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Euler-Poisson-Newton approach in Cosmology

R. Triay* and H. H. Fliché

*Centre de Physique Théorigtie
CNRS Luminy Case 907, 13288 Marseille Cedex 9, France
TLMMT?Fac. des Sciences et Techniques de St Jérdme
av. Normandie-Niemen, 13397 Marseille Cedex 20, France

Abstract. This lecture provides us with Newtonian approaches fornkerpretation of two puzzling cosmological observa-
tions that are still discussed subject : a bulk flow and a fd&endtructure in the distribution of galaxies. For the firsepwe
model the motions describing all planar distortions fronbble flow, in addition of two classes of planar-axial distmms
with or without rotation, when spatial distribution of gitational sources is homogenous. This provides us with tanreltive

to models which assume the presence of gravitational stressimilar to Great Attractor as origin of a bulk flow. Foe th
second one, the model accounts for an isotropic univers&tioated by a spherical void surrounded by a uniform distidn

of dust. It does not correspond to the usual embedding of & salution into a cosmological background solution, but to
a global solution of fluid mechanics. The general behaviathefvoid expansion shows a huge initial burst, which freezes
asymptotically up to match Hubble expansion. While the extive factor to Hubble law on the shell depends weakly on
cosmological constant at early stages, it enables us tatdisgle significantly cosmological models around redshiftl.7.
The magnification of spherical voids increases with the idgpsrameter and with the cosmological constant. An irgere
ing feature is that for spatially closed Friedmann modéle,gmpty regions are swept out, what provides us with a gtabil
criterion.

INTRODUCTION

On one hand, it is a matter of fact that the use of Newtons thefogravity for understanding cosmology structures is
easier than general relativity. On the other hand, it is hawelear that such an approach must be taken with caution
at large scales although it “is much closer to general retat{GR) than commonly appreciatecE]39]. With this in
mind, we focus on Newtonian interpretation of two cosmatagstructures that have been mentioned in the literature,
namely : the presence of a bulk flow and a foam like structutledrobserved distribution of galaxies. For that, we write
Euler-Poisson equations system in adapted coordinates,emables us to define in a straightforward way solutions,
as Newton-Friedmann and the vacuum (de Sitter) models. Uilkeflbw is analysed within an an-isotropic extension
of Hubble model, see@lG]). Subsequently, the model of glsispherical void is derived within a covariant approach,

see ([1f7).

EULER-POISSON EQUATIONS SYSTEM

As usual, for modelling the dynamics of the cosmologicalamgion, the distribution of gravitational sources is
supposed to behave as duist.( such a description does not account for shear, collisitm, eand the presence of
radiations). The motions of such a pressureless mediumem®itied at positiori and timet by its specific density
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p = p(r,t) and velocityV = V(T,t). These fields are constraint by Euler equations system

% +div(py) = 0 Q)
ov oV
7t + E»V =4 (2

whereg = g(r,t) stands for the gravitational field. It satisfies the modifietsBon-Newton equations

rotg = 0 3)
divg = —4nGp+A (4)

where G is Newton constant of gravitation alndhe cosmological constant.
For the investigation of an expanding medium, it is convettie write these equations with new coordinates, herein
namedeference coordinateI hey are defined by

t, X==), a>0 ©)

wherea = a(t) is a non constant monotonic function with = a(t,) = 1. Such a method is motivated by the proper
dynamics of medium, so that the equations system which atsdor the motion translates into its simplest form.

From now, let div andot denote the differential operators with respect. tBuler-Poisson-Newton (EPN) equations
system reads in term of reference coordinates as follows

Ipc

ot +div(pee) = 0 6)

oV 0V B

. 47TG . 2 /\
divde = - ~ pc—3(H+H —5) 9)
where the dotted variables stand for time derivatives,
ax 1 a
3

— Vo=— == (V—HF H=- 10
pC pa 9 C dt a ( ) ) a ( )

act respectively as the density and the velocity fields ofiomadn thereference framgand

1 :
gcza(g—(H+H2)r) (11)
as the acceleration field. Let us note that this model depemtiso dimensionless parameter

8nG A\

Q=0 A=
3z 312

(12)

whereH, =H(t,).

