
HAL Id: hal-00125048
https://hal.science/hal-00125048

Submitted on 17 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A-priori calculation of the refractive index of some
simple gas hydrates of structures I and II

Olivier Bonnefoy, Frédéric Gruy, Jean-Michel Herri

To cite this version:
Olivier Bonnefoy, Frédéric Gruy, Jean-Michel Herri. A-priori calculation of the refractive index of
some simple gas hydrates of structures I and II. Materials Chemistry and Physics, 2005, 89(2-3),
pp.336. �10.1016/j.matchemphys.2004.09.007�. �hal-00125048�

https://hal.science/hal-00125048
https://hal.archives-ouvertes.fr


A-priori calculation of the refractive index of some simple gas

hydrates of structures I and II

O. Bonnefoy ∗, F. Gruy, J.-M. Herri 1

Ecole des Mines, UMR CNRS 5148

158 cours Fauriel, 42023 Saint-Etienne, France

Abstract

This work aims at providing theoretical values of the refractive index of some gas hydrates using up-to-date physical
data. Indices of refraction have been computed with a modified Lorenz–Lorentz model for a pressure between 2
and 15 MPa, a temperature between 0 and 12 °C and wavelengths in the extended visible domain. Given the
prohibitive time required to perform the calculations with the standard procedure (up to 20 min for one P -T -λ
set), we considered separately the crystalline structure and the molecules that occupy its sites. Thus, we obtain a
series of tensors, characterising the sole structure, that we can easily use to get the refractive indices within less
than 1 s. In this paper, all data are given to calculate the absolute or relative refractive index of any gas hydrate,
provided the host gas polarisability is known. The numerical results are in agreement with experimental data.

Key words: Clathrate gas hydrate; Index of refraction; Optical properties; Dielectric properties; Lorenz–Lorentz model;
Light scattering

1. Introduction

Literature is abundant on gas hydrates, which give
rise to a growing attention. The novice can safely refer
to Sloan’s book [1] for a detailed presentation of these
crystals. Among the industrial contexts where they
appear, we shall cite : hydrate plugs obstructing oil-
or gas-pipelines, energy resources in form of methane
hydrates trapped in permafrost or sub-marine sedi-
ments, natural gas transport in form of a slurry or gas
separation by fractionnated crystallisation.
The intelligent exploitation of hydrates in these con-
texts require a considerable amount of scientific data
and the research efforts of many nations (United

∗ Corresponding author. Tel.: +33-4-7742-0272; Fax: +33-
4-7749-9694

Email address: olivier.bonnefoy@emse.fr (O.
Bonnefoy).
1 www.emse.fr/fr/transfert/spin/depscientifiques/
/GENERIC/hydrates/plancentral.htm

States, Russia, France, Germany, Great Britain, Japan
and China, to cite the most active ones) greatly con-
tribute to this goal. From this perspective, it seems to
us that the knowledge of hydrates dielectric properties
is a valuable tool, in particular for those who wish to
measure the particle size distribution of hydrates in
suspension via diffusion methods. Here, we need to
cite the works of Melnikov et al. [2] and, previously, of
Bylov and Rasmussen [3].
The structure of this document is following. We first
develop the calculation method. The index of refrac-
tion is the convergence point of a macroscopic ap-
proach in terms of field and of a microscopic approach
in terms of crystalline structure. We then present the
experimental data we used to perform the calculations
and, eventually the numerical results (absolute and
relative refractive indices). Finally, we study the sen-
sibility of the results and compare with experimental
data available in the literature.
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2. Calculation method

We will successively use two approaches to express
the polarisation P as a function of the field E. The
first approach is macroscopic and utilizes the dielectric
permittivity [ǫ] whereas the second one is microscopic.
She utilizes the crystal molecular structure and super-
position principle. This method is presented in numer-
ous reference books (see, for instance, Durand [4] or
Ashcroft and Mermin [5]) and was first applied to hy-
drates by Herri and Gruy [6]. The comparison of the
two relationships that we will get provides a mean to
express the dielectric permittivity as a function of the
crystal structure.

