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Stability, convergence to self-similarity and elastic limit for

the Boltzmann equation for inelastic hard spheres

S. Mischler1, C. Mouhot2

Abstract

We consider the spatially homogeneous Boltzmann equation for inelastic hard
spheres, in the framework of so-called constant normal restitution coefficients α ∈ [0, 1].
In the physical regime of a small inelasticity (that is α ∈ [α∗, 1) for some constructive
α∗ > 0) we prove uniqueness of the self-similar profile for given values of the resti-
tution coefficient α ∈ [α∗, 1), the mass and the momentum; therefore we deduce the
uniqueness of the self-similar solution (up to a time translation).

Moreover, if the initial datum lies in L1

3
, and under some smallness condition on

(1 − α∗) depending on the mass, energy and L1

3
norm of this initial datum, we prove

time asymptotic convergence (with polynomial rate) of the solution towards the self-
similar solution (the so-called homogeneous cooling state).

These uniqueness, stability and convergence results are expressed in the self-similar
variables and then translate into corresponding results for the original Boltzmann
equation. The proofs are based on the identification of a suitable elastic limit rescaling,
and the construction of a smooth path of self-similar profiles connecting to a particular
Maxwellian equilibrium in the elastic limit, together with tools from perturbative
theory of linear operators. Some universal quantities, such as the “quasi-elastic self-
similar temperature” and the rate of convergence towards self-similarity at first order
in terms of (1 − α), are obtained from our study.

These results provide a positive answer and a mathematical proof of the Ernst-
Brito conjecture [16] in the case of inelastic hard spheres with small inelasticity.
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1 Introduction and main results

1.1 The model

We consider the spatially homogeneous Boltzmann equation for hard spheres undergoing
inelastic collisions with a constant normal restitution coefficient α ∈ [0, 1) (see [17, 8,
23, 24]). More precisely, the gas is described by the distribution density of particles
f = ft = f(t, v) ≥ 0 with velocity v ∈ RN (N ≥ 2) at time t ≥ 0 and it satisfies the
evolution equation

∂f

∂t
= Qα(f, f) in (0,+∞) × R

N ,(1.1)

f(0, ·) = fin in R
N .(1.2)

The quadratic collision operator Qα(f, f) models the interaction of particles by means
of inelastic binary collisions (preserving mass and momentum but dissipating kinetic en-
ergy). We define the collision operator by its action on test functions, or observables.
Taking ψ = ψ(v) to be a suitably regular test function, we introduce the following weak
formulation of the collision operator

∫

RN

Qα(g, f)ψ dv =

∫ ∫ ∫

RN×RN×SN−1

b |u| g∗ f (ψ′ − ψ) dσ dv dv∗,(1.3)

where we use the shorthand notations f := f(v), g∗ := g(v∗), ψ′ := ψ(v′), etc. Here and
below u = v−v∗ denotes the relative velocity and v′, v′∗ denotes the possible post-collisional
velocities (which encapsule the inelasticity of the collision operator in terms of α). They
are defined by

v′ =
w

2
+
u′

2
, v′∗ =

w

2
− u′

2
,(1.4)

with

w = v + v∗, u′ =

(
1 − α

2

)
u+

(
1 + α

2

)
|u|σ.

We also introduce the notation x̂ = x/|x| for any x ∈ RN , x 6= 0. The function b = b(û ·σ)
in (1.3) is (up to a multiplicative factor) the differential collisional cross-section. We
assume that

b is Lipschitz, non-decreasing and convex on (−1, 1)(1.5)

and that
∃ bm, bM ∈ (0,∞) s.t. ∀x ∈ [−1, 1], bm ≤ b(x) ≤ bM .(1.6)

Note that the “physical” cross-section for hard spheres is given by (see [17, 13])

b(x) = b′0 (1 − x)−
N−3

2 , b′0 ∈ (0,∞),(1.7)

so that it fulfills the above hypothesis (1.5,1.6) when N = 3. These hypothesis are needed
in the proof of moments estimates (see [23, Proposition 3.2] and [24, Proposition 3.1]).
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We also define the symmetrized (or polar form of the) bilinear collisional operator Q̃α
by setting





∫

RN

Q̃α(g, h)ψ dv =
1

2

∫ ∫ ∫

RN×RN×SN−1

b |u| g∗ h∆ψ dσ dv dv∗,

with ∆ψ =
(
ψ′ + ψ′

∗ − ψ − ψ∗
)
.

(1.8)

In other words, Q̃α(g, h) = (Qα(g, h)+Qα(h, g))/2. The formula (1.3) suggests the natural
splitting Qα = Q+

α −Q−
α between gain and loss part. The loss part Q−

α can be defined in
strong form noticing that

〈Q−
α (g, f), ψ〉 =

∫ ∫ ∫

RN×RN×SN−1

b |u| g∗ f ψ dσ dv dv∗ =: 〈f L(g), ψ〉,

where 〈·, ·〉 is the usual scalar product in L2 and L is the convolution operator

L(g)(v) = (b0 | · | ∗ g)(v) = b0

∫

RN

g(v∗) |v − v∗| dv∗, with b0 =

∫

SN−1

b(σ1) dσ.(1.9)

In particular note that L and Q−
α = Q− are indeed independent of the normal restitution

coefficient α.

The Boltzmann equation (1.1) is complemented with an initial datum (1.2) which
satisfies 




0 ≤ fin ∈ L1(RN ), ρ(fin) :=

∫

RN

fin dv = ρ ∈ (0,∞)
∫

RN

fin v dv = 0, E(fin) :=

∫

RN

fin |v|2 dv <∞.
(1.10)

As explained in [23, 24], the operator (1.3) preserves mass and momentum, and so
does the evolution equation:

d

dt

∫

RN

ft

(
1
v

)
dv = 0,(1.11)

while kinetic energy is dissipated

d

dt
E(ft) = −(1 − α2)DE (ft).(1.12)

The energy dissipation functional is given by

DE (f) := b1

∫ ∫

RN×RN

f f∗ |u|3 dv dv∗,

where b1 is (up to a multiplicative factor) the angular momentum defined by

b1 :=
1

8

∫

SN−1

(1 − (û · σ)) b(û · σ) dσ.(1.13)

In order to establish (1.12) we have used (1.8) and the elementary computation

∆|·|2(v, v∗, σ) = −1 − α2

4
(1 − (û · σ)) |u|2.
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The study of the Cauchy theory and the cooling process of (1.1)-(1.2) was done in [23].
The equation is well-posed for instance in L1

2: for 0 ≤ fin ∈ L1
2, there is a unique global

solution in C(R+;L1
2) ∩ L1(R+;L1

3) (see Subsection 1.5 for the notation of functional
spaces). This solution preserves mass, momentum and has a positive and decreasing
kinetic energy. Moreover, as time goes to infinity, it satisfies:

E(t) → 0 and f(t, ·) ⇀ δv=0 in M1(RN )-weak *,(1.14)

where M1(RN ) denotes the space of probability measures on RN .

1.2 Introduction of rescaled variables

Let us introduce some rescaled variables (which can be found in [15, 8, 24] for instance),
in order to study more precisely the asymptotic behavior (1.14) of the solution. For any
solution f to the Boltzmann equation (1.1), we may associate for any τ ∈ (0,∞) the
self-similar rescaled solution g by the relation

g(t, v) = e−N τ t f

(
eτ t − 1

τ
, e−τ t v

)
.

