalizations is the following : let W be the Wiener measure on C(R + , R), (X t ) t≥0 the canonical process, and (Γ t ) t≥0 a family of positive weights such that 0 < W[Γ t ] < ∞ ; we consider the family of probability measures (W t ) t≥0 , obtained from W, by "penalization" with the weight Γ :

W t = Γ t W[Γ t ]
.W

In many different particular cases, the family (W t ) t≥0 tends to a limit measure W ∞ as t → ∞, in the following sense : for all s ≥ 0, and for Λ s measurable with respect to F s = σ{X u , u ≤ s} :

W t (Λ s ) → t→∞ W ∞ (Λ s )
Up to now, there does not exist a general theorem which covers all the different cases for which convergence holds. On the other hand, we remark that in many of these cases, one has : Γ t = F ((l y t (X)) y∈R ) where (l y t (X)) y∈R is the family of the local times of (X s ) s≤t , and F is a measurable functional from C(R, R + ) to R + .

These two facts led us to prove that if Γ is of this form, the limit measure 4) F ((l y ) y∈R ) = φ(l y1 , l y2 ), where y 1 < y 2 and φ(l 1 , l 2 ) ≤ h(l 1 ∧ l 2 ), for a decreasing and integrable function h.

The three first examples have been already studied by B. Roynette, P. Vallois and M. Yor.

As a help to the reader, we mention that Sections 2 and 3 are quite technical, but it is possible to read the details of these sections after Sections 4 and 5, which contain the principal steps of the proof of the Theorem.

Notations and statement of the main theorem

In this article, (B t ) t≥0 denotes a standard one-dimensional Brownian motion, (L y t ) t≥0,y∈R the bicontinuous version of its local times, and (τ a l ) l≥0,a∈R the family of its inverse local times.

To simplify these notations, we put T a = τ a 0 (first hitting time at a of B) and τ 0 l = τ l .

For every l ∈ R + , (Y y l,+ ) y∈R denotes a random process defined on the whole real line, such that its "positive part" (Y y l,+ ) y≥0 is a 2-dimensional squared Bessel process (BESQ(2)), its "negative part" (Y -y l,+ ) y≥0 is an independent 0-dimensional squared Bessel process (BESQ(0)), and its value at zero Y 0 l,+ is equal to l. In particular, by classical properties of BESQ(0) and BESQ(2) processes, there exists a.s. y 0 ≤ 0 such that Y y l,+ = 0 iff y ≤ y 0 . We define also (Y y l,-) y∈R as a process which has the same law as (Y -y l,+ ) y∈R , the process obtained from (Y y l,+ ) y∈R by "reversing the time".

In one of the penalization results shown in [START_REF] Roynette | Limiting laws for long Brownian bridges perturbed by their one-sided maximum[END_REF], B. Roynette, P. Vallois and M. Yor obtain a limit process (Z l t ) t≥0 , such that Z l t = B t for t ≤ τ l , (|Z l τ l +u |) u≥0 is a BES(3) process independent of B, and ǫ = sgn(Z l τ l +u ) (u > 0) is an independent variable such that P(ǫ = 1) = P(ǫ = -1) = 1/2. This process can be informally considered to be a Brownian motion conditionned to have a total local time equal to l at level zero. By applying Ray-Knight theorems for Brownian local times (see [START_REF] Revuz | of Grundlehren der Mathematischen Wissenschaften[END_REF]) to (Z l t ) t≥0 , it is possible to show that the law of the family of its total local times is the half-sum of the laws of (Y y l,+ ) y∈R and (Y y l,-) y∈R ((Y y l,+ ) y∈R corresponds to the paths of (Z l t ) t≥0 such that ǫ = 1, and (Y y l,-) y∈R corresponds to the paths such that ǫ = -1). This explains why the processes (Y y l,+ ) y∈R and (Y y l,-) y∈R occur naturally in the description of the asymptotic behaviour of Brownian local times.

We also need to define some modifications of (Y y l,+ ) y∈R and (Y y l,-) y∈R : for l ≥ 0, a ≥ 0, (Y y l,a ) y∈R denotes a process such that (Y y l,a ) y≥0 is markovian with the infinitesimal generator of BESQ(2) for y ≤ a and the infinitesimal generator of BESQ(0) for y ≥ a, (Y -y l,a ) y≥0 is an independent BESQ(0) process, and Y 0 l,a = l. For a ≤ 0, (Y y l,a ) y∈R has the same law as (Y -y l,-a ) y∈R . Now, let F be a functional from C(R, R + ) to R + , which is measurable with respect to the σ-field generated by the topology of uniform convergence on compact sets. We consider the following quantities, which will naturally appear in the asymptotics of E[F ((L y t ) y∈R )] :

I + (F ) = ∞ 0 dl E[F ((Y y l,+ ) y∈R )] I -(F ) = ∞ 0 dl E[F ((Y y l,-) y∈R )] I(F ) = I + (F ) + I -(F )
We observe that I(F ) is the integral of F with respect to the σ-finite measure I on C(R, R + ), defined by :

I = ∞ 0 dl P l,+ + ∞ 0 dl P l,-
where P l,+ is the law of (Y y l,+ ) y∈R and P l,-is the law of (Y y l,-) y∈R .

At the end of this section, we give some conditions on F which turn out to be sufficient to obtain our penalization result.

Unfortunately, these conditions are not very simple and we need three more definitions before stating the main Theorem :

Definition 1 (a condition of domination) : Let c and n be in R + (generally n will be an integer). For every decreasing function h from R + to R + , we say that a measurable function F from C(R, R + ) to R + satisfies the condition C(c, n, h) iff the following holds for every continuous function l from R to R + :

1) F ((l y ) y∈R ) depends only on (l y ) y∈[-c,c] . 2) F ((l y ) y∈R ) ≤ sup y∈[-c,c] l y +c inf y∈[-c,c] l y +c n h inf y∈[-c,c] l y
Intuitively, a functional of the local times satisfies the above condition if it depends only on the local times on a compact set, and if it is small when these local times are large and don't vary too much. Now, let us use the notation : In order to relax this restriction, we need the following definition :

N c (h) = ch(0) + ∞ 0 h(y)dy If N c (h) < ∞, it
Definition 2 (a less restrictive condition of domination) : Let n be in R + and F be a positive and measurable function from C(R, R + ) to R. For all M ≥ 0, let us say that F satisfies the condition D(n, M ) iff there exists a sequence (c k ) k≥1 in [1, ∞[, a sequence (h k ) k≥1 of decreasing functions from R + to R + , and a sequence (F k ) k≥0 of measurable functions from C(R + , R) to R + , such that :

1) F 0 = 0 and (F k ) k≥1 tends to F pointwise. 2) For all k ≥ 1, |F k -F k-1 | satisfies the condition C(c k , n, h k ).
3)

k≥1 N c k (h k ) ≤ M .
We define the quantity N (n) (F ) as the infimum of M ≥ 0 such that F satisfies the condition D(n, M ).

Intuitively, if N (n) (F ) < ∞, it means that F can be well-approximated by functionals which satisfy conditions given in Definition 1.

In particular, if F satisfies the condition C(c, n, h) for c ≥ 1, one has :

N (n) (F ) ≤ N c (h) (one can prove that F satisfies the condition D(n, N c (h)), by taking in Definition 2 : c k = c, h k = h1 k=1 , F 0 = 0 and F k = F if k ≥ 1).
Now, for a given functional F , we need to define some other fonctionals, informally obtained from F by "shifting" the space and adding a given function to the local time family.

