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ABSTRACT 

 

The focus of this study is to document the possible role of the southern subtropical Indian 

Ocean in the transitions of the monsoon-ENSO system during recent decades. 

 

Composite analyses of Sea Surface Temperature (SST) fields prior to El Niño-Southern 

Oscillation (ENSO), Indian Summer Monsoon (ISM), AUstralian Summer Monsoon  

(AUSM), Tropical Indian Ocean Dipole (TIOD) and Maritime Continent Rainfall (MCR) 

indices reveal the South East Indian Ocean (SEIO) SSTs during late boreal winter as the 

unique common SST precursor of these various phenomena after the 1976-1977 regime shift. 

Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events 

are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia 

during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean 

dipole events, recently studied by Behera and Yamagata (2001). A wavelet analysis of a 

February-March SEIO SST time series shows significant spectral peaks at 2 and 4-8 years 

time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to 

February-March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly 

persistent and affect the westward translation of the Mascarene high from austral to boreal 

summer, inducing a weakening (strengthening) of the whole ISM circulation through a 

modulation of the local Hadley cell during late boreal summer. At the same time, these 

subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger 

for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between 

Australia and Sumatra during boreal spring and early summer. These positive feedbacks 

explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring 

to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind 

anomalies along the west coast of Sumatra and westerly wind anomalies over the western 

Pacific, which are well-known key-factors for the evolution of positive TIOD and El Niño 

events, respectively. A correlation analysis supports these results and shows that SEIO SSTs 

in February-March has higher predictive skill than other well-established ENSO predictors for 

forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies 

exert a fundamental influence on the transitions of the whole monsoon-ENSO system during 

recent decades. 
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1. Introduction 

 

In recent times, the Indian Ocean has come into the limelight as an important driving factor 

in low-frequency variations of the tropical climate, contrasting with the classical view that the 

Indian Ocean is only a passive element in the tropical system, essentially controlled by El 

Niño through an atmospheric bridge (Klein et al., 1999; Alexander et al. 2002; Lau and Nath, 

2000, 2003), and by the Asian summer monsoon via air-sea fluxes associated with the 

monsoon flow (Webster et al., 1998). 

As a first illustration, the study of the relationship between Indian Ocean Sea Surface 

Temperature (SST) anomalies and the variability of the Indian Summer Monsoon (ISM) is 

still a controversial matter (Webster et al., 1998). However, many recent modelling and 

observational studies have suggested stronger relationships between tropical Indian Ocean 

SST anomalies and anomalous ISMs (Harzallah and Sadourny, 1997; Chandrasekar and 

Kitoh, 1998; Clark et al., 2000; Li et al., 2001b; Meehl and Arblaster, 2002a,b) than suggested 

in earlier studies. 

As a second example, the actual mechanism by which the El Niño-Southern Oscillation 

(ENSO) signal is propagated is, so far, not well understood and several studies have pointed 

to an eastward phase propagation of zonal wind anomalies from the Indian Ocean toward the 

western equatorial Pacific Ocean in the surface wind field for triggering El Niño events 

(Barnett, 1983; Glutzer and Harrison, 1987; Ropelewski et al., 1992; Clarke and Van Gorder, 

2003). This stresses the role of coupled air-sea processes in the eastern equatorial Indian 

Ocean in El Niño onset. 

In the last decade, a great deal of attention has also been paid to local air-sea interaction in 

the tropical Indian Ocean during boreal fall (Saji et al., 1999; Webster et al., 1999). Saji et al. 

(1999) have proposed the concept of the Tropical Indian Ocean Dipole (TIOD) mode for this 

air-sea coupled pattern, extending earlier works by Reverdin et al. (1986), Nicholls (1989) 

and Drosdowsky (1993). It is natural to ask if TIOD variability is an inherent Indian Ocean 

mode (Anderson, 1999). Some authors argue that TIOD events are triggered by ENSO (Allan 

et al., 2001; Baquero-Bernal and Latif, 2002; Hendon, 2003, Shinoda et al., 2004), others 

claim that they are the manifestation of a coupled ocean-atmosphere instability inherent to the 

Indian Ocean-monsoon system (Webster et al., 1999; Iizuka et al., 2000; Rao et al., 2002; 

Yamagata et al., 2002;  Ashok et al., 2003) and that both phenomena interact with each other 

(Saji and Yamagata, 2003, Behera and Yamagata, 2003; Saji and Yamagata, 2004). 
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The Tropospheric Biennial Oscillation (TBO) is defined as the tendency for strong ISMs to 

be followed by a strong North AUstralian Summer Monsoon (AUSM) six months later and by 

a relatively weak ISM one year later (Yasunari, 1991; Meehl, 1987, 1997). In the framework 

of the TBO, Meehl and al. (2003) have described the strong interactions existing between 

SST, heat content and wind anomalies within the tropical Pacific and Indian oceans and 

rainfall over Asia and Australia. Meehl and Arblaster (2002a,b) and Meehl et al. (2003) have 

suggested that ENSO, the ISM, AUSM and TIOD are all integral parts of the TBO. Moreover, 

Meehl and Arblaster (2002a,b) have pointed out that the TBO transitions are related to three 

factors: 500 hPa height-Asian land temperature, and tropical Indian and Pacific SSTs. 

Coupled air-sea processes in the tropical Indian Ocean again play an important role in 

forming and sustaining SST anomalies in the whole Indo-Pacific sector. Moreover, there is 

now pervasive evidence that the Indian Ocean plays a critical role in the TBO transitions (Yu 

et al., 2003). It has even been suggested that the origin of the TBO may arise from coupled 

processes within the tropical Indian Ocean (Chang and Li, 2000; Li et al., 2001a). Finally, 

Wang et al. (2003) argued that an anomalous South East Indian Ocean (SEIO) anticyclone in 

boreal summer and fall plays, in conjunction with the anomalous West Pacific anticyclone 

(Lau and Wu, 2001) in winter and spring, a fundamental role in the evolution of the Asian-

Australian monsoon system. They suggested that local air-sea interactions are responsible for 

the persistence of this anomalous circulation. Collectively, these studies are important 

because they suggest that there are coupled modes of variability inherent to the Indian Ocean-

monsoon system, independent of ENSO to some extent, which may be used to increase our 

ability to predict tropical variability on interannual time scales. 

While much has been learned about the tropical Indian Ocean and its relationships with 

ENSO, the Asian monsoon or the TBO in the above studies, less is known about the 

interannual variability in the southern Indian Ocean. The subtropical Indian Ocean and its 

relationship with tropical dynamics have been much less studied, in contrast with Pacific 

extra-tropical latitudes, whose links with ENSO have been extensively explored (Wallace and 

Gutzler, 1981; Gershunov and Barnett, 1998; Lu 2001; Pierce, 2002; Kidson and Renwick, 

2002; among many others). However, some studies have suggested that the subtropical Indian 

Ocean plays an important role in modulating local climate dynamics. Nicholls (1989) 

identified an anomalous SST pattern in the south Indian Ocean during austral winter which is 

largely independent of ENSO and influences the Australian winter rainfall (June-August). 

Drosdowsky (1993) and Drosdowsky and Chambers (2001) have also studied the connections 

between southern Indian Ocean SST and seasonal rainfall in Australia during other seasons. 
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Behera and Yamagata (2001) described the existence of a coupled air-sea pattern of 

variability within the southern subtropical Indian Ocean during boreal winter. Moreover, they 

stressed the role of this SST dipole mode (warmer water to the west, colder to the east) in 

summer rainfall variability over central southern Africa. Reason (2002) forced an atmospheric 

general circulation model with positive SST anomalies in the southwest Indian Ocean and 

negative SST anomalies in the southeast Indian Ocean. The results show increased rainfall 

over southeastern Africa, a result consistent with previous modeling and observational studies 

by Goddard and Graham (1999), Reason and Mulenga (1999) and Behera and Yamagata 

(2001). Fauchereau et al. (2003) have linked this southern Indian Ocean SST dipole with a 

similar mode of variability in the southern Atlantic Ocean. More recently, Terray et al. 

(2003a) have provided evidence of a link between this SST dipole (or anomalous gradient) in 

the south Indian Ocean during boreal winter and ISM variability. 

 

The current paper further explores the relationship between the southern subtropical Indian 

Ocean and the Indo-Pacific tropical climate. The focus of the study is to document the 

possible role of the southern subtropical Indian Ocean in the transitions of the whole (Asian-

Australian) monsoon-ENSO system. This is a follow-up of the earlier study by Terray et al. 

(2003a), which suggests that southern Indian Ocean SST acts as a major boundary forcing for 

the ISM system, a key-element in the TBO. Our hypothesis is that SEIO SST anomalies 

during boreal winter may trigger coupled air-sea processes in the tropical eastern Indian and 

western Pacific oceans during the following boreal spring, summer and fall which are 

fundamental for the transitions of the whole monsoon-ENSO system. We restrict our analysis 

to the 1977-2001 period, since it is well known that significant long-term changes in the 

distribution of Indo-Pacific SST and tropical teleconnection patterns occurred around 1976-

1977 (Nitta and Yamada, 1989; Kumar et al., 1999, Clark et al., 2000; Wang and An, 2001; 

Kinter et al., 2002; Wu and Wang, 2002). Analysis of the implication of the 1976-77 climate 

shift on the relationship between SEIO SST and the monsoon-ENSO system is left for further 

study. 

 

The paper is composed of six sections and an appendix. Section 2 describes the observational 

data and the methods used in our analysis. Section 3 presents composite patterns of SST 

anomalies in the February-March season (e.g., just before the transition of the monsoon-

ENSO system in the Pacific Ocean) associated with extreme phases of ENSO, TIOD, ISM, 

AUSM and a Maritime Continent Rainfall (MCR) index. Then, in Section 4, we will show the 
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composite atmospheric and SST evolution during a one-year period associated with cold and 

warm SEIO SSTs, in order to document the role of these SST anomalies in the evolution of 

the whole monsoon-ENSO system. In Section 5, we quantitatively assess the predictive skill 

associated with a SEIO SST index through a correlation analysis and compare its strength to 

other well-established ENSO precursors. We summarize our results and discuss them in the 

context of previous works in Section 6. Finally, all the acronyms used in the paper are listed 

and defined in an appendix. 

 

2. Data and methods 

 

The data used to examine the atmospheric circulation are monthly Sea Level Pressure 

(SLP), 850 and 200 hPa winds, vertical velocity (omega) and latent heat flux anomalies for 

the period 1977-2001 computed from the National Center for Environmental Prediction-

National Center for Atmospheric Research (NCEP-NCAR) reanalysis outputs (Kalnay et al., 

1996). We used the updated version of the reanalysis in which the error associated with the 

processing of Television Infrared Observational Satellite Operational Vertical Sounder data, 

occurring from March 1997 has been corrected (see 

http://www.noaa.ncdc.gov/cdc/reanalysis/problems.shtml). 

