
HAL Id: hal-00125041
https://hal.science/hal-00125041

Submitted on 17 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peer-to-Peer for Computational Grids: Mixing Clusters
and Desktop Machines

Denis Caromel, Alexandre Di Costanzo, Clément Mathieu

To cite this version:
Denis Caromel, Alexandre Di Costanzo, Clément Mathieu. Peer-to-Peer for Computational Grids:
Mixing Clusters and Desktop Machines. Parallel Computing, 2007, Special issue for Large Scale Grid.
�hal-00125041�

https://hal.science/hal-00125041
https://hal.archives-ouvertes.fr

Peer-to-Peer for Computational Grids:

Mixing Clusters and Desktop Machines

Denis Caromel and Alexandre di Costanzo and Clément Mathieu

INRIA Sophia - I3S - CNRS - Université de Nice Sophia Antipolis

INRIA, 2004 Rt. des Lucioles, BP 93

F-06902 Sophia Antipolis Cedex, France

Abstract

This paper presents a Peer-to-Peer (P2P) infrastructure that supports a large
scale grid. The P2P infrastructure is implemented in Java and federates Java Vir-
tual Machines (JVMs) for computation. The management of shared JVMs is decen-
tralized, self-organized, and configurable.

The P2P infrastructure was deployed as a permanent desktop grid, with which we
have achieved a computation record by solving the NQueens problem for 25 queens.
Thereafter, we have mixed this desktop grid with five highly heterogeneous clusters
from the Grid’5000 platform. We analyze the behavior of this thousand CPU grid
with two communicating applications: NQueens and Flow-Shop.

Key words: Grid, Unstructured Peer-to-Peer, Communicating application

1 Introduction

These last years, computing grids have been widely deployed around the world
to provide high performance computing tools to research and industrial fields.
Those grids are generally composed of dedicated clusters. In parallel, an ap-
proach for using and sharing resources called Peer-to-Peer (P2P) networks
has also been deployed. In P2P networks, we can discern two categories: Edge
Computing or Global Computing, such as SETI@home [1], which takes advan-
tage of machines at the edges of the Internet; and P2P files sharing, such as
Gnutella [2], which permits Internet users to share their files without central
servers.

Email address: First.Last@sophia.inria.fr (Denis Caromel and Alexandre
di Costanzo and Clément Mathieu).

Preprint submitted to Elsevier 10 January 2007

There are many definitions of a P2P network: decentralized and non-hierarchical
node organization [3], or taking advantage of resources available at the edges
of the Internet [4]. In this paper, a P2P network follows the definition of a
“Pure Peer-to-Peer Network”, according to [5], meaning that it focuses on
sharing resources, decentralization, and peer failures.

Grid users have usually access to one or two clusters and have to share their
computation time with others; they are not able to run computations that
would take months to complete because they are not allowed to use all the
resources exclusively for their experiments. At the same time, these researchers
work in labs or institutions, which have a large number of desktop machines.
Those desktops are usually under-utilized and are only available to a single
user. They also are highly volatile (e.g. shutdown, reboot, failure). Organizing
such desktop machines as a P2P network for computations or other kinds of
resource sharing is now increasingly popular.

However, existing models and infrastructures for P2P computing are limited
as they support only independent worker tasks, usually without communica-
tions between tasks. However P2P computing seems well adapted to appli-
cations with low communication/computation ratio, such as parallel search
algorithms. We therefore propose in this paper a P2P infrastructure of com-
putational nodes for distributed communicating applications.

The proposed P2P infrastructure is an unstructured P2P network, such as
Gnutella [2]. In contrast to others P2P approaches for computing, which are
usually hierarchical or master-salve, our approach is original in the way that
an unstructured P2P network commonly used for file sharing can be also used
for computing.

The P2P infrastructure has three main characteristics. First, the infrastructure
is decentralized and completely self-organized. Second, it is flexible, thanks to
parameters for adapting the infrastructure to the location where it is deployed.
Finally, the infrastructure is portable since it is built on top of Java Virtual
Machines (JVMs). Thus, the infrastructure provides an overlay network for
sharing JVMs.

The infrastructure allows applications to transparently and easily obtain com-
putational resources from grids composed of both clusters and desktops. The
application deployment burden is eased by a seamless link between applica-
tions and the infrastructure. This link allows applications to be communicat-
ing, and to manage the resources’ volatility. The infrastructure also provides
large scale grids for computations that would take months to achieve on clus-
ters.

The contributions of this paper are:

2

• an unstructured P2P overlay network for sharing computational resources;
• building grids by mixing desktops and clusters;
• deploying communicating applications; and,
• achieving computations that take months on clusters.

In Section 2, we present some related work. Next, Section 3 presents our P2P
infrastructure. Then, Section 4 presents experiments with the P2P infrastruc-
ture, which has allowed us to deploy a permanent desktop grid on 260 desk-
tops. In Section 5, we show how the P2P infrastructure has also permitted us
to benchmark a communicating application with Grid’5000 and our desktop
grid. We also deployed an application on 1007 CPUs. Finally, we discuss and
evaluate the P2P infrastructure.