2.1. Macroscopic approach

When we apply an electric field EA to a dielectric
medium, this field creates a polarisation P which, in
turn, produces a depolarising field Edep opposed to
the applied field EA. The total field E in the dielectric
medium is the sum of the two fields :

E = EA + Edep (1)

The dielectric permittivity (or dielectric constant)
may be defined by the following relationship between
polarisation and electric field :

P =
[ǫ] − I

4π
E (2)

2.2. Microscopic approach

2.2.1. Expression of the local field

At a given time, the macroscopic field E at position r

is the spatial average of Emicro
r on a sphere of radius r0,

centered around r, and such that r0 is small compared
to the macroscopic length scale and big compared to
characteristic atomic dimensions (intermolecular dis-
tances). The local field E loc

r at r is the existing field at
r if we remove the atome at this place. To calculate it,
we decompose the space into two zones : one sphere B
of radius r1 centered at r and the rest of the space B̄.
We could have taken a cube but the subsequent calcu-
lations would have been more complicated. The radius
r1 is small compared to the crystal size and big com-
pared to r0. With this decomposition, we get :

E
loc = E

loc
B̄ + E

loc
B (3)

Since r1 is big compared to r0, E loc
B̄ may be approxi-

mated by the average of the microscopic electric field
existing out of the sphere B, i.e., by the macroscopic
field Emacro

B̄
. Moreover, the macroscopic field E may

be decomposed in :

E = E
macro
B + E

macro
B̄

where Emacro
B is the macroscopic field that would exist

if there were only the charges in B (included the atom
at r). Thus, Eq. (3) becomes :

E
loc = (E − E

macro
B ) + E

loc
B

Given the previous decomposition of the macroscopic
field E, we finally get :

E
loc = EA + Edep − E

macro
B + E

loc
B

2.2.2. Geometrical simplifications

The hydrate particle is spherical, as well as the cavity
that we have diged around the point. This is for sure
an advantage since the field in a uniformly polarised
sphere does not depend on its diameter and equals the
Lorentz field. We can deduce that :

E
macro
B = Edep =

−4π

3
P (4)

Thanks to this relationship, the equation of the local
field can be simplifed in :

E
loc = EA + E

loc
B (5)

2.2.3. Calculation of the field E loc
B

The methane hydrate structure is such that water
molecules are located on three types of cristallographic
sites and gas molecules on two types of cristallographic
sites. We now study the case where the center of the
sphere B is a site of type k. For clear understanding,
we replace the notation E loc

B by E loc
Bk

. The field E loc
Bk

is
the electric field created by the presence of water and
gas molecules in the sphere B. We group together the
contributions of molecules placed on a same type of
site i.

E
loc
Bk

=
5

∑

i=1

Z i =
5

∑

i=1

∑

j∈B

Ek,j(i)

where Zi is the sum of the fields Ek,j(i) created by the
molecules j(i) located on a site of type i. The electric
field created on a site k by a dipole-molecule j located
on a site i is 2 :

Ek,j(i) =
3 (pirkj) rkj − ‖rkj‖

2
pi

‖rkj‖
5

with rkj =
−−→
KJ =

−→
OJ −

−−→
OK. To go further, we express

the dipole moment of a molecule j located on a site of
type i with its total polarisability αi and the local field

2 Rigorously, we should utilize the index j(i) instead of i
when we write pi and αi, because the dipole moment and
the polarisability do not depend on the site i but on the
molecule j that occupies it. However, in hydrate, each site
is occupied by only one type of molecule and, to keep it
easy to read, we will use the compact writing.
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E loc
i that acts on it : pi = αi.E

loc
i . Consequently, we

get

E
loc
Bk =

5
∑

i=1

∑

j∈B

αi

3
(

E loc
i rkj

)

rkj − ‖rkj‖
2
E loc

i

‖rkj‖
5

Coming back to Eq. (5), we have E loc
k = EA + E loc

Bk.
In form of matrices, we have :

E
loc
k = EA +

5
∑

i=1

αi [Wki] E
loc
i (6)

where

Wk,i,q,qq =
∑

j∈B

3KJqqKJq −
∥

∥

∥

−−→
KJ

∥

∥

∥

2

δq,qq

∥

∥

∥

−−→
KJ

∥

∥

∥

5

Through Eq. (6), we see that the local field E loc
k de-

pends on the four other local fields E loc
i and on EA.