More precisely, let us consider the following definition :

Definition 3 (local time and space shift) : Let x be a real number. If F is a measurable functional from C(R + , R) to R + , and if (l y 0 ) y∈R is a continuous function from R to R + , we denote by F (l y 0 )y∈R,x the functional from C(R, R + ) to R + which satisfies :

F (l y 0 )y∈R,x ((l y ) y∈R ) = F ((l y 0 + l y-x ) y∈R )
for every function (l y ) y∈R .

This notation and the functionals defined in this way appear naturally when we consider the conditional expectation : E[F ((L y t ) y∈R )|(B u ) u≤s ], for 0 < s < t, and apply the Markov property.

We are now able to state the main theorem of the article :

Theorem : Let F be a functional from C(R, R + ) to R + such that I(F ) > 0 and N (n) (F ) < ∞ for some n ≥ 0.
If W denotes the standard Wiener measure on C(R + , R), (X t ) t≥0 the canonical process, and (l y t (X)) t∈R+,y∈R the continuous family of its local times (W-a.s. well-defined), the probability measure :

W F t = F (l y t (X)) y∈R W F (l y t (X)) y∈R .W
is well-defined for every t which is large enough, and there exists a probability measure W F ∞ such that :

W F t (Λ s ) → t→∞ W F ∞ (Λ s )
for every s ≥ 0 and Λ s ∈ F s = σ{X u , u ≤ s}.

Moreover, this limit measure satisfies the following equality :

W F ∞ (Λ s ) = W 1 Λs . I F (l y s (X))y∈R,Xs I(F )
Remark 1.1 : A consequence of the Theorem is the fact that if I(F ) > 0 and

N (n) (F ) < ∞ for some n ≥ 0, the process (I(F (L y s ) y∈R ,Bs )) s≥0 I(F )
is a martingale. In three of the four examples studied in Section 6, we compute explicitly this martingale, and in the two first ones, we check that this computation agrees with the results obtained by B. Roynette, P. Vallois and M. Yor.

Remark 2.1 : We point out that our notation, l y t (X), for the local times given in the Theorem, differs from the notation L y t , which is used for the local times of (B s ) s≤t . This is because, in one case, we consider the canonical process (X t ) t≥0 on a given probability space, and in the other case, we consider a Brownian motion on a space which is not made precise. Hence, the two mathematical objects deserve different writings, despite the fact that they are strongly related.

An approximation of the functionals of local times

In order to prove the Theorem, we need to study the expectation of F ((L y t ) y∈R ), where F is a function from C(R, R + ) to R + . However, in general, it is difficult to do that directly, so in this section, we will replace F ((L y t ) y∈R ) by an approximation.

For the study of this approximation, we need to consider the following quantities :

I c l,+ = c -c Y y l,+ dy, I c l,-= c -c Y y l,-dy, I c l,a = c -c Y y l,a dy for c ∈ R + or c = ∞, a ∈ R ; Y c l,+ = 1 2 (Y c l,+ + Y -c l,+ ), Y c l,-= 1 2 (Y c l,-+ Y -c l,-), Y c l,a = 1 2 (Y c l,a + Y -c l,a )
for c ∈ R + , a ∈ R ;

I c,t,+ (F ) = ∞ 0 dl E   F ((Y y l,+ ) y∈R ) e -(Y c l,+ ) 2 /2(t-I c l,+ ) 1 -I c l,+ /t φ I c l,+ t   I c,t,-(F ) = ∞ 0 dl E   F ((Y y l,-) y∈R ) e -(Y c l,-) 2 /2(t-I c l,-) 1 -I c l,-/t φ I c l,- t   and I c,t (F ) = I c,t,+ (F ) + I c,t,-(F )
for c ∈ R + , t > 0, where φ denotes the function from

R + to R + such that φ(x) = 1 in x ≤ 1/3, φ(x) = 2 -3x if 1/3 ≤ x ≤ 2/3 and φ(x) = 0 if x ≥ 2/3 (in particular, this function is continuous with compact support included in [0, 1[).
We observe that the expression e (Y c l,+ ) 2 /2(t-I c l,+ )

√ 1-I c l,+ /t
is not well-defined if I c l,+ ≥ t ; but this is not important here, since φ(I c l,+ /t) = 0 in that case. Now, the main result of this section is the following proposition :

Proposition 2 : For all measurable functionals from C(R + , R) to R + , such that F ((l y ) y∈R ) depends only on (l y ) y∈[-c,c] for some c ≥ 0, the following equality holds :

√ 2πt E F ((L y t ) y∈R )1 |Bt|≥c φ 1 t c -c L y t dy = I c,t (F )
for all t > 0.

Proof : Let G 0 be a functional from

C(R + , R) × R + to R + , such that the process : (G 0 ((X s ) s≥0 , t)) t≥0 , defined on the canonical space C(R + , R), is pro- gressively measurable.
For every continuous function ω from R + to R, G 0 ((ω s ) s≥0 , t) depends only on (ω s ) s≤t ; let us take :

G((ω s ) s≤t ) = G 0 ((ω s ) s≥0 , t)
Now, by results by C. Leuridan (see [START_REF] Leuridan | Le théorème de Ray-Knight à temps fixe[END_REF]), P. Biane and M. Yor (see [START_REF] Biane | Sur la loi des temps locaux browniens pris en un temps exponentiel[END_REF]), one has :

∞ 0 dt G((B s ) s≤t ) = ∞ 0 dl ∞ -∞
da G((B s ) s≤τ a l ) By using invariance properties of Brownian motion for time and space reversals, one obtains :

∞ 0 dt E[G((B s ) s≤t )] = ∞ 0 dl ∞ -∞ da E[G((Z l,a s ) s≤τ l +Ta→0 )]
where (Z l,a s ) s≤τ l +Ta→0 denotes a process such that Z l,a s = B s for s ≤ τ l and (Z l,a τ l +u ) u≤Ta→0 is the time-reversed process of a Brownian motion starting from a, independent of B, and considered up to its first hitting time of zero (denoted by T a→0 ).

Therefore, for all Borel sets U of R * + , if we define J c,U (F ) by :

J c,U (F ) = U dt E F ((L y t ) y∈R )1 |Bt|≥c φ 1 t c -c L y t dy
we have, by taking G 0 and G such that G((B s ) s≤t ) = F ((L y t ) y∈R ) :

J c,U (F ) = ∞ 0 dt E F ((L y t ) y∈R )1 |Bt|≥c φ c -c L y t dy ∞ -∞ L y t dy 1 R ∞ -∞ L y t dy∈U = ∞ 0 dl R\[-c,c] da E F ((L y,l,a ) y∈R )φ c -c L y,l,a dy ∞ -∞ L y,l,a dy 1 R ∞ -∞ L y,l,a dy∈U
where (L y,l,a ) y∈R is the continuous family of the total local times of Z l,a .

Hence, by Ray-Knight theorem applied to the independent processes (B s = Z s ) s≤τ l and (Z τ l +u ) u≤Ta→0 , and classical additivity properties of squared Bessel processes :

J c,U (F ) = ∞ 0 dl R\[-c,c] da E F ((Y y l,a ) y∈R )φ I c l,a I ∞ l,a 1 I ∞ l,a ∈U = ∞ 0 dl R\[-c,c] da E F ((Y y l,a ) y∈R )E φ I c l,a I ∞ l,a 1 I ∞ l,a ∈U (Y y l,a ) y∈[-c,c] since F ((Y y l,a ) y∈R ) depends only on (Y y l,a ) y∈[-c,c] . Now, if θ is a given continuous function from [-c, c] to R + , the integrals : ∞ c Y y l,a dy and -c
-∞ Y y l,a dy are independent conditionally on (Y y l,a = θ y ) y∈[-c,c] and their conditional laws are respectively equal to the laws of

∞ 0 Y y θ c ,(a-c)+ dy and ∞ 0 Y y θ -c ,(-a-c)+ dy.
Therefore, by additivity properties of BESQ processes, the conditional law of :

I ∞ l,a -I c l,a = -c -∞ Y y l,a dy + ∞ c Y y l,a dy given (Y y l,a = θ y ) y∈[-c,c] , is equal to the law of : ∞ 0 Y y θ c +θ -c ,0 dy + ∞ 0 Y y 0,(|a|-c)+ dy
where (Y y θ c +θ -c ,0 ) y≥0 and (Y y 0,(|a|-c)+ ) y≥0 are supposed to be independent.