Newton-Friedmann and Vacuum models

For these models, the most adapted family of functmasa(t) verify a Friedmann type equation

: A 4AnG
H+H2—§+Tpoa*3:o (13)



wherep, is an arbitrary constant which stands for a parameter oftfoma(t). This differential equation admits the
following integration constant

Ko=—3-po+3 —HZ (14)
It integrates for providing us with the functid(t) from

N K, 8nGp,
—__ o= 1
3 a2 3 a3_0 (15)

. AN
H”:;lmoH:\/; (16)

According to eq.4)a depends o, and on two additional parameters chosen amfng, andK,. At this step,
excepted\, these variables do not identify to cosmological paransetssociated to Friedmann solution, they intervene
merely in the coordinates choice. The formal expressiena is derived as reciprocal mapping of a quadrature from
eq. ), it stands for the reference frame chronology.

It is obvious that EPN equation system €¢[](d[7,8,9) showstiwial solutions :

1. The one defined by

HZ

Let us denote its asymptotical value

Pc = Po, Ve =0, gc=0 (17)
which accounts for a uniform distribution of dust, hereimeal Newton-Friedmann model (NF). According to
eq. )a andH recover now their usual interpretations in cosmologg®gsansion parameteandHubble
parameterrespectivelyp, = pa identifies to the density of sources in the comoving spacekanidterprets
in GR as its scalar curvature. We limit our investigation totions which do not correspond to cosmological
bouncing solutions, what requires the constraint

K3 < (411Gp,)° A (18)

to be fulfilled, according to analysis on roots of third degpolynomials. Hence, the kinematics shows two
distinct behaviors characterized by the sigrkef Indeed H decreases with time by reachinly, either upward
(Ko < 0) or downward K, > 0) from a minimum defined by

K3
Hn = Heoy [1— ——2—— < Ho (19)
A (41Gp,)
at (epoch = 4nGp.K_ 1, what defines #oitering period
2. The one defined by
4nG
pc =0, Ve = (Ho —H)X, Oc = ?POX (20)

which accounts for vacuum solution, herein named Vacuumeain®.

ANISOTROPIC HUBBLE MODEL

This model accounts farollisionless motiong/hich satisfy the following kinematics
= AT, Alt,) =1 (21)

whereA = A(t) stands for a non vanishing determinant matrix; its coeffitiean be determined by an observer at rest
with respect to Cosmological Background Radiation (CMB)e®as det > 0 because it identifies to a unit matrix at
timet = t,. From eq.[(21), the velocity field= V(r,t) reads

a . . d
V= =AM A= 2A (22)



whereA 1 stands for the inverse matfix_et us choose

a(t) = vVdetA (23)
and with the unique matrix decompositfon
AAT"=H1+ B, H=—, Ho, = H(t), trB=0 (24)
a a

eq.[[ZP}21) provide us with the equations of motion in #fenrence frame

H

Ve = gsxf (25)
Ho (o Ho
dc = ¥<B+¥BZ>X (26)
HZ2 4nG 2 A
a—trB = ?pc3<H+H §> (27)

wherea stands for the (generalizeelypansion factqrthusH = H (t) acts as the usual Hubble factor, @de- B(t) for
a traceless matrix herein namei$tortion matrix It characterises the deviation from isotropy of the (disienless)
velocity field, its amplitude is defined by the matrix norm

1Bl = V/tr(B'B) (28)

where the sign®™ stands for the matrix transposition. According to @ (ED). ) reads as follows

1,4 i Q. 1
H_g(H+H ):_@—H\O_Qﬁz (29)
where
Ba(t) =tr(B"), n=123 (30)
Eq ) shows tha®, does not depend on spatial coordinates,the space distribution of gravitational sources is
necessarilhomogenous
p=p(t) (31)

and hence it stands for a constant parameter because ﬂj.eq. (6
By multiplying each term of eqmz9) bya2, one identifies the following constant of motion

K. :Q—+/\ 2————/ Pja—a. 111 (32)

It is important to note that the chronologwvhich is given by

1 ada
_ = 33
H. \/P(a) (33)
where
4 2 2, 2B B
P(a) = A.a" — Kk.a“+ Q.a— 38 gda >0, P(1)=1 (34)
1

is distortion dependent.