We solve numerically this system of five equations and
five unknowns and we obtain the five following equali-
ties, for k ∈ {1, ..., 5} :

E
loc
k = [γk] EA (7)

With the assumption of linearity with respect to po-
larisabilities, we decompose the tensors [γk] in a sum
of terms where the crystalline structure and the polar-
isability of its constituting molecules are dissociated :

[γk] = I +
5

∑

i=1

αi [Tki] (8)

2.2.4. Calculation of the matrices [T ]
To calculate each of the matrices [Tki], we will study

the five particular cases where all polarisabilities are
equal to zero excepted the polarisability of the compo-
nent located on sites i : αi = 1. Then, we will proceed
in two steps. We will first calculate the tensor [Tii] and
second, use it to deduce the four other tensors [Tki]
(k ∈ {1 . . . 5}−{i}). Henceforth, we omit the exponent
”loc” in the writing of the field E loc

k .
Calculation of [Tii]. Equation (6) written for k = i

leads to 3 :

Ei = EA + [Wii] Ei

In our case, Eq. (8) becomes [γk] = I +[Tii], so Eq. (7)
turns into

Ei = (I + Tii) EA

3 In the particular case of hydrate of structure I, the sites
k=4, occupied by the gas molecules in the small cavities,
form a cubic lattice. For this reason, in such site, the con-
tribution to the local field of the molecules located on same
sites is equal to zero and consequently the tensor also :
T44 = [0].

If we compare this equation with the previous one, we
have :

[Tii] = [I − Wii]
−1 − I

Calculation of [Tki] for k 6= i. Equation (6) written
for k 6= i leads to

Ek = EA + [Wki] Ei

= EA + [Wki] (I + Tii) EA

Equations (7) and (8) give

Ek = (I + Tki) EA

So, finally

[Tki] = [Wki] [I − Wii]
−1

2.2.5. Polarisation

The polarisation P of the dielectric material can be
calculated as a function of the dipole moments pk of
the molecules located on sites k and their respective
volume concentration Nk :

P =
5

∑

k=1

Nkpk

5
∑

k=1

NkαkE
loc
k

=

5
∑

k=1

Nkαk [γk] EA = [S] EA

where the agregate [S] is a tensor defined by

[S] =
5

∑

k=1

Nkαk [γk]

Moreover, the combination of Eqs. (1) and (4) leads to

EA = E +
4π

3
P

From this, we extract P and express it as a function of
E :

P =

(

I −
4π

3
[S]

)

−1

[S] E (9)

2.2.6. Link between the two approaches

Comparing Eqs. (2) and (9), we find the equality

[ǫ] − I

4π
=

(

I −
4π

3
[S]

)

−1

[S]

which leads to the final expression of the relative di-
electric permittivity :

[ǫr] = I + 4π

(

I −
4π

3
[S ]

)

−1

[S ]

To sum up, we need first to calculate the matrices [Wki]
and deduce from that the matrices [Tki]. Then, we build
the tensors [γk] and the agregate [S]. Then it is easy
to compute the dielectric permittivity tensor [ǫr] and
extract from it the absolute refractive index of the hy-
drate.
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2.3. Calculation of the index of refraction

The tensor [ǫr] has three eigenvalues : ǫ1, ǫ2 and ǫ3.
The main indices of refraction are then n1, n2 and n3

so that : n2
i = ǫi for i ∈ {1, 2, 3}. Let us consider an

electric displacment in the direction of the unit vector

u =











u1

u2

u3











. We have the equality u2
1 + u2

2 + u2
3 = 1.

Given the random crystal orientation, we have u2
1 =

u2
2 = u2

3. The ellipsöıd of polarisability is :

u2
1

n2
1

+
u2

2

n2
2

+
u2

3

n2
3

=
1

n2

Consequently, the index of refraction n can be written

n =

√

3

n−2
1 + n−2

2 + n−2
3

So, the relative index of refraction m is equal to :

m =
n

nwater
=

√

3n−2
water

n−2
1 + n−2

2 + n−2
3

3. Numerical data

As will show the sensitivity study, special emphasis
must be given to the precision of experimental data
involved in the calculation of the relative index of re-
fraction of the crystal.

3.1. Description of the crystal

The nature and, above all, the volume of the gas
molecules trapped in the hydrate determine its crys-
talline structure. In the pressure and temperature con-
ditions of our good old earth, there are two cubic crys-
talline forms, both composed of a juxtaposition of two
kinds of cavities. These rigid cages are made out of wa-
ter molecules and can contain a gas molecule in a state
similar to gaseous state. The description of the crys-
talline structure that we have used was established by
Stackelberg and Müller [7]. The unit cell 4 of the crys-
tal of structure sI (group Pm3n) consists of 2 small
cages 512 and 6 big cages 51262, whereas the unit cell for
structure sII (group Fd3m) consists of 16 small cages
512 and 8 big cages 51264. In this article, we study hy-
drates of CH4, C2H6, CO2, H2S, C3H8 and N2. The
four first gases form hydrates of structure sI and the
two latter hydrates of structure sII.