By Ray-Knight theorem, ∞ 0 Y y θ c +θ -c ,0 dy has the same law as the time spent in R + by (B s ) s≤τ θ c +θ -c , therefore :

∞ 0 Y y θ c +θ -c ,0 dy (d) = τ (θ c +θ -c )/2 (d) = T (θ c +θ -c )/2
Moreover :

∞ 0 Y y 0,(|a|-c)+ dy (d) = T (|a|-c)+ Hence, the conditional law of I ∞ l,a -I c l,a , given (Y y l,a = θ y ) y∈[-c,c] , is equal to the law of T (|a|-c)++(θ c +θ -c )/2 . Consequently : J c,U (F ) = ∞ 0 dl R\[-c,c] da E F ((Y y l,a ) y∈R )ψ a (I c l,a , Y c l,a )
where, for |a| > c :

ψ a (I, θ) = E φ I I + T |a|-c+θ 1 I+T |a|-c+θ ∈U
Now, if, for all u > 0, p u denotes the density of the law of T u , one has :

ψ a (I, θ) = U φ(I/t)p |a|-c+θ (t -I)dt
and : Hence, we have :

J c,U (F ) = U dt ∞ 0 dl R\[-c,c] da E F ((Y y l,a ) y∈R )φ I c l,a t p |a|-c+Y
J c,U (F ) = U dt ∞ 0 dl E F ((Y y l,+ ) y∈R )φ I c l,+ t ∞ c p a-c+Y c l,+ (t -I c l,+ )da + U dt ∞ 0 dl E F ((Y y l,-) y∈R )φ I c l,- t -c -∞ p |a|-c+Y c l,-(t -I c l,-)da Now, for θ ≥ 0, u > 0 : -c -∞ p |a|-c+θ (u)da = ∞ c p a-c+θ (u)da = ∞ θ p b (u)db = ∞ θ b √ 2πu 3 e -b 2 /2u db = 1 √ 2πu e -θ 2 /2u
Therefore :

J c,U (F ) = U dt I c,t (F ) √ 2πt
This equality is satisfied for every Borel set U . Hence, by definition of J c,U (F ), the equality given in Proposition 2 occurs for almost every t > 0.

In order to prove it for all t > 0, we begin to suppose that F is bounded and continuous.

In this case, for all s, t > 0 :

E F ((L y t ) y∈R )1 |Xt|≥c φ 1 t c -c L y t dy -E F ((L y s ) y∈R )1 |Xs|≥c φ 1 s c -c
L y s dy

≤ E F ((L y t ) y∈R )φ 1 t c -c L y t dy -F ((L y s ) y∈R )φ 1 s c -c L y s dy +||F || ∞ P(∃u ∈ [s, t], |X u | = c)
If t is fixed, the first term of this sum tends to zero when s tends to t, by continuity of F , φ and dominated convergence.

The second term tends also to :

||F || ∞ P(|X t | = c) = 0
Therefore, the function :

t → E F ((L y t ) y∈R )1 |Xt|≥c φ 1 t c -c
L y t dy is continuous. Now, let us prove that I c,t (F ) is also continuous with respect to t.

For all t > 0 :

F ((Y y l,+ ) y∈R ) e -(Y c l,+ ) 2 /2(s-I c l,+ ) 1 -I c l,+ /s φ I c l,+ s → s→t F ((Y y l,+ ) y∈R ) e -(Y c l,+ ) 2 /2(t-I c l,+ ) 1 -I c l,+ /t φ I c l,+
t by continuity of φ (if I c l,+ < t, it is clear, and if I c l,+ ≥ t, the two expressions are equal to zero for s ≤ 3t/2). Moreover, for s ≤ 2t :

F ((Y y l,+ ) y∈R ) e -(Y c l,+ ) 2 /2(s-I c l,+ ) 1 -I c l,+ /s φ I c l,+ s ≤ √ 3||F || ∞ e -(Y c l,+ ) 2 /4t ≤ √ 3||F || ∞ e -(Y c l,+ ) 2 /16t
Recalling that the Lebesgue measure is invariant for the BESQ(2) process (Y y l,+ ) y≥0 , we have :

∞ 0 dl E e -(Y c l,+ ) 2 /16t = ∞ 0 dl e -l 2 /16t < ∞ By dominated convergence, t → I c,t,+ (F ) is continuous.
Similar computations imply the continuity of t → I c,t,-(F ), and finally t → I c,t (F ) is continuous.

Consequently, for F continuous and bounded, the equality given in Proposition 2, which was proven for a.e. t > 0, remains true for every t > 0. Now, by monotone class theorem (see [START_REF] Revuz | of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF]), it is not difficult to extend this equality to every measurable and positive function, which completes the proof of Proposition 2.

This proposition has the following consequence :

Corollary 2 : Let F be a functional which satisfies the condition of Proposition 2. The two following properties hold :

1) For all t > 0 :

√ 2πt E F ((L y t ) y∈R )1 |Bt|≥c φ 1 t c -c L y t dy ≤ √ 3 I(F )
2) When t goes to infinity :

√ 2πt E F ((L y t ) y∈R )1 |Bt|≥c φ 1 t c -c L y t dy → I(F ) Proof :
The first property is obvious, since φ(x)/ √ 1 -x ≤ √ 3 for all x ≥ 0. In order to prove the second property, we distinguish two cases : 1) If I(F ) < ∞, we observe that :

F ((Y y l,+ ) y∈R ) e -(Y c l,+ ) 2 /2(t-I c l,+ ) 1 -I c l,+ /t φ I c l,+ t is smaller than √ 3F ((Y y l,+
) y∈R ) and tends to F ((Y y l,+ ) y∈R ) when t goes to infinity. By dominated convergence, I c,t,+ (F ) → I + (F ). Similarly, I c,t,-(F ) → I -(F ) and finally :

I c,t (F ) → I(F )
2) If I(F ) = ∞, we can suppose for example :

I + (F ) = ∞.
In this case :

I c,t (F ) ≥ I c,t,+ (F ) ≥ ∞ 0 dl E F ((Y y l,+ ) y∈R )e -(Y c l,+ ) 2 /2(t-I c l,+ ) φ I c l,+ t which tends to I + (F ) = ∞ when t → ∞, by monotone convergence.
Now, the next step in this article is the majorization of the difference between the quantity √ 2πt E[F ((L y t ) y∈R )] and the expression given in Proposition 2.

Majorization of the error term

For every positive and measurable functional F , we denote by ∆ c,t (F ) the error term we need to majorize :

∆ c,t (F ) = √ 2πt E F ((L y t ) y∈R )1 |Bt|≥c φ 1 t c -c L y t dy - √ 2πt E [F ((L y t ) y∈R )]
It is easy to check that :

∆ c,t (F ) ≤ ∆ (1) c,t (F ) + ∆ (2) c,t (F )
where :

∆ (1) c,t (F ) = √ 2πt E F ((L y t ) y∈R )1 |Bt|≤c and ∆ (2) c,t (F ) = √ 2πt E F ((L y t ) y∈R )1 R c -c L y t dy≥t/3
The following proposition gives some precise majorizations of these quantities, when F satisfies the conditions of Definition 1.