Using the homogeneity property Qα(g(λ·), g(λ·))(v) = λ−(N+1)Qα(g, g)(λv), it is straight-
forward that g satisfies the evolution equation

∂g

∂t
= Qα(g, g) − τ ∇v · (vg).(1.15)

Any non-negative steady state 0 ≤ G = G(v) of (1.15), that is G satisfying

Qα(G,G) − τ ∇v · (v G) = 0,(1.16)

is called a self-similar profile. It translates into a self-similar solution (or homogeneous
cooling state) F of the original equation (1.1) by setting

F (t, v) = (V0 + τ t)N G((V0 + τ t)v),(1.17)

for a given constant V0 ∈ (0,∞). Reciprocally, let us consider a self-similar solution F of
the original equation (1.1). That means a solution F of (1.1) with the specific shape

F (t, v) = V (t)N G(V (t) v)(1.18)

for some given non-negative distribution G = G(v) and some C1, positive, increasing
time rescaling function V (t). One can easily show (see for instance [24, section 1.2]) that
V (t) = τ t + V0 for some constants τ, V0 > 0 and G satisfies (1.16) associated to the
velocity rescaling parameter τ . For a given self-similar profile G, associated to a velocity
rescaling parameter τ and with mass ρ and energy E , we may associate a new self-similar
profile G̃, associated to a velocity rescaling parameter τ̃ and with mass ρ̃ by setting

G̃(v) = KG(V v), V =
ρ̃

ρ

τ

τ̃
, K = V N ρ̃

ρ
.

The energy of G̃ is then Ẽ = ρ̃
ρ

(
τ
τ̃

)2 E . We thus see that there exists a two real parameters
family of self-similar profiles which can be either parametrized by (ρ, τ) or by (ρ, E). For
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fixed mass, changing the velocity rescaling parameter τ in (1.16) corresponds to a change
of the energy of the profile, or equivalently to an homothetic change of variable of the
solution. Therefore it is no restriction to choose arbitrarily this constant. Also note that
modifying V0 just corresponds to a time translation in the self-similar solution F defined
by (1.17).

It was proved in [24, Theorem 1.1] that for any inelastic parameter α ∈ (0, 1), mass
ρ ∈ (0,∞) and (thanks to the preceding discussion) any velocity rescaling parameter
τ ∈ (0,∞), there exists at least one positive and smooth self-similar profile G with given
mass ρ and vanishing momentum:





Qα(G,G) − τ ∇v · (v G) = 0 in R
N ,

∫

RN

Gdv = ρ,

∫

RN

Gv dv = 0, 0 < G ∈ S(RN ),
(1.19)

where S(RN ) denotes the Schwartz space of C∞ functions decreasing at infinity faster
than any polynomial.

Finally, for any solution g to the Boltzmann equation in self-similar variables (1.15),
we may associate a solution f to the evolution problem (1.1), defining f by the relation

f(t, v) = (V0 + τ t)N g

(
ln(V0 + τ t)

τ
, (V0 + τ t)v

)
.(1.20)

1.3 Rescaled variables and elastic limit α → 1

We now make the choice
τ = τα = ρ (1 − α),(1.21)

and denote by Gα a solution to the problem (1.19). At a formal level, it is immediate that
with this choice of scaling, in the elastic limit α→ 1, the equation (1.19) becomes





Q1(G1, G1) = 0 in R
N ,

∫

RN

G1 dv = ρ,

∫

RN

G1 v dv = 0, 0 ≤ G1 ∈ S(RN ).
(1.22)

Moreover, multiplying the first equation of (1.19) by |v|2, integrating in the velocity vari-
able as in (1.12) and taking into account the additional term coming from the additional
drift term in (1.15), one gets

2 (1 − α) ρ E(Gα) − (1 − α2)DE (Gα) = 0.(1.23)

Dividing the above equation by (1 − α) and passing to the limit α→ 1, one obtains

ρ E(G1) −DE (G1) = 0.(1.24)

It is straightforward (see Proposition 3.6 below) that the only function satisfying the
constraints (1.22) and (1.24) is the Maxwellian function

Ḡ1 := Mθ̄1 = Mρ,0,θ̄1(1.25)
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where, for any ρ, θ > 0, u ∈ RN , the function Mρ,u,θ denotes the Maxwellian with mass ρ,
momentum u and temperature θ given by

Mρ,u,θ(v) :=
ρ

(2πθ)N/2
e−

|v−u|2

2θ ,(1.26)

and where the temperature θ̄1 ∈ (0,∞) is given by (we recall that b1 is defined in (1.13))

θ̄1 =
N2

8 b21

(∫

RN

M1,0,1(v) |v|3 dv
)−2

.(1.27)

For instance in dimension N = 3 we obtain

θ̄1 =
9π

64b21
.

Moreover, in the particular case of the hard-spheres cross-section (1.7) in dimension 3, we
find b1 = b′0(4π)/3 and therefore

θ̄1 =
81

1024π (b′0)
2
.

1.4 Physical and mathematical motivation

For a detailed physical introduction to granular gases we refer to [9]. As can be seen from
the references included in the latter, granular flows have become a subject of physical
research on their own in the last decades, and for certain regimes of dilute and rapid flows
this studies are based on kinetic theory. By contrast, the mathematical kinetic theory
of granular gas is rather young and began in the late 1990 decade. We refer to [23, 24]
for some (short) mathematical introduction to this theory and a (non exhaustive) list
of references. As explained in these papers, granular gases are composed of grains of
macroscopic size with contact collisional interactions, when one does not consider other
additional possible self-interaction mechanisms such as gravitation – for cosmic clouds for
instance – or electromagnetism – for “dusty plasmas” for instance –. Therefore the natural
assumption about the binary interaction between grains is that of inelastic hard spheres,
with no loss of “tangential relative velocity” (according to the impact direction) and a
loss in “normal relative velocity” quantified in some (normal) restitution coefficient. The
latter is either assumed to be constant as a first approximation (as in this paper) or can be
more intricate: for instance it is a function of the modulus |v′ − v| of the normal relative
velocity in the case of “visco-elastic hard spheres” for instance (see [9]), which shall be
studied in a forthcoming work [25].

Simplified Boltzmann models like inelastic Maxwell molecules or pseudo inelastic hard
spheres have been proposed (see [5]) for which existence, uniqueness and global stability of
a self-similar profile has been shown (see [7, 3]), see also [2] for similar results in the driven
case of a thermal bath. However these models do not capture some crucial physical features
of the cooling process of granular gas, like the tail behavior of the velocity distribution of
the rate of decay of temperature (the so-called Haff’s law). For (spatially homogeneous)
inelastic hard spheres Boltzmann models, the existing mathematical works are:
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• the paper [8] which shows a priori polynomial and exponential moments bounds
on any possible self-similar profile (resp. stationary solutions), whose existence is
assumed, for freely cooling (resp. driven by a thermal bath) inelastic hard spheres
with constant restitution coefficient;

• the paper [17] which shows existence of stationary solutions for inelastic hard spheres
driven by a thermal bath, and improves the estimates on their tails of the previous
paper into pointwise ones in this case;

• the paper [23] which provides a Cauchy theory for freely cooling inelastic hard spheres
with a broad family of collision kernels (including in particular restitution coefficients
possibly depending on the relative velocity and/or the temperature), and studies the
question of cooling in finite time or not for these various interactions;

• the paper [24] which shows, for freely cooling inelastic hard spheres with constant
restitution coefficient, existence of self-similar profile(s) as well as propagation of
regularity and damping with time of singularity.