The monthly SST data, for the same 25 years, used in this study come from the Extended 

Reconstruction of global SST (ERSST) dataset, developed on a 2° X 2° grid, by Smith and 

Reynolds (2003). Upper ocean monthly data are from the University of Maryland Simple 

Ocean Data Assimilation (SODA; Carton et al., 2000a,b). The depth of the main thermocline 

(estimated using the depth of the 20°C isotherm) used in Section 5 is computed from the 

SODA product. 

Finally, we also use 23 years (1979-2001) of observed rainfall data from the gridded 

Climate prediction center Merged Analysis of Precipitation (CMAP) dataset (Xie and Arkin, 

1997). We take advantage of the recently updated version of the CMAP dataset because older 

versions are flawed in several ways (see http://www.noaa.ncdc.gov/cdc/data_cmap.html). 

Most rainfall indices computed in this paper are from the CMAP dataset. However, the area 

weighted monthly rainfall series for all India carefully prepared by Parthasarathy et al. (1995) 

has been used to assess ISM rainfall variability over the Indian subcontinent. 

Simple composite and correlation analyses have been used to assess the transitions of the 

monsoon-ENSO system. The significance of the composite patterns has been assessed with 

the method of Terray et al. (2003a). Briefly, this method determines the areas in the 
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composite that depart significantly from the background variability in the available data. Note 

that we do not show differences between positive (or strong) and negative (or weak) events in 

our composite analyses. Studying such differences allows a compact presentation of the 

results, but implies symmetry between positive and negative events, which is not verified in 

many cases, and a loss of information, which is rather difficult to evaluate (Larkin and 

Harrison, 2002). 

The statistical significance of cross-correlation coefficients depends on the length of the 

time series, the autocorrelation characteristics of each time series involved and the smoothing 

applied. None of the time series used in this study was smoothed. Moreover, all the cross-

correlation coefficients presented here are based on yearly sampled series (the time interval 

between two observations is one year) showing insignificant lag-1 autocorrelations. This is 

illustrated in Figure 11 for the (February-March) Niño3.4 and SEIO SST time series. Thus, 

the confidence level of the observed correlations has been evaluated by a standard two tail t-

test. 

 

3. ENSO, TIOD, ISM, AUSM and MCR SST composites 
 

A simple method for characterizing a complex phenomenon such as the monsoon-ENSO 

system is to reduce it to a small number of indices. As an illustration, Meehl et al. (2003) used 

the time series of area-averaged precipitation for the ISM as an index for the whole TBO 

system. Following Webster et al. (2002) and Meehl et al. (2003), the monsoon-ENSO or TBO 

systems encompass the AUSM, ISM, MCR, ENSO and TIOD events. However, AUSM, ISM, 

ENSO and TIOD events are not always synchronized (Webster et al., 1998; Behera and 

Yamagata, 2003, Ashok et al., 2003). Moreover, significant precursors for anomalous 

AUSMs and ISMs, ENSO and TIOD events may differ considerably. In view of these 

considerations, major components of the monsoon-ENSO system have been identified by 

different indices and SST composite fields for all these different indices will be presented in 

this section. The different indices used in our composite analyses and the selected extreme 

years of theses indices are presented in Table 1. 

 

The area-averaged SST anomaly in the eastern tropical Pacific Niño3.4 area (5°N-

5°S/170°W-120°W) has been used as an ENSO index. The Niño3.4 index has been computed 

from the ERSST dataset. The criterion for El Niño (La Niña) years is defined by the 5-month 

running mean averaged Niño3.4 SST anomaly exceeding +0.5°C (-0.5°C) threshold for six 
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consecutive months. ENSO years determined in this way are in agreement with Trenberth 

(1997), except that 1997 (1998) has been added as an El Niño (La Niña) event. One purpose 

of this study is to identify ENSO precursors. Thus, it seems relevant to consider only the onset 

year of each event in computing the composites. For instance, 1991 is a well-known 

protracted El Niño event, and Trenberth (1997) distinguishes three onset years for it (1991, 

1993 and 1994). Following the recent work of Van Loon et al. (2003), 1993 did not qualify as 

an El Niño event, but 1994 does. Consequently, 1991 and 1994 are retained as onset years in 

the present analysis. There are finally six El Niño and four La Niña (onset) years in the 1977-

2001 period (Table 1). 

 

TIOD events reach maximum amplitude during September-November (Saji et al., 1999; Saji 

and Yamagata, 2003). The canonical TIOD SST pattern is characterized by SST anomalies of 

opposite sign in the western (WTIO: 50°E-70°E/10°N-10°S) and eastern (ETIO: 90°E-

110°E/10°S-0) tropical Indian Ocean during boreal fall. The WTIO and ETIO time series 

have also been computed from the ERSST dataset. Following Saji et al. (1999), we used the 

difference between WTIO and ETIO SST anomalies as a TIOD index. This time series is 

related to the anomalous SST gradient across the equatorial Indian Ocean. During boreal fall, 

the SST mean gradient across the equatorial Indian Ocean is associated with cooler SST in the 

west and warmer in the east. Thus, a positive TIOD index indicates a weaker or reversed 

equatorial SST gradient. It is interesting to note that the TIOD index is dominated by the 

ETIO time series during the peak season of TIOD events because the September-October-

November standard deviation of ETIO SST time series (0.41) is twice the standard deviation 

of the WTIO SST time series (0.21). Positive (negative) TIOD events are defined in terms of 

September-October-November TIOD index exceeding 1 standard-deviation above (below) the 

mean. Using this criterion, there are four positive and three negative TIOD events in the 

1977-2001 period (Table 1). 

 

As illustrated in Terray et al. (2003a), interannual variability of ISM rainfall and dynamical 

indices for the traditional summer season (June-September) are strongly influenced by rainfall 

and circulation anomalies observed during the Late ISM (August-September). In view of 

these results, we computed both ISM and Late ISM composites with the help of the AIRI. 

Classification of weak (strong) ISM and Late ISM years are made when the standardized ISM 

and Late ISM indices are <-1 (>1), respectively. There are five strong and five weak ISM 

years, and, four strong and five weak Late ISM years during the 1977-2001 period (Table 1). 
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The AUSM’s relation with El Niño events has been much studied (McBride and Nicholls, 

1983; Drosdowsky and Williams, 1991). Moreover, interactions between the AUSM, ISM, 

TIOD and ENSO have been proven many times (Webster et al., 2002; Meehl et al., 2003, 

Wang et al., 2003; Ashok et al., 2003). This justifies the inclusion of AUSM SST composites 

in this study. For this purpose, we used the time series of area-averaged precipitation for the 

AUSM (December-January-February, 1979-2001, 20°S-5°N, 100°-150°E) defined in previous 

TBO studies (Meehl and Arblaster, 2002a), and a threshold of one standard deviation. This 

choice leads to the definition of six strong and four weak AUSM years (Table 1). 

 

Finally, MCR is a key factor for the monsoon-ENSO system (Terray et al., 2003b) and 

relationships between ENSO or TIOD events and rainfall over Indonesia have been 

extensively studied (Saji et al., 1999; Hendon, 2003; McBride et al., 2003). Thus, we found it 

relevant to compute an MCR index as the area-averaged precipitation over the domain 6°S-

6°N, 111°-141°E from June to September, as used in Terray et al. (2003b). Extreme years for 

this MCR index are defined in a similar way as for the ISM or AUSM indices (Table 1). 

 

The transitions of the monsoon-ENSO system in the Pacific basin occur during boreal spring 

in association with the so-called predictability barrier (Yasunari, 1991; Webster and Yang, 

1992; Torrence and Webster, 1998). This is related to the onset time of El Niño events, which 

is either spring (April or May) or summer (July or August) as shown by Xu and Chan (2001). 

Thus, we have to examine seasons prior to the end of the austral summer (March) in order to 

identify common precursors that set the stage for the next phase of the monsoon-ENSO 

system during the following 1-yr period. In view of this, February-March seems to be a 

relevant starting point for the SST composite analyses based on the anomalous (Late) ISM, 

AUSM, MCR, ENSO and TIOD years. ISM onset occurs in May-June and TIOD events peak 

during boreal fall. Consequently, February-March SST anomalies will provide information on 

what happens, respectively, three to seven months before anomalous (Late) ISMs and TIOD 

events. The AUSM index is computed for December-January-February and our February-

March SST composite fields for this index will give information on what happened one year 

before anomalous AUSMs. The February-March standardized SST composite fields over the 

Indian and Pacific oceans for the anomalous MCR, AUSM, ISM, Late ISM, ENSO and TIOD 

years are presented in Figures 1, 2 and 3. Gridpoint tests with a 90% confidence level have 

also been performed on all fields and are shown by shading in Figures 1, 2 and 3. 
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For February-March prior to El Niño (La Niña) events, there are anomalously cold (warm) 

SSTs in the equatorial central and eastern Pacific and a residual warm (cold) horseshoe 

pattern over the west and extra-tropical Pacific Ocean (Figs. 1a,b). These findings verify that 

February-March season is just before the growth of ENSO events in the Pacific as anticipated 

above. The merit of using six indices associated with the whole monsoon-ENSO system is to 

identify the common precursors for the various components of such complex phenomenon 

without making any a priori assumption about the degree of dependence of these various 

components. As an illustration, a significant feature is observable on almost all SST 

composite fields of Figures 1, 2 and 3. Cooler (warmer) SSTs in the southeast Indian Ocean 

and warmer (cooler) SSTs in the southwest Indian Ocean are significant precursors for weak 

(strong) ISMs, Late ISMs, AUSMs, MCRs, El Niño (La Niña) and positive (negative) TIOD 

events. Of course, there is a certain amount of variability in both the location and amplitude of 

the warm and cool poles for each of the composite analyses, but this SST dipole pattern is 

reminiscent of the subtropical SST dipole events identified by Drosdowsky (1993) and, 

Behera and Yamagata (2001). A closer inspection of the composite fields indicates that the 

pole located in the SEIO off western Australia is by far the most important both in terms of 

statistical significance and spatial extent. We can delimit a geographical domain 72°-122°E, 

4°S-26°S, which shows up on almost all the composite maps. This domain is indicated by a 

black frame in Figure 3d. Consequently, we computed a February-March SST anomalies time 

series area-averaged over this domain in order to obtain a SST SEIO index (Fig. 4). It is 

noteworthy that the wavelet analysis of the SEIO index shows significant spectral peaks at 

TBO time scale both before and after the 1976-1977 climatic shift. Longer time scales (4-8 

years) are also detected in this time series suggesting ENSO variability. Interestingly, the 

wavelet spectrum also suggests a continuous shortening of the period of this ENSO oscillation 

from 1965 till the end of the record in a such a way that TBO and ENSO periodicities are 

virtually indistinguishable during the last decade (Fig. 4). Thus, this wavelet analysis supports 

the results of the previous composite analyses in suggesting that February-March SEIO SSTs 

are an integral part of the TBO system. 