SATIA=AATI=1 .
4 By using the trace, the determinant one Kdetd = Tr (AA 1) dedA.
5 According to observations, one assurkks> 0 since the casH, < 0 accounts for a collapse, what is not envisaged.



A Class of possible motions
Accordingly to usual Hubble model, if we assumeadial acceleration field
gc UX (35)
then the distortion matrix satisfies the evolution equation

H 1H,

5y Hop2 1Mo, o2
B+ 5B =B (36)
according to eq[(24, b7). With
dt
dT = Ho? (37)
eq. ) reads in a dimensionless form
B 1 5
—_z -B
o = 3Pl (38)
With eq. (2¥,2H,33.36), the equations of motion read
ax ?x 1
o BX, iz 5[32? (39)
i~ R (40)
a/P(a)

The resolution of these equations can be performed by meanroérical techniques : the evolution with time of
distortion matrixB is derived from eq.|E8), the particles trajectories> X(T) are obtained by integrating eﬂSg) and
the evolution of the generalized expansion faetfnom eq. [4D).
Analysis of analytic solutions

Analytic solutions of eq@m& can be obtained thatokparticular properties of distortion matrB. The
parametersi,, Q, andH, given in eq.|(12) correspond to cosmological parametersrigdmann-Lemaitre (FL)
solution. The constrainB, = 0 in eq. (3§,34) provides us with the FL chronology, whetein eq. ) represents
the curvature parameter in the FL moded (the dimensionless scalar curvat@g of the comoving space, se|§[49]),
while the flatness of (simultaneous events) Newton spaceust be noted that the particle positigms defined in
eq. @S) does not identify to the usual FL comoving coorditeause the (generalized) expansion fagepends on
the anisotropy unle{%, = 0.

Evolution of functiong,—»3. BecauseB is a traceless matrix, its characteristic polynomial reads
1 1
Q(s) = det(sl - B) = s*~ 5,5~ =hs (41)

according to Leverrier-Souriau’s aIgorithrE[45]. With Gay-Hamilton’s theoremi(e. Q(B) = 0) and eq.@S) we
obtain the following differential equations system

d

— = -2 42

P2 s (42)

d 1,

E[% = _EBZ (43)
and we note that the discriminant of third order polynorait is proportional to

o =353 (44)



is a_constant of motiofi.e., da /dt = 0). The integration of eq[ (}2J43) gives

BalD)
‘/é/(z) o £—+1 (45)
JBo(Ts

T=T,+&6— —_—
2 V2a + X

Hence 3, is defined by a quadrature, afig from eq. ); in addition of the singular solution
Bo=Bs=0, (e, B3=0) (46)

defined equivalently either b = 0 or 33 = 0, according to eq[ (32 }43).

The related dynamics depends on ragts; » 3 of characteristic polynomi& given in eq.@l)i.e. the eigenvalues
of distortion matrixB. Their real values identify to dilatation rates at timmward the corresponding (time dependent)
eigenvectors (not necessarily orthogonal). Their sumlig Bu= 0) and their product; = 3deB) is either decreasing
with time or is null, according to eCE|43). The signafiven in eq. @4) is used to classify the solutions as follows

- if o =0 thenQ has a real double roal; = n, and a simple on@s. The related instantaneous kinematic shows
a planar-axial symmetry (either a contraction within a plavith an expansion toward a transverse direction or
vice versa), see sec. .l = n3 then both vanish and the related solution identifies to thgudar one defined in
eq. (4f);

- if a > 0thenQ has a single real roafy;

- if o < 0 thenQ has three distinct real rootg_1 2 3. Their order is conserved during the evolution (since a
coincidence of eigenvalues makes= 0), the largest one must be positive while the smallest orst beinegative
(becauses;, = 0).