In this paper we want to study the self-similarity properties of Boltzmann equation for
inelastic hard spheres. Therefore as a natural first step we consider constant restitution
coefficient α in order to have a self-similar scaling, which translates the study of self-similar
solutions (often called homogeneous cooling states) to the study of stationary solutions for
a rescaled equation. We also reduce to the case of restitution coefficients α close to 1, that
is, of small inelasticity. There are several physical as well as mathematical motivations for
such a choice:

• the first reason is related to the physical regime of the validity of kinetic theory: as
explained in [9, Chapter 6] for instance, the more inelasticity, the more correlations
between grains are created during the binary collisions, and therefore the molecular
chaos assumption, which is at the basis of the valdidity of Boltzmann’s theory,
suggests weak inelasticity to be the most effective;

• second as emphasized in [9] again, the case of restitution coefficient α close to 1
has been widely considered in physics or mathematical physics since it allows to use
expansions around the elastic case, and since conversely it is an interesting question
to understand the connection of the inelastic case (dissipative at the microscopic
level) to the elastic case (“hamiltonian” at the microscopic level);

• finally this case of a small inelasticity is reasonable from the viewpoint of applica-
tions, since it applies to interstellar dust clouds in astrophysics, or sands and dusts
in earth-bound experiments, and more generally to visco-elastic hard spheres whose
restitution coefficient is not constant but close to 1 on the average.

In this framework we shall show uniqueness and attractivity of self-similar solutions
(in a suitable sense), and thus give a complete answer to the Ernst-Brito conjecture [16]
(stated there for the simplified inelastic Maxwell model), for inelastic hard spheres with
a small inelasticity. Moreover we give precise results about the elastic limit and deduce
some quantitative informations about the weakly inelastic case.
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1.5 Notation

Throughout the paper we shall use the notation 〈·〉 =
√

1 + | · |2. We denote, for any
p ∈ [1,+∞], q ∈ R and weight function ω : RN → R+, the weighted Lebesgue space Lpq(ω)
by

Lpq(ω) :=
{
f : R

N 7→ R measurable ; ‖f‖Lp
q (ω) < +∞

}
,

with, for p < +∞,

‖f‖Lp
q(ω) =

[∫

RN

|f(v)|p 〈v〉pq ω(v) dv

]1/p

and, for p = +∞,
‖f‖L∞

q (RN ) = sup
v∈RN

|f(v)| 〈v〉qω(v).

We shall in particular use the exponential weight functions

m = ms,a(v) := e−a |v|
s

for a ∈ (0,∞), s ∈ (0, 1),(1.28)

or a smooth version m(v) := e−ζ(|v|
2) with ζ ∈ C∞ is a positive function such that

ζ(r) = rs/2 for any r ≥ 1, with s ∈ (0, 1).

In the same way, the weighted Sobolev space W k,p
q (ω) (k ∈ N) is defined by the norm

‖f‖
W k,p

q (ω)
=



∑

|s|≤k
‖∂sf(v)‖p

Lp
q(ω)




1/p

,

and as usual in the case p = 2 we denote Hk
q (ω) = W k,2

q (ω). The weight ω shall be omitted
when it is 1. Finally, for g ∈ L1

2k, with k ≥ 0, we introduce the following notation for the
homogeneous moment of order 2k

mk(g) :=

∫

RN

g |v|2 k dv,

and we also denote by ρ(g) = m0(g) the mass of g, E(g) = m1(g) the energy of g and
by θ(g) = E(g)/(ρ(g)N) the temperature associated to g (when the distribution g has 0
mean). For any ρ, E ∈ (0,∞), u ∈ RN we then introduce the subsets of L1 of functions of
given mass, mean velocity and energy

Cρ,u := {h ∈ L1
1;

∫

RN

hdv = ρ,

∫

RN

h v dv = ρ u},

Cρ,u,E := {h ∈ L1
2;

∫

RN

hdv = ρ,

∫

RN

h v dv = ρ u,

∫

RN

h |v|2 dv = E}.

For any (smooth version of) exponential weight function m we introduce the Banach space

L
1(m−1) = L1(m−1) ∩ C0,0.
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1.6 Main results in self-similar variables

Our main result, that we state now, deals with the evolution equation in self-similar
variables

∂g

∂t
= Qα(g, g) − τα∇v · (vg), g(0, .) = gin ∈ Cρ,0(1.29)

and the associated stationary equation, namely the self-similar profile equation

Qα(G,G) − τα∇v · (v G) = 0, G ∈ Cρ,0.(1.30)

Theorem 1.1 There is some constructive α∗ ∈ (0, 1) such that for α ∈ [α∗, 1], and any
given mass ρ ∈ (0,∞), we have:

(i) For any τ > 0, the equation (1.15) admits a unique non-negative stationary solution
with mass ρ and vanishing momentum. We denote by Ḡα the self-similar profile
obtained by fixing τ = τα (defined by (1.21)).

(ii) Let define Ḡ1 = Mρ,0,θ̄1
the Maxwellian distribution with mass ρ, momentum 0 and

“quasi-elastic self-similar temperature” θ̄1 defined in (1.27). The path of self-similar
profiles α→ Ḡα parametrized by the normal restitution coefficient is C1 from [α∗, 1]
into W k,1 ∩ L1(ea |v|) for any k ∈ N and some a ∈ (0,∞).

(iii) For any α ∈ [α∗, 1], the linearized collision operator

h 7→ Lα h := 2 Q̃α(Ḡα, h) − τα∇v · (v h)(1.31)

is well-defined and closed on L1(m−1) for any exponential weight function m with
exponent s ∈ (0, 1) (defined in (1.28)). Its spectrum decomposes between a part which
lies in the half-plane {Re ξ ≤ µ̄} for some constructive µ̄ < 0, and some remaining
discrete eigenvalue µα. This eigenvalue is real negative and satisfies

µα = −ρ (1 − α) + O(1 − α)2 when α→ 1.(1.32)

The associated eigenspace is of dimension 1 and then denoting by φα = φα(v) the
unique associated eigenfunction such that ‖φα‖L1

2
= 1 and φα(0) < 0, there holds

φα ∈ S(RN ) (with bounds of regularity independent of α) and

φα → φ1 := c0 (|v|2 −N θ̄1) Ḡ1 as α→ 1,(1.33)

where c0 is the positive constant such that ‖φ1‖L1
2

= 1. Finally one has constructive
decay estimates on the semigroup associated to this spectral decomposition in this
Banach space (see the key Theorem 5.2 and the following point).

(iv) The self-similar profile Ḡα is globally attractive on bounded subsets of L1
3 under some

smallness condition on the inelasticity in the following sense. For any ρ, E0,M0 ∈
(0,∞) there exists α∗∗ ∈ (α∗, 1), C∗ ∈ (0,∞) and η ∈ (0, 1), such that for any initial
datum satisfying

0 ≤ gin ∈ L1
3 ∩ Cρ,0,E0 , ‖gin‖L1

3
≤M0,

the solution g to (1.29) satisfies

‖gt − Ḡα‖L1
2
≤ e(1−η) µα t.(1.34)
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(v) Moreover, under smoothness condition on the initial datum one may prove a more
precise asymptotic decomposition, and construct Liapunov functional for the equa-
tion (1.29). More precisely, there exists k∗ ∈ N and, for any exponential weight
m as defined in (1.28) and any ρ, E0,M0 ∈ (0,∞), there exists α∗∗ ∈ (α∗, 1) and
a constructive functional H : Hk∗ ∩ L1(m−1) → R such that, first, for any initial
datum 0 ≤ gin ∈ Hk∗ ∩ L1(m−1) ∩ Cρ,0,E0 satisfying

‖gin‖Hk∗∩L1(m−1) ≤M0,

the solution g to (1.29) satisfies

g(t, ·) = Ḡα + cα(t)φα + rα(t, ·),(1.35)

with cα(t) ∈ R and rα(t, ·) ∈ L1
2(R

N ) such that

|cα(t)| ≤ C∗ e
µα t, ‖rα(t, ·)‖L1

2
≤ C∗ e

(3/2)µα t.(1.36)

And second when the initial datum satisfies additionally

gin ≥M−1
0 e−M0 |v|8,

the solution satisfies also

t 7→ H(g(t, ·)) is strictly decreasing

(up to reach the stationary state Ḡα).