2 Related Work

Unstructured P2P networks, such as Gnutella [2] and KaZaA [6], do not
organize the overlay network of peers, each peer maintains a list of connections
to other peers, called neighbors or acquaintances. Due to the lack of structure,
there is no information about the location of resources, therefore peers broad-
cast queries through the network, through a method called ”flooding”. In order
to limit the cost of flooding many mechanisms have been proposed: Dynamic
Querying [7], which dynamically adjust the TTL of queries; or by dynamically
adapting the search algorithms [8].

Distributed Hash Table (DHT), such as Chord [3] or Pastry [9], organize
shared resources (principally data) in order to satisfy requests very efficiently.
These kinds of systems are structured P2P overlay networks because they
try to organize the P2P network topology and/or the data distribution, such
that looking for a resource requires O(logn) steps, whereas in comparison
unstructured P2P networks require O(n) steps.

BOINC [10] (Berkely Open Infrastructure for Network Computing) is a global
computing platform. Global computing platforms use spare CPU cycles from
machines, which run at the edges of the Internet. The original and most famous
BOINC application is SETI@home [1]. XtremWeb [11] is also a global com-
puting platform. Those platforms principally run master-slave applications.
Workers download tasks from a server and when tasks are completed, results
are sent back to the server. Neither BOINC nor XtremWeb enable tasks to
communicate between each other. In addition, users have to provide different
compiled versions of their tasks to be able to use workers, running on different
architectures, different operating systems, etc.

Condor [12] is a specialized workload management system for compute-intensive

3

jobs. Like other full-featured batch systems, Condor provides a job queueing
mechanism, scheduling policy, priority scheme, resource monitoring, and re-
source management. Condor can be used to build Grid-style computing envi-
ronments that cross administrative boundaries. Condor allows multiple Con-
dor compute installations to work together. It also incorporates many of the
emerging Grid-based computing methodologies and protocols. For instance,
Condor-G [13] is fully interoperable with resources managed by Globus. Con-
dor uses a mechanism called matchmaking for managing resources between
owners and users. This mechanism is mainly based on a matchmaking algo-
rithm, which compares two descriptors called classified advertisements (Clas-
sAds); one describes the task and one describes the compute node, i.e. there
are two kinds of ClassAds: Jobs ClassAd and Machines ClassAd. Users have
to provide this Job ClassAd with the query description of which resources are
needed. Condor is well suited for deploying batch jobs, which need to run on
specific resources, such as on a given architecture types.

OurGrid [14] is a complete solution for running Bag-of-Tasks applications on
computational grids. These applications are parallel applications whose tasks
are independent. Furthermore, OurGrid is a cooperative grid in which labs
donate their idle computational resources in exchange for accessing other labs
idle resources when needed. It federates both desktops and dedicated clusters.
The architecture of this middleware is composed by three main components:
MyGrid, a scheduler, which is the central point of the grid and provides all
the necessary support to describe, execute, and monitor applications; Peers
have as their main role to organize and provide machines that belong to the
same administrative domain, i.e. they are machine providers for the scheduler;
and User Agents run on each grid machine and provide access to functionality
of the machines (User Agents are registered in Peers). As with Condor, Our-
Grid users have to provide a Job descriptor file, which queries resources and
describes all tasks of the application to deploy.

JXTA Project [15] is a set of open protocols that allow any connected device
on the network ranging from cell phones and wireless PDAs to PCs and servers
to communicate and collaborate in a P2P manner. JXTA creates a virtual net-
work where any peer can interact with other peers and resources directly even
when some of the peers and resources are behind firewalls and NATs or are
relying on different network transports. JXTA is a low-level specifications/sys-
tems for P2P communications. The communication protocol is based on an
XML data structure. Indeed all communications are handled by the JXTA
P2P network. JXTA can be seen as a network layer, like TCP/IP sockets, on
which developers build their applications.

Unlike DHTs, our infrastructure is an unstructured P2P network. Although
DHTs avoid flooding, this approach cannot be used here. The main goal of
our infrastructure is to provide computational nodes (JVMs) to applications,

4

where applications ask for a desired number of nodes and then the infrastruc-
ture broadcasts the request to find any available nodes to satisfy the request.
Here queries do not target a specified resource, such as data identified by a
hash, but instead try to find a number of available peers. In addition, DHTs
earned some criticisms for their high maintenance cost with high churn [8],
where the system has to discover failures, re-organize lost data and pointers,
and then manage data re-organization when the failed peers return to the
network.

Like unstructured approaches we propose that each peer maintains a list of
acquaintances and also some modifications to the basic flooding protocol to
make the system scalable. Unlike all these systems we do not focus on data
sharing, instead we propose some modifications in order to adapt the flooding
to find available nodes (JVMs) for computation.