 

Figure 2 corroborates the previous work by Terray et al. (2003a), who demonstrated that there 

are statistical relationships between SEIO SST variability in boreal winter (associated with 

subtropical SST dipole events) and anomalous (Late) ISMs. However, their results were 

derived from the 1948-1998 period and they did not discuss the impact of the 1976-1977 
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climatic shift on the SEIO-ISM relationship. Thus, it is worth mentioning that both ISM and 

Late ISM indices still have a strong and significant relationship with SEIO SSTs during the 

1977-2001 time interval. This remarkable feature demonstrates the sensitivity of the ISM 

circulation and rainfall over India to SEIO SST anomalies. Furthermore, Terray et al. (2003a) 

pointed out that the Late ISM is more affected by the anomalous state of ENSO in the 

previous winter than the ISM as a whole, particularly for the strong monsoons. This seems to 

be also true for recent decades (Fig. 2). 

 

Surprisingly, no other common SST precursors show up on the (Late) ISM, AUSM, MCR, 

ENSO and TIOD SST composites. Some areas exhibit more significant anomalies in a 

particular composite analysis, but they do not occur in all cases. For example, strong 

anomalies are found in the Bay of Bengal in February-March before strong Late ISMs (Fig. 

2d) or negative TIOD events (Fig. 1d), but they do not emerge on La Niña or strong MCRs 

events (Figs. 1b and 3d). Interestingly, SST anomalies in the Pacific Ocean are much weaker. 

Figure 1 suggests two other SST dipole anomalies in the north and south subtropical Pacific 

as precursors of ENSO events. However, these SST dipole anomalies are absent on TIOD or 

ISM SST composites. Moreover, these SST dipole anomalies are only marginally significant 

compared to SEIO SST anomalies on both the El Niño and La Niña SST composites. Thus, 

SEIO is not always the strongest precursor area for each phenomenon taken separately, but is 

the best one for the whole ENSO-monsoon system. 

 

The obvious question that then arises is the following. Why and how may the whole ENSO-

monsoon system be sensitive to SST forcing in the SEIO during boreal winter, in such way 

that anomalous ISMs, AUSMs, MCRs, TIOD and ENSO events are all preceded by SST 

variability over the southern Indian Ocean? Additionally, our statistical tests suggest that this 

SEIO SST forcing is robust and represents the most important precursor of the monsoon-

ENSO system in the whole Indo-Pacific SST forcing field, just before the growth of ENSO 

events. Particular attention is focused on this SEIO SST forcing in the next section. 

 

4. Composite analysis of cold and warm SEIO SST years 

 

In this section, we examine the evolution of atmospheric and SST anomaly patterns 

associated with cold and warm SEIO SSTs during boreal winter. Given that southern Indian 

Ocean dipole events reach a maximum in February-March and are phase-locked to the annual 
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cycle (Behera and Yamagata, 2001), we again use a composite analysis for this purpose. The 

cold and warm extreme values of the February-March SST SEIO index (above or below a 0.5 

standard-deviation threshold; full details in Table 1) were used to generate bimonthly SST, 

wind (850 and 200 hPa), SLP, omega (500 and 300 hPa) and latent heat flux composite fields 

for the following 1-yr period during the 1977-2001 time interval (Figs. 5-10). The wind 

composite maps shown in Figures 6, 7 and 10 are masked to exhibit only wind anomalies that 

exceed the 90% confidence level. Finally, it is worth mentioning that the results of this 

composite analysis are robust against a strengthening of the threshold or the exclusion of the 

exceptional 1997 El Niño event from the cold SEIO SST years. 

 

a. Cold SEIO SST years 

 

First focusing on cold SEIO SST composites, we observe in February-March an 

anomalous subtropical SST gradient (or dipole mode) in the southern Indian Ocean with cool 

water in the east and warm in the west (Fig. 5a). Cold SST anomalies cover a large area in the 

eastern Indian Ocean extending southward off Australia (reaching 45°S), northward into the 

Bay of Bengal and westward in the vicinity of New Guinea and the Maritime Continent. 

Significant warm anomalies are also found southeast of Madagascar. It is of interest that the 

response in the southwest Indian Ocean to the cold SEIO SST anomaly is of opposite sign 

although of smaller amplitude. This provides evidence of the physical nature of the SST 

dipole pattern in the southern Indian Ocean during austral summer. The February-March 

surface wind and omega anomalies patterns for the cold SEIO SST years show large and 

significant anomalies in the central south Indian Ocean (Fig. 6a). These anomalous patterns 

suggest that the Mascarene high is enhanced during February-March. Moreover, this 

anticyclonic anomaly is also observed at higher levels (Fig. 7a). Southeast of this anticyclonic 

anomaly, the total surface wind speed increases as the February-March mean 850 hPa wind is 

southeasterly off Australia, thereby increasing evaporation and vertical mixing. The 

anomalous anticyclone also reduces the cloud cover and increases the downward solar 

radiation to the west. In other words, this suggests that positive SST dipole events arise out of 

surface wind forcing via changes in latent heat flux, upper ocean mixing and Ekman transport 

(Behera and Yamagata, 2001). Negative omega anomalies (anomalous ascent) are observed at 

500 and 300 hPa over the Philippine Sea and the Pacific Ocean warm pool (Figs. 6a and 7a). 

Meanwhile, there are positive omega values (anomalous subsidence) over East Asia. The 

significant anomalous northerlies off the East Asian coast, the significant northwesterly wind 
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anomalies along the west coast of Sumatra and the westerly wind anomalies in the western 

equatorial Pacific at 850 hPa (Fig. 6a) are dynamically consistent with this meridional 

structure, as are the 200 hPa southeasterly wind anomalies linking anomalous ascent over the 

western Pacific to anomalous sinking over east Asia around 20°N (Fig. 7a). This is a sign of a 

strengthening of the local meridional circulation between East Asia and the Philippine Sea. 

Since the surface mean wind off the west coast of Sumatra is northwesterly during this 

season, the total wind speed increases in February-March of cold SEIO SST years. This may 

contribute to the observed cooling of SSTs in the eastern equatorial Indian Ocean essentially 

through enhanced evaporation and vertical mixing since the seasonal winds (northwesterlies) 

are downwelling favourable during this season. All these features suggest a stronger East 

Asian winter monsoon. Interestingly, a strong East Asian winter monsoon is one of the 

precursors of El Niño events identified by Xu and Chan (2001). Over the South Pacific, a 

cyclonic circulation and anomalous ascent are found off the eastern coast of Australia, where 

the South Pacific Convergence Zone (SPCZ) is normally located (Fig. 6a). Finally, it is 

noteworthy that the wind and SST patterns over the central and eastern equatorial Pacific 

sectors are not significant during February-March of cold SEIO SST years. 

 

SST patterns during boreal spring of the cold SEIO SST years show a decay of the SST 

dipole pattern (Fig. 5b). However, SEIO SST anomalies tend to persist and move 

northeastward. This suggests that positive feedbacks between the atmosphere and ocean may 

allow a persistence of the SST anomaly in the SEIO area. Meanwhile, there are positive 

omega anomalies and an anticlockwise surface circulation over the SEIO, and negative omega 

values and an associated clockwise surface circulation between Madagascar and 100°E (Fig. 

6b). This pattern is the signature of a delayed westward seasonal movement of the Mascarene 

high from boreal winter to boreal summer (Terray et al., 2003a). In order to diagnose possible 

air-sea feedbacks, which may allow the persistence of the cold SEIO SST anomalies during 

boreal spring, the SLP, latent heat flux and rainfall composites observed in April-May of the 

cold SEIO SST years are shown in Figure 8. For the latent heat flux composites, positive 

values indicate heat loss from the ocean (Fig. 8c). First, we observe that a low (high) pressure 

anomaly develops near the warm (cold) SST anomaly in the southern Indian Ocean by April-

May (Fig. 8a). This result is consistent with what might be expected from linear quasi-

geostrophic theory (Gill, 1982). That is, a low (high) pressure anomaly is generated over a 

warm (cool) SST forcing. Moreover, the SLP and rainfall anomaly patterns suggest that the 

maritime Inter Tropical Convergence Zone (ITCZ) from the North of Madagascar to 
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northwestern Australia-Indonesia is weakened while positive precipitation anomalies are 

observed in the southwest Indian Ocean. These results are consistent with the anomalous 

divergence (convergence) over SEIO (southwest Indian Ocean) areas in spring of positive 

SST dipole events (Figs. 6b and 7b). This results in an atmospheric sink over the SEIO. Now, 

the southeasterly wind anomalies between Sumatra and Australia associated with the 

anomalous subsidence over the SEIO (Fig. 6b) represent an increase in wind speed relative to 

climatology, as the seasonal wind changes from northwesterly to southeasterly in this region 

during boreal spring. This implies further cooling of SEIO SSTs via increased upper ocean 

mixing and evaporation (Fig. 8c). These cold SST anomalies further decrease atmospheric 

convection, which reinforces the atmospheric heat sink at higher levels (Fig. 7b). The most 

suppressed convection and negative rainfall anomalies (Fig. 8e) are located eastward of the 

anomalous anticyclone (Fig. 8a), suggesting that this anomalous anticyclone is partly an 

atmospheric response to the heat sink through descending Rossby waves to its west (Gill, 

1980). This strengthens the anomalous low-level anticyclonic circulation. These processes 

represent a seasonally positive feedback between the wind, evaporation and SST in the SEIO 

(Li et al., 2003; Fischer et al. 2003). It may explain both the persistence and the northeastward 

shift of the cold SST anomalies there. Furthermore, Fischer et al. (2003) found, using a 

coupled General Circulation Model (GCM), that this positive feedback is particularly active 

during boreal winter and spring in the SEIO. On the other hand, the cyclonic wind anomalies 

over the southwestern Indian Ocean imply Ekman divergence and upwelling. These processes 

add to the reduced solar radiation and enhanced evaporation off the adjacent warm anomaly 

(associated with its positive rainfall and anomalous ascendance) to reduce the warm SST 

anomalies southeast of Madagascar. These processes represent a negative feedback, which 

may damp the warm SST anomalies in the southwest Indian Ocean (Behera and Yamagata, 

2001). 