Remarks 1.2 1) All the constants appearing in this theorem are contructive, which means
that they can be made explicit, and in particular that the proof does not use any compact-
ness argument. Unless otherwise mentioned, these constants will depend on b, on the
dimension N , and on some bounds on the initial datum but never on the inelasticity pa-
rameter α ∈ (0, 1].

2) Theorem 1.1 establishes that conjectures 1 and 2 in [24, Section 5] holds true at
least for weak inelastic model (that means for α close enough to 1).

3) In point (iv), the condition on the restitution coefficient depends on the mass, tem-
perature and L1

3 norm of the initial distribution, but this dependence is not a perturbative
condition of closeness to the self-similar profile. This fact relies on the so-called “entropy-
entropy production” estimates which yields “overlinear” Gronwall-type estimates, and the
decoupling of the timescales of energy dissipation and entropy production.

4) In (1.36) one can prove ‖rα(t, ·)‖L1
2
≤ Cζ e

ζ µα t for any ζ ∈ (1, 2). Remark that here

we do not have the decay rate eλ̄t on the remaining part when one “removes” from gt− Ḡα
the projection on the energy eigenvalue, where λ̄ < 0 would be some constant independent
of α related to the second non-zero eigenvalue of Lα. This is due to the coupling effect of
the bilinear term, which mixes the different part of the spectral decomposition.

5) As a subproduct the above result provides an alternative argument to the one of [24,
Section 3] to show uniform (in time and inelasticity parameter) non-concentration bounds
on the rescaled equation, in the case of α close to 1 and a general initial datum gin ∈ L1

3

(whereas the proof of [24, Section 3] was valid for all α ∈ (0, 1) but for some initial datum
gin ∈ L1

3 ∩ Lp, p ∈ (1,∞]).
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6) Our results show that no bifurcation occurs for the self-similar profile for α close to
1. We do not know at now if some bifurcations occur for other values of the inelasticity
parameter. Therefore we do not know if there is a continuous branch of self-similar profiles
parametrized by α ∈ [0, 1] (even if we know from [24] that self-similar profiles exist for
all values of the inelasticity paramaters). The best one could say in terms of “connectiv-
ity” from the estimates we have proved on the profile together with the classical theory of
topological degree (see [29] for instance) is that there is a set K ⊂ [0, 1] × F (where F is
for instance the set of positive functions in the Schwartz space with given mass) which is
compact, connected, and such that for any α ∈ [0, 1], the intersection K ∩ {α} × F is not
empty.

1.7 Coming back to the original equation

When coming back to the original equation (1.1) with the help of (1.17) and (1.20),
Theorem 1.1 translates into the

Theorem 1.3 There is a constructive α∗ ∈ (0, 1) such that for α ∈ [α∗, 1], and any given
mass ρ ∈ (0,∞), we have

(i) Up to a translation of time there exists a unique self-similar solution F̄α of the
equation (1.1) with mass ρ, and it is given by

F̄α(t, v) = (1 + τα t)
N Ḡα((1 + τα t) v), τα = ρ (1 − α),

where Ḡα was obtained in Theorem 1.1. More precisely, if Fα is a solution of (1.1)
of the form (1.18) and of mass ρ, there exists t0 ∈ R such that Fα(t, v) = F̄α(t+t0, v)
for any t ≥ max{0,−t0} and any v ∈ RN .

(ii) The self-similar solution F̄α is globally attractive on bounded subsets of L1
3 under

some smallness condition on (1 − α∗) in the following sense. For any ρ, E0,M0 ∈
(0,∞) there exists α∗∗ ∈ (α∗, 1) and η ∈ (0, 1) such that for any q ∈ N there is
cq ∈ (0,∞) such that for any initial datum satisfying

0 ≤ fin ∈ L1
3 ∩ Cρ,0,E0 , ‖fin‖L1

3
≤M0,

the solution f(t, ·) to (1.1) satisfies

‖f(t, ·) − F̄α(t, ·)‖L1(|v|q) ≤ cq (1 + τα t)
(1−η) µα/τα−q = cq (1 + τα t)

−(1−η)−q+O(1−α).

(iii) Moreover, there exists k∗ ∈ N and, for any exponential weight m as defined in (1.28)
and any ρ, E0,M0 ∈ (0,∞), there exists α∗∗ ∈ (α∗, 1) such that, for any initial datum
0 ≤ fin ∈ Hk∗ ∩ L1(m−1) ∩ Cρ,0,E0 satisfying

‖fin‖Hk∗∩L1(m−1) ≤M0

the solution f to (1.29) satisfies

f(t, ·) = F̄α(t, ·) + c̃α(t)ψα(t, ·) + r̃α(t, ·)(1.37)
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where

ψα(t, v) = (1 + τα t)
N φα

(
(1 + τα t) v

)
, c̃α(t) = cα

(
ln(1 + τα t)

τα

)
.

In this expansion, the different terms have the following asymptotic behaviors (for
any given q ≥ 0):

‖F̄α(t, ·)‖L1(|v|q) = (1 + τα t)
−q‖Ḡα‖L1(|v|q),

‖ψα(t, ·)‖L1(|v|q) = (1 + τα t)
−q‖Ḡα‖L1(|v|q),

|c̃α(t)| ≤ C∗ (1 + τα t)
µα/τα = C∗ (1 + τα t)

−1+O(1−α),

∃Cq > 0 ; ‖r̃α‖L1(|v|q) ≤ Cq (1 + τα t)
(3/2)µα/τα−q = Cq (1 + τα t)

−(3/2)−q+O(1−α).

Hence the leading term in the expansion (1.37) is, as expected, the self-similar solu-
tion, and the first order correction behond self-similarity is given by the second term,
that is the projection onto the eigenspace of the “energy eigenvalue”.

(iv) We may make more precise Haff’s law on the asymptotic behavior of the granular
temperature (see [24]) in the following way. Under the assumptions of point (iii),
the solution f = f(t, v) to (1.1) satisfies

E(f(t., )) =
E(Ḡα)

(1 + τα t)
2 + O

(
1

(1 + τα t)
3+O(1−α)

)
.(1.38)

(v) Under the assumptions of point (iii) the rescaling by the square root of the energy
familiar to physicists is rigorously justified in the sense: the solution f = f(t, v)
to (1.1) satisfies for t→ +∞

E(ft)
N/2 f

(
t, E(ft)

1/2 v
)
→ E(Ḡα)N/2Ḡα

(
E(Ḡα)1/2 v

)
in L1.

Remark 1.4 We see from this theorem that the convergence towards the self-similar so-
lution in indeed faster than the convergence towards the Dirac mass (hence justifying its
interest), but also that the speed of convergence towards this self-similar solution degen-
erates to 0 as α → 1 (because τα → 0 when α → 1). This fact is surprising, since the
self-similar solution converges towards a stationary Maxwellian distribution in the elastic
limit, and the latter is known to be exponentially attractive for the elastic equation (see [27]
for instance). As we shall see this is related to the fact that a birfurcation occurs in the
spectrum of the linearized collision operator at α = 1 (namely the eigenvalue corresponding
the kinetic energy vanishes at α = 1 whereas it is non-zero for α ∈ [α∗, 1)). This remark
may explain the fact that in the quasi-elastic limit considered – in dimension 1 – in [10],
it is proved that the rate of relaxation towards the self-similar solution is worse than any
polynomial.

Proof of Theorem 1.3. Except for points (i) and (v) this theorem is an obvious translation
of Theorem 1.1. In order to prove (i), one first remarks that for two given self-similar
solutions F and F̃ , there holds

F (t, v) = (V0 +At)N GA((V0 +At) v), F̃ (t, v) = (Ṽ0 + Ã t)N GÃ((Ṽ0 + Ã t) v),
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and thus from Theorem 1.1

GÃ(v) =

(
A

Ã

)N
GA

(
A

Ã
v

)
.