Planar kinematics. The singular solutio®® = 0 shows a FL chronology and the distortion matrix

B=-B’r+B,, B3=0 (47)
is solely defined by its initial valu,, according to eqm;B). It is neither symmetric nor asymmdbttherwise it
vanishes), see eq. (28). Hence, E (39) transforms

o _

i (-B%r+B.)X (48)

which accounts for eternal motions
2
X:exp(—BEE—i-Bor)Yo: (14+B,1)% (49)

The trajectory of a particle located at initial positi@n identifies to a straight line toward the directi@X,. The
analysis ofB, range {.e., its image) provides us with characteristics of trajee®sflow. The nilpotent property &,
shows that its kernel is not empty K& ) # 0. Its dimension diniKer(B,)) = mcharacterizes the kinematics, which
is either planarrh = 1) or directional (n= 2), i.e. a bulk flow. Conversely, if the kernel of distortion matixis not
empty thenBs = 3det(B) = 0, and thug3, = 0, see to equkB). Therefore, all planar kinematics eaddscribed
by such a model.

Planar-Axial kinematics. If B # 0 then the chronology differentiates from FL one. Let us ®on thea = 0 with
two distinct eigenvalues; # ns class of solutions. With ed. (45), ef.1%3,43) integrate

o (=29, n=n Ve (50)

Bn:

which shows a singularity at date= 1, > 0 that splits the motion in two regimas< 1, andt > 1,. The complete
investigation of this singularity problem demands to salveintegro-differential equation, see €q][3B,34). Thésoo
of Qread

n3=—2m (51)



wheren; stands for the double root. Among others, two class of smigtiare defined by mean of a constant (time
independent) matriR, the projector associated i, see [4p],
P2=P, trP=2 (52)

They describe distinct kinematics depending on whetherixBtis diagonalizable.

- Irrotational motions: If B is diagonalizable then

B=n1(3P-21) (53)
From eq.[34,93), one has
dx
- N1 (3P —21)X (54)
and the solution reads 1
X:*rllprrF(]]*P)E (59)
1

Wheref is constant. If the eigenvectors are orthogonal then therkatics accounts for irrotational motions.
« Rotational motions: If B is not diagonalizable then

1
B = m(P-21+5N (56)
ni
dx 1
= = P—21)+ =N )% 7
N ) 57
whereN is a constant nilpotent matrix, which accounts for rotaionotions on the eigenplane®f The solution
reads 1 1
X=-—mP¢+— (1-P)&+—N¢& (58)
ni n
Wheref is constant.
Discussion

As a result, this anisotropic generalization requires amdgeneous distributions of matter. Because of the pres-
ence of strong density inhomogeneities in the sky distidoubf galaxies catalogs, one is forced to ask whether it
describes correctly the dynamics of observed cosmic strest In principle, such a remark should be also sensible
for questioning Hubble law when, regardless the isotrdpy,a fact that perturbations are not so dominant otherwise
it would never have been highlighted. Actually, homogenisiimplicitly assumed in the standard cosmology for the
interpretation of CMB isotropy and the redshift of distantisces, which provides us with an expanding backgréund
Itis with such a schema in mind that this anisotropic Hub&we provides us with an hint on the behavior of the cosmic
flow from decoupling era up to present date in order to answther the observed bulk flow is due exclusively to
tidal forces.

Cosmic flow of flat LSS (B® = 0)

TheB2 =0 class of solutions has interesting properties with regatie stability of large scale structures that show
a flat spatial distribution. To answer the question of whetieservations define unambiguously the kinematics, the
distortion matrixB is decomposed as follows

B=S+j(®), tS=0 (59)

6 Namely the comoving space of FL world model onto which thevigmtional instability theory is applied for understanglithe formation of
cosmic structures.



whereS andj (@) stand for its symmetric and its asymmetraomponent, and

al

1 —
_‘:— _’:— V
@ HOU’ o) 2rot (60)

accounts for the motion rotatiod, being the swirl vector. Hence, ef).[47) gives
B& = S& (61)
The evolution of the anisotropy with time is defined by
S = —(S+j(@)j(a))T+S, (62)
(@) = —(Sj(@)+](6h)S)T+j(d) (63)

which couples the symmetric and the antisymmetric parte@fiistortion matrix. The swirl magnitude reads

w:,/@,@:,/%trsz (64)

according to eq@O), sing& = 0. Its orientation cannot be determined from the data becthesabove equations
describe two distinct kinematics corresponding:@, that cannot be disentangle. According to &g (59), if (arlgi on
if) the rotationw = 0 then the distortion vanish&= 0 sinceB is either a symmetric or antisymmetric. In other words,
a planar distortion has necessarily to account for a ratatio