4 A cage ab is a cage composed of b faces with a sides each.

3.2. Non-stoechiometry of hydrates

If all cages were filled with a gas molecule, the struc-
ture sI hydrate formula would be (H2O)46 · (gas)8
and the structure sII hydrate formula would be
(H2O)136 · (gas)24. In fact, the occupancy rate θk of
a cage of type k depends on pressure and temper-
ature and is inferior to 100 %. Adsorption theory,
developped by Langmuir, leads to

θk =
Ckf

1 + Ckf

where Ck is a constant and f is the fugacity of the fluid
phase in equilibrium with the hydrate.
The two Langmuir constants C1 and C2 are linked to
the intermolecular forces in the crystalline lattice and
can be calculated theoretically using Van der Waals
and Platteeuw [8] model with the Kihara potential.
However, given the low sensibility of the final result
towards this parameter, we will use the empirical cor-
relation proposed by Parrish and Prausnitz [9]

Ck =
Ak

T
. exp

(

Bk

T

)

Table 1 gives the constants Ak and Bk for the differ-
ent gases studied. Numerically, in the range 270–300

Table 1
Langmuir constants [K]

Gas A1 B1 A2 B2

CH4 7.228E-4 3187 2.335E-2 2653

C2H6 N/A N/A N/A N/A

CO2 2.474.E-4 3410 4.246E-2 2813

H2S 2.5E-5 4568 1.634E-2 3737

C3H8 N/A N/A 5.455E-3 4638

N2 1.617E-3 2905 6.078E-3 2431

K, the constants C1 and C2 take values between 0.05
and 70. If the fugacity varies between 2 and 20 MPa, it
means that the cages occupancy rates will be between
50 and 100 %. It is a very broad range that we could
tighten considering the thermodynamical stability of
partially filled cages, but that represents a safe basis
for the sensibility analysis.
The fugacity f of the fluid phase, described by a Soave–
Redlich–Kwong-type equation of state, is computed
with the compressibility Z of the considered gas :

ln
f

P
= Z − 1 − ln(Z − B) +

A

B
ln

Z

Z + B

The compressibility Z is solution of the cubic equation

Z3 − Z2 + (A − B2 − B)Z − AB = 0

where T is the absolute temperature and R = 8.314
J.K−1.mol−1 is the universal gas constant. The con-
stants A and B are defined by A = aP/R2T 2 and B =
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bP/RT where a and b are functions of the critical tem-
perature Tc and the critical pressure Pc of the consid-

ered gas : a = 0.42748
R2T2

c

Pc

(

1 + K
(

1 −
√

T

Tc

))2

and

b = 0.08664RTc

Pc
with K function of the acentric factor

ω : K = 0.480+1.875ω−0.176ω2. The numerical data
for the gases studied in this article are given in Table 2.

Table 2
Parameters to calculate the gas fugacity

Gas Pc (MPa) Tc (K) ω (-)

CH4 4.54 190.6 0.008

C2H6 4.82 305.4 0.098

CO2 7.28 304.2 0.225

H2S 8.82 373.2 0.100

C3H8 4.19 369.8 0.152

N2 3.35 126.2 0.040

3.3. Polarisabilities

The most relevant experimental situation is repre-
sented by hydrates particles in liquid water. Conse-
quently, we are dealing with three types of molecules :
– The host gas trapped in the cavities. Given that all

movements are authorised (with the only exception
of the translation), its polarisability is taken equal
to that of the free gas under atmospheric pressure
and at 0 °C.

– The liquid water were the hydrate particles are im-
mersed.

– The H2O molecules that consitute the cavities.
Given that the hydrogen bonds that rigidify them,
we consider that their volume polarisability is equal
to that of the ice at hydrate pressure and tempera-
ture.

In what follows, we will study the polarisabilities for
these three cases. The polarisability depends on the
wavelength but also on the pressure and temperature.

3.3.1. Gas polarisability

The gas polarisability α depends on the wavelength
in a complex manner. However, the range of interest is
quite narrow (250–750 nm) and a polynomial interpo-
lation is sufficient. So we take the relationship

α = β0 +
β1

λ
+

β2

λ2
+

β3

λ3

where the constants βi depend on the considered gas,
as indicated in Table 3. The unit of the constants βi is
such that, if the wavelength is expressed in nm, then
the polarisability α is expressed in Å

3
. Numerically,

between 200 and 800 nm, the polarisability decreases
with the wavelength and ranges between 1 and 10 Å

3

for the considered gases.