We deduce

F̃ (t, v) =

(
Ṽ0
A

Ã
+At

)N
GA

((
Ṽ0
A

Ã
+At

)
v

)
= F (t+ t0, v)

with

t0 =
V0

A

(
Ṽ0

Ã
− 1

)
.

In order to prove (v), we introduce the function ξ(t) = E(Ḡα)1/2/[E(ft)
1/2 (1 + τα t)] and

we compute

∥∥∥E(ft)
N/2 f(t, E(ft)

1/2 · ) − E(Ḡα)N/2Ḡα(E(Ḡα)1/2 ·)
∥∥∥
L1

=

= ‖g(τ−1
α ln(1 + ταt), ·) − ξ(t)N Ḡα(ξ(t) ·)‖L1

≤ ‖g(τ−1
α ln(1 + ταt), ·) − Ḡα‖L1 + |ξ(t)N − 1| ‖Ḡα‖L1 + ξ(t)N‖Ḡα(ξ(t) ·) − Ḡα‖L1 .

Using now (1.32), (1.35), (1.36), (1.38) and the fact that Ḡα is bounded in W 1,1
1 uniformly

in α ∈ (α∗, 1) from Theorem 1.1 (ii), we deduce

∥∥∥E(ft)
N/2 f(t, E(ft)

1/2 · ) − E(Ḡα)N/2Ḡα(E(Ḡα)1/2 ·)
∥∥∥
L1

≤ C (1 + τα t)
−1+O(1−α),

for some constant C ∈ (0,∞) (which depends in particular on the upper bound on
‖Ḡα‖W 1,1

1
), from which (v) follows. ⊓⊔

Remark 1.5 Let us emphasize that the temperature θ̄1 of the limit Maxwellian Ḡ1 is
“universal” in the sense that it depends only on the collisional cross-section b (through its
angular momentum), and not for instance on the density distribution.

The temperature of the self-similar solution F̄α = Fα(t, v) associated to a self-similar
profile Ḡα decreases like

θ(F̄α(t, ·)) =
θ(Ḡα)

(1 + ρ(1 − α)t)2
.

Hence when α is close to 1 (small inelasticity) we obtain

θ(F̄α(t, ·)) ≈
θ̄1

(1 + ρ(1 − α)t)2
.

Therefore, as soon as the self-similar solutions correctly describe the asymptotic (at least
in the framework of point (ii) of Theorem 1.3), which is conjectured by physicists, generic
solutions satisfy

θ(fα(t, ·)) ∼t→∞

(
θ̄1

ρ2(1 − α)2

)
t−2
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for an inelasticity coefficient α close to 1.
Hence we shall denote the universal quantity θ̄1 as a “quasi-elastic self-similar temper-

ature”. Remark that its definition as the temperature of Ḡ1 seems to depend on the choice
of the scaling. However changing this scaling by some asymptotically equivalent one, as
α → 1, would only adds a factor which would then disappear when coming back to the
solution to the original equation (1.1). Therefore a more “canonical” way to define this
quasi-elastic self-similar temperature could be

θ̄1 = ρ2 lim
α→1

(
(1 − α2) lim

t→+∞
θ(fα(t, ·)) t2

)

where fα denotes a generic solution with mass ρ to equation (1.1).

1.8 Method of proof and plan of the paper

The first main idea of our method is to consider the rescaled equations (1.15) and (1.16)
with an inelasticity dependent anti-drift coefficient τα which exactly “compensates” the
loss of elasticity of the collision operator (in the sense that it compensates its loss of ki-
netic energy). This scaling allows by some technical estimates to prove uniform bounds
according to α for the family of self-similar profiles Gα to the equation (1.30). The sec-
ond main idea consists in decoupling the variations along the “energy direction” and its
“orthogonal direction”. This decoupling makes possible to identify the limit of different
objects as α→ 1 (among them the limit of Gα). The third main idea is to use systemati-
cally the knowledges on the elastic limit problem, once it has been identified thanks to the
previous arguments. In particular we use the spectral study of the linearized problem and
the dissipation entropy-entropy inequality for the elastic problem. This allows to argue by
perturbative method. Let us emphasize that this perturbation is singular in the classical
sense because of the addition of a (limit vanishing) first-order derivative operator, but
also because of the gain of one more conservative quantity at the limit (which implies in
particular at the linearized level that the “energy eigenvalue” µα is negative for α 6= 1 but
converges to µ1 = 0 in the limit α→ 0).

In Section 2, we use the regularity properties of the collision operator in order to
establish on the one hand that the family (Gα) is bounded in H∞ ∩ L1(m−1) uniformly
according to the inelastic parameter α (the key argument being the use of the entropy
functional which provides uniform lower bound on the energy of Gα) and on the other
hand that the difference of two self-similar profiles in any strong norm may be bounded
by the difference of these ones in weak norm (the key idea is a bootstrap argument). This
last point shall allow to deal with the loss of derivatives and weights in the operator norms
used in the sequel of the paper.

In Section 3, we prove that α 7→ Q+
α is Hölder continuous in the norm of its graph and is

Hölder differentiable in a weaker norm. As a consequence we deduce that Gα → Ḡ1 when
α → 1 with explicit “Hölder” rate, which (partially) proves point (ii) Theorem 1.1. The
cornerstone of the proof is the decoupling of the variation Gα − Ḡ1 between the “energy
direction” and its “orthogonal direction”.

In Section 4, we prove uniqueness of the profile Ḡα for small inelasticity (point (i) of
Theorem 1.1) by a variation around the implicit function theorem. We also deduce that
α 7→ Ḡα is differentiable at α = 1.
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Section 5 is devoted to the study of the linearized operator Lα, and we partially inspire
from the method of [27]. We prove point (iii) of Theorem 1.1 and we end the proof of
point (ii) of Theorem 1.1. We obtain information on the localization of the spectrum and
we establish some decay estimates on the associated semigroup. Let us emphasize that for
technical reasons we state our results in an L1 framework (because mainly we are not able
to generalize Lemma 5.8 to an L2 framework), which makes the spectral analysis more
intricate. The proof proceeds as follows (the cornerstone idea is again the decoupling of the
variations in the “energy direction” and its “orthogonal direction”). First, we localize the
essential spectrum in the half plan ∆c

µ̄ = {z ∈ C, ℜe z ≤ µ̄ < 0} with the help of Weyl’s
theorem, the compactness properties of Lα and the “rough” (Hölder type) convergence of
Q+
α (Ḡα, ·) to Q+

1 (Ḡ1, ·) in the “good” norm of the graph. Second, we localize the discrete
spectrum lying in ∆µ̄ = {z ∈ C, ℜe z ≥ µ̄} in the disc {z ∈ C, |z| ≤ C (1 − α)}, thanks
to estimates on the resolvent of Lα. Third we establish that the spectrum Σ(Lα) of Lα
satisfies Σ(Lα)∩∆µ̄ = {µα}, where µα has multiplicity 1 (the proof mainly takes advantage
of the “precise” convergence of Q+

α (Ḡα, ·) to Q+
1 (Ḡ1, ·) in “bad” norm, together with a

regularity estimate holding on the discrete eigenspace). Last we establish the expansion
(1.32) using the energy equation associated to the eigenvalue µα. The decay properties of
the linear semigroup are then deduced from resolvent estimates and the above localization
of the spectrum.