Proposition 3 : Let F be a functional from C(R, R + ) to R + which satisfies the condition C(c, n, h) for a positive, decreasing function h and c, n ≥ 0. For all t ≥ 0, one has the following majorizations :

1) ∆ (1) c,t (F ) ≤ A n Nc(h) 1+(t/c 2 ) 1/3 2) ∆ (2) c,t (F ) ≤ A n ch(0) 1+(t/c 2 ) ≤ A n Nc(h) 1+(t/c 2 ) 3) ∆ c,t (F ) ≤ A n Nc(h) 1+(t/c 2 ) 1/3 4) I(F ) ≤ A n N c (h)
where A n > 0 depends only on n.

In order to prove Proposition 3, we will need some inequalities about the processes (L y t ) y∈[-c,c] and (Y y l,+ ) y∈[-c,c] . More precisely, if we put :

Σ c t = sup y∈[-c,c] L y t , σ c t = inf y∈[-c,c] L y t , Θ c l,+ = sup y∈[-c,c] Y y l,+ , θ c l,+ = inf y∈[-c,c] Y y l,+ , Θ c l,-= sup y∈[-c,c] Y y l,-, θ c l,-= inf y∈[-c,c]
Y y l,-, the following statement hold :

Lemma 3 : For all c, t > 0 :

1) If a ≥ 0 :

P Σ c t + c σ c t + c ≥ a ≤ Ae -λa
2) If a ≥ 4 :

P Θ c l,+ + c θ c l,+ + c ≥ a ≤ Ae -λ(a+ l c )
3) If a ≥ 4 :

P Θ c l,-+ c θ c l,-+ c ≥ a ≤ Ae -λ(a+ l c )
where A > 0, 0 < λ < 1 are universal constants.

Proof of Lemma 3 : 1) Let us suppose a ≥ 8, c > 0.

In that case :

P Σ c t + c σ c t + c ≥ a, L 0 t ≥ ac 4 ≤ P Σ c t + c σ c t + c ≥ 8, L 0 t ≥ ac 4 ≤ k∈N P Σ c t σ c t ≥ 8, L 0 t ∈ [2 k-2 ac, 2 k-1 ac] ≤ k∈N P(Σ c t ≥ 2 k ac, L 0 t ∈ [2 k-2 ac, 2 k-1 ac]) + k∈N P(σ c t ≤ 2 k-3 ac, Σ c t ≤ 2 k ac, L 0 t ∈ [2 k-2 ac, 2 k-1 ac]) ≤ k∈N P(Σ c τ 2 k-1 ac ≥ 2 k ac) + P(σ c τ 2 k-2 ac ≤ 2 k-3 ac, Σ c τ 2 k-2 ac ≤ 2 k ac) = k∈N α c (2 k-1 ac) + β c (2 k-2 ac)
where for l ≥ 0, α c (l Consequently :

) = P(Σ c τ l ≥ 2l) and β c (l) = P(σ c τ l ≤ l/2, Σ c τ l ≤ 4l).
α c (l) ≤ 2P sup u≤8lc β u ≥ l = 2P(|β 8lc | ≥ l) ≤ 4P(β 8lc ≥ l) ≤ 4e -l/16c
By the same kind of argument, one obtains :

β c (l) ≤ 4e -l/128c
and finally :

P Σ c t + c σ c t + c ≥ a, L 0 t ≥ ac 4 ≤ 4 k∈N e -2 k-1 a/16 + e -2 k-2 a/128 ≤ 8 k∈N e -2 k a/512 ≤ 8 k∈N * e -ka/512 ≤ 8e -a/512 k∈N e -k/64 ≤ 520e -a/512
On the other hand :

P Σ c t + c σ c t + c ≥ a, L 0 t ≤ ac 4 ≤ P Σ c t + c ≥ ac, L 0 t ≤ ac 4 ≤ P Σ c τ ac/4 ≥ (a -1)c ≤ P Σ c τ ac/4 ≥ 7ac 8 ≤ α c ac 4 ≤ 4e -a/64
Consequently :

P Σ c t + c σ c t + c ≥ a ≤ 524e -a/512
for all a ≥ 8. This inequality remains obviously true for a ≤ 8 or c = 0, so the first part of Lemma 3 is proven.

2) Let a be greater than 4. If l ≥ ac/4 :

P Θ c l,+ + c θ c l,+ + c ≥ 4 ≤ P Θ c l,+ ≥ 2l + P Θ c l,+ ≤ 2l, θ c l,+ ≤ l/2 ≤ 2 αc (l) + βc (l)
where

αc (l) = P sup y∈[0,c] Y y l,+ ≥ 2l and βc (l) = P sup y∈[-c,c] Y y l,0 ≤ 2l, inf y∈[-c,c] Y y l,0 ≤ l/2 . Now, (Y y l,+ ) y≥0 is a BESQ(2) process, hence, if (β y = (β (1) y , β (2) 
y )) y≥0 is a standard two-dimensional Brownian motion :

αc (l) = P sup y∈[0,c] Y y l,+ ≥ 2l = P sup y≤c ||β y + ( √ l, 0)|| ≥ √ 2l ≤ P sup y≤c ||β y || ≥ √ l( √ 2 -1) ≤ 2P sup y≤c |β (1) y | ≥ √ l √ 2 -1 2 ≤ 8P β (1) c ≥ √ l √ 2 -1 2 ≤ 8e -l/50c
Moreover :

βc (l) ≤ P sup y∈[-c,c] Y y l,0 ≤ 4l, inf y∈[-c,c] Y y l,0 ≤ l/2 = β c (l) ≤ 4e -l/128c
Therefore, if l ≥ ac/4 :

P Θ c l,+ + c θ c l,+ + c ≥ a ≤ 20e -l/128c
Now, let us suppose l ≤ ac/4. In this case :

P Θ c l,+ + c θ c l,+ + c ≥ a ≤ P Θ c ac/4,+ ≥ 3ac/4 ≤ 2 αc (ac/4) ≤ 16e -a/200
Hence, for every l ≥ 0, a ≥ 4 :

P Θ c l,+ + c θ c l,+ + c ≥ a ≤ 20e -(a+(l/c))/1024
which proves the second inequality of the lemma. The proof of the third inequality is exactly similar. Now, we are able to prove the main result of the section, which was presented in Proposition 3.

Proof of Proposition 3 : 1) For c = 0, ∆

c,t (F ) = 0, so we can suppose c > 0.

The functional F satisfies the condition C(c, n, h) ; hence, for all a ≥ 1 :

∆ (1) c,t (F ) √ 2πt = E F ((L y t ) y∈R )1 |Bt|≤c ≤ E Σ c t + c σ c t + c n h(σ c t )1 |Bt|≤c ≤ E Σ c t + c σ c t + c n h(0)1 Σ c t +c σ c t +c ≥a + a n E h(σ c t )1 |Bt|≤c 1 Σ c t +c σ c t +c ≤a Now, if Σ c t +c σ c t +c ≤ a, L 0 t +c σ c t +c ≤ a and σ c t ≥ L 0 t a -c + .
Therefore :

∆ (1) c,t (F ) √ 2πt ≤ h(0)E Σ c t + c σ c t + c n 1 Σ c t +c σ c t +c ≥a + a n E h L 0 t a -c + 1 |Bt|≤c
By Lemma 3 :

E Σ c t + c σ c t + c n 1 Σ c t +c σ c t +c ≥a = a n P Σ c t + c σ c t + c ≥ a + ∞ a nb n-1 P Σ c t + c σ c t + c ≥ b db ≤ A a n e -λa + ∞ a nb n-1 e -λb db = Aa n e -λa 1 + n ∞ 0 (a + b) n-1 a n e -λb db ≤ Aa n e -λa 1 + n ∞ 0 (1 + b) n e -λb db ≤ A 6 λ n+1 (n + 1)! a n e -λa
On the other hand, by using the probability density of (L 0 t , |B t |) (given for example in [START_REF] Najnudel | Pénalisations de l'araignée brownienne (penalizations of Walsh Brownian motion)[END_REF], Lemma 2.4) :