Table 3
Parameters to calculate the gas polarisability

Gas β0 β1 β2 β3

CH4 2.511837 6.289468E1 -8.709333E3 4.768704E6

C2H6 4.354728 1.197474E2 -1.992029E4 9.112365E6

CO2 2.578497 4.457932E1 -3.189352E3 3.173479E6

H2S 2.610619 1.473791E3 -6.055990E5 9.286059E7

C3H8 6.234656 1.648687E2 -2.759611E4 1.354185E7

N2 1.673443 7.525817E1 -1.750347E4 3.387202E6

These data come from Landolt–Börnstein’s data ta-
bles [10], where we find, as a function of the wavelength
λ, the index of refraction n of the pure gas. The po-
larisability α is then deduced with the Lorenz–Lorentz
formula :

n2 − 1

n2 + 2
=

4παN

3

where N , the number of molecules per unit of volume,
is

N = NA
n

V
= NA

P

RT

where P is the pressure and NA = 6.023 × 1023 mol−1

the constant of Avogadro. This formula is valid if we
consider that the perfect gas law correctly describes
the gas behaviour in the (P, T ) conditions, where in-
dices are experimentally measured. We consider it is
true since the pressure is 1 atm and the temperature
is 0 °C. In this case, the numerical value of N does not
depend on the gas and we have N = 2.687× 1025. The
relative deviation between the polarisability value in-
terpolated by the polynom and the value deduced from
the experimental values of the index of refraction is be-
low 0.3 %, with the exception of H2S where it is 2.4 %.

3.3.2. Solid water polarisability

The polarisability of the water molecules that con-
situte the hydrate cages is approximated by the polar-
isability of water molecules in ice. To justify this as-
sumption, we use the fact that the hydrate crystalline
structure is very close from the ice structure and that
water is the main component of those two crystals. We
use data given by Herri and Gruy [6] :

α = a +
b

λ2
+

c

λ3

where λ is expressed in nm and α in 10−30 m3.

Table 4
Parameters to calculate the solid water polarisability

a b c

1.4447 17953 -1609200
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3.3.3. Polarisability of liquid water

A great precision is required in the calculation of
the liquid water refractive index since the relative hy-
drate index of refraction is very sensitive to this latter.
Here, we use data from the International Association
for the Properties of Water and Steam [11] which very
precisely evaluate the density and refractive index as a
function of pressure, temperature and wavelength

n2 − 1

n2 + 2
.
1

ρ̄
= a0 + a1ρ̄ + a2T̄ + a3λ̄

2T̄

+
a4

λ̄2
+

a5

λ̄2 − λ̄2
UV

+
a6

λ̄2 − λ̄2
IR

+ a7ρ̄
2

where T̄ = T/T ∗, ρ̄ = ρ/ρ∗ and λ̄ = λ/λ∗. Numerical
values for the coefficients are given in Table 5. Besides,
we have T ∗=273.15 K, ρ∗=1000 kg·m−3 and λ∗=0.589
µm.

Table 5
Parameters to calculate the liquid water index of refraction

a0=0.244257733 a4=1.58920570E-3

a1=9.74634476E-3 a5=2.45934259E-3

a2=-3.73234996E-3 a6=0.900704920

a3=2.68678472E-4 a7=-1.66626219E-2

λ̄UV=0.2292020 λ̄IR=5.432937

4. Results

The calculation method explained above has been
encoded in Matlab 5 and provides the structure ma-
trices Tki. Then we apply these results to methane hy-
drate and a value of 1.346 is found for a pressure of 11
MPa, a temperature of 1 °C and a wavelength of 750
nm. This result is in full agreement with experimental
results of Bylov and Rasmussen [3]. The appendix con-
tains the coefficients of the Tki matrices for hydrates of
structures sI and sII. Table 6 shows the quantity m−1
for methane hydrate (of structure sI) and a wavelength
of 350 nm. It is a function of the pressure and the tem-
perature and it is a key data for light scattering mea-
surements. In Table 7, we can read the quantity m− 1
for methane hydrate for different pressures and wave-
lengths. The temperature is set to 1°C. Table 8 shows
the influence of the gas. We can see that for N2, the
hydrate index of refraction is lower than the liquid wa-
ter refractive index. In comparison, H2S hydrates are
easier to detect via light scattering than CH4 hydrates.