By April-May, the cold SST anomalies have also spread eastward between Australia and 

the Maritime Continent, reaching the vicinity of New Zealand (Fig. 5b). Associated with these 

anomalous SSTs, positive omega anomalies also develop over eastern Australia, indicative of 

anomalous subsidence (Fig. 6b). Prominent southerly wind anomalies and negative rainfall 

anomalies prevail off the east coast of Australia (Figs. 6b and 8e). This suggests an 

enhancement and a northward shift of the Australian high in late boreal spring associated with 

an earlier onset of the Australian winter monsoon. Such a feature has already been noted by 

Xu and Chan (2001) as a key factor in determining the onset of El Niño events. In the 

equatorial western Pacific, significant 850 hPa westerly wind anomalies of about 1.5 m/s 
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extend now from 130°E to the date line (Fig. 6b) and significant easterly 200 hPa wind 

anomalies also extend eastward (Fig. 7b). This suggests that the meridional flow pattern off 

Australia produces a strong convergence over the western Pacific, enhancing the westerly 

anomalies. Finally, significant warm SST anomalies develop south of Australia and off the 

west coast of Chile, in association with an equatorward shift of the mid-latitude westerlies and 

an expanded trough in the South Pacific (Figs. 6b and 8a). These changes in the South Pacific 

extratropical circulation may be viewed in terms of the modulations of the western Pacific 

regional Hadley cell observed during cold SEIO years (Figs. 6b and 7b). Moreover, the 

anomalous SLP pattern in Fig. 8a represents a weakening of the SLP gradient around the 

South Pacific subtropical high which is consistent with a reduction of the trade winds in the 

south Pacific (Fig. 6b). Van Loon et al. (2003) show the importance of this expanded trough 

in the South Pacific for the El Niño evolution. Finally, the anomalous SLP and wind patterns 

at this time of the year highlight possible links between this expanded trough and a 

modulation of the semiannual oscillation in the South Pacific (Van Loon et al., 2003). These 

aspects of the SEIO SLP and wind composites need further investigations which will be 

reported in a future study. 

 

In June-July, anomalous cold SSTs first seen in a large part of the Indian Ocean are now 

limited to the eastern Indian Ocean (Fig. 5c). This area is similar to the Sumatra area defined 

by Xie et al. (2002); SSTs in this area have been proven in this study to be an important 

trigger (with ENSO influence) of TIOD events. At the same time, warm anomalies in the 

southwest Indian Ocean have considerably weakened. This is consistent with the negative 

feedback discussed above. However, negative omega anomalies (anomalous ascent) in the 

central Indian Ocean between 15°S and 40°S and positive omega anomalies to the west of the 

cold SSTs in the eastern Indian are persistent features of the atmospheric circulation over the 

southern Indian Ocean and remain observable at higher levels (Figs 6c and 7c). The 

associated clockwise circulation in the western Indian Ocean (south of the Equator) suggests a 

persistent weakening of the Mascarene high during the early ISM of the cold SEIO SST years. 

Turning our attention now back to the SEIO, the development of significant southeasterly 

wind anomalies off Sumatra, collocated with the cold SSTs, are again consistent with the 

persistence of positive feedbacks between the anomalous anticyclone there and the cold SST 

anomalies to the east (Li et al., 2003, Fischer et al., 2003). In addition, a wind-thermocline-

SST feedback may now reinforce the cold SST anomalies in the eastern Indian Ocean. That 

is, the mean surface flow changes from northwesterly downwelling-favourable winds to 
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southeasterly upwelling favourable winds along the Sumatra coast in early boreal summer 

(Fischer et al., 2003). Thus, the low-level anticyclonic anomalous flow southwest of Sumatra 

in June-July of the cold SEIO SST years accelerates the seasonal southeasterly winds and 

increases the total wind speed. These anticyclonic surface wind anomalies have an upwelling 

component along the Sumatra coast and an anomalous easterly component along the 

equatorial wave guide (Fig. 6c). These factors may contribute to the persistence of the cold 

SST anomalies off Sumatra as well as the propagation of these anomalies across the 

equatorial eastern Indian Ocean through upwelling (Fig. 5c). Again, these cold SST anomalies 

reduce atmospheric convection and rainfall as suggested by the positive omega anomalies 

(anomalous subsidence) at both 500 and 300 hPa between Australia and Sumatra in Figures 

6c and 7c. This further enhances the mean southeasterly flow off Sumatra that, in turn, 

reinforces the underlying cold SSTs. According to the coupled GCM results of Fischer et al. 

(2003), the wind-thermocline-SST feedback is more important than the wind-evaporation-

SST feedback off the west coast of Sumatra during boreal summer. 

In June-July, cold SST anomalies also spread westward into the Pacific Ocean warm pool 

and southeastward in the south Pacific (Fig. 5c). At the same time, we observe the emergence 

of significant warm SST anomalies in the central equatorial Pacific. These are connected to 

the enhanced and persistent warm SST anomalies in the southeast Pacific. Highly significant 

warm SST anomalies are also found southeast of New Zealand.  This Pacific SST anomaly 

pattern displays evident El Niño features with development of warm SST anomalies in the 

eastern Pacific and formation of the south branch of the traditional cold horseshoe pattern in 

the western Pacific (Harrison and Larkin, 1998). In agreement with these SST anomalies, the 

anomalous wind and omega patterns show anomalous ascent over the central Pacific and a 

significant weakening of the east-west circulation over the western Pacific (Figs. 6c and 7c). 

Anomalous subsidence is now found over the Maritime Continent, dynamically consistent 

with the easterly wind anomalies over the eastern equatorial Indian Ocean and the westerly 

anomalies over the western Pacific (Fig. 6c). The suppressed convection over the Maritime 

continent may also reinforce the anomalous SEIO anticyclone via descending Rossby waves 

to the southwest of this atmospheric heat sink (Wang et al., 2003). The anomalous flow 

pattern off Australia is similar to April-May with prominent southeasterlies stretching from 

New Zealand to the Maritime Continent. This may contribute toward the development and 

eastward propagation of the westerly wind anomalies over the equatorial Pacific. 

In August-September, there are positive omega values (anomalous subsidence) over the 

Indian subcontinent suggesting a weak Late ISM. The SLP composites (not shown) show a 
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tilted band of high SLP anomalies stretching from northwestern Australia to the North 

Arabian Sea. The more significant SLP anomalies are located to the southwest of Sumatra, 

consistent with the positive feedbacks discussed above. The anomalous circulation pattern 

suggests a significant weakening of the low-level circulation, as indicated by a reduced 

Somali Jet and the significant clockwise circulation anomalies apparent around Madagascar 

(Fig. 6d). At 200 hPa, we also observe that both the Tibetan Plateau and Mascarene highs are 

weakened and shifted eastward during cold SEIO SST years (Fig. 7d). In other words, the 

whole late ISM circulation is anomalously reduced during cold SEIO SST years. The weaker 

surface monsoon circulation will influence the Indian Ocean SST variability since wind 

anomalies are observed in regions where major upwelling occurs (Xie et al., 2002). In the 

western Indian Ocean, the reduced monsoon flow is accompanied by weaker wind mixing, 

less evaporation, but also decreasing upwelling along the east Africa coast and south of the 

Equator (Xie et al., 2002; Webster et al., 2002; Loschnigg et al., 2003). Meanwhile, the 

weaker ISM induces a stronger interhemispheric gradient in the eastern Indian Ocean with a 

stronger interhemispheric flow into the Bay of Bengal (Terray et al., 2003a). Even though 

these wind anomalies are not significant in our composites (Fig. 6d), they do exist (not 

shown). Thus, the persistent offshore flow near Sumatra will enhance equatorial and coastal 

upwelling. It may contribute to the northwestward propagation and the amplification of the 

cold SST anomalies in the eastern Indian Ocean from June-July to August-September (Fig. 

5d). In summary, the anomalously weak monsoon winds observed during the late ISM of the 

cold SEIO SST years will favour warmer water in the western Indian Ocean and colder water 

in the eastern Indian Ocean. The induced perturbation of the SST gradient across the 

equatorial Indian Ocean adds to the cold SEIO SSTs, and may then trigger a TIOD event in 

the following fall (Figs. 5e and 6e) as suggested by Webster et al. (2002). 

Significant positive (downward) omega anomalies over the Maritime Continent and 

negative (upward) omega anomalies in the central Pacific near the date line are observed by 

August-September (Fig. 6d). The anomalous atmospheric pattern off Australia, characterized 

by strong southerly wind anomalies, persists. Furthermore, strong northerly wind anomalies 

now prevail over the Philippine Sea in association with the growth of the west Pacific 

anomalous anticyclone (Wang et al., 2003). Thus, these two anomalous meridional 

circulations produce a stronger anomalous convergence over the western equatorial Pacific, 

which enhances both the westerly anomalies and their eastward propagation over the 

equatorial Pacific (Fig. 6d). Consistent with this scenario, the 850 and 200 hPa Pacific wind 

anomaly patterns show the dramatic perturbation of the Walker circulation associated with El 
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Niño events. This suggests the SEIO area in boreal winter, as a key precursor of the ENSO 

evolution in the Pacific, since all these features emerge progressively during cold SEIO SST 

years. 

 

In October-November, the SST composite depicts the appearance of a TIOD event with an 

anomalous SST gradient and strong easterly wind anomalies across the equatorial Indian 

Ocean (Figs. 5e and 6e). This pattern resembles the canonical TIOD event described in Saji 

and Yamagata (2003, their Fig. 2). Cold SST anomalies are observed south of the equator 

trapped to the west coast of Indonesia, and a tilted band of positive SST anomalies are seen 

stretching from the North Arabian Sea to the SEIO. Interestingly, the warm SST anomalies in 

the western equatorial Indian Ocean are not significant, and the most significant warm SST 

anomalies are located north and south of the equator. This anomalous SST pattern in the 

Indian Ocean seems related to the changes in the Late ISM wind pattern described above, still 

present over the southwestern part of the basin in October-November of the cold SEIO SST 

years (Fig. 6e). Thus, the anomalous SST pattern caused by the anomalous Late ISM flow 

seems to trigger the coupled ocean-atmosphere instabilities governing the evolution of a 

TIOD event (Webster et al., 1999). However, it is noteworthy that this canonical TIOD 

evolution occurs in association with cold SEIO SST anomalies six months before. This 

confirms earlier work by Drosdowsky (1993), which showed that SEIO SSTs in late boreal 

winter is a good precursor of TIOD events. Over the Pacific Ocean, the El Niño pattern is 

now fully developed with a weakened Walker cell (Figs. 6e and 7e). The eastward 

propagation of the equatorial westerly wind anomalies continues, now reaching 100°W. The 

whole central and eastern equatorial Pacific Ocean is now covered by significant positive 

rainfall anomalies (not shown), dynamically consistent with the negative omega anomalies 

observed in these areas (Fig. 6e). The anomalous flow pattern off the east coast of Australia 

fades away. 