Unlike global computing platforms (BOINC/SETI@home and XtremWeb),
Condor, and OurGrid, we do not provide any job schedulers. Applications
connect to our P2P infrastructure and request nodes, nodes are returned in a
best-effort way by the infrastructure. Unlike the others, applications dynami-
cally interact with the infrastructure to obtain new nodes. The infrastructure
works as a dynamic pool of resources. Once applications get nodes, there are
no restrictions on how they are used. This property allows applications to
communicate easily in arbitrary ways. Application communications are not
handled by our infrastructure, unlike other P2P networks. Most other P2P
infrastructures require the overlay network to be used for all communications.
This limitation is highlighted by JXTA, which has very poor communication
performance [16]. With our approach, applications can freely use different
communications transport layers.

3 A Self-Organized and Flexible Peer-to-Peer Infrastructure

3.1 First Contact: Bootstrapping

A well-known problem of P2P networks is the bootstrapping problem, also
called the first contact problem. This problem can be solved by many different
network protocols, such as JINI [17]. It can be used for discovering services in a
dynamic computing environment. This protocol seems to be perfectly adapted
to solve the bootstrapping problem. However, there is a serious drawback for
using this protocol: JINI needs to be deployed on a network with IP multicast
communications allowed. That means JINI cannot be widely distributed.

Therefore, a different solution for the bootstrapping problem was chosen, in-
spired from super-peer networks [18]. A fresh peer has a list of ”registry”

5

addresses. These are peers that have a high potential to be available; they are
in a certain way the P2P network core. The fresh peer tries to contact each
registry with this list. When a registry is responding, it is added to the fresh
peer list of known peers (acquaintances). When the peer has connected to at
least one registry, it is a member of the P2P Network.

3.2 Discovering Acquaintances

The main problem of the infrastructure is the high volatility of peers because
those peers are desktop machines and clusters nodes, possibly available for a
short time.

Therefore, the infrastructure aims at maintaining an overlay network of JVMs
alive; this is called self-organizing. When it is impossible to have external
entities, such as centralized servers, which maintain peer databases, all peers
must be capable of staying in the infrastructure by their own means. The
strategy used for achieving self-organization consists of maintaining, for each
peer, a list of acquaintances.

The infrastructure uses a specific parameter called Number of Acquaintances
(NOA): the minimum number of known acquaintances for each peer. Peers
update their acquaintance list every Time to Update (TTU), checking their
own acquaintance list to remove unavailable peers, i.e. they send heartbeat
messages to them. When the number in the list is less than NOA, a peer will
try to discover new acquaintances. To discover new acquaintances, peers send
exploring messages through the infrastructure by flooding the P2P network.

The exploring message is sent every TTU until the length of the list is greater
than the NOA value. This message is sent with a unique identifier, with a
reference to the sender, and with the Time To Live (TTL) in number of hops.
The TTL and the unique identifier limit the network flooding.

When a peer receives an exploring message, it has to:

(1) check the unique identifier: if it is an old message, drop it and do nothing;
(2) store the unique identifier;
(3) if the requester is not already in its acquaintance list: use a function to

determine if the local peer has to answer. This function is for the moment
a random function, in a future work we would like to improve the network
organization.

(4) then if the TTL decremented is greater than 0, broadcast the message to
all its acquaintances.

Finally, NOA, TTU, and TTL are all configurable by the administrator, who

6

has deployed the P2P infrastructure. Each peer can have its own value of those
parameters and the values can be dynamically updated.

3.3 Asking Resources

For the infrastructure and the application, all resources are similar. The in-
frastructure is best-effort, applications ask for computational nodes, JVMs,
but the infrastructure does not guarantee that applications requests can be
satisfied (not enough free nodes, etc.). Usually applications request nodes from
the infrastructure and then the infrastructure returns node references back to
the application. All requests from applications are in competition to obtain
available resources.

In order to satisfy node queries faster, we distinguish three cases.

First, the application needs only one node, then the query node message uses
a random walk algorithm, which means that the next hop is randomly chosen.
The message is forwarded peer by peer until a peer has a free node to share
or until TTL reach zero. While no free node has been found the application
has to re-send the message at each TTU increasing eventually to the TTL.

Second, the application needs n nodes at once, for that case the resource query
mechanism used is similar to the Gnutella [2] communication system, which is
based on the Breadth-First Search algorithm (BFS). Messages are forwarded
to each acquaintance, and if the message has already been received or if its
TTL reach 0, it is dropped. The message is broadcast by the requester every
TTU until the total number of requested nodes is reached or until a global
timeout occurs. Also, we have added a kind of transactional commit. When a
peer is free, it sends a reference on its node to the requester. Before forwarding
the message the current peer waits for an acknowledgment from the requester
because the request could have already been fulfilled. After an expired timeout
or a non-acknowledgment, the peer does not forward the message. Otherwise,
the message is forwarded until the end of TTL or until the number of requested
nodes reaches zero. The acknowledgment message from the requester is indeed
the total number of nodes still needed by the requester. We can distinguish
three states for a peer: free, busy, or booked. This mechanism is specified in
Message Protocol 1.

Third, the application may ask for all available nodes, the message protocol
is close to the previous one but does not need to wait for an acknowledgment
and the message is broadcast every TTU until the application end.