5 Available on simple request to olivier.bonnefoy@emse.fr

Table 6
100 ∗ (m − 1) values for CH4 hydrate at λ = 350 nm.
Pressure is in bar and temperature in °C

P/T 0 3 6 9 12 15

30 1.0034 0.9680 0.9330 0.8979 0.8625 0.8264

50 1.0876 1.0659 1.0455 1.0260 1.0071 0.9882

70 1.1104 1.0955 1.0823 1.0705 1.0597 1.0495

90 1.1121 1.1013 1.0925 1.0854 1.0795 1.0747

110 1.1041 1.0961 1.0904 1.0865 1.0841 1.0829

130 1.0910 1.0852 1.0818 1.0803 1.0804 1.0819

Table 7
100 ∗ (m− 1) values for CH4 hydrate at 1°C. Pressure is in
bar and wavelength in nm

P/λ 350 450 550 650 750

30 0.9915 0.9881 0.9539 0.9358 0.9380

50 1.0802 1.0745 1.0393 1.0205 1.0223

70 1.1052 1.0990 1.0635 1.0446 1.0463

90 1.1082 1.1020 1.0665 1.0476 1.0493

110 1.1012 1.0952 1.0598 1.0410 1.0428

130 1.0888 1.0832 1.0480 1.0293 1.0312

Table 8
100 ∗ (m − 1) values for different gas hydrates (at 1°C and
350 nm)

P/gas CH4 CO2 H2S N2

30 0.9915 1.0533 4.6008 -0.8941

50 1.0802 1.0673 4.5803 -0.6796

70 1.1052 1.0527 4.5598 -0.5924

90 1.1082 1.0377 4.5391 -0.5522

110 1.1012 1.0221 4.5184 -0.5343

130 1.0888 1.0062 4.4976 -0.5289

5. Sensitivity analysis

A study of sensitivity makes it possible to better ap-
preciate the result precision. The relative index of re-
fraction h = m−1 and the absolute index of refraction
n depend on the parameters G, which are affected by
an imprecision ∆G and each contribute to the impreci-
sion ∆h and ∆n of the final results. Table 9 shows the
relative influence of the differents parameters through
the sensitivity coefficient σ defined by the relationships

|∆h|

h
= σh

|∆G|

G

|∆n|

n
= σn

|∆G|

G
Numerical values are calculated with methane as host
gas and for variations around the point (P=11 MPa,

6



T=1 °C, λ=750 nm).

Table 9
Influence of parameters’ imprecision to the final result’s
imprecision

Parameter σn σh

Pressure 0.0007 0.0575

Temperature 0.0116 0.6233

Wavelength 0.0100 0.0863

Water polarisability in hydrate 0.2204 21.36

Gas polarisability 0.0656 6.358

Cage 1 occupancy rate 0.0160 1.554

Cage 2 occupancy rate 0.0496 4.795

Liquid water index of refraction 0 95.93

Gas fugacity 0.0010 0.0959

Langmuir constant A1 0.0006 0.0575

Langmuir constant B1 0.0066 0.6425

Langmuir constant A2 0.0004 0.0384

Langmuir constant B2 0.0038 0.3740

Comments. Concerning the absolute index of re-
fraction, the most important parameters are the polar-
isabilities of the water consituting the hydrate cages
and of the gas as well as the occupancy rate of the cav-
ities. Concerning the relative index of refraction (with
liquid water as reference), the most important parame-
ter is by far the liquid water index of refraction. An er-
ror of 1 % in its estimation leads to an error of 95 % on
m−1 ! This is a justification a posteriori of the special
emphasis that we have brought to use precise experi-
mental data. Then, the four same parameters come in
order.
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Appendix A : Tki matrices for structure sI hydrates