Constant distortion

Among above solutions which show planar kinematics, lenusstigate the (simplest) one defined®g/= 0. In
such a casé, 0 @ andS@ = 0. According to eq[(§2,6B,54), linear calculus shows thatdistortion is constant

S=S, w=w (65)

Such a distortion in the Hubble flows produces a rotating glarelocities field with magnitud& H.a 2. In the
present case, the model parameters can be easily evaluateddta. The observed cosmic velocity fields are partially
determined by their radial component

vr:<V,F>:c; r=r(m)=ri=ax r=ct (66)

wherem, z, U, t stand respectively for the apparent magnitude, the reid#ifline of sight, the photon emission date
of the galaxy and the speed of the light. Accordingto e (@,59), theadadilocity of a galaxy located at position
r'is given by

Ve = (H+Hg)r, HU:$U~SU (67)

Because 8= 0, itis clear that the sum of three radial velocitegorresponding to galaxies located in the sky toward
orthogonal directions and at same distangovides us with the quantitid. Hence, simple algebra shows that the
sample average of radial velocities within a sphere a radisigqual to

(Vi) =H(7) (68)

Therefore, for motions described by e@(Zl), the stafiggigen in eq.@S) provides us with a genuine interpretation
of Hubble parametdd = H(t). Hence, according to eﬂ@,%), one obtains the (géped) expansion factor

at) —exp [ H(b)dt (69)

Jto

7 The operatoj stands for the vector produdtx & = j (U)(@).



Hence, the cosmological parameters can be estimated Ing fitte data to the function

Yt k0 =VP@) =H/H,, At+Ko+Qo=1 (70)

The component of matri$ can be estimated by substitutirgin eq. @), andv is obtained from eq|z¢5).

Itis clear that the above model is derived in the Galileaanerice frame, where the Euler-Poisson equations system
can be applied. Hence, a non vanishing velocity of the olesesith respect to this frame an produces a bipolar
harmonic signal in thély distribution of data in the sky, which can be (identified aimelt) subtracted.

Discussion

The dynamics of a homogenous medium and anisotropic movidgruNewton gravity was already studied by
describing the evolution of an eIIipsoiE]SZ]. The currempeoach enables us to identify characteristics of the dyceam
of the deformation from isotropic Hubble law in a more sysaséimway by mean of the distortion matrix.

At first glance, if the planar anisotropic of the space disttion of galaxies within the Local Super Cluster (LSC)
is stable then the above solution can be used for undersigitdicosmic velocity fields, being orthogonal to LSC
plane. It is well known however that the distribution of gaés is not so homogenous as that, whereas this model
describes motions of an homogenous distribution of grawital sources. On the other hand, such an approximation
level is similar to the one which provides us with the obsdrdebble law, that is included in this mod@& £ 0).

SPHERICAL VOIDS IN NEWTON-FRIEDMAN UNIVERSE

For modelling the dynamics of a spherical void in a uniformstdiistribution, we use a covariant formulation of Euler-
Poisson equations system (see Appendix). The model isnautddy sticking together the local solutions V and NF
of Euler-Poisson equations system as defined previouslyarNewton-Friedmann and Vacuum models, where the
functiona stands for the Friedmann expansion parameter. Such a moa®iras for the dynamics of their common
border (.e. boundaries conditions), which israaterial shell For convenience in writing, the symbols S, V and NF
denotes both the medium and the related dynamical model.afitgtive analysis of solutions is performed and a
general discussion is given subsequently

Dynamical model
We consider three distinct media : a material shell with thilkness (S), an empty inside (V) and outside a uniform
dust distribution (NF). These media behave such that S nthkgsncture of V with NF as given by ecDE,ZO). The
tension-stress on S is assumed to be negligible, what iactasized by a (symmetric contravariant) mass-momentum
tensor defined as follows o . " _
T80=(ps)e, Ts' = (Ps)eVl, Td = (ps)oVive (71)
The background is described by the following mass-momeiémsor

We=pe =0, Tie=0 (72)

According to Appendix , since the eulerian function(al)
T(xsy) = / Ty, dtdS + / TtV (73)
vanishes whe reads in the forny,, = % (3“5\, + &,Eu), one has
(Go&0+0L&j) + (9j &0+ 0o} — 2HE;) VL + VivEd; & ) (ps)c dtxPdQ
S