Section 6 is devoted to the proof of points (iv) and (v) in Theorem 1.1 which is split in
several steps. First we establish a “linearized asymptotic stability result” by decoupling the
evolution equation (1.29) along the “energy direction” and its “orthogonal direction”, and
using the semigroup decay estimates and the quadratic structure of the collision operator.
Second we establish a “non-linear stability result” by decoupling the evolution equation
(1.29), using the energy dissipation equation along the “energy direction” and the entropy
production method on its “orthogonal direction” (let us mention that this method follows
closely the physical idea that for small inelasticity the “molecular” timescale of thermal-
ization of velocity distribution decouples from the “cooling” timescale of dissipation of
energy). Third we prove the asymptotic decomposition and we exhibit a Liapunov func-
tional for smooth initial data (point (v)) by gathering (and slightly modifying) the two
preceding steps. Fourth and last, we prove point (iv) for general initial data, gathering
the previous arguments with the decomposition of solutions between a smooth part and a
small remaining part as introduced in [28].

2 A posteriori estimates on the self-similar profiles

In this section we prove various a posteriori regularity and decay estimates on the self-
similar profiles (or the differences of self-similar profiles), uniform as α → 1, which shall
be useful in the sequel.

2.1 Uniform estimates on the self-similar profiles

For any α ∈ (0, 1) we consider Gα the set of all the self-similar profiles of the inelastic
Boltzmann equation (1.1) with inelasticity coefficient α, with given mass ρ ∈ (0,+∞) and
finite energy. More precisely, we define Gα as the following set of functions

Gα :=
{
0 ≤ G ∈ L1

2 satisfying (1.30)
}
.
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For some fixed α0 ∈ (0, 1), we also define

G = ∪α∈[α0,1)Gα.

The fact that for any α ∈ (0, 1), Gα is not empty was proved in [24], where a so-
lution of (1.30) was built within the class of radially symmetric functions belonging to
the Schwartz space. Here we show that any self-similar profile Gα ∈ G belongs to the
Schwartz space and that decay estimates, pointwise lower bound and regularity estimates
can be made uniform according to the inelasticity coefficient α ∈ [α0, 1). Let us emphasize
once again that the choice of the velocity rescaling parameter τα = ρ (1 − α) in (1.30) is
fundamental in order to get that uniformity in the limit α→ 1. Let us also mention that
our choice of scaling for the equation (1.30) is mass invariant, that is G with density ρ(G)
satisfies the equation if and only if G/ρ(G) satisfies the equation with ρ = 1. Therefore
all the estimates on the profiles are homogeneous in terms of the density ρ.

Proposition 2.1 Let us fix α0 ∈ (0, 1). There exists a1, a2, a3, a4 ∈ (0,∞) and, for any
k ∈ N, there exists Ck ∈ (0,∞) such that

∀α ∈ [α0, 1), ∀Gα ∈ Gα,





‖Gα‖L1(ea1 |v|) ≤ a2, ‖Gα‖Hk(RN ) ≤ Ck,

Gα ≥ a3 e
−a4 |v|8.

(2.1)

We first recall the following geometrical lemma extracted (in a slightly specified form)
from [23, Lemma 2.3 & Lemma 4.4], that we shall use several times in the sequel.

Lemma 2.2 For any α ∈ (0, 1] and σ ∈ SN−1 we define

φ∗α = φ∗α,v,σ : R
N → R

N , v∗ 7→ v′

φα = φα,v∗,σ : R
N → R

N , v 7→ v′

and the Jacobian functions J∗
α = det (Dφ∗α,v,σ), Jα = det (Dφα,v∗,σ), as well as the cone

Ωδ = Ωδ,σ = {u ∈ R
N , û · σ > δ − 1},

for any δ ∈ (0, 2) and σ ∈ SN−1.
For any δ ∈ (0, 2), φ∗α defines a C∞-diffeomorphism from v + Ωδ onto v + Ωω∗(δ) with

ω∗(δ) = 1 +
√
δ/2 and φα defines a C∞-diffeomorphism from v∗ + Ωδ onto v∗ + Ωωα(δ)

with

ωα(δ) = 1 +
δ − 1 + rα(

1 + 2(δ − 1)rα + r2α

)1/2

and rα = (1 + α)/(3 − α).
Moreover, there exist C ∈ (0,∞) such that with Cδ = C/δ

C−1
δ |v − v∗| ≤ |φα(v) − v∗| ≤ 2 |v − v∗|,(2.2)

|φ−1
α (v′) − φ−1

α′ (v′)| ≤ Cδ |α′ − α| |v′ − v∗|,(2.3)

|Jα| ≤ Cδ, |J−1
α | ≤ Cδ, |J−1

α − J−1
α′ | ≤ C2

δ |α′ − α|(2.4)
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on v∗ +Ωδ, uniformly with respect to the parameters α,α′ ∈ [0, 1], σ ∈ SN−1 and v∗ ∈ RN .
The same estimate holds for φ∗α on v + Ωδ. Finally, for any α,α′ ∈ [0, 1], σ ∈ SN−1,
v∗ ∈ RN and t ∈ [0, 1], there holds

t φ−1
α + (1 − t)φ−1

α′ = φ−1
αt

(2.5)

for some αt belonging to the segment with extremal points α and α′. The same result holds
for φ∗α.

We will also need the following elementary result in order to estimate the convolution
operator L defined in (1.9).

Lemma 2.3 For any function g ∈ L1
3(R

N ) there exists some constants c1, c2 ∈ (0,∞)
such that

c1 (1 + |v|) ≤ L(g) ≤ c2 (1 + |v|).(2.6)

Moreover, if g satisfies E(g) ≥ a1 ρ and m3/2(g) ≤ a2 ρ, for some constants a1, a2 > 0, we
can take c1 = C−1 ρ, c2 = C ρ in (2.6) for some explicit constant C > 0 depending only
on a1, a2 > 0.

Proof of Lemma 2.3. The upper bound in (2.6) is immediate. As for the lower bound, we
have, on the one hand, by Jensen’s inequality,

∫

RN

g∗ |u| dv∗ ≥ ρ |v|.(2.7)

On the other hand, by triangular inequality,

∫

RN

g∗ |u| dv∗ ≥ m1/2 − |v|m0.

By Hölder’s inequality we have m1/2 ≥ E2 m−1
3/2 ≥ C0 ρ for some explicit constant C0 > 0

depending only on a1, a2. As a consequence

∫

RN

g∗ |u| dv∗ ≥ ρ (C0 − |v|).(2.8)

These two lower bounds (2.7, 2.8) imply immediately that

∫

RN

g∗ |u| dv∗ ≥ C−1 ρ (1 + |v|).

for some explicit constant C > 0 depending only on C0. ⊓⊔
Proof of Proposition 2.1. We split the proof into several steps. In Steps 1, 2 and 3, we
establish the smoothness for any profile Gα ∈ G as well as upper and lower bounds on its
tail. In Steps 4, 5, 6, 7, 8 and 9, we show that these estimates actually are uniform with
respect to the choice of the profile Gα ∈ Gα and α ∈ [α0, 1). Thanks to Steps 1, 2 and 3
the computations then performed are rigorously justified.

We fix α ∈ [α0, 1) and Gα a solution of (1.30) for which we will establish the announced
bounds. From now we omit the subscript “α” when no confusion is possible.
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Step 1. Moment bounds. From [24, Proposition 3.1], by taking gin = G in the evolution
equation (1.15), we get that G ∈ L1

k for any k ∈ N.

Step 2. L2 a posteriori bound. We aim to prove that G ∈ L2. Let us fix A > 0 and let
us introduce the C1 function

ΛA(x) :=
x2

2
1x≤A +

(
Ax− A2

2

)
1x>A.

We multiply the equation (1.30) by Λ′
A(G) = min{G,A} := TA(G). Once again we

shall omit the subscript “A” when no confusion is possible. After some straightforward
computation we get

∫

RN

(
T (G)GL(G) + ρ (1 − α)N T (G)2/2

)
dv =

∫

RN

T (G)Q+(G,G) dv.

