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Introduction. The Bullard (or homopolar) dynamo [1] is the first example
of a magnetic instability triggered by a conductor in motion. The experimental
device is depicted in Fig. 1: a conducting disk rotates around its axis at an angular
velocity ω and a small magnetic field is applied in the vertical direction which
induces a current in the disk from the axis towards the edge of the conducting
cylinder. Then this current flows in the spire which is winded around the axis of
the cylinder. If the spire is orientated in a special sense, the induced magnetic
field is orientated in the same direction as the initial one. Thus an infinitesimal
magnetic field can be amplified by this mechanism, leading to a dynamo.

We here study a slight modification of the original Bullard dynamo, where
azimuthal currents in the disk and mechanical friction are permitted. The az-
imuthal current has been introduced by [2] who showed that the hypothesis of a
purely radial current would violate the conservation of magnetic flux in the case of
a perfect conducting cylinder. Three equations are enough to describe this system
[3]: 


ẋ = q(y − x)
ẏ = xZ + mx − (m + 1)y
Ż = g[1 − (m + 1)xy + mx2] − z,

(1)

Fig. 1. The homopolar (or Bullard) dynamo.
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where Z is the adimensionalized angular velocity of the disk and x and y are the
two components of the magnetic flux, across the disk and across the spire. The two
first equations represent the effect of the rotating cylinder on the magnetic field
and the third equation is the evolution of the angular velocity, subject to a Joule
heating (the term proportional to g) and a mechanical torque (the last term). A
linear instability analysis around the solution Z = Z0 (given angular velocity) and
x = y = 0 proves that the system becomes instable as soon as Z0 > 1.

1. Stochastic analysis of the system. To study this system, we make a
kinematic approximation. We prescribe the velocity field and study the generation
of the magnetic field induced by this given velocity. Specifically, we decompose
the velocity field as a sum of a mean part and a fluctuating part: Z = Z0 + Γ(t).
For simplicity, we assume that the fluctuating part of the velocity field is white in
time : 〈Γ(t)Γ(t′)〉 = 2Dδ(t− t′). Applying this procedure to the two first equation
of (1), we are left with a linear stochastic system. It is well known that it is difficult
to define unambiguously a threshold for this system and it is necessary to account
for the non-linearity induced by the third equation. In consequence, we introduce
a non-linear term −[(m + 1)g]xy to mimic the retroaction of the variables x and
y on the intensity of the adimensionalized angular velocity.

To study (1), we make the following change of variables from the Cartesian
coordinates (x, ẋ) to the polar ones (r, θ):

x = r cos(θ) and ẋ = r sin(θ) (2)

and we derive an equation for the probability density function of having a couple
(r, θ). To solve this problem, we further assume that this distribution can be
separated in one part depending only on the radial variable P (r) and one depending
only on the angular one I(θ).

It is then possible to find the stationnary probability density of the radial
variable:

Ps(r) =
1
Z

rb/a−1 exp
[
−cr2

2a

]
with Z =

1
2

[
2a

c

]b/(2a)

Γ
(

b

2a

)
, (3)

where a, b and c are the functions of the parameters m, q, Z0, g and D and also
from the angular distribution I(θ).

When b is negative, one can check that the distribution (3) is not integrable
in zero. In that case, the only admissible solution is a Dirac function centered
around zero: Ps(r) = δ(r), which corresponds to a solution x = 0 at long time.
Indeed, one can check that it is always a solution of equation (1). Then, we can
identify two bifurcations whether the control parameter is taken to be the mean
value of r or its most probable value. This scenario has already been evidenced
in the case of a stochastic modeling of the dynamo effect [4]. To compute the
threshold value corresponding to these two bifurcations, one needs to characterize
completely the probability density (3) and thus to calculate the coefficient defined
above. To achieve that, we calculated the density probability I(θ) in a similar way
as [5].

2. Bifurcation scenario. The bifurcation of the system (1) is of a rather
complex nature. Indeed, depending on the control parameter, two thresholds can
be identified. This is to be contrasted with the case without noise, where Z0 < 1
corresponds to an absorbing state, where the system relaxes towards x = y = 0
and Z0 > 1, where the solution at long time converges to a non zero value. We now
characterize more deeply the nature of the bifurcation when the noise intensity is
not zero.
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Fig. 2. Result of a numerical simulation of system (1) with m = 1, q = 1, g = 1, and D = 27.
The left panel is for Z0 = −0.8, corresponding to an absorbing state, and the right panel for
Z0 = 2.8, corresponding to an intermittent state.

2.1. b > 0: bifurcation towards an intermittent state. When b becomes
positive, the distribution (3) is integrable near the origin and can thus represent a
meaningful probability distribution function. However, the distribution diverges in
zero, an indication that the most probable value is still zero. This is characteristic
of an intermittent state, where the signal exhibits bursts of activity separated by
quiescent epochs, where the norm is close to zero. To illustrate such a behavior,
we performed numerical simulations of equation (1) and some typical snapshot are
shown in Fig. 2.

On the left-hand side, we see that the variable x after a short transient time
(compare the time interval of the two snapshots) relaxes towards the absorbing
state. Increasing the parameter Z0 (keeping the other parameter fixed at the value
of Fig. 2), one notices that a first bifurcation occurs (around Z0 = 2.5) which leads
to a state, where the variable x is most of the time close to zero but exhibits bursts
(cf. the right hand side of the figure). We call this type of behavior intermittency.

To characterize the intermittent state, we use the time series of x to compute
the different parameters that appeared in the previous section a, b, c. Once this
parameters are known, we can compute the probability distribution of the variable
r and θ. The theoretical distributions show a good agreement with the numerical
ones as it is shown in Fig. 3.

2.2. b > a: bifurcation towards a turbulent state. When b becomes larger
than a, one can easily check that the distribution has now a well defined maximum
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Fig. 3. Comparison of the simulation with m = 1, q = 1, g = 1, D = 27 and Z0 = 2.8
corresponding to the intermittent state and the analytical prediction (in straight line) for the
probability density of the variable r (left-hand side) and z = tan θ (right-hand side). The
parameters have been found numerically a = 0.14, b = 0.019, c = 0.47.
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Fig. 4. Bifurcation diagram of the system (1).

for r =
√

(b − a)/c. In this new regime, the variable x(t) fluctuates around a well
defined most probable value.

3. Stability Diagram. Using, the expression for the probability distri-
bution of θ, one may then express the condition of instability b > 0 and find the
bifurcation line Z∗

0 (D). The numerical integration of this condition is drawn in
Fig. 4 as a straight line. This curve delineates the parameter space between the
absorbing state (or “no dynamo”state), corresponding to x going to zero for a long
time and the (intermittent and turbulent) dynamo states.

The result of the numerical integration of the condition b > a is shown in
Fig. 4 (with ∗). One sees that the evolution of this threshold is monotonous:
when the noise is increased, the transition from the intermittent to the turbulent
state is delayed. On the contrary, the transition from the absorbing state to the
intermittent one is first increased for weak intensities of the noise (stabilization by
noise) and then is lowered below its deterministic value for a more powerful noise
(a reentrant transition that has been pointed out by [5]).
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