E h L 0 t a -c + 1 |Bt|≤c = 2 πt 3 ∞ 0 dl c 0 dx h l a -c + (l + x)e -(l+x) 2 /2t = 2 πt 3 h(0) ac 0 dl c 0 dx (l + x)e -(l+x) 2 /2t + 2 πt 3 ∞ ac dl c 0 dx h l a -c (l + x)e -(l+x) 2 /2t = 2 π c 2 t h(0) a 0 dl 1 0 dx c(l + x) √ t e -c 2 (l+x) 2 /2t + 2 π ac 2 t ∞ 0 dl 1 0 dx h(cl) c(al + a + x) √ t e -c 2 (al+a+x) 2 /2t
For all θ ≥ 0, θe -θ 2 /2 ≤ e -1/2 ≤ 1. Hence :

E h L 0 t a -c + 1 |Bt|≤c ≤ 2 π ac 2 t h(0) + ∞ 0 h(cl)dl = 2 π ac t N c (h) Moreover, for 0 < t ≤ c 2 : E h L 0 t a -c + 1 |Bt|≤c ≤ h(0) ≤ N c (h) c ≤ aN c (h) √ t
The majorizations given above imply :

∆ (1) c,t (F ) ≤ A 6 λ n+1 (n + 1)! a n e -λa √ 2πt h(0) + √ 2π a n+1 c √ t ∧ 1 N c (h)
Now, let us choose a as a function of t.

For t ≤ c 2 , we take a = 1 and obtain :

∆ (1) c,t (F ) ≤ A 6 λ n+1 (n + 1)! e -λ √ 2π ch(0) + √ 2π N c (h) ≤ √ 2π 1 + A 6 λ n+1 (n + 1)! e -λ N c (h)
For t ≥ c 2 , we take a = (t/c 2 ) 1/6(n+1) :

∆ (1) c,t (F ) ≤ A 6 λ n+1 (n+1)! t c 2 1/6 e -λ( t c 2 ) 1/6(n+1) √ 2πt h(0)+ √ 2π t c 2 1/6 c √ t N c (h) ≤ √ 2π 1 + A 6 λ n+1 (n + 1)! N c (h) t c 2 -1/3 1 + t c 2 e -λ( t c 2 ) 1/6(n+1) ≤ √ 2π 1 + A 6 λ n+1 (n + 1)! 1 + sup u≥1 ue -λu 1/6(n+1) t c 2 -1/3 N c (h)
where sup u≥1 ue -λu 1/6(n+1) is finite and depends only on n (we recall the λ is a universal constant).

In the two cases, the first inequality of Proposition 3 is satisfied.

2) For c = 0, ∆

c,t (F ) = 0, so we can again suppose c > 0. For a ≥ 1 :

∆ (2) c,t (F ) √ 2πt = E F ((L y t ) y∈R )1 R c -c L y t dy≥t/3 ≤ E Σ c t + c σ c t + c n h(σ c t )1 Σ c t ≥t/6c ≤ h(0) E Σ c t + c σ c t + c n 1 Σ c t +c σ c t +c ≥a + a n P L 0 t ≥ t 6ac -c ≤ A 6 λ n+1 (n + 1)! a n e -λa h(0) + 2a n h(0)e -1 2t ( t 6ac -c) 2 + If t ≤ 12c 2 , we take a = 1 : ∆ (2) c,t (F ) ≤ ch(0) √ 24π 2 + A 6 λ n+1 (n + 1)! e -λ
If t ≥ 12c 2 , we take a = t 12c 2

1/3 :

∆ (2) c,t (F ) ≤ √ 2πt h(0) A 6 λ n+1 (n + 1)! t 12c 2 n/3 e -λ( t 12c 2 ) 1/3 ... ... + 2 t 12c 2 n/3 e -c 2 2t (2(t/12c 2 ) 2/3 -1) 2 ≤ c 2 t ch(0) √ 2π 12 3/2 2 + A 6 λ n+1 (n + 1)! t 12c 2 n 3 + 3 2 e -λ( t 12c 2 ) 1/3 + e -1 24 ( t 12c 2 ) 1/3
The second inequality of Proposition 3 holds, since sup

u≥1 u n 3 + 3 2 e -λu 1/3 + e -1 24 λu 1/3
is finite and depends only on n.

3) This inequality is an immediate consequence of 1) and 2).

4) For every l ≥ 0 :

E[F ((Y y l,+ ) y∈R )] ≤ E Θ c l,+ + c θ c l,+ + c n h(θ c l,+ ) ≤ h(0)E Θ c l,+ + c θ c l,+ + c n 1 Θ c l,+ +c θ c l,+ +c ≥4 + 4 n h l 4 -c
+ Now, by Lemma 3 :

E Θ c l,+ + c θ c l,+ + c n 1 Θ c l,+ +c θ c l,+ +c ≥4 = 4 n P Θ c l,+ + c θ c l,+ + c ≥ 4 + ∞ 4 nb n-1 P Θ c l,+ + c θ c l,+ + c ≥ b db ≤ Ae -λl/c 4 n e -4λ + ∞ 4 nb n-1 e -λb db ≤ Ae -λl/c 6 λ n+1 (n + 1)! 4 n e -4λ
Hence :

E[F ((Y y l,+ ) y∈R )] ≤ Ah(0)e -λl/c 6 λ n+1 (n + 1)! 4 n e -4λ + 4 n h l 4 -c
+ and, by integrating with respect to l :

I + (F ) ≤ A λ 6 λ n+1 (n + 1)!4 n e -4λ ch(0) + 4 n+1 ch(0) + 4 n+1 ∞ 0 h(l)dl ≤ 4 n+1 1 + A λ 6 λ n+1 (n + 1)! N c (h)
By symmetry, the same inequality holds for I -(F ), and :

I(F ) ≤ 2 2n+3 1 + A λ 6 λ n+1 (n + 1)! N c (h)
which completes the proof of Proposition 3.

An estimation of the quantity : E[F ((L y t ) y∈R )]

In this section, we majorize E[F ((L y t ) y∈R )] by an equivalent of this quantity when t goes to infinity. The following statement holds : Proposition 4.1 : Let F be a functional from C(R, R + ) to R + , which satisfies the condition C(c, n, h), for a positive, decreasing function h, and c, n ≥ 0. The following properties hold :

1) For all t > 0 :

√ 2πt E[F ((L y t ) y∈R )] ≤ K n N c (h) where K n > 0 depends only on n. 2) If N c (h) < ∞ : √ 2πtE[F ((L y t ) y∈R )] → t→∞ I(F ) Proof : We suppose N c (h) < ∞.
Proposition 3 implies the following :

∆ c,t (F ) ≤ A n N c (h) ∆ c,t (F ) → t→∞ 0
Moreover, by Corollary 2 :

√ 2πt E F ((L y t ) y∈R )1 |Bt|≥c φ 1 t c -c L y t dy → t→∞ I(F ) √ 2πt E F ((L y t ) y∈R )1 |Bt|≥c φ 1 t c -c L y t dy ≤ √ 3 I(F ) ≤ √ 3 A n N c (h)
for all t > 0. Now, by definition, one has :

√ 2πt E[F ((L y t ) y∈R )] - √ 2πt E F ((L y t ) y∈R )1 |Bt|≥c φ 1 t c -c L y t dy = ∆ c,t (F ) Therefore : √ 2πt E[F ((L y t ) y∈R )] → t→∞ I(F ) √ 2πt E[F ((L y t ) y∈R )] ≤ (1 + √ 3)A n N c (h)
which proves Proposition 4.1.