 

In December-January of the following year, the strong signature of the TIOD event evident 

in October-November dies away (Fig. 5f). The easterly surface wind anomalies along the 

equatorial Indian Ocean propagate eastward in association with the southeastward seasonal 

migration of the convective maximum in Indo-Pacific areas (Fig. 6f; Meehl et al., 2003). This 

evolution is mainly due to the fact that the above-described positive feedbacks switch their 

sign after boreal fall. After November, the background flows reverse direction over the 

eastern Indian Ocean. Thus, both the wind-evaporation-SST and wind-thermocline-SST 
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feedbacks switch their polarity when the winter monsoon prevails. Anomalously cold SSTs 

are found south of Madagascar, whereas warm SST anomalies now cover the whole tropical 

Indian Ocean (Fig. 5f). The anomaly SST pattern observed over the Indian Ocean in 

December-January is very similar to the one noted in February-March, but with opposite sign 

and weaker amplitude. This indicates the strong TBO tendency of SEIO SST variability (Fig. 

4). The 850 hPa anomalous wind pattern in the southern Indian Ocean is also reversed 

compared to February-March, and is dynamically consistent with a weaker Mascarene high in 

austral summer (Fig. 6f). The associated northwesterly wind anomalies off the west coast of 

Australia may contribute to the reinforcement of the reversed SST dipole pattern for the 

following year. In the Pacific, the El Niño pattern has now evolved to its mature phase (Fig. 

5f). The whole equatorial Pacific is now covered with westerly surface wind anomalies (Fig. 

6f). Finally, a remarkable teleconnection Pacific-North American pattern emanating from the 

central Pacific crosses the North Pacific and extends to North America in the form of a 

pronounced wave train pattern at both 850 and 200 hPa levels. This result is not a surprise, as 

the El Niño related SST anomalous pattern in Figure 5f is known to excite the Pacific-North 

American pattern during boreal winter (Wallace and Gutzler, 1981). However, the fact that 

this pattern shows up in SEIO SST composites stresses again the significance of SEIO SST 

anomalies in the phase transitions of the monsoon-ENSO system. 

 

b. Warm SEIO SST years 

 

It is of interest that the response of the monsoon-ENSO system to warm SEIO SST 

anomalies in February-March is of opposite sign although of smaller amplitude during the 

following 1-yr period (Figs. 9 and 10). By February-March, we observe the occurrence of a 

negative dipole event in the southern Indian Ocean and a weakening of the East Asian winter 

monsoon associated with the west Pacific anomalous anticyclone (Wang et al., 2003). From 

April-May to August-September, significant northerlies persist off the east coast of Australia. 

During boreal summer, the Maritime Continent and the eastern Indian Ocean are regions of 

enhanced convection. The SST and atmospheric composites show a La Niña evolution with 

the emergence of cold SST anomalies in the central equatorial Pacific and easterly surface 

wind anomalies over the western Pacific and Maritime Continent in June-July (Figs. 9 and 

10). The traditional horseshoe pattern also emerges progressively. The Late ISM is stronger 

than normal during warm SEIO SST years, with a significant enhancement of the 

interhemispheric ISM circulation from August-September to October-November (Figs. 10de), 



 20 

inducing cold SST anomalies in the western Indian Ocean through enhanced evaporation, 

ocean mixing and upwelling (Fig. 9d). This contributes to the establishment of a negative 

TIOD event with warm SST anomalies in eastern Equatorial Indian Ocean and cold ones in 

the west during boreal fall (Fig. 9e). While TIOD variability is evident in warm SEIO SST 

composites, it has a much lesser significance than in cold composites, with SST anomalies 

over the equatorial Indian Ocean not significant at the 10% confidence level in October-

November of the warm SEIO SST years (Fig. 9e). 

Thus, similar patterns with reversed polarity are observable, but of course some 

discrepancies exist. The most striking one occurs in February-March when warm SST 

anomalies spread over the whole north Indian Ocean and the China Sea (Fig. 9a). A close 

inspection of the SST, wind and omega composites in February-March of the warm SEIO 

SST years shows the signature of a negative dipole event in the southern Indian Ocean as 

might be expected, but also the decay phase of an El Niño event in the Pacific (Figs. 9a and 

10a). This is illustrated by significant warm SSTs in the eastern equatorial Pacific and 

westerly wind anomalies south of the equator in the central Pacific during February-March. 

Moreover, the association of warm SSTs in the Pacific with warm SSTs in the tropical Indian 

Ocean during boreal winter (Fig. 9a) has been well documented in the context of El Niño 

events. This may contribute to the much larger extent of significant warm anomalies observed 

over the Indian Ocean during February-March of warm SEIO SST years relative to cold ones 

in cold SEIO SST years (Fig. 5a). However, this feature is not evident by studying selected 

years for El Niño and warm SEIO SST events (Table 1): only two El Niño years, 1982 and 

1997, are followed by warm SEIO SST years (1983 and 1998). Moreover, two La Niña years 

(1984 and 1995) are also followed by warm SEIO SST years (1985 and 1996). In other words, 

the greater spatial extent of the warm SST anomalies are certainly attributable to the 

exceptional strength of both the 1982 and 1997 El Niño events, but negative SST dipole 

events in the southern Indian Ocean are not necessarily preceded by an El Niño year. This 

suggests that others factors than ENSO may be responsible for the occurrence of SST dipole 

events in the south Indian Ocean during austral summer. In this respect, the possible link 

between the Mascarene high pulses and the variability of the midlatitude circulation in the 

southern hemisphere needs further investigation and could be an important contributing factor 

(Fauchereau et al. 2003). 

 

5. Correlation analysis 
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The SEIO SST anomaly in boreal winter has been identified as a precursor to El Niño or 

the TIOD, with a lead of several months. In this section, we assess its predictive skill through 

a correlation analysis. We also compare the results with other well-known ENSO precursors. 

 

In accordance with theoretical and observational studies (Jin, 1997; Meinen and 

McPhaden, 2000), the upper ocean equatorial heat content in the Pacific is a useful ENSO 

precursor which successfully predicts through the ENSO spring persistence barrier (Clarke 

and Van Gorder, 2003). This useful property may be explained by the fact that the upper 

ocean equatorial heat content takes into account the interannual state of the Pacific Ocean 

(Wyrtki, 1985; Meinen and McPhaden, 2000). As noted in SEIO SST composites, the zonal 

wind stress anomaly in the far-western equatorial Pacific is another crucial parameter in 

ENSO evolution (Barnett, 1983; Gutzler and Harrison, 1987). This feature is also somewhat 

discernable in ENSO composites (Clarke and Van Gorder, 2001, 2003; Xu and Chan, 2001; 

Wang and Zhang, 2002). As for the upper ocean equatorial heat content, the far-western 

Pacific zonal equatorial wind stress anomaly leads ENSO events by several months and can 

predict through the ENSO spring persistence barrier. Based on the precursor properties of 

Niño3.4 SST, upper ocean equatorial heat content and far-western Pacific zonal equatorial 

wind stress anomalies, Clarke and Van Gorder (2003) constructed a linear regression model to 

predict Niño3.4 SST for various leads and showed that this simple model performs at least as 

well as other ENSO prediction models. To put the results of our analysis in perspective, we 

first compare the lead correlations of SEIO SST anomalies and these various ENSO 

precursors with Niño3.4 SST for various leads up to 12 months. 

Following Clarke and Van Gorder (2003), we define the upper ocean equatorial heat 

content as the monthly mean 20°C thermocline depth anomaly (Z20 hereafter) averaged over 

the equatorial Pacific (5°S-5°N, 130°E-80°W). This time series is computed from the SODA 

dataset. We define the western equatorial Pacific zonal wind anomaly (WPAC hereafter) to be 

the zonal 850 hPa wind anomaly area-average over the region 130-160°E, 5°S-5°N as 

suggested by Clarke and Van Gorder (2001, 2003). Figure 11 shows the lag-correlations 

between Niño3.4 and SEIO in each month and Niño3.4, SEIO, Z20 and WPAC in the 

preceding winter (February-March). We obtain similar results with other SST indices such as 

Niño3 or Niño4 or if we define WPAC and Z20 from ENSO composites (not shown). In order 

to facilitate the comparison between the various ENSO precursors, we also plotted the 95% 

confidence levels assuming 25 degrees of freedom and the opposite values of the correlations 

between SEIO and Niño3.4 in Figure 11. As an illustration, we have a correlation of +0.45 
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between SEIO in February-March and Niño3.4 in January, but this correlation is indicated as 

–0.45 in Figure 11. We first observe that the auto-correlation of Niño3.4 SSTs dies away in 

July and is near zero after September. This sharp decrease in persistence in the boreal spring 

of ENSO indices is a result of the phase locking of ENSO to the annual cycle, which tends to 

cause transitions in ENSO indices to occur during boreal spring (Webster and Yang, 1992; 

Torrence and Webster, 1998). On the other hand, SEIO persistence remains significantly high 

until October. This is linked to the fact that these SST anomalies strongly depend on the 

seasonal evolution of the wind field over the Indian Ocean as described in the previous 

section. The transition for SEIO SST anomalies occurs in late fall or early boreal winter when 

the seasonal wind over the eastern Indian Ocean turns from southeasterly to northwesterly. 

After this reversal of the mean wind, the local air-sea feedbacks in the SEIO change from 

positive to negative. The easterly wind anomalies do not accelerate but rather decelerate the 

seasonal wind, which becomes downwelling-favourable along the west coast of Sumatra. This 

may explain why SEIO auto-correlations decrease rapidly and even change sign from October 

to December. 

Turning now our attention to the prediction of Niño3.4 evolution, we observe that the 

various ENSO precursors have different relationships with the Niño3.4 monthly time series. 

Consistent with past studies, the lag-correlation analysis shows that both WPAC and Z20 are 

significantly related to the occurrence of an El Niño event. WPAC in February-March is 

positively correlated with Niño3.4 from January to December and the correlation coefficients 

increase from 0.32 in April to 0.63 in December. The correlations between Z20 and Niño3.4 

switch sign in April, then increase rapidly from April to July and slowly from July to 

December. The highest correlation between Z20 and Niño3.4 is observed in December and is 

as high as 0.70. Finally, we observe that the correlations between February-March SEIO and 

monthly Niño3.4 are positive and significant until March, reverse abruptly their sign from 

April to June as for Z20 and decrease steadily from July to October. From October to 

December, the correlations between SEIO and Niño3.4 are around -0.70 and -0.75. Moreover, 

from August to December, the SEIO index gives consistently better results than WPAC or 

Z20. This period basically concerns the growth and peak of El Niño events (Larkin and 

Harrison, 2002), thus confirming the significance of SEIO SST anomalies as a precursor to 

ENSO events. Moreover, the fact that the correlations between SEIO and Niño3.4 evolve 

from positive and significant in late boreal winter to negative and highly significant in the 

next boreal winter reinforces the suggestion that Indian Ocean SST anomalies, and 
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particularly SEIO ones, play a primordial role in the ENSO transitions during recent decades 

(Yu et al., 2003). 