7

Message Protocol 1 Asking for n nodes at once from the P2P infrastructure.
This protocol shows the response by a peer when it receives an n nodes

request:

Require: A remote reference on the node requester Node Requester,
the request TTL,
the request UniqueID, and
the requested number of nodes n

Ensure: At most n free nodes for computation
if Node Requester is Myself or allPreviousRequests contains UniqueID

then

drop the request
else

Add UniqueID in allPreviousRequests

if I have a free node then

Send the node to Node Requester {Node Requester receives the node
and decides whether or not to send back an ACK to the peer, which
has given the node}
while not timeout reached do

wait for an ACK from Node Requester {ACK is the number of still
needed nodes by the requester, ACK = 0 means NACK}
if ACK received and TTL > 0 and ACK > 1 then

Broadcast the message to all acquaintances with TTL = TTL− 1
and n = ACK

end if

end while

end if

end if

3.4 Peer and Node Failures

The infrastructure itself is stable, according to the definition of ”Pure P2P net-
works” [5], as each peer manages its own list of acquaintances by the heartbeat
mechanism (see section 3.2). Therefore the infrastructure can maintain a net-
work of peers until all peers are down, i.e. a peer failure is not a problem for
the infrastructure.

The issue is at the application level. The infrastructure broadcasts the node
request of the application through itself (see section 3.3); when a peer has
an available node, it returns directly (point-to-point) to the application a
reference to the node. Once the application has received the reference there is
no guarantee that the node is still up or if the node will be up for all the time
that the application needs it. Therefore it is the application’s responsibility to
manage node failures.

8

However the P2P infrastructure is implemented with the ProActive grid mid-
dleware (see section 3.5), which proposes a mechanism for fault-tolerance.
With this particular use case we have started to work on a mechanism to
deploy non-functional services, such as fault-tolerance or load balancing, on
a grid [19]. This mechanism allows users to deploy theirs applications on the
P2P infrastructure and to have fault-tolerance automatically applied.

Furthermore, the infrastructure does not work as a job/task scheduler, it is
just a node provider. Therefore the application has to manage all node failures
and its own failures.

3.5 Implementation in ProActive

This P2P infrastructure is implemented with the ProActive grid middleware
[20]. It is a 100% Java library, which aims to achieve seamless program-
ming for parallel, and distributed computing. ProActive provides a way to
remotely access objects and handles few communication protocols, such as
RMI, SSH/RMI, HTTP, and Ibis [21].

The P2P infrastructure is implemented with the ProActive library. Thus, the
shared resources are not JVMs but ProActive Nodes [22].

Since the P2P infrastructure is implemented on top of the ProActive library
each peer can use a different communication protocol. For example, a peer, on
a desktop machine can accept RMI communications but can use RMI/SSH to
communicate with another peer within a cluster.

Finally, the P2P infrastructure is fully integrated in ProActive thereby allow-
ing the infrastructure to seamlessly use all ProActive features, such as security.

4 Desktop Experiments

4.1 Environment of Experiments

In order to run our experiments, the INRIA Sophia P2P Desktop Grid (In-
riaP2PGrid) has been deployed on about 260 desktop machines of the INRIA
Sophia Antipolis lab; this grid is now a permanent grid managed by our P2P
infrastructure. All these desktop machines are running various GNU/Linux
distributions or Microsoft Windows XP as operating systems, on Intel CPUs,
from Pentium 2 to dual-Pentium 4. As to not interfere with daily work, the
JVMs, Sun 1.4.2 or Sun 1.4.1, are started with the lowest system priority.

9

Also all desktop machines by default work during the night (8:00pm to 8:00am)
and during weekend (Friday 8:00pm to Monday 8:00am), this group is called
INRIA-ALL, and a sub-group of these machines always work, this sub-group
is called INRIA-2424, this group counts 53 machines. Machines of INRIA-2424
are selected in regard to their CPU power, thus they are the fastest one. Also,
the users could interrupt the computation if our experiments bother them. The
INRIA-2424 peers are used as registries (all registries use themselves as reg-
istries); and at fixed moments the rest of INRIA-ALL machines join the P2P
infrastructure by contacting those registries. Figure 1 shows the InriaP2PGrid
structure.

INRIA Sophia Antipolis - Desktop Machines Network

Desktop Machines - INRIA-2424 Desktop Machines - INRIA-All

Aquaintance

INRIA Sub Network

INRIA Sub Network

INRIA Sub Network

INRIA Sub Network

Fig. 1. Desktop experiments: INRIA Sophia P2P Desktop Grid structure

The repartition of CPU frequencies of all desktop machines are summarized
in Figure 2.

Finally, the values of the P2P infrastructure parameters used by the In-
riaP2PGrid are:

• NOA = 30 acquaintances: each sub-network contains on average 20 ma-
chines, so a peer discovers some acquaintances outside of its sub-network.