The following result is an extension of Proposition 4.1 to a larger class of functionals F : Proposition 4.2 : Let F : C(R, R + ) → R + be a positive and measurable functional. The following properties hold for all n ≥ 0 :

1) For all t > 0 :

√ 2πt E[F ((L y t ) y∈R )] ≤ K n N (n) (F ) 2) If N (n) (F ) < ∞ : √ 2πt E[F ((L y t ) y∈R )] → t→∞ I(F ) Proof : We suppose N (n) (F ) < ∞. 1) Let us take M such that N (n) (F ) < M .
By definition, F satisfies the condition D(n, M ), so there exists (c k ) k≥1 ,(h k ) k≥1 , (F k ) k≥0 as in Definition 2.

One has :

F = k≥1 (F k -F k-1 ), hence : √ 2πt E[F ((L y t ) y∈R )] ≤ k≥1 √ 2πt E[|F k -F k-1 |((L y t ) y∈R )] ≤ K n k≥1 N c k (h k ) ≤ K n M
By taking M → N (n) (F ), one obtains the first part of Proposition 4.2.

2) In order to prove the convergence, let us consider the equality :

√ 2πt E[F ((L y t ) y∈R )] = k≥1 √ 2πt E[(F k -F k-1 ) + ((L y t ) y∈R )] - k≥1 √ 2πt E[(F k -F k-1 ) -((L y t ) y∈R )]
where the two sums are convergent.

By Proposition 4.1, the two terms indexed by k tend to I((F k -F k-1 ) + ) and I((F k -F k-1 ) -) when t goes to infinity, and they are bounded by

K n N c k (h k ).
Hence, by dominated convergence :

√ 2πt E[F ((L y t ) y∈R )] → t→∞ k≥1 I((F k -F k-1 ) + ) - k≥1 I((F k -F k-1 ) -)
Now, by definition of I :

k≥1 I((F k -F k-1 ) + ) = I   k≥1 (F k -F k-1 ) +   k≥1 I((F k -F k-1 ) -) = I   k≥1 (F k -F k-1 ) -   Therefore, if G = k≥1 (F k -F k-1 ) + , and H = k≥1 (F k -F k-1 ) -, one has : k≥1 I((F k -F k-1 ) + ) - k≥1 I((F k -F k-1 ) -) = I(G) -I(H)
where :

I(G) -I(H) = I(G -H) = I(F ) since I(G) + I(H) ≤ 2K n k≥1 N c k (h k ) < ∞.
Proposition 4.2 is proven, and we now have all we need for the proof of the main Theorem, which is given in Section 5.

Proof of the main Theorem

Our proof of the Theorem starts with a general lemma (which does not involve Wiener measure) :

Lemma 5 : If F : C(R, R + ) → R + is a measurable functional, l 0 ∈ C(R, R + ),
x ∈ R, and n ≥ 0 :

N (n) F (l y 0 )y∈R,x ≤ 2 n 1 + sup z∈R l z 0 n (1 + |x|) n+1 N (n) (F )
Proof of Lemma 5 : Let M be greater than

N (n) (F ).
There exists a sequence

(c k ) k≥1 in [1, ∞[, a sequence (h k ) k≥1 of decreasing functions from R + to R + , and a sequence (F k ) k≥0 of measurable functions : C(R, R + ) → R + , such that : 1) F 0 = 0, and F k → k→∞ F . 
2) (|F k -F k-1 |)((l y ) y∈R ) depends only on (l y ) |y|≤c k , and :

(|F k -F k-1 |)((l y ) y∈R ) ≤   sup |y|≤c l y + c k inf |y|≤c l y + c k   n h k inf |y|≤c l y 3) k≥1 N c k (h k ) ≤ M .
These conditions imply the following ones for the sequence l y ) y∈R ) depends only on (l z ) |z|≤c k +|x| and :

G k = F (l y 0 )y∈R,x k k≥1 : 1) G 0 = 0, and G k → k→∞ F (l y 0 )y∈R,x . 2) (|G k -G k-1 |)((
(|G k -G k-1 |)((l y ) y∈R ) ≤    sup z∈[-c k -x,c k -x] (l z+x 0 + l z ) + c k inf z∈[-c k -x,c k -x] (l z+x 0 + l z ) + c k    n h k inf z∈[-c k -x,c k -x] (l z+x 0 + l z ) ≤    sup z∈R l z 0 + sup |z|≤c k +|x| l z + c k + |x| inf |z|≤c k +|x| l z + c k    n h k inf |z|≤c k +|x| l z ≤ 2 n      sup z∈R l z 0 c k   n +    sup |z|≤c k +|x| l z + c k + |x| inf |z|≤c k +|x| l z + c k + |x|    n   1 + |x| inf |z|≤c k +|x| l z + c k   n    h k inf |z|≤c k +|x| l z ≤ 2 n sup z∈R l z 0 n + (1 + |x|) n    sup |z|≤c k +|x| l z + c k + |x| inf |z|≤c k +|x| l z + c k + |x|    n h k inf |z|≤c k +|x| l z Therefore, |G k -G k-1 | satisfies the condition C c k + |x|, n, 2 n sup z∈R l z 0 n + (1 + |x|) n h k .
3) Now :

N c k +|x| 2 n sup z∈R l z 0 n + (1 + |x|) n h k ≤ 2 n sup z∈R l z 0 n + (1 + |x|) n c k + |x| c k N c k (h k ) ≤ 2 n 1 + sup z∈R l z 0 n (1 + |x|) n+1 N c k (h k ) and k≥1 N c k (h k ) ≤ M .
Therefore :

N (n) F (l y 0 )y∈R,x ≤ 2 n 1 + sup z∈R l z 0 n (1 + |x|) n+1 M
By taking M → N (n) (F ), we obtain the majorization stated in Lemma 5.

Proof of the Theorem : √ 2πt W F (l y t (X)) y∈R tends to I(F ) > 0 when t goes to infinity, so it is strictly positive if t is large enough, and W F t is well-defined.

If t is large enough, by Markov property :

W F t (Λ s ) = W   1 Λs W F (l y t (X)) y∈R |σ{X u , u ≤ s} W F (l y t (X)) y∈R   = W   1 Λs Ψ t-s ((l y s (X)) y∈R , X s ) W F (l y t (X)) y∈R  
where, for all continuous functions l from R to R + , and for all x ∈ R, u > 0 :

Ψ u ((l y ) y∈R , x) = W F (l y )y∈R,x ((l y u (X)) y∈R )
By Proposition 4.2 :

Ψ t-s ((l y s (X)) y∈R , X s ) W F (l y t (X)) y∈R → t→∞ I F (l y s (X))y∈R,Xs I(F )
Moreover, for t ≥ 2s :

√ 2πt Ψ t-s ((l y s (X)) y∈R , X s ) ≤ t t -s N (n) F (l y s (X))y∈R,Xs ≤ 2 n+1/2 1 + sup z∈R l z s (X) n (1 + |X s |) n+1 N (n) (F )
and for t large enough :

√ 2πt W [F ((l y t (X)) y∈R )] ≥ I(F )/2
Hence, for t large enough :

Ψ t-s ((l y s (X)) y∈R , X s ) W F (l y t (X)) y∈R ≤ 2 n+3/2 1 + sup z∈R l z s (X) n (1 + |X s |) n+1 N (n) (F ) I(F ) Now : W 1 + sup z∈R l z s (X) n (1 + |X s |) n+1 ≤ W 1 + sup z∈R l z s (X) n 2 1/2 W (1 + |X s |) 2n+2 1/2 < ∞ since sup z∈R l z s (X)
and |X s | have moments of any order.