— / Pedoo dx2dxdQ (74)
JNF



where d) stands for the solid angle element. The radial symmetrylotisms enables us to write tieducedpeculiar
velocity and acceleration of a test particle located on tiedl &s follows

. = ax, Jc = BX (75)
where the functions = a(t) andf = (t) have to be determined. A by part integration of ( 74) mtesius with

/tt2 (3o(Ps)c + 3(0s)ca — pearx) X2 &odt (76)

- /t : (30 ((Ps)c@) +4(Ps)c® 4 2H (ps)cal — (ps)oBx 1) x3Eclt

wherex = ||X|| stands for the radius of S add= /&2 + &2+ &2. This equality must be fulfilled for all bounded time
interval and compact support 1-form. Hence, we easily édhe conservation equations for the mass

do(Ps)c+ (3(ps)c — pcX) o =0 (77)
and for the momentum g 8
a Pc 2
—+ 1+ X|ac+2Ha+==0 78
ot ( (Ps)c ) X (78)
With eq. @S), the calculation of the gravitational forcerfraghe entire shell acting on a particular piprovides us
with
_4nG (pc (Ps)c
= a3 ( 3 X (79)

About mass conservation, it is noticeable that L
(Ps)c = éPcX (80)

is solution of eq.[(7), what ensures that the amount of mattéch forms the shell comes from its interior. Hence,
eq. (78) transforms

da 2 2nG pc
— +4a°+2Ha——==0 81
dt + + 3 a3 (81)
It is convenient to use the dimensionless variable
o
— 432 82
X=4ga (82)

where the ratiod H; ! stands for the expansion rate of S in the reference framece-,lem].l) transforms into a
Riccati equation

2
dx _ <QO - X—> 1 83)
da a P(a)
where K
P(a) =A.a*—ka’+Q.a, k= m P(1)=1 (84)

where the dimensionless parametere defined in eq[ (12, [14). According to dq] [1P,82), thewsian of the radius

of S is given by
a  yda
X = X;j €X —— 85
' p</au 4a~/P(a)> (85)

wherex; anda; stands for the initial values at tinte

8 The modified newtonian gravitation field reagls- (% - ?—Q‘) r

9 ThEe ﬂaﬂons are preferred to the ugigl= A, andQg = —k, for avoiding ambiguities on the interpretation of cosm@agparameters, see
e.g, [L31.[14]-



In(a)

FIGURE 1. The corrective factoy to Hubble expansion.

Qualitative analysis

The shell expansion is analysed in term of dimensionlesstiies : themagnification Xand theexpansion rate Y

Their evolution with the expansion parameterare obtained from qu(B:ElSS) by numerical integraffohet us
focus our investigation around the generally acceptedegaly= 0.7 andQ, = 0.3. The initial conditions lie on the
expansion rat¥ and the formation datg, as expressed by meansapf= a(t;). The values; = 0.003 andy; = 0 (void
initially expanding with Hubble flow) are used as standardun discussion. Hereafter, we simply provides us with
synthesis results, more information can be foundih [17].

Kinematics

The expansion velocity of the shell S with respect to its ergads

Y H

V=yHTF, y_1+h, h_Ho (87)
wherey stands for the corrective factor to Hubble expansion. Theegs trend of the kinematics can be derived
from the diagrany versusa in Fig.[l. It results from the initial conditiors = 0.003,Y; = 0, and the cosmological
parameter§), = 0.3. andA, =0,A, = 0.7, A, = 1.4.

The shell S expands faster than Hubble expansjon () at early stages of its evolution with no significant
dependence on. A-effect appears later by preserving the curve from an eatéereasing. If, > 0.7 (i.e., k, > 0)
then it is characterized by a significant protuberan@e-al.7, the larger thd, (i.e, k) the higher the bump. It is due
to the existence of a minimum vali&, of Hubble parametdt which is reached during the cosmological expansion,
see eq.@g). After this period the expansion of S reachestsyically Hubble behavior. It is interesting to note that
the present epocla 1) appears quite peculiar because of the relative proxiafigyirves, but it is solely an artifalct

10 Because the mappirg— a(t) = 1/(1+2) is a monotonic function in the present investigation, teedlution with cosmic time or with redshift
zcan be straightforwardly derived.