• TTU = 10 minutes: INRIA-2424 machines are highly volatiles, we have
observed on this group that on average 40 machines are available out of
53. Every 10 minutes, one peer out of 30 becomes unavailable (host down,
JVMs killed by users etc.). It usually joins back the infrastructure some
time later.

• TTL = 3 hops: it is the diameter of the network, as shown by Figure 1.

10

0

5

10

15

20

25

30

cpu < 1 [1 , 1.5[[1.5 , 2[[2 , 2.5[[2.5 , 3[[3 , 3.5[cpu ≥ 3.5

9

25

19

1010

1313

CPU Frequency Range in GHz

%
 o

f
D

e
s
k
to

p
 M

a
c
h
in

e
s

Fig. 2. Desktop Grid: CPU frequencies of the desktop machines

4.2 NQueens: Computation Record

With the InriaP2PGrid managed by our P2P infrastructure, we are the first,
as referenced by [23], to solve the NQueens problem with 25 queens. All the
results of the NQueens experiment are summarized in Table 1. The experiment
took six months for solving this problem instance. The result was confirmed
later by Pr. Yuh-Pyng Shieh from the National Taiwan University.

The NQueens problem consists in placing n queens on a n × n chessboard
so that no two queens are on the same vertical, diagonal, or horizontal line
(i.e. attack each other). We aim to find all solutions with a given n. The
chosen approach to solve the NQueens problem was to divide the global set
of permutations in a set of independent tasks. Then a master-slave model
was applied to distribute these tasks to the workers, which were dynamically
deployed on the InriaP2PGrid.

Table 1
Desktop experiments: NQueens experiment summary with n=25

Total of Solution Found 2, 207, 893, 435, 808, 352 (≈ 2quadrillions)

Total # of Tasks 12, 125, 199

Total Computation Time 4444 hours 54 minutes 52 seconds (≈ 185 days)

Average Time of One Task Computation ≈ 2 minutes and 18 seconds

Equivalent Single CPU Cumulated Time 464344 hours 35 minutes 33 seconds (≈ 53 years)

Total # of Desktop Machines 260 (max of 220 working concurrently)

Moreover, Figure 3 shows the number of peers by days, which participated
to the NQueens computation. This graph does not report all the experiment
period time, only three months. During all the time of this experiment, about
six months, the infrastructure counted 260 different desktop machines and
a top of 220 machines working at the same time. As shown in Fig. 3 the
infrastructure was totally down 3 times, owing to global lab power cuts. Fig.

11

3 shows some troughs where the infrastructure provided less peers for the
computation, these troughs result from some network hardware failures.

Fig. 3. Desktop experiments: number of peers per day, which have participated in
the NQueens computation.

0

25

50

75

100

0 26 52 78 104 130 156 182 208 234 260
Number of Peers (sorted according to the number of computed tasks)

%
 o

f
th

e
 T

o
ta

l
N

u
m

b
e
r

o
f
T
a
s
k
s
 C

o
m

p
u
te

d

INRIA-2424

Fig. 4. Desktop Grid: Percentage of tasks computed by all peers

Figure 4 shows the percentage of tasks computed by the workers. To plot this
graph we first sort all machines according to the number of tasks computed.
Then we calculated the percentage of tasks computed by those workers. We
observe that 10% of all workers (26 workers) have computed 27.78% of total

12

tasks and that 20% has computed 44.21% of total tasks. We also observed
that the first 28 workers (≈ 11%) of this graph are all members of the group
INRIA-2424. It is a normal observation because these machines are the most
powerful and work 24 hours a day. However, it is only a half of this group, the
group counting 53 machines. The JVMs of the second part ran on machines
over-loaded because used by usual users or the JVM was often killed by users,
hardware failures, ran on more unstable systems, etc.

The INRIA-2424 are selected in regard to their CPU power, thus it is normal
that they computed a large number of tasks. Also, the INRIA-ALL is com-
posed of a large number of less powerful machines. Figure 2 shows that about
46% of machines have CPU speed less that 2.5GHz, i.e. machines at least 2
years old. These machines have computed 34% of the total number of tasks.

All this experimentation and figures show that it is hard to forecast which
machines we have to choose for improving the total computation time.

5 Mixing Desktops and Clusters Experiments

5.1 Environment of Experiments

In addition to the InriaP2PGrid, described in section 4.1, we have access to
a large scale nationwide infrastructure for grid research, Grid’5000 (G5K)
[24]. The G5K project aims at building a highly reconfigurable, controllable
and monitorable experimental grid platform gathering 9 sites geographically
distributed in France featuring a total of about 2000 CPUs.

G5K is composed of a large number of machines, which have different kinds
of CPUs (dual-AMD Opteron 64 bits, dual-PowerPC G5 64 bits, dual-Intel
Itanium 2 64 bits, and dual-Intel Xeon 64 bits), of operating systems (Debian,
Fedora Core 3 & 4, MacOs X, etc.), of supported JVMs (Sun 1.5 64 bits and
32 bits, and Apple 1.4.2), and of network connexion (Gigabit Ethernet, and
Fast Ethernet).