To further compare the predictive skill associated with SEIO SST anomalies and other 

ENSO precursors, the lag-correlations between Z20, WPAC, and SEIO in each month and 

Niño3.4 in October-December are shown in Figure 12. We also present in this figure the 

correlations with a meridional 850 hPa wind time series off the East coast of AUStralia 

(EAUS hereafter). Inclusion of this wind index is motivated by the results presented in 

Section 4 and the work of Xu and Chan (2001). This time series is defined as the area-

averaged meridional 850 hPa wind anomaly over the region 150-175°E, 15-40°S from ENSO 

composites (not shown). As in Figure 11, opposite values of correlation between SEIO and 

Niño3.4 are plotted in Figure 12. Figure 12 suggests that SEIO SST anomalies perform at 

least as well as other well-established ENSO predictors before boreal spring. Correlation 

between SEIO SSTs in February and Niño3.4 in October-December is as high as -0.74, and 

SEIO performs better than other predictors for this time lead. This highlights the importance 

of SST dipole events, highly phase locked with the seasonal cycle, for the emergence of SEIO 

SST anomalies. Interestingly, significant correlations between WPAC and Niño3.4 occur 

abruptly in March-April, which is about one to two months after the emergence of SEIO SST 

anomalies, while the correlations with Z20 remain stable around these months. During boreal 

summer and fall, WPAC outperforms other indices with maximum correlations around 0.82 in 

August-September. This suggests that a persistent wind forcing or a collection of anomalous 

wind forcing events over the far western equatorial Pacific from boreal spring to late boreal 

summer associated with the eastward shift of the Pacific Walker cell is an important 

contributory factor in ENSO evolution. 

Since the importance of the various ENSO predictors varies with season and SEIO SSTs 

are among the best ones before boreal spring, it is interesting to investigate relationships 

between SEIO SSTs in February-March and other ENSO precursors. However, we restrict 

this analysis to monthly WPAC time series, as the ocean heat content in the equatorial Pacific 

is an intrinsic quantity of the ENSO process and is not directly related to SEIO SST 

anomalies, as suggested above. The lag-correlations of SEIO and WPAC (at both 850 and 200 

hPa) in February-March with monthly 850 and 200 hPa WPAC time series are shown in 

Figure 13. SEIO in February-March is a better predictor of the evolution of the Pacific Walker 

cell during summer and fall than the WPAC indices themselves. Interestingly, the correlations 

with the monthly 200 hPa WPAC index are roughly the opposite of those with the monthly 

850 hPa WPAC index from May to December. This suggests that the evolution of the Pacific 
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Walker cell has a close relationship with SEIO SST anomalies during late winter. Obviously, 

SEIO SST anomalies may play an important role in triggering persistent surface wind 

anomalies over the Pacific warm pool during the growth of El Niño events, via anomalous 

subsidence over the Maritime Continent, anomalous ascendance over the west Pacific and 

anomalous southerlies off the northeast coast of Australia associated with the persistent 

anomalous SEIO anticyclone. 

SEIO has also been identified as a possible precursor for TIOD events in boreal fall. In 

order to confirm this feature, a similar lag-correlation analysis between SEIO SSTs in 

February-March and various monthly TIOD indices has been undertaken. In addition to SST 

ETIO, WTIO and TIOD indices defined in Section 3, we also included in this analysis the 

zonal 850 hPa wind anomaly over the equatorial Indian Ocean (5°S-5°N, 70°-90°E, Ueq 

hereafter) in order to clearly identify the coupled air-sea TIOD pattern over the tropical Indian 

Ocean. The results presented in Figure 14 appear to be consistent with those of Sections 3 and 

4. For instance, SEIO SSTs in February-March are significantly and positively correlated with 

ETIO SSTs from January to November. The correlations increase from August to October, 

suggesting the existence of a positive feedback during these months, and rapidly fade away 

afterwards. Similarly, correlations with WTIO SSTs are highly positive during boreal winter, 

but reverse their sign during boreal summer to become significantly negative in November. In 

other words, these lag-correlations reproduce the phase lag in the SST anomaly evolution 

between ETIO and WTIO, which characterizes TIOD events (Saji and Yamagata, 2003). 

Finally, the correlations with TIOD and Ueq indices are highest and significant during 

October and November, suggesting that SEIO SST anomalies in February-March may trigger 

the coupled air-sea instability inherent in TIOD events. Together, these results suggest that 

subtropical Indian Ocean SST anomalies in February-March are also a significant precursor of 

TIOD indices during fall, the peak season of TIOD events. 

 

SEIO has also been suggested as a significant precursor for the variability of the various 

monsoon systems in the Indo-Pacific region. Table 2 lists the correlation coefficients of SEIO 

SSTs in February-March with rainfall and dynamical indices for the Indian and Australian 

monsoon systems during the following boreal summer, fall and winter. In addition to the 

AIRI, MCR, and Australian monsoon indices, we have included the ISM dynamical indices 

proposed by Wang and Fan (1999) and Wang et al. (2001). Based on empirical relationships 

between convection and vertical shear anomalies, they proposed that the ISM system may be 

represented by a Westerly Shear Index (WSI1), a Southerly Shear Index (SSI1) and the 
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difference of the zonal wind anomalies (DU1) between a southern region and a northern 

region. The precise definition of these indices is given in the caption of Table 2. 

For the Early ISM (June-July), the correlations of the rainfall and dynamical ISM indices 

with SEIO SSTs in February-March are all negligibly small. However, these correlation 

coefficients become positive and significant at least at the 99% confidence level for the Late 

ISM. This corroborates the fact that SEIO SST variability is essentially linked to the Late ISM 

even though this feature is not well understood (Terray et al., 2003a). Interestingly, the 

highest correlation is observed for SSI1 (0.66), which is related to the cross-equatorial flow 

off the African coast and the local Hadley circulation. This is consistent with the existence of 

positive air-sea feedbacks in the SEIO during late summer (Terray et al., 2003a). It is 

interesting to observe that warm SEIO SST anomalies in February-March are followed by 

positive and significant rainfall anomalies over the Maritime Continent and North Australia 

from early summer to winter (Table 2). Once again, the coefficients are particularly high 

during August-September. This implies that SEIO SSTs are linked to both the winter and 

summer Australian monsoons in addition to the Maritime Continent heat source. This is in 

agreement with the composite analysis of Section 4. 

 

6. Summary and discussion 
 

Because the SST signal in the Pacific Ocean precedes that in the Indian Ocean during 

boreal fall and winter, the possibility that the Indian Ocean plays a role in ENSO evolution 

has been largely overlooked in the past. Since the late 1970s, the evolution of ENSO events 

and the relationships between the ISM and ENSO have significantly changed. The purpose, 

therefore, of this paper is to statistically re-examine, the relationship between Indian Ocean 

SSTs and the whole monsoon-ENSO system, noting especially the changes that have taken 

place after 1976. 

 

a. Observational results 

 

Composite analyses of SST fields with respect to ENSO, (Late) ISM, AUSM, MCR, and 

TIOD indices reveal that southern Indian Ocean SST dipole events during boreal winter are 

the unique common SST precursor of these various phenomena before the growth of ENSO 

events in boreal spring. SEIO SST anomalies induced by such dipole events are highly 

persistent. This reinforces the idea that Indian Ocean SST anomalies, and particularly those in 
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the SEIO, play a primordial role in the transitions of the monsoon-ENSO system (Yu et al., 

2003). Wavelet analysis of a SEIO SST index reveals that SEIO SST anomalies are intimately 

linked to the TBO both before and after the 1976-1977 regime shift. To reveal differences 

between cold and warm SEIO SST years, SST, wind, omega, SLP, latent heat flux and rainfall 

anomalies over the Indo-Pacific basin were composited for each type of year from February-

March to December-January. These composite analyses suggest that SEIO SST anomalies 

have a strong and significant association with the evolution of the whole Indo-Pacific system 

during the following 1-yr period. Anomalously cold (warm) SEIO SSTs form in February-

March due to a strengthening of the Mascarene high and associated surface wind forcing off 

the west coast of Australia. SEIO SST anomalies persist and slowly propagate in the tropical 

eastern Indian Ocean through the subsequent spring, summer and fall, providing a prolonged 

impact on the whole monsoon-ENSO or TBO system. Cold (warm) SEIO SSTs in late boreal 

winter are followed by a stronger (weaker) Australian winter monsoon, reduced (enhanced) 

rainfall over the Maritime Continent during boreal summer, a weak (strong) Late ISM, a 

positive (negative) TIOD event in the tropical Indian Ocean and an El Niño (La Niña) 

evolution in the Pacific from boreal spring to the next boreal winter. The most important 

features in this composite analysis with respect to the transitions of the whole monsoon-

ENSO system are the development of the SEIO anomalous anticyclone (cyclone) from April-

May to October-November associated with cold (warm) SEIO SST anomalies, persistent 

southerlies (northerlies) which prevail from April-May to August-September off the east coast 

of Australia and wind anomalies over the western equatorial Pacific through boreal spring and 

summer. These three key factors are intricately linked through various seasonally positive 

ocean-atmosphere feedbacks. To some extent, the above features are consistent with previous 

studies on precursors of El Niño events or transitions of the whole monsoon-ENSO system 

(Van Loon and Shea, 1985; Wang, 1995; Xu and Chan, 2001; Wang et al., 2003; Meehl et al., 

2003). A correlation analysis supports these results and suggests again that SEIO SST 

anomalies exert a strong influence on the transitions of the whole monsoon-ENSO system. As 

an illustration, the anomalous equatorial Pacific upper ocean heat content and the equatorial 

wind anomalies in the western Pacific are two excellent ENSO predictors that can predict 

across the boreal spring (Clarke and Van Gorder, 2001, 2003). SEIO SST anomalies during 

February-March lead the SST Niño3.4 index with a correlation of 0.75 or more for 

November-December of the same year. Thus, the SEIO SST index can predict ENSO indices 

across the spring persistence barrier like the above predictors. Moreover, it has higher 

predictive skill than these two fundamental predictors after the 1976-1977 regime shift. 
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Significant and high correlations are also obtained for TIOD, Late ISM, AUSM, MCR indices 

with a considerable time lead across the spring predictability barrier. This demonstrates that 

SEIO SST variability during boreal winter is related in some fundamental manner to the 

transitions of the whole monsoon-ENSO system even though the various components of this 

system are not always synchronized. 