Since L(G) ≥ c1 (1 + |v|) thanks to Lemma 2.3 and Λ(G) ≤ GT (G) we have

c1

∫

RN

Λ(G) (1 + |v|) dv ≤
∫

RN

T (G)GL(G) dv(2.9)

≤
∫

RN

T (G)Q+(G,G) dv ≤ I1 + I2 + I3 + I4,

where the terms Ik are defined in the following way, splitting the collision kernel into
some smooth and non-smooth parts. Let Θ : R → R+ be an even C∞ function such that
supportΘ ⊂ (−1, 1), and

∫
R

Θ = 1. Let Θ̃ : RN → R+ be a radial C∞ function such that

support Θ̃ ⊂ B(0, 1) and
∫

RN Θ̃ = 1. Introduce the regularizing sequences

Θm(z) = mΘ(mz), z ∈ R, Θ̃n(x) = nNΘ̃(nx), x ∈ R
N .

As a convention, we shall use subscripts S for “smooth” and R for “remainder”. We
denote Φ(u) := |u|. First, we set

ΦS,n = Θ̃n ∗ (Φ 1An) , ΦR,n = Φ − ΦS,n,

where An stands for the annulus An =
{
x ∈ RN ; 2

n ≤ |x| ≤ n
}
. Similarly, we set

bS,m(z) = Θm ∗ (b 1Im) (z), bR,m = b− bS,m,

where Im stands for the interval Im =
{
x ∈ R ; −1 + 2

m ≤ |x| ≤ 1 − 2
m

}
(b is understood

as a function defined on R with compact support in [−1, 1]). We then define

I1 =

∫

RN

T (G)Q+
R(G,G) dv,

where Q+
R is the gain term associated to the cross-section BR := |u| bR,m,

I2 =

∫

RN

T (G)Q+
RS(G,G) dv,

where Q+
RS is the gain term associated to the cross-section BRS := ΦR,n bS,m,

I3 =

∫

RN

T (G)
[
Q̃+
S (χ(G), G) + Q̃+

S (T (G), χ(G)
]
dv,
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where Q+
S is the gain term associated to the smooth cross-section BS := ΦS,n bS,m and

χ(G) := G− T (G) and finally

I4 =

∫

RN

T (G)Q+
S (T (G), T (G)) dv.

We estimate each term separately. We omit the subscripts m and n when there is no
confusion. For I1 we proceed along the line of the proof of the estimate for the term Ir in
[23, Proof of Theorem 2.1]. Using Young’s inequality xT (y) ≤ Λ(x) + Λ(y) we have

I1 =

∫ ∫ ∫

RN×RN×SN−1

GG∗ T (G′) bR,m |u| dv dv∗ dσ

≤
∫ ∫ ∫

RN×RN×SN−1

G [Λ(G∗) + Λ(G′)] bR,m 1û·σ≤0 |u| dv dv∗ dσ

+

∫ ∫ ∫

RN×RN×SN−1

G∗ [Λ(G) + Λ(G′)] bR,m 1û·σ≥0 |u| dv dv∗ dσ = I1,1 + ...+ I1,4.

We just deal with the term I1,2, the others may be handled in a similar (or even simpler)
way. Making the change of variables v∗ → v′ = φ∗α(v∗) (for some fixed v, σ) and using the
elementary inequality |u| ≤ 4 |v′ − v| valid when σ · û ≤ 0, there holds

I1,2 =

∫ ∫ ∫

RN×RN×SN−1

GΛ(G′) bR,m 1û·σ≤0 |u| dv dv∗ dσ

= 2N+2

∫ ∫ ∫

RN×RN×SN−1

GΛ(G′) bR,m 1û·σ≤0 |v − v′| dv′ dv dσ

≤ 2N+2 ‖bR,m‖L1 ‖G‖L1
1

∫

RN

Λ(G) (1 + |v|) dv.

Since the same estimates hold for all the terms I1,k, we obtain

I1 ≤ ε(m) ‖G‖L1
1

∫

RN

Λ(G) 〈v〉 dv with ε(m) −→
m→∞

0.(2.10)

For I2 we proceed along the line of the proof of the estimate for the term I in [24,
Proof of Proposition 2.5]. Using again Young’s inequality xT (y) ≤ Λ(x) + Λ(y) and the
trivial estimate ΦR,n ≤ C n−1 (|v|2 + |v∗|2) we get

I2 =

∫ ∫ ∫

RN×RN×SN−1

GG∗ T (G′) bS,mΦR,n dv dv∗ dσ

≤ C

n

∫ ∫ ∫

RN×RN×SN−1

G |v|2 [Λ(G∗) + Λ(G′)] bS,m dv dv∗ dσ

+
C

n

∫ ∫ ∫

RN×RN×SN−1

G∗ |v∗|2 [Λ(G) + Λ(G′)] bS,m dv dv∗ dσ = I2,1 + ...+ I2,4.

Because of the truncation on b of frontal and grazing collisions, both changes of variables
v → v′ = φα(v) (for fixed v∗, σ) and v∗ → v′ = φ∗α(v∗) (for fixed v, σ) are allowed (and the
jacobian of their inverse is bounded). Hence in a similar way as for the term I1 we obtain

I2 ≤ C(m)

n
‖G‖L1

2

∫

RN

Λ(G) dv.(2.11)
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For I3, using again Young’s inequality, plus T (G) ≤ G and the fact that both changes
of variables v → v′ = φα(v) (for fixed v∗, σ) and v∗ → v′ = φ∗α(v∗) (for fixed v, σ) are
allowed, we have

I3 =

∫ ∫ ∫

RN×RN×SN−1

(T (G′) + T (G′
∗)) [Gχ(G∗) + χ(G)T (G∗)] bS,mΦS,n dv dv∗ dσ

≤ C(n)

∫ ∫ ∫

RN×RN×SN−1

{
χ(G∗) [Λ(G′) + Λ(G′

∗) + 2Λ(G)]

+χ(G) [Λ(G′) + Λ(G′
∗) + 2Λ(G∗)]

}
bS,m dv dv∗ dσ.

We deduce as before

I3 ≤ Cm,n ‖χ(G)‖L1

∫

RN

Λ(G) dv(2.12)

for some constant Cm,n > 0.

Finally for I4, we argue as in the proof of [24, Proposition 2.6] for the treatment of the
term involving Q+

S , and we get for some θ ∈ (0, 1)

I4 ≤ Cm,n ‖T (G)‖1+2θ
L1 ‖T (G)‖2 (1−θ)

L2 ,(2.13)

for some constant Cm,n > 0.
Gathering (2.9), (2.10), (2.11), (2.12), (2.13) and taking m, next n and finally A ≥

A(G) large enough we may control the terms I1, I2 and I3 by the half of the left hand side
term of (2.9) (for I3 we use that ‖χA(G)‖L1 → 0 when A→ ∞). Note that the condition
A ≥ A(G) depends on the distribution G (by the mean of some non-concentration bound),
but shall play no role since we shall take the limit A→ +∞ in the end. We obtain

∀A ≥ A(G),
c1
2

∫

RN

ΛA(G) (1 + |v|) dv ≤ Cb,ρ,E(G) ‖TA(G)‖2 (1−θ)
L2

for some constant Cb,ρ,E(G) > 0 depending on the cross-section b and on the profile G via
its energy. Using that TA(G)2/2 ≤ ΛA(G) we deduce

∀A ≥ A(G),
c1
4
‖TA(G)‖2 θ

L2 ≤ Cb,ρ,E(G)

and we then conclude that G ∈ L2 passing to the limit A→ ∞ in the preceding estimate,
with the bound

‖G‖L2 ≤
(

4Cb,ρ,E(G)

c1

) 1
2θ

.(2.14)

Remark 2.4 Note that the L2 bound (2.14) only depends on the distribution G by the
mean of the energy E(G) and the constant c1. Therefore, thanks to Lemma 2.3, this bound
only depends on a lower bound on the energy E(g) and an upper bound on the third moment
m3/2(g).