Figure 5 shows the grid used for our experiments. This grid is a mix of In-
riaP2PGrid and G5K clusters. The left of the figure shows the INRIA Sophia
P2P Desktop Grid wherein INRIA-2424 peers are used as registries (all reg-
istries use themselves as registries); and at fixed moments the rest of INRIA-
ALL machines join the P2P infrastructure by contacting those registries. In
addition, the right of the figure shows the G5K platform, clusters of G5K are
connected to the P2P infrastructure by a few INRIA-2424 peers, and each of
these peers handles a G5K site. These peers do not share their local JVMs

13

but share JVMs deployed on clusters. G5K and INRIA networks are both
closed network with only few SSH access point, and G5K is a NAT, thus
communications between INRIA and G5K are tunneled via SSH.

Desktop Machines - INRIA-2424

Desktop Machines - INRIA-All

Cluster Frontals

Clusters Nodes

RMI Communication

RMI/SSH Communicqtion

Cluster of Lyon

Cluster of Orsay

Cluster of Sophia

Grid'5000 - Grid PlatformINRIA Sophia - Desktop Network

RMI/SSH

Fig. 5. Mixing Desktop and Clusters: environment of experiment structure

5.2 NQueens: Large Scale Grid

We took the same application as previously, the NQueens (see section 4.2),
and ran it on a grid that it is a mix of machines from INRIA Sophia P2P
Desktop Grid and from clusters of G5K.

Experiments run with n = 22. Figure 6 shows all results. Counting up all the
machines, we reached 1007 CPUs. The execution time decreases with a large
number of CPUs on a heterogeneous grid, mix of desktop and clusters.

We show that an embarrassingly parallel application, such as NQueens, bene-
fits of the large number of CPUs provided by our P2P infrastructure, even if
this grid is highly heterogeneous. For that kind of application, mixing desktop
and cluster machines is beneficial.

5.3 Flow-Shop: Communicating Application

To illustrate that our P2P infrastructure can be used to deploy communicating
applications, we consider a master-slaves application for solving Flow-Shop

14

250

380

572

859

1007

0 50 100 150 200 250

24.49

39.01

63.68

190.63

238.68

NQueens with n=22

Time in minutes

T
o
ta

l
N

u
m

b
e
r

o
f

C
P

U
s
 f

o
r

E
x
p
e
ri
m

e
n
ta

ti
o
n
s

250

380

572

859

1007

0 210 420 630 840 1,050

50302

298

70

70

156

176

175

140

80

80

80

349

305

247

240

250

INRIA-ALL G5K Lyon

G5K Sophia G5K Bordeaux

G5K Orsay G5K Toulouse

Total つof CPUs

Lyon

Sophia

Orsay

Bordeaux

Toulouse

Sophia

Sophia

Sophia

Lyon

Lyon Bord. Orsay

Fig. 6. Mixing Clusters and Desktops: NQueens with n = 22 benchmark results

problems. A Flow-Shop problem aims to find the optimal schedule of a set of
jobs on a set of machines in order to minimize the total execution time; this
problem can be solved by exploring a solution tree. The whole solution tree is
explored in parallel, and while exploring the tree, the current best solution is
shared within the application. As opposed to the NQueens problem, we have
communications between workers and they discard tree branches, which are
slower than the best current solution.

The solution tree of the problem is divided by a manager into a set of tasks.
The manager manages task allocation to the workers. The manager handles
dynamic acquisition of new workers and also handles worker failures by real-
locating failed tasks. Workers perform communications between each other to
synchronize the best current solution.

This approach has a low communication/computation ratio, even if at the
beginning of the computation the application has to deploy workers on all
CPUs and workers are also intensively broadcasting new better solutions. The
intensive phase takes 20 minutes for the run of one hour on 628 CPUs. With
this run we were able to measure the communication size on 116 CPUs of the
G5K Sophia cluster. We measured 143 MB of network traffic inside the cluster
for this first 20 minutes. The bandwidth used is about 120 KB/s. After, there
are only sporadic communications until the best solution is found.

Figure 7 shows all results of Flow-Shop computations with an instance of
17 jobs/17 machines. An analysis of Figure 7 shows that computation time
decreases with the number of used CPUs. However, the increase in execution

15

80

201

220

313

321

346

628

0 25 50 75 100 125 150

61.15

59.14

83.73

56.03

86.19

61.31

125.55

Flow-Shop 17 jobs / 17 machines

Time in minutes

T
o
ta

l
N

u
m

b
e
r

o
f

C
P

U
s
 f

o
r

E
x
p
e
ri
m

e
n
ta

ti
o
n
s

80

201

220

313

321

346

628

0 130 260 390 520 650

14218680

290

256

62

90

116

173

163

146

56

42

56

58

57

57

55

24

INRIA-2424 G5K Lyon

G5K Sophia G5K Bordeaux

G5K Orsay G5K Nancy

G5K Rennes G5K Toulouse

Total # of CPUs

Lyon

Sophia

Sophia

Sophia

Sophia

Orsay

Orsay

Bordeaux

Bord.
Toulouse

RennesNancy

Fig. 7. Mixing Clusters and Desktops: Flow-Shop benchmark results

time between 201 and 220 comes from a communication bottle-neck between
workers of INRIA-2424, which are desktop machines, and workers of G5K
Sophia, which are clusters. Communications between INRIA P2P Desktop
Grid and G5K are tunneled in SSH. This bottle-neck can also be observed on
the run with 321 CPUs on three sites. The lower impact of bottle-neck with
313 CPUs can be explain by the distribution of the tasks and by the fact that
there is only one cluster. Then the last experimentation with 628 CPUs has an
execution time close to the bench with 346 CPUs, we explain that by a long
phase of deployment, 11 minutes, opposed to only 6 minutes for 346 CPUs.