By dominated convergence, we obtain the Theorem.

Examples

In this section, we check that the conditions of the Theorem are satisfied in three examples studied by B. Roynette, P. Vallois and M. Yor, and one more particular case.

I) First example (penalization with local time at level zero)

We take F ((l y ) y∈R ) = φ(l 0 ) where φ is bounded and dominated by a positive, decreasing and integrable function ψ.

F satisfies the condition C(1, 0, ψ). Hence :

N (0) (F ) ≤ N 1 (ψ) = ψ(0) + ∞ 0 ψ(y)dy < ∞
On the other hand :

I(F ) = 2 ∞ 0 φ(l)dl
F (l y s (X))y∈R,Xs ((l y ) y∈R ) = l 0 s (X) + l -Xs and :

I F (l y s (X))y∈R,Xs = ∞ 0 dl E φ(l 0 s (X) + Y -Xs l,+ ) + E φ(l 0 s (X) + Y -Xs l,-)
Now, by using the fact that Lebesgue measure is invariant for BESQ(2) process, we obtain :

∞ 0 dl E φ(l 0 s (X) + Y -Xs l,-sgn(Xs) ) = ∞ 0 dl φ(l 0 s (X) + l) = ∞ l 0 s (X) φ(l)dl
Moreover, the image of Lebesgue measure by a BESQ(0) process taken at time x ≥ 0 is the sum of Lebesgue measure and 2x times Dirac measure at 0 ; more precisely, for all measurable functions f : R + → R + , one has :

∞ 0 dl E[f (Y x l,-)] = 2xf (0) + ∞ 0 dyf (y)
Therefore :

∞ 0 dl E φ(l 0 s (X) + Y -Xs l,sgn(Xs) ) = 2|X s |φ(l 0 s (X)) + ∞ l 0 s (X)
φ(l)dl and finally :

I F (l y s (X))y∈R,Xs = 2 |X s |φ(l 0 s (X)) + ∞ l 0 s (X) φ(l)dl
Consequently, if φ is not a.e. equal to zero, we can apply the Theorem, and for s ≥ 0, Λ s ∈ F s = σ{X u , u ≤ s} :

W F ∞ (Λ s ) = W 1 Λs . |X s |φ(l 0 s (X)) + Φ(l 0 s (X)) Φ(0) where Φ(x) = ∞ x φ(l)dl.
This result is coherent with the limit measure obtained by B. Roynette, P. Vallois and M. Yor in [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time[END_REF].

II) Second example (penalization with the supremum)

We take F ((l y ) y∈R ) = φ(inf{y ≥ 0, l y = 0}), where φ is dominated by a decreasing function ψ : R + ∪ {∞} → R + such that ∞ 0 ψ(y)dy < ∞.

Let us recall that for this choice of F , F ((l y t (X)) y∈R ) = φ(S t ), where S t denotes the supremum of (X s ) s≤t . Now, we take for k ∈ N :

F k ((l y ) y∈R ) = φ 2 k -1 (inf{y ≥ 0, l y = 0}) where φ 2 k -1 = φ.1 ]-∞,2 k -1[ . 1) One has F 0 = 0 and F k → k→∞ F pointwise. 2) (|F k -F k-1 |)((l y ) y∈R ) depends only on (l y ) |y|≤2 k -1 and : (|F k -F k-1 |)((l y ) y∈R ) ≤ φ(inf{y ≥ 0, l y = 0})1 inf{y≥0,l y =0}∈[2 k-1 -1,2 k -1[ ≤ ψ(2 k-1 -1)1 inf |y|≤2 k -1 l y =0 Hence, |F k -F k-1 | satisfies the condition C(2 k -1, 0, ψ(2 k-1 -1)1 {0} ).
3) Therefore :

N (0) (F ) ≤ k≥1 (2 k -1)ψ(2 k-1 -1) ≤ ψ(0) + 4 ∞ 0 ψ < ∞ Moreover : I(F ) = ∞ 0 dl E φ inf{y ≥ 0, Y y l,+ = 0} + ∞ 0 dl E φ inf{y ≥ 0, Y y l,-= 0}
The first integral is equal to zero and inf{y ≥ 0, Y y l,-= 0} is the inverse of an exponential variable of parameter l/2. Therefore :

I(F ) = ∞ 0 dl ∞ 0 dy l 2y 2 e -l/2y φ(y)dy = ∞ 0 dy φ(y) ∞ 0 dl l 2y 2 e -l/2y = 2 ∞ 0 φ(y)dy
By similar computations, we obtain :

I F (l y s (X))y∈R,Xs = ∞ 0 dl E[φ(S s ∨ (X s + inf{y ≥ 0, Y y l,-= 0}))] = 2 (S s -X s )φ(S s ) + ∞ Ss φ(y)dy
Consequently, if φ is not a.e. equal to zero, the sequence (W F t ) t≥0 satisfies for every s ≥ 0, Λ s ∈ F s = σ{X u , u ≤ s} :

W F t (Λ s ) → t→∞ W F ∞ (Λ s )
where

W F t = φ(S t ) W[φ(S t )]
.W and :

W F ∞ (Λ s ) = W 1 Λs (S s -X s )φ(S s ) + Φ(S s ) Φ(0)
It corresponds to B. Roynette, P. Vallois and M. Yor's penalization results for the supremum (see [START_REF] Roynette | Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time[END_REF]).

III) Third example (exponential penalization with an integral of the local times)

Let us take : F ((l y ) y∈R ) = exp -∞ -∞ V (y)l y dy , where V is a positive measurable function, not a.e. equal to zero, and integrable with respect to (1 + y 2 )dy (this condition is a little more restrictive than the condition obtained by B. Roynette, P. Vallois and M. Yor in [START_REF] Roynette | Limiting laws associated with Brownian motion perturbated by normalized exponential weights[END_REF]).

In that case, there exists c ≥ 1 such that : We consider the following approximations of F :

F 0 = 0, and for k ≥ 1, F k ((l y ) y∈R ) = exp - 2 k c -2 k c V (y)l y dy .
The following holds :

1) F 0 = 0 and F k → k→∞ F . 2) |F k -F k-1 |((l y ) y∈R ) depends only on (l y ) y∈[-2 k c,2 k c] and if k ≥ 2 : |F k -F k-1 |((l y ) y∈R ) ≤    [-2 k c,2 k c]\[-2 k-1 c,2 k-1 c] V (y)dy    ... ... sup y∈[-2 k c,2 k c] l y exp - 2 k-1 c -2 k-1 c V (y)l y dy ≤    [-2 k c,2 k c]\[-2 k-1 c,2 k-1 c] V (y)dy       sup y∈[-2 k c,2 k c] l y + 2 k c inf y∈[-2 k c,2 k c] l y + 2 k c    inf y∈[-2 k c,2 k c] l y + 2 k c ... ... exp - 2 k-1 c -2 k-1 c V (y)dy inf y∈[-2 k c,2 k c] l y Moreover : |F 1 -F 0 |((l y ) y∈R ) ≤ exp - 2c 2c V (y)dy inf y∈[-2c,2c] l y Therefore, if we put ρ = c -c V (y)dy > 0, for every k ≥ 1, |F k -F k-1 | satisfies the condition C(2 k c, 1, h k )
where the decreasing function h k is defined by :

h k (l) =   1k=1 + [-2 k c,2 k c]\[-2 k-1 c,2 k-1 c] V (y)dy    (l + 2 k c + ρ -1 )e -ρl
3) One has :

N 2 k c (h k ) ≤   1k=1 + [-2 k c,2 k c]\[-2 k-1 c,2 k-1 c] V (y)dy    (2 2k c 2 + 2 k+1 cρ -1 + 2ρ -2 ) Hence : k≥1 N (1) 2 k c (h k ) ≤ (1 + ρ -1 + ρ -2 )   4c 2 + k≥1 2 2k c 2 [-2 k c,2 k c]\[-2 k-1 c,2 k-1 c] V (y)dy    ≤ 4(1 + ρ -1 + ρ -2 ) c 2 + R (1 + y 2 )V (y) < ∞
Moreover, by properties of BESQ processes, for all l ≥ 0, y ∈ R : If the Theorem holds, it is possible to compute I(F (l y s (X))y∈R,Xs ) in order to obtain the density, restricted to F s , of W F ∞ with respect to W.