 

b. Discussion 

 

Two different seasonally positive feedbacks between the atmosphere and the ocean may 

explain the extraordinary persistence of SEIO SST anomalies from late boreal winter until 

boreal fall. The first one is a seasonally positive feedback between wind, evaporation and SST 

in the SEIO. In agreement with linear quasi-geostrophic theory, a high (low) pressure 

anomaly is generated near the cold (warm) SEIO SST anomalies induced by the occurrence of 

a positive (negative) subtropical SST dipole event. During boreal spring, the seasonal wind 

reverses sign from northwesterly to southeasterly between Sumatra and Australia. Thus, the 

anomalous anticyclonic flow associated with the high pressure anomaly adds to the total wind 

speed during boreal spring over the SEIO, implying further cooling of the underlying SSTs 

via increased upper ocean mixing and evaporation. It is well-known that the atmosphere 

response to a cold or a warm SST anomaly is much more pronounced when the underlying 

SST climatology is closer to 27°C, above which the nonlinear relationship between 

convection and SST becomes pronounced (Gill, 1982). This is exactly the case in the SEIO 

during boreal spring. Furthermore, the SEIO is a region of active convection during boreal 

spring. These factors contribute to reduce rainfall and convection over the SEIO, implying an 

atmospheric heat sink at higher levels, which may generate descending Rossby waves to the 

west, enhancing the initial high pressure anomaly. The observed seasonal cycle along the 

Sumatra coast shows a reversal from downwelling-favourable to upwelling-favourable winds 

during early boreal summer. A wind-thermocline-SST feedback may then reinforce the lack 

of convection and the cold SST anomalies along the Sumatra coast and in the eastern 

equatorial Indian Ocean. This may contribute to the fact that the anomalous SEIO anticyclone 

reaches its peak intensity in late summer and fall. The wind-thermocline/evaporation-SST 

feedbacks are the positive feedback mechanisms proposed by Wang et al. (2003) to explain 

the extraordinary amplification during boreal summer and the subsequent fall peak of the 

SEIO anticyclone, and are among the positive feedbacks involved in the growth of TIOD 

events following Li et al. (2003). However, it is remarkable that the growth of the SEIO 
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anticyclone may be traced back to SEIO SST anomalies, which first appear during boreal 

winter. The emergence of this anomalous surface circulation over the southern Indian Ocean 

in cold SEIO SST composites is an important finding of the present study since it implies that 

cold SEIO SSTs in February-March are a significant precursor of this large anomalous 

circulation. 

 

The results of this study verify the findings of Terray et al. (2003a) regarding the 

significant relationships between SEIO SST anomalies and Late ISM variability for the two 

recent decades. Persistent SEIO SST anomalies affect the seasonal translation of the 

Mascarene high during boreal spring and early summer, inducing a weaker southern 

subtropical anticyclone, a weakened interhemispheric monsoon circulation over the western 

Indian Ocean, and negative rainfall anomalies over the Indian subcontinent during the Late 

ISM of recent decades. The Late ISM-related wind anomalies occur in regions where major 

upwellings take place in the Indian Ocean (Xie et al., 2002; Webster et al., 2002). A reduced 

Somali jet is accompanied by weaker wind mixing, evaporation and upwelling, leading to 

warmer SSTs in the western Indian Ocean during late summer. At the same time, the 

enhanced onshore flow towards Sumatra favours cooler SSTs in the eastern Indian Ocean via 

coastal and equatorial upwellings. Meanwhile, anomalous subsidence rapidly intensifies over 

the Maritime Continent, further reinforcing the anomalous SEIO anticyclone via descending 

Rossby waves to the southwest of the heat sink in the upper atmosphere. Turning our attention 

now to TIOD variability in boreal fall, the east-west SST gradient caused by the anomalous 

Late ISM may then force zonal wind anomalies over the equatorial Indian Ocean. The strong 

easterly wind anomalies following a weak Late ISM could produce a weakening of the Wyrtki 

jet in October-November which will reduce the build-up of warm water to the east 

(Vinayachandran et al., 1999). Additionally, the dynamic ocean response to these wind 

anomalies is to deepen the thermocline in the western Indian Ocean via downwelling Rossby 

waves (Webster et al., 1999). The anomalous warming in the southwestern tropical Indian 

Ocean away from the equator observed during boreal fall of cold SEIO SST years (Fig. 5e) 

may be due to a locally-forced deepened thermocline induced by such westward-propagating 

Rossby waves (Xie et al., 2002). In other words, the anomalous Late ISM circulation may 

trigger the coupled ocean-atmosphere instabilities associated with TIOD events (Webster et 

al., 1999). However, the relationship between ISM and TIOD events remains controversial 

and needs further investigation. One suggestion is that positive TIOD events enhance ISM 

rainfall (Ashok et al., 2001; Li et al., 2003), although Li et al. (2003) argue that the strong 
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ISM will tend to damp the original TIOD event. Others suggest that positive TIOD events 

normally coincide with dry conditions over the Indian subcontinent, the two phenomena being 

integral parts of the TBO system (Webster et al., 2002; Loschnigg et al., 2003; Meehl et al., 

2003). Thus, a better understanding of the linkages of ISM rainfall and circulation anomalies 

with the mechanisms governing TIOD events is clearly needed. One possible reason for these 

discrepancies is the fundamental differences between the early and late ISM as suggested by 

Ailikun and Yasunari (2002) or Terray et al. (2003a) and further illustrated in Table 2 where 

the correlations between the February-March SEIO time series and the dynamical and rainfall 

ISM indices are near zero in June-July, but positive and highly significant in August-

September. 

The ENSO cycle is phase-locked with the annual cycle and an El Niño, for example, 

develops in boreal spring. In addition to SST and anomalous heat content in the equatorial 

western Pacific, the local wind anomalies over the western Pacific and Indian Ocean warm 

pool have also been considered as a key-factor for ENSO transitions (Meinen and McPhaden, 

2000; Clarke and Gorder, 2003). This idea was tested in many numerical experiments 

(Lengaigne et al., 2002). The results confirm the effects of the westerly anomalies on the 

growth of ENSO events. In the ENSO process, the SST and ocean heat content are two 

fundamental oceanic quantities, but they are not directly related to SEIO SST variability. On 

the other hand, one should note that the wind anomalies over the warm pool are largely forced 

by remote factors such as cold surges, modulation of the convection over the Maritime 

Continent, or the local meridional circulation in both hemispheres. Our results suggest that 

there are precursors to ENSO events in the southern Indian Ocean that develop before the 

boreal spring and the growth of El Niño events. The extraordinary persistence of both the 

SEIO SST anomalies and anomalous anticyclone provides possible links between southern 

Indian Ocean variability during boreal winter and low-frequency processes in the Pacific 

Ocean during the following year. We argue that SEIO SST anomalies have a delayed or 

prolonged impact on ENSO variability through this anomalous SEIO anticyclone and a 

modulation of the convection over the Maritime continent and the western Pacific. This 

anticyclone may act to suppress the convection over the Maritime Continent and induce a 

collection of westerly wind bursts or persistent westerly wind anomalies over the Pacific 

Ocean warm pool from boreal spring through fall. Additionally, this anticyclone induces an 

earlier and stronger Australian winter monsoon in boreal summer. Thus, the anomalous and 

persistent meridional circulation (southerlies) off the east coast of Australia produce stronger 

convergence over the western equatorial Pacific, which may further intensify the Pacific 
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westerly wind anomalies. It is then possible that these persistent westerly winds located over 

the equatorial west Pacific may trigger an El Niño event or strengthen an existing one. 

However, the precise mechanisms (westerly wind bursts in boreal spring, suppressed 

convection over the Maritime Continent during summer, persistent southerlies off the west 

coast of Australia from April-May to October-November) and their relative contributions by 

which the remote SEIO SST anomalies affect the ENSO evolution remain to be clarified with 

careful coupled GCM experiments. The above scenario is similar to the TBO evolution over 

1-yr period described by Meehl et al. (2003), with three important exceptions. Our results 

point to southern Indian Ocean SSTs, an anomalous SEIO anticyclone, and an associated 

anomalous meridional cell off the east coast of Australia (indicative of a stronger Australian 

winter monsoon), as major contributors to the TBO transitions after the 1976-1977 regime 

shift.  

A subsequent study is planned with a full coupled GCM to more comprehensively 

investigate the details of the response of the monsoon-ENSO system to SST dipole events in 

the southern Indian Ocean during austral summer. Finally, additional model and observational 

studies are also needed to document the physical mechanisms which govern the Mascarene 

high pulses during boreal winter. In this context, the possible links between the different 

modes of variability of the midlatitude circulation in the southern hemisphere (Simmonds, 

2003) and the Mascarene high pulses during boreal winter have thus far received little 

attention in the research community. As noted by White et al. (2002), teleconnections exist 

between mid and high latitudes of the southern hemisphere (the Antarctic circumpolar wave) 

and east tropical Pacific (the global ENSO wave) through ocean and atmosphere pathways 

during recent decades. These connections need further investigations in the future. 
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Appendix A 

 

Definition of the acronyms used in the paper. The dynamical indices DU1, SSI1 and WSI1 

are defined and discussed in Wang and Fan (1999) and Wang et al. (2001). 

 

AIRI All India Rainfall Index 

AUSM AUstralian Summer Monsoon 

CMAP Climate prediction center Merged Analysis of Precipitation 

DU1 Difference of the zonal wind anomalies 

EAUS East coast of AUStralia 

ENSO El Niño - Southern Oscillation 

ERSST Extended Reconstruction of global SST 

ETIO Eastern Tropical Indian Ocean 

GCM General Circulation Model 

ISM Indian Summer Monsoon 

ITCZ Inter Tropical Convergence Zone 

MCR Maritime Continent Rainfall 

SEIO South East Indian Ocean 

SLP Sea Level Pressure 

SODA Simple Ocean Data Assimilation 

SPCZ South Pacific Convergence Zone 

SSI1 Southerly Shear Index 

SST Sea Surface Temperature 

TBO Tropospheric Biennial Oscillation 

TIOD Tropical Indian Ocean Dipole 

WPAC Western equatorial PACific zonal wind anomaly 

WSI1 Westerly Shear Index 

WTIO Western Tropical Indian Ocean 

Z20 Monthly mean 20°C thermocline depth anomaly 
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FIGURE CAPTIONS 

 

FIGURE 1: Composite analysis of February-March SST fields prior to positive/negative 

ENSO and TIOD events during the 1977-2001 period. (a) composite SST standardized 

anomalies over the Indian and Pacific Oceans for February-March prior to six El Niño years. 