In addition, all these benchmarks were realized during working days, so usual
users have a higher priority to execute their process. Unfortunately, we were
unable to deploy the Flow-Shop problem on more CPUs, because those bottle-
neck create a too large number of connections on peers which are in charge to
tunneling communication between G5K and desktops.

To conclude, we have been able to deploy a communicating application us-
ing a P2P infrastructure on different sites which provided 628 CPUs. Those
CPUs were composed of heterogeneous architectures, and came from desktop
machines and clusters.

16

6 Discussion and Future Work

The infrastructure itself is stable, but its resources are unstable, thus applica-
tions have to manage the node volatility; that means that applications have
to be fault-tolerant. The infrastructure provides available nodes to the appli-
cations, even if some resources are available only a few hours a day.

The main goal of this work is to propose an infrastructure, which provides
JVMs for computations that would take months to achieve on clusters; these
JVMs run on different kinds of resources: clusters and desktops. This infras-
tructure has to be dynamic for two reasons: first, desktops are used by their
owners and second clusters cannot usually be monopolized for an extended
period by the same application.

The NQueens computation record shows that it is possible to use the P2P
infrastructure to run an application, which needs months of computations to
achieve on a grid of desktop machines. All others global computing platforms,
such as XtremWeb or BOINC/SETI@home also do this, but support only
master-slave applications without communication between slaves and require
the deployment of applications on servers dedicated to the problem. Neverthe-
less, these systems support multi-application deployments because they have
scheduler for resource allocation. This is currently an issue with our approach,
which uses flooding, to do multi-application deployments. For instance, an ap-
plication can monopolize all nodes for a while and others applications cannot
get nodes to use. We have started to work on a job scheduler, which uses the
infrastructure as a node provider. The scheduler will be the only one appli-
cation deployed on the infrastructure and the scheduler will schedule some
applications as jobs on the infrastructure.

As opposed to global computing platforms, using our infrastructure does not
provide support for application fault-tolerance. The main function of the in-
frastructure is to provide nodes to applications; applications can have different
architectures, such as master-slaves, bag-of-tasks, SPMD, etc. Therefore, the
infrastructure is not able to manage application faults, and thus it is the ap-
plication responsibility up to manage faults.

The infrastructure is integrated in a grid library, ProActive, that provides the
link between applications and the infrastructure. This link provides a high-
level of abstraction of the resource’s usage. That integration with the library
allows running all kinds of distributed applications, such as master-slaves,
communicating, etc. Also, having an implementation in Java allows portability
and use of all kinds of resources, operating systems and machine architectures.
Nevertheless, Java is not perfect in terms of running performance, but it is
portable. ProActive now provides some tools for wrapping and distributing

17

native MPI executables, such as FORTRAN and C.

We propose several parameterised protocols (see section 3.3). We have cur-
rently fixed parameters value by experimentation for our testbed, but we be-
lieve that it will be interesting to have an evaluation of their impact on the
infrastructure.

Finally, in this kind of grid environment an open infrastructure with no man-
agement tools, there are significant security issues. For the moment, the infras-
tructure conceptually does not provide security, but the implementation with
ProActive provides a security mechanism based on certificates. This mecha-
nism can constrain a node to run only applications with a known certificate.

Lastly, our experimentation show that it could have a bottleneck when many
nodes behind a firewall try to communicate with the outside. The network
topology (NAT, firewalls, etc.) could affect performances of applications, no-
tably with highly communicating applications. With the mixed environment
experimentation shows that it is well adapted for embarrassingly parallel ap-
plications and also could be used for applications with a low communication/-
computation ratio.

7 Conclusion

The proposed Peer-to-Peer infrastructure is an unstructured overlay network
for sharing JVMs. This infrastructure provides a new way for building grids,
which are a mix of desktop machines and of clusters. Such grids can be used
for deploying communicating applications and for running computations that
would take months to achieve on clusters.

We show with experiments that our infrastructure allows the deployment of
applications on a large scale grid and also it is stable enough to run applications
for months. Furthermore, the infrastructure allows running various kinds of
distributed applications, including communicating applications on a mix of
clusters from Grid’5000 and desktops. We also ran a master-slave application
on the infrastructure on a such grid, totaling 1007 CPUs.