11 Indeed, the three curves crossaat 1 but not all in only one point.



Dichotomy between cosmological parameters

With the aim of disentangling the effect of the cosmologmahstant on the evolution of spherical voids from that
of the outer density (herein namédeffect andQ-effect respectively), the dependenceXoandY on cosmological
parameter§), andA, are investigated separately within acceptable values oanmraaccordance with observations.

1. Q-effect. — With a constand, = 0.7, the magnificatiorX and the expansion raté increase withQ,, what
interprets by the attraction of shell particles toward @enggions. The growth shows a huge burst which
freezes asymptotically up to matching Hubble expansion-(0). This trend is not significantly modified by
other acceptable values 4f.

2. N-effect . — With a constan®, = 0.3, the larger the\, the larger the magnification X. As fdp-effect, the
magnificationX increases nonlinearly with,. With A > 0, this phenomenon interprets as a repulsive effect
of gravity in empty regions (also named gravitational refn of vacuum). The expansion rateis weakly
dependent 0id,, what means that it does not characteridesiowever, it has a cumulative late effect which is
reflected orX.

3. Interpretation of paramet&s. — According to eq.@O), the test-particle within S movesha reference frame
toward its centre but ik, > 0 then it starts moving toward its border at date") = %nGpOK;l. Such a property
of sweeping out the void region (dueltb< H.,) interprets as a stability criterion for void regions. A dnsional
analysis of eq(14) shows that the Newtonian interpretaifd, = A, + Q. — 1 corresponds to a dimensionless
binding energy for the universe BecauseK, is an integration constant, this provides us with a meaningf
procedure for comparing the magnitudes\eéffect orQ-effect between different world models at constint
For Friedmann modek, stands for the dimensionless spatial curvature (of the wimgospace)k, > 0 world
models correspond to spatially closed universes.

4. Dependence on initial conditions. — The earlier the ddtbih the larger the magnificatioX. One has a
limiting curve a — Y defined bya; = 0, which characterize®,. All expansion rate curves related to other
formation dates are located in lower part and reach it asgtigpdly. One can expect that the effects on the
dynamics of growth resulting from reasonable initial exgian ratesy; # 0, related to physical processesd,
supernovae explosions), are negligible at primordial Bppavhat legitimizes the initial conditioly; = 0 at
a = 0.003. Evolutions with other initial conditions ofi can be deduced from that since any given p@agty;)
in the diagram belongs to a single evolution curve.

Synthesis

As a result, the expansion of a spherical void does not shiiwear regime but a huge initial burst which freezes
asymptotically up to matching Hubble expansion. Its raiinshe reference frame)increases from an initial sizg
with the cosmological paramete®s, andA,. The related individual effects interpret respectivelythg gravitational
attraction from the outer parts and by the gravitationalilgipn of its borders (or the vacuum from the inner parts).
The larger these parameters the higher the magnificXtiernx/x;. The dynamics is sensitive -effect at primordial
epochs and ta\-effect later on. The evolution of its expansion velocity {he reference frame} = Y H,X with
time does not characteride but Q.. On the other hand, the cosmological constant intervemgsfisiantly on the
kinematics by means of the corrective facjoto Hubble expansion by preserving the expansion from arieear!
decreasing. Moreover, a values domain of cosmologicahpeters, which corresponds to relativistic spatially ctbse
world models, are characterised by a significant expandionids. The later reaches a maximum at redshift 1.7
(with Q, ~ 0.3), the larger tha, (i.e., k,) the higher the expansion rate. Notwithstanding, the pleation on redshift
of sources located on the shell of expanding voids does rogeisek

XY xH,
14z ¢

(88)

which is a tiny value £ 10~3) because of counterbalancing behavior&aindY. The interior of voids shows a de
Sitter expansio® = +//\/3F which sweeps out it ik, > 0, what interprets as a stability criterion. The expansaig r

12 The lowerk, the faster the cosmological expansion. Note that it workk am opposite direction for the expansion of spherical sioid
13 Since Hubble expansion is all the more important towardp#se, the earlier the formation date the weaker this effextprding to eq7).



evolutions related to formation dates show a common eneatapve which characterizes the density paran@ter

Discussion

It is clear that such a simple model should be applied withioauo observed distribution of galaxies since the
effects related to foamlike patterns are not consideredebleer, because Newtonian approach is used instead of
general relativity, it applies solely to reasonable sizeitis* so that the main features should remain qualitatively
reliable. On the other hand, based on the connection of taotesolutions of Euler-Poisson equations system, which
is a huge advantage for investigating properly the behafiarsingle void, it provides us with an appreciable hint to
the dynamics with respect to cosmological parameters.