d 1 1 1 2 2 2 3 3 3

k i/e 1 2 3 1 2 3 1 2 3

1 1 -4.7537E-02 2.7114E-17 -4.5110E-18 2.6998E-17 -1.9414E-02 4.9457E-03 -2.8491E-18 4.9457E-03 7.4983E-02

1 2 9.6982E-02 7.1132E-03 7.1132E-03 -4.9363E-03 -4.5022E-02 -2.7216E-02 -5.7038E-03 -2.7984E-02 -5.5486E-02

1 3 -4.2976E-02 -1.1836E-17 -2.1151E-18 -1.2618E-17 3.6912E-02 4.9327E-02 -2.1280E-18 4.9327E-02 5.4930E-03

1 4 -1.4922E-02 -5.2457E-19 5.9130E-19 -1.4099E-18 2.4890E-02 1.6153E-02 -3.1874E-19 1.6153E-02 -9.9683E-03

1 5 1.0212E-02 8.6561E-18 1.1760E-17 8.6701E-18 -9.4493E-03 -1.9796E-02 1.0561E-17 -1.9796E-02 -6.2718E-04

2 1 -1.4619E-16 -2.4129E-02 -2.6440E-02 -2.3319E-02 -1.2109E-04 -2.6319E-02 -2.3319E-02 -2.4008E-02 -1.2109E-04

2 2 1.0125E-02 7.4088E-02 7.4088E-02 7.4088E-02 1.0125E-02 7.4088E-02 7.4088E-02 7.4088E-02 1.0125E-02

2 3 -3.3840E-18 -1.3888E-02 -1.3888E-02 -1.4075E-02 -1.4396E-17 -1.3888E-02 -1.4075E-02 -1.3888E-02 3.0239E-18

2 4 5.6941E-18 1.8000E-02 1.8000E-02 1.8000E-02 -3.2821E-18 1.8000E-02 1.8000E-02 1.8000E-02 -1.2033E-18

2 5 2.1876E-17 -1.3888E-02 -1.3888E-02 -1.4075E-02 -8.9964E-18 -1.3888E-02 -1.4075E-02 -1.3888E-02 -5.6732E-19

3 1 7.5784E-03 2.2967E-17 1.6212E-16 2.1270E-17 -3.9011E-03 -1.9676E-05 1.3965E-16 -1.9676E-05 -4.2766E-03

3 2 -6.4664E-02 -4.7428E-03 -4.7428E-03 2.3714E-03 3.2332E-02 2.3714E-03 2.3714E-03 2.3714E-03 3.2332E-02

3 3 8.9768E-03 3.1481E-18 -7.6790E-20 3.1464E-18 -4.4356E-03 -1.2430E-18 2.5558E-19 -1.1225E-18 -4.4219E-03

3 4 -3.4828E-03 5.5207E-19 4.8318E-19 -2.1425E-19 1.7414E-03 4.5228E-21 5.2793E-19 -1.3825E-19 1.7414E-03

3 5 2.3600E-02 3.1178E-18 -2.2928E-18 -4.9158E-19 -1.1644E-02 3.2437E-19 -2.6332E-18 9.4358E-19 -1.1643E-02

4 1 -1.0917E-16 -9.7105E-18 1.4693E-18 -1.9543E-17 -9.7689E-17 -1.1867E-17 -2.0952E-18 -1.4642E-17 -3.7948E-17

4 2 3.2370E-16 2.5335E-17 2.8555E-17 1.4701E-17 8.5920E-17 6.7482E-18 6.6116E-18 1.7554E-18 2.1345E-17

4 3 8.0786E-17 1.0937E-18 -3.3394E-19 -9.4010E-20 2.4994E-17 1.2881E-18 9.2301E-20 4.0266E-19 -2.7611E-17

4 4 0 0 0 0 0 0 0 0 0

4 5 6.0133E-17 -5.2874E-19 -3.5502E-19 -1.7392E-18 -2.2754E-17 1.0457E-19 -3.4613E-19 -1.3493E-19 2.9351E-17

5 1 3.3913E-02 -2.2141E-17 -5.3825E-18 -3.2866E-17 -1.7457E-02 -8.8047E-05 -1.0994E-17 -8.8047E-05 -1.9138E-02

5 2 -6.4664E-02 -4.7428E-03 -4.7428E-03 2.3714E-03 3.2332E-02 2.3714E-03 2.3714E-03 2.3714E-03 3.2332E-02

5 3 2.3600E-02 -5.0358E-18 4.3593E-18 -2.8644E-18 -1.1643E-02 -7.4700E-19 1.1328E-18 -7.1425E-19 -1.1644E-02

5 4 -3.4828E-03 5.0294E-19 -9.2804E-20 4.0748E-19 1.7414E-03 -6.2816E-20 1.0442E-19 -5.1005E-20 1.7414E-03

5 5 8.9768E-03 4.6406E-18 -3.5565E-19 5.1294E-18 -4.4219E-03 8.8530E-19 -3.0843E-20 1.6593E-18 -4.4356E-03

8