(b),  (c) and (d) same as (a), but for four La Niña, four positive TIOD and three negative 

TIOD years, respectively. Composites SST standardized anomalies significant at the 90% 

confidence level are shaded. See text for more details. 

 

FIGURE 2: Composite analysis of February-March SST fields prior to strong/weak (Late) 

ISM years during the 1977-2001 period. (a) composite SST standardized anomalies over the 

Indian and Pacific Oceans for February-March prior to five weak ISM years. (b),  (c) and (d) 

same as (a), but for five strong ISM, five weak and four strong Late ISM years, respectively. 

Composites SST standardized anomalies significant at the 90% confidence level are shaded. 

See text for more details. 

 

FIGURE 3: Composite analysis of February-March SST fields prior to strong/weak AUSM 

and MCR years during the 1977-2001 period. (a) composite SST standardized anomalies 

over the Indian and Pacific Oceans for February-March prior to four weak AUSM years. (b),  

(c) and (d) same as (a), but for six strong AUSM, four weak MCR and five strong MCR 

years, respectively. Composites SST standardized anomalies significant at the 90% 

confidence level are shaded. See text for more details. 

 

FIGURE 4: Wavelet modulus analysis of the February-March SEIO SST time series.(a) The 

time series of SEIO SST (b) The local wavelet power spectrum of (a) using the Morlet 

wavelet. The left axis is the period (in year). The bottom axis is time (in year). Contours 

indicate the total variance at a particular frequency explained at a particular time in the time 

series. The thick contour encloses regions of greater than 90% confidence level for a white-

noise process. Cross-hatched regions on either end indicate the cone of influence where edge 

effects become important. Methods used are described in Torrence and Compo (1998). 

 

FIGURE 5: Composite analysis of bimonthly SST fields with respect to eight cold SEIO SST 

years during the 1977-2001 period. The cold SEIO SST years are defined with the help of 
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the February-March SEIO SST time series. (a), (b), (c), (d), (e), (f) composite SST 

standardized anomalies over the Indian and Pacific Oceans from February-March to 

December-January for the cold SEIO SST years. Composites SST standardized anomalies 

significant at the 90% confidence level are shaded. See text for more details. 

 

FIGURE 6: Composite analysis of 850 hPa wind (m/s), and 500 hPa vertical pressure 

velocity (Pa/s) fields with respect to eight cold SEIO SST years from the NCEP reanalysis 

(1977-2001 period). See text for more details. (a), (b), (c), (d), (e) and (f) composite 850 hPa 

wind (m/s), and 500 hPa vertical pressure velocity (Pa/s) anomalies over the Indian and 

Pacific Oceans from February-March to December-January of the cold SEIO SST years, 

respectively. Only the 90% statistically significant 850 hPa wind anomalies are shown. 

 

FIGURE 7: Composite analysis of 200 hPa wind (m/s), and 300 hPa vertical pressure 

velocity (Pa/s) fields with respect to eight cold SEIO SST years from the NCEP reanalysis 

(1977-2001 period). See text for more details. (a), (b), (c), (d), (e) and (f) composite 200 hPa 

wind (m/s), and 300 hPa vertical pressure velocity (Pa/s) anomalies over the Indian and 

Pacific Oceans from February-March to December-January of the cold SEIO SST years, 

respectively. Only the 90% statistically significant 200 hPa wind anomalies are shown. 

 

FIGURE 8: Composite analysis of April-May SLP, latent heat flux and rainfall fields with 

respect to eight cold SEIO SST years from the NCEP reanalysis (1977-2001 period). See text 

for more details. (a) April-May composite SLP standardized anomalies over the Indian and 

Pacific Oceans for the cold SEIO SST years, (b) probability map showing critical 

probabilities associated with the composite map in (a). Only the 10, 1, 0.1% confidence 

levels are plotted. (c) and (d) same as (a) and (b), but for latent heat flux. (e) and (f) same as 

(a) and (b), but for rainfall. 

 

FIGURE 9: Same as Figure 5, but for six warm SEIO SST years during the 1977-2001 

period. 

 

FIGURE 10: Same as Figure 6, but for six warm SEIO SST years during the 1977-2001 

period. 
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FIGURE 11: Lead-lag correlation of monthly Niño3.4 SST index with February-March SEIO 

SST (solid circles), WPAC 850 hPa zonal wind (open squares), Z20 (open triangles) and 

Niño3.4 SST (stars) indices during the 1977-2001 period. Note that opposite correlation 

coefficients between Niño3.4 and SEIO SST indices have been represented in order to 

facilitate the comparison between the various ENSO predictors. The lead-lag correlations of 

monthly SEIO SST time series with February-March SEIO SST index (crosses) are also 

plotted. Also shown are 95% confidence levels. See text for the definition of the indices. 

 

FIGURE 12: Lead-lag correlation of October-December Niño3.4 SST index with monthly 

SEIO SST (open circles), WPAC 850 hPa zonal wind (solid squares), EAUS 850 hPa 

meridional wind (solid diamonds) and Z20 (open triangles) indices during the 1977-2001 

period. Note that opposite correlation coefficients between Niño3.4 and SEIO SST indices 

have been represented in order to facilitate the comparison between the various ENSO 

predictors. Also shown are 95% confidence levels. See text for the definition of the indices. 

 

FIGURE 13: Lead-lag correlations of monthly values of WPAC 850 and 200 hPa zonal wind 

with February-March SEIO SST (solid circles and solid triangles), monthly WPAC 850 hPa 

zonal wind with February-March WPAC 850 hPa zonal wind (crosses), monthly WPAC 200 

hPa zonal wind with February-March WPAC 200 hPa zonal wind (stars). Also shown are 

95% confidence levels. See text for the definition of the indices. 

 

FIGURE 14: Lead-lag correlations of monthly ETIO SST (solid circles), WTIO SST (open 

circles), TIOD SST (solid squares) and equatorial Indian Ocean 850 hPa zonal wind (open 

triangles) time series with February-March SEIO SST index during the 1977-2001 period. 

Also shown are 95% confidence levels. See text for the definition of the indices. 
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TABLE CAPTIONS 

 

Table 1: Description of the various indices used in the composite analyses. 

 

Table 2: Correlation coefficients of various rainfall and dynamical ISM, MCR and AUSM 

indices with February-March SEIO SST index for June-July, August-September, September-

November and December-February seasons during the 1977-2001 period.. Coefficients 

significant at the 90, 95 and 99% levels are marked with one, two and three stars, 

respectively. WSI1 is a westerly shear indice between standardized zonal wind anomalies at 

850 and 200 hPa averaged over the region 5°N-20°N / 40°E-80°E. SSI1 is a southerly shear 

index between standardized meridional wind anomalies at 850 and 200 hPa averaged over the 

following areas: 15°N-30°N / 85°E-100°E and 0-15°S / 40°E-55°E. DU1 is the difference 

between standardized 850 hPa zonal wind anomalies area-averaged over a southern region : 

5°N-15°N / 40°E-80°E and a northern region 20°N-30°N / 70°E-90°E. WSI1, SSI1 and DU1 

are dynamical ISM indices. More details about these indices and their constructions may be 

found in Wang and Fan (1999) and Wang et al. (2001). Rainfall AIRI, MCR and AUSM 

indices are defined in text. 

 



 43 

 

    ENSO Extreme events  
(El Niño and La Niña) 

Indian Summer 
Monsoon (ISM) 

Late Indian Summer 
Monsoon (Late ISM) 

AUstralian Summer 
Monsoon (AUSM) 

Maritime Continent  
Rainfall (MCR) 

Tropical Indian 
Ocean Dipole (TIOD) 

events 

South East Indian Ocean 
(SEIO) 

Index name Niño 3.4 Index All India Rainfall Index 
(AIRI) 

All India Rainfall Index 
(AIRI) 

AUSM Index 
(Meehl and  

Arblaster, 2002) 
MCR index TIOD Index 

(Saji and al., 1999) 
SEIO Index 

(Terray et al., 2003) 

Data 
SST 

(ERSST ; Smith and 
Reynolds, 2003) 

Rainfall 6-9 
(Partasarathy, 1995) 

Rainfall 8-9 
(Partasarathy, 1995) 

Rainfall 12-2 
(CMAP ;  

Xie and Arkin, 1997) 

Rainfall 6-9 
(CMAP ;  

Xie and Arkin, 1997) 

SST 9-11 
(ERSST ; Smith and 

Reynolds, 2003) 

SST (ERSST ;  
Smith and Reynolds, 2003) 

Geographical Domain 5°N-5°S / 190°E-240°E Indian subcontinent Indian Subcontinent 100°E-150°E / 
5°N-20°S 

6,25°N-6,25°S / 
111.25°E-141.25°E 

50°E-70°E / 10°N-10°S 
minus 

90°E-110°E / 10°S-0 
72°E-122°E / 4°S-26S 

Period 1977-2001 1977-2001 1977-2001 1979-2001 1979-2001 1977-2001 1977-2001 

Composites 
Years 

Warm, weak or 
positive Events 

1979, 1982, 1986, 
1991, 1994, 1997 

1979, 1982, 1985, 
1986, 1987 

1979, 1986, 1991, 
2000, 2001 

1982, 1989, 1991, 
1997 

1982, 1987, 1991, 
1994, 1997 

1977, 1982, 1994, 
1997 

1983, 1985, 1988, 
1996, 1998 

Cold, strong or 
negative Events 

1984, 1988, 1995, 
1998 

1978, 1983, 1988, 
1990, 1994 

1983, 1988, 1990, 
1998 

1980, 1983, 1996, 
1998, 1999, 2000 

1983, 1984, 1985, 
1988, 1999 1990, 1996, 1998 1977, 1979, 1981, 1982,  

1986, 1993, 1994, 1997, 2001 

         

Table 1 : Description of the different indices used in the composite analyses.      
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Season 6-7 8-9 9-11 12-2 
AIRI 0,00   0,61 (***) 0,50 (**) -0,05   
Westerly Shear Index 1 (WSI 1) 0   0,56 (***) 0,67 (***) 0,22   
Southerly Shear Index 1 (SSI 1) 0,02   0,66 (***) 0,34 (*) -0,27   
DU1 0,08   0,52 (**) 0,73 (***) -0,09   
Maritime Continent Rainfall (MCR) 0,43 (**) 0,70 (***) 0,62 (***) 0,57  (***) 
Australian Monsoon Rainfall 0,41 (*) 0,64 (***) 0,57 (***) 0,53  (***) 
 

Table 2 
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Cold SEIO SST Composites - 200 hPa wind and 300 hPa Omega - NCEP (1977-2001) - Year 0 
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Warm SEIO SST Composites - 850 hPa wind and 500 hPa Omega - NCEP (1977-2001) - Year 0 
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