Today, grids such as Grid’5000 are over-loaded with users, it is hard to find
slots for deploying jobs on a large number of nodes and for a long time (days
or months). It is sometimes possible with dedicated production clusters, rarely
for large grids. We believe that the P2P infrastructure could be easily used
to manage grids for that kind of use. The infrastructure dynamically provides
nodes from clusters and desktops, upon availability. An application could be
run on desktops and sometimes profit from nodes of clusters by intertwining

18

small jobs between bigger jobs from usual cluster users.

References

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, D. Werthimer, Seti@home:
an experiment in public-resource computing, Commun. ACM 45 (11).

[2] Gnutella, http://www.gnutella.com.

[3] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,
H. Balakrishnan, Chord: a scalable peer-to-peer lookup protocol for internet
applications, IEEE/ACM Trans. Netw. 11 (1) (2003) 17–32.

[4] A. Oram, Peer-to-Peer : Harnessing the Power of Disruptive Technologies,
O’Reilly & Associates, Sebastopol, CA, 2001.

[5] R. Schollmeier, A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications., in: Peer-to-Peer Computing, 2001.

[6] KaZaA, http://www.kazaa.com.

[7] D. Q. Protocol, http://www.the-gdf.org/index.php?title=Dynamic Querying.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, S. Shenker, Making
gnutella-like p2p systems scalable, in: SIGCOMM ’03: Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols for
computer communications, ACM Press, New York, NY, USA, 2003, pp. 407–
418.

[9] A. Rowstron, P. Druschel, Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems, in: IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), 2001, pp. 329–350.

[10] D. P. Anderson, Boinc: A system for public-resource computing and storage.,
in: GRID, 2004, pp. 4–10.

[11] V. N. Gilles Fedak, Cécile Germain, F. Cappello, Xtremweb : A generic global
computing system, in: I. Press (Ed.), CCGRID2001, workshop on Global
Computing on Personal Devices, 2001.

[12] Condor, http://www.cs.wisc.edu/condor/.

[13] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke, Condor-g: A
computation management agent for multi-institutional grids, in: HPDC ’01:
Proceedings of the 10th IEEE International Symposium on High Performance
Distributed Computing, IEEE Computer Society, Washington, DC, USA, 2001.

[14] N. Andrade, L. Costa, G. Germoglio, W. Cirne, Peer-to-peer grid computing
with the ourgrid community, in: Proceedings of the SBRC 2005 - IV Salão de
Ferramentas, 2005.

19

[15] I. Sun Microsystems, Project jxta: An open, innovative collaboration, http://
www.jxta.org/project/www/docs/ (April 2001).

[16] E. Halepovic, R. Deters, Jxta performance study, in: PACRIM. 2003 IEEE
Pacific Rim Conference on Communications, Computers and signal, Vol. 1,
2003, pp. .pp. 149– 154.

[17] J. Waldo, K. Arnold, The Jini Specifications, Addison-Wesley, 2000.

[18] B. Yang, H. Garcia-Molina, Designing a super-peer network, icde 00 (2003) 49.

[19] D. Caromel, C. Delbe, A. di Costanzo, Peer-to-peer and fault-tolerance:
Towards deployment based technical services (January 2006).
URL http://hal.inria.fr/inria-00001238/en/

[20] L. Baduel, F. Baude, D. Caromel, A. Contes, F. Huet, M. Morel, R. Quilici,
Grid Computing: Software Environments and Tools, Springer Verlag, 2005, Ch.
Programming, Composing, Deploying, for the Grid.

[21] R. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. F. H. Hofman, C. J. H.
Jacobs, T. Kielmann, H. E. Bal, Ibis: a flexible and efficient java-based grid
programming environment, Concurrency - Practice and Experience 17 (7-8)
(2005) 1079–1107.

[22] F. Baude, D. Caromel, L. Mestre, F. Huet, J. Vayssière, Interactive
and descriptor-based deployment of object-oriented grid applications, in:
Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing, IEEE Computer Society, Edinburgh, Scotland, 2002,
pp. 93–102.

[23] N. J. Sloane, Sloane a000170, http://www.research.att.com/.

[24] F. Cappello, E. Caron, M. Dayde, F. Desprez, E. Jeannot, Y. Jegou, S. Lanteri,
J. Leduc, N. Melab, G. Mornet, R. Namyst, P. Primet, O. Richard, Grid’5000:
a large scale, reconfigurable, controlable and monitorable Grid platform, in:
Grid’2005 Workshop, IEEE/ACM, Seattle, USA, 2005, to appear.

20

http://hal.inria.fr/inria-00001238/en/

	Introduction
	Related Work
	A Self-Organized and Flexible Peer-to-Peer Infrastructure
	First Contact: Bootstrapping
	Discovering Acquaintances
	Asking Resources
	Peer and Node Failures
	Implementation in ProActive

	Desktop Experiments
	Environment of Experiments
	NQueens: Computation Record

	Mixing Desktops and Clusters Experiments
	Environment of Experiments
	NQueens: Large Scale Grid
	Flow-Shop: Communicating Application

	Discussion and Future Work
	Conclusion
	References