CONCLUSION

Euler-Poisson equations system written in an adapted owies$ system enables us to define in a straightforward
way cosmological solutions, such as Newton-Friedmann hadvacuum (de Sitter) models, to investigate an an-
isotropic extension of Hubble flow and the dynamics of spte¢roids in an expanding universe, as long as Newton
approximation with cosmological constant is valid. Thetetl results are summarised as follows :

- An-isotropic Hubble flowThe present solution generalizes the Hubble law and pesvid with a better under-
standing of cosmic velocity fields within large scale staues. As a result, it implies necessarily an homogenous
distribution of gravitational sources, as similarly to Hildlaw. Because the chronology identifies to FL chronol-
ogy for a vanishing distortion, this model interprets as avid@ approximation of anisotropic cosmological
solutions. The motions are characterised by means of aamrat motiona. Among them, particular solutions
can be easily derived far = 0. They describe all planar distortions, in addition of twasses of planar-axial
distortions with or without rotation. Among these soluspthe one which ensures a planar kinematics is of
particular interest because it describes constant (djemne rotational distortions. This solution can be fully de
termined from observational data except for the orientadithe rotation. The sensible result is that the velocity
field is not potential. It is interesting to note that this rebdccounts for motions which might be interpreted as
due to tidal forces whereas the density is homogeneousaiit &ternative to models which assume the presence
of gravitational structures similar to Great Attractor aigim of a bulk flow.

Spherical voidsThe model of an isotropic universe constituted by a sphktioid surrounded by a uniform
distribution of dust is defined such that the behaviors oflbdng regions inside and outside the shell, coincide
with Newton-Friedmann (NF) solutions. The connection dods between these two regions are investigated
in Classical Mechanics, what provides us with the dynamide@shell. Such a schema does not correspond to
the usual embedding of a void solution into a cosmologicakeound solution, but interprets as a non linear
perturbation of NF models. The general behavior of the vajghasion shows a huge initial burst, which freezes
asymptotically up to match Hubble expansion. While the ettive factor to Hubble law on the shell depends
weakly on cosmological constant at early stages, it enalsds disentangle significantly cosmological models
around redshifz ~ 1.7. The magnification of spherical voids increases with thesig parameter and with the
cosmological constant. An interesting feature is that fatiglly closed Friedmann models, the empty regions
are swept out, what provides us with a stability criterion.

APPENDIX : COVARIANT FORMULATION OF EULER EQUATIONS SYSTEM

Souriau’s covariant formulation of Euler-Poisson equatf@4] can be summarized as follows : The geometrical
interpretation of Newton dynamidsj11] shows that the congma of gravitational fieldj identify to the only non

14 At first glance, on might argue that the related scale shoeildiger than the size of background structures in order te@rtrge uniform density
hypothesis an acceptable approximation, what looks likéeandha. However, such an hypothesis, which applies to ttieseumiverse, is ensured
by the isotropy of CMB.



null Christoffel components of newtonian connection
I _ _q4i
Moo=-9

Hence, one obtains their expression in the new coordingstsma defined in ecﬂ(S), and the only non null components
read

(Moo =H, (Fe)oo= —al
Let .7 be a function(al) defined on the set of symmetric densitydes— y on newtonian spacetinf@

TX—y)= /RAT“Vy“thdV

where ddV stands for the volume element ahdor a symmetric contravariant tensors which accounts femntiedia.
The measure density is eulerian if and only if it vanishes for all covariant ten§ields which reads

Yuv = % (aufv +l§v5u)

whered stands for the covariant derivative are- & for a compact suppott-form. In such a case, it is obvious to

show that .

interprets as Euler equations, in any coordinates systems.
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