Appendix B : Tki matrices for structure sII hydrates

d 1 1 1 2 2 2 3 3 3

k i/e 1 2 3 1 2 3 1 2 3

1 1 0 -2.0788E-18 4.6428E-20 -1.8891E-18 0 -7.4976E-19 3.6264E-20 -2.9194E-19 0

1 2 -1.0669E-16 -1.1952E-17 7.3669E-18 -1.1358E-17 -1.0993E-17 3.7008E-18 7.8279E-18 2.5619E-18 -5.0920E-17

1 3 -3.8597E-03 3.4403E-02 2.0208E-02 2.2502E-02 -3.0491E-03 2.1553E-02 1.8464E-02 3.2000E-02 1.5298E-03

1 4 -3.6282E-17 2.0618E-18 -3.1520E-19 3.0870E-18 5.0601E-17 4.3247E-18 1.5000E-18 4.7430E-18 7.9897E-17

1 5 -1.2868E-17 2.1252E-18 3.4819E-18 2.1252E-18 3.4293E-18 7.2305E-18 3.4879E-18 7.3118E-18 7.2277E-18

2 1 2.3976E-20 4.3290E-02 4.3290E-02 4.3290E-02 -1.2803E-17 4.3290E-02 4.3290E-02 4.3290E-02 -2.0244E-17

2 2 8.3987E-05 6.5015E-03 6.5015E-03 6.5015E-03 8.3987E-05 6.5015E-03 6.5015E-03 6.5015E-03 8.3987E-05

2 3 8.9427E-03 -1.1563E-01 -7.0490E-02 -7.5874E-02 9.4369E-03 -7.0770E-02 -6.4933E-02 -1.0447E-01 -8.1100E-04

2 4 -2.7050E-04 -1.2085E-02 -1.2085E-02 -1.2085E-02 -2.7050E-04 -1.2085E-02 -1.2085E-02 -1.2085E-02 -2.7050E-04

2 5 9.5861E-18 7.5755E-03 7.5755E-03 7.5755E-03 2.3550E-18 7.5755E-03 7.5755E-03 7.5755E-03 6.7279E-18

3 1 -6.3562E-03 -7.6267E-03 7.6021E-03 -7.6267E-03 -6.3562E-03 7.6021E-03 7.6021E-03 7.6021E-03 1.2712E-02

3 2 -3.6267E-02 -1.3966E-02 -2.2217E-02 -1.3966E-02 -3.6267E-02 -2.2217E-02 -2.1569E-02 -2.1569E-02 7.1789E-02

3 3 -8.9956E-02 -1.1686E-01 7.8797E-03 -1.1686E-01 3.9605E-01 2.8253E-03 7.8797E-03 2.8253E-03 -1.4156E-01

3 4 2.2659E-03 -2.9442E-02 1.3226E-02 -2.9442E-02 2.2659E-03 1.3226E-02 1.3631E-02 1.3631E-02 -4.5896E-03

3 5 -2.7524E-03 1.6885E-02 -5.7305E-03 1.6885E-02 -2.7524E-03 -5.7305E-03 -5.7305E-03 -5.7305E-03 5.5049E-03

4 1 -2.0600E-17 3.8033E-02 3.8033E-02 3.8033E-02 4.9741E-18 3.8033E-02 3.8033E-02 3.8033E-02 1.1109E-17

4 2 4.7490E-04 3.6763E-02 3.6763E-02 3.6763E-02 4.7490E-04 3.6763E-02 3.6763E-02 3.6763E-02 4.7490E-04

4 3 4.5675E-03 -6.7864E-02 -4.2744E-02 -4.4430E-02 3.5360E-03 -4.2923E-02 -3.9353E-02 -6.3370E-02 1.3769E-03

4 4 0 0 0 0 0 0 0 0 0

4 5 -6.3690E-18 -5.2048E-03 -5.2048E-03 -5.2048E-03 -1.2408E-17 -5.2048E-03 -5.2048E-03 -5.2048E-03 -7.5736E-18

5 1 -1.3351E-17 1.6288E-18 2.3218E-18 6.5306E-19 4.8234E-18 3.6781E-18 1.3325E-18 3.6375E-18 7.1064E-18

5 2 -1.6910E-10 -1.3091E-08 -1.3091E-08 -1.3091E-08 -1.6910E-10 -1.3091E-08 -1.3091E-08 -1.3091E-08 -1.6910E-10

5 3 8.5201E-06 -2.5429E-02 -1.6265E-02 -1.7094E-02 5.7551E-03 -9.0261E-03 -1.5962E-02 -1.2252E-02 -5.3982E-04

5 4 -6.1709E-17 -6.8874E-19 -4.0187E-20 -7.0446E-19 -5.6080E-17 -1.8899E-18 5.4335E-19 -1.1463E-18 -1.8799E-17

5 5 0 -4.7080E-18 -1.0579E-18 -4.7351E-18 0 -1.1591E-18 -1.4916E-18 -1.2680E-18 0
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