For X s ≤ y 1 < y 2 , we have :

I(F (l y s (X))y∈R,Xs ) = ∞ 0 dl 1 ∞ 0 dl 2 (q (2) 
y2-y1 (l 1 , l 2 )+q (0) y2-y1 (l 1 , l 2 ))φ(l y1 s (X)+l 1 , l y2 s (X)+l 2 )

+ ∞ 0 dl 1 Q (0)
y2-y1 (l 1 , 0)φ(l y1 s (X) + l 1 , l y2 s (X)) + 2(y 1 -X s )φ(l y1 s (X), l y2 s (X))

For y 1 < X s < y 2 :

I(F (l y s (X))y∈R,Xs ) = ∞ 0 dl 1 ∞ 0 dl 2 q
(2) y2-y1 (l 1 , l 2 )... ... + (X s -y 1 )q (0) y2-y1 (l 2 , l 1 ) + (y 2 -X s )q (0) y2-y1 (l 1 , l 2 ) y 2 -y 1 φ(l y1 s (X)+l 1 , l y2 s (X)+l 2 )

+ ∞ 0 dl 1 y 2 -X s y 2 -y 1 Q (0)
y2-y1 (l 1 , 0) φ(l y1 s (X) + l 1 , l y2 s (X))

+ ∞ 0 dl 2 X s -y 1 y 2 -y 1 Q (0)
y2-y1 (l 2 , 0) φ(l y1 s (X), l y2 s (X) + l 2 )

For y 1 < y 2 ≤ X s :

I(F (l y s (X))y∈R,Xs ) = ∞ 0 dl 1 ∞ 0 dl 2 (q (2)
y2-y1 (l 2 , l 1 )+q (0) y2-y1 (l 2 , l 1 ))φ(l y1 s (X)+l 1 , l y2 s (X)+l 2 )

+ ∞ 0 dl 2 Q (0)
y2-y1 (l 2 , 0)φ(l y1 s (X), l y2 s (X) + l 2 ) + 2(X s -y 2 )φ(l y1 s (X), l y2 s (X))

These formulae give an explicit expression for the limit measure obtained in our last example.

Remark 5.1 : It is not difficult to extend this example to a functional of a finite number of local times. We have only considered the case of two local times in order to avoid too complicated notation.

Remark 5.2 : The main Theorem cannot be extended to every functional F . For example, if we consider the functional :

F ((l y ) y∈R ) = exp - ∞ -∞
(l y ) 2 dy which corresponds to Edwards' model in dimension 1 (see [START_REF] Van Der Hofstad | Central limit theorem for the Edwards model[END_REF]), the expectation E[F ((L y t ) y∈R )] tends exponentially to zero, and I(F ) = 0, since for all l > 0 : Therefore, it is impossible to study this case as the examples given above. Another case for which the Theorem cannot apply is the functional :

F ((l y ) y∈R ) = φ(sup(l y ) y∈R )
where φ is a bounded function with compact support.

It would be interesting to find another way to study this kind of penalizations.

  is possible to prove our main theorem for all functionals F which satisfies the condition C(c, n, h), but this condition is restrictive, since the functional F must not depend on the local times outside of [-c, c].

  c l,a (t -I c l,a ) By hypothesis, F ((Y y l,a ) y∈R ) depends only on (Y y l,a ) y∈[-c,c] . Moreover, for a ≥ c, (Y y l,a ) y∈[-c,c] has the same law as (Y y l,+ ) y∈[-c,c] , and for a ≤ -c, (Y y l,a ) y∈[-c,c] has the same law as (Y y l,-) y∈[-c,c] .

  Now, by Ray-Knight theorem, α c (l) ≤ 2P sup y∈[0,c] Y y l,0 ≥ 2l , and by Dubins-Schwarz theorem, Y y l,0 = l + β R y 0 4Y z l,0 dz , where β is a Brownian motion. Hence, if S = inf{y ≥ 0, Y y l,0 ≥ 2l}, one has : sup u≤ R S 0 4Y z l,0 dz β u = l, and if we suppose sup y∈[0,c] Y y l,0 ≥ 2l, we have S ≤ c, S 0 4Y z l,0 dz ≤ S 0 8ldz ≤ 8lc, and finally : sup u≤8lc β u ≥ l.

V

  (y)dy > 0

  (l 2 , 0) φ(0, l 2 ) This computation of I(F ) implies the following : 1) For 0 < y 1 < y 2 , the Theorem applies iff :(l 1 , 0) + φ(0, 0) > 0 2) For 0 = y 1 < y 2 , it applies iff : (l 1 , l 2 ) + ∞ 0 dl 1 φ(l 1 , 0) > 0 3) For y 1 < 0 < y 2 , it applies iff : (l 1 , l 2 ) + ∞ 0 dl 1 φ(l 1 , 0) + ∞ 0dl 2 φ(0, l 2 ) > 0 4) For y 1 < y 2 = 0, it applies iff : y 1 < y 2 < 0, it applies iff : (0, l 2 ) + φ(0, 0) > 0

Consequently, the Theorem applies in this case and B. Roynette, P. Vallois and M. Yor's penalization result holds (see [START_REF] Roynette | Limiting laws associated with Brownian motion perturbated by normalized exponential weights[END_REF]).

IV) Fourth example (penalization with local times at two levels)

This example is a generalization of the first one. Let us take, for y 1 < y 2 , F ((l y ) y∈R ) = φ(l y1 , l y2 ) where φ(l 1 , l 2 ) ≤ h(l 1 ∧ l 2 ) for a positive, integrable and decreasing function h.

In that case, F satisfies the condition C(|y 1 | ∨ |y 2 |, 0, h), so the Theorem applies if we have I(F ) > 0.

For y > 0, z, z ′ ≥ 0, let q (0) y (z, z ′ ) be the density at z ′ of a BESQ(0) process starting from level z and taken at time y, Q (0) y (z, 0) the probability that this process is equal to zero, and q

(2) y (z, z ′ ) the density at z ′ of a BESQ(2) process starting from z and taken at time y. If 0 < y 1 < y 2 , one has :

Now, by properties of time-reversed BESQ processes :

y (z ′ , z) (where q (4) is the density of the BESQ(4) process) and q

(2)

since q (2) and q (4) are probability densities with respect to the second variable.

Moreover :

Therefore :

Similar computations give for y 1 < y 2 ≤ 0 :

For y 1 < 0 < y 2 , we have :

Now, for y ′ , y ′′ > 0, and z, z ′ , z ′′ ≤ 0, the two following equalities hold :

(the first one can be proven by using [START_REF] Warren | A stochastic flow arising in the study of local times[END_REF], Lemma 3, and the relation :

y (z ′ , z) ; the second is a consequence of the equality : Q (0) y ′′ (z, 0) = e -z/2y ′′ = 2y ′′ q

(2) y ′′ (0, z)).

Therefore :

y2-y1 (l 2 , l 1 ) + y 2 q (0) y2-y1 (l 1 , l 2 ) y 2 -y 1 φ(l 1 , l 2 )