Step 3. Smoothness and positivity. Thanks to [24, Theorem 1.3] and [8, Theorem 1],
taking gin = G as an initial condition in (1.15) we have that G belongs to the Schwartz
space of C∞ functions decreasing faster than any polynomials, and that G ≥ a1 e

−a2 |v| for
some constant a1, a2 > 0.
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So far the estimates in Step 3 may be not uniform on the elasticity coefficient α ∈ [α0, 1)
and on the profile Gα. The aim of the following steps is to prove that they actually are
uniform. Note however that estimates of the previous steps shall ensure that the following
computations are rigorously justified.

Step 4. Upper bound on the energy using the energy dissipation term. We prove that

∀α ∈ (0, 1] E ≤ 4

b21
ρ.(2.15)

From equation (1.23) on the energy of the profile G there holds

(1 + α) b1

∫

RN

∫

RN

GG∗ |u|3 dv dv∗ = 2 ρ

∫

RN

G |v|2 dv.(2.16)

From Jensen’s inequality ∫

RN

|u|3G∗ dv∗ ≥ ρ |v|3,

and Hölder’s inequality

∫

RN

|v|3 Gdv ≥ ρ−1/2

(∫

RN

|v|2Gdv
)3/2

,

we get
(1 + α) b1 ρ

1/2 E3/2 ≤ 2 ρ E
from which the bound (2.15) follows.

Step 5. Lower bound on the energy using the entropy. We prove

∀α ∈ (0, 1] E ≥ N α4

8
ρ.(2.17)

Remark 2.5 The choice of scaling we have made for the evolution equation in self-similar
variable becomes clear from this computation: it is chosen such that the energy of the self-
similar profile does not blow up nor vanishes for α → 1. The restriction α ∈ [α0, 1),
α0 > 0, is then made in order to get a uniform estimate from below on the energy.

By integrating the equation satisfied by G against logG we find
∫

RN

Q(G,G) logGdv − ρ (1 − α)

∫

RN

logG ∇v · (v G) dv = 0.

Then we write the first term as in [17, Section 1.4] to find

1

2

∫ ∫ ∫

R2N×SN−1

GG∗

(
log

G′G′
∗

GG∗
− G′G′

∗
GG∗

+ 1

)
B dv dv∗ dσ

+
1

2

∫ ∫ ∫

R2N×SN−1

(
G′G′

∗ −GG∗
)
B dv dv∗ dσ + ρ (1 − α)

∫

RN

v · ∇vGdv = 0.

If we denote

DH,α(g) =
1

2

∫ ∫ ∫

R2N×SN−1

g g∗

(
g′g′∗
gg∗

− log
g′g′∗
gg∗

− 1

)
B dv dv∗ dσ ≥ 0,(2.18)
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(recall that in this formula the post-collisional velocities v′, v′∗ are computed according to
the inelastic formula (1.4) with normal restitution coefficient α ∈ (0, 1]), we can write

−DH,α(G) +

(
1

α2
− 1

)
b2

∫ ∫

R2N

GG∗ |u| dv dv∗ − (1 − α)N ρ2 = 0,(2.19)

with b2 := ‖b‖L1 , and thus we get

∫ ∫

R2N

GG∗ |u| dv dv∗ =
α2

1 + α

(
N ρ2 +

1

1 − α
DH,α(G)

)
≥ N α2

2
ρ2.

On the other hand, from Cauchy-Schwarz’s inequality
∫ ∫

R2N

GG∗ |u| dv dv∗ ≤

≤
(∫ ∫

R2N

GG∗ dvdv∗

)1/2(∫ ∫

R2N

GG∗|u|2 dvdv∗
)1/2

=
√

2 ρ3/2 E1/2,

and then the bound (2.17) follows gathering the two preceding estimates.

Step 6. Upper bound on (exponential) moments using Povzner inequality. There exists
A,C > 0 such that

∀α ∈ [0, 1),

∫

RN

G(v) eA|v| dv ≤ C ρ.

We refer to [8] where that bound is obtained as an immediate consequence of the
following sharp moment estimates: there exists X > 0 such that

∀α ∈ [0, 1), mk =

∫

RN

G |v|k dv ≤ Γ(k + 1/2)Xk/2 ρ.(2.20)

It is worth noticing that in [8] the Povzner inequality used in order to get (2.20) is uniform
in the normal restitution coefficient α ∈ [0, 1] and that the factor ρ comes from our choice
of the scaling variables (in which ρ is involved).

Step 7. Uniform upper bound on the L2 norm. From (2.17), (2.20) and Remark 2.4, the
L2 bound (2.14) is uniform on α ∈ [α0, 1) and G ∈ Gα.
Step 8. Smoothness. It is enough to show some uniform bounds from above and below
on the energy together with uniform non-concentration bounds on the self-similar profiles
in G, in the form of upper bounds on the L2 bounds for instance. Indeed the proofs
of [24, Proposition 3.1, Proposition 3.2, Proposition 3.4, Theorem 3.5 and Theorem 3.6]
then apply straightforwardly (in these proofs we did not use the part associated with the
anti-drift in the semigroup). Therefore the uniform bounds on the Hk norms for all k ≥ 0
follows from these results.

Step 9. Pointwise Lower bound. It is a consequence of the following lemma. ⊓⊔

Lemma 2.6 Let g ∈ C([0,∞);L1
3) be a solution of the rescaled equation (1.29) with in-

elasticity parameter α ∈ (0, 1) and assume that for some p > 1 and C, T ∈ (0,∞)

sup
[0,T ]

‖g‖Lp∩L1
3
≤ C.
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(i) For any t1 ∈ (0, T ) there exists a1 ∈ (0,∞) (depending on C, ρ and t1 but not on T )
such that

∀ t ∈ [t1, T ], ∀ v ∈ R
N , g(t, v) ≥ a−1

1 e−a1 |v|8 .(2.21)

(ii) If furthermore, gin satisfies

gin(v) ≥ a−1
0 e−a0 |v|8 ,

then (2.21) holds with t0 = 0 and some constant a1 ∈ (0,∞) (depending on C, ρ, a0 but
not on T ).

Proof of Lemma 2.6. We only prove (i), the proof of (ii) being similar. Let us fix t1 ∈ (0, 1).
We closely follow the proof of the Maxwellian lower bound for the solutions of the elastic
Boltzmann equation (see [11, 30]) taking advantage of some technical results established
in its extension to the solutions of the inelastic Boltzmann equation (see [24, Theorem
4.9]). The starting point is again the evolution equation satisfied by g written in the form

∂tg + τα v · ∇vg + (ταN + C +C |v|) g = Q+
α (g, g) + (C + C |v| − L(g)) g,

where the last term in the right hand side term is non-negative for some well-chosen
numerical constant C ∈ (0,∞) thanks to Lemma 2.3, (2.20) and (2.17). Let us introduce
the semigroup Ut associated to the operator τα v ·∇v+λ(v), where λ(v) := ταN+C+C |v|,
which action is given by

(Ut h)(v) = h(v e−τα t) exp

(
−
∫ t

0
λ(v e−s) ds

)
.

Thanks to the Duhamel formula, we have

∀ t > 0, ∀ τ ≥ 0, g(t+ τ, .) ≥
∫ t

0
Ut−sQ

+(g(s + τ, .), g(s + τ, .)) ds.(2.22)

Noticing that (
−
∫ t

0
λ(v e−s) ds

)
≥ −(C |v| + ταN t+ C t),

and repeating the arguments of Steps 2 and 3 in the proof of [24, Theorem 4.9], we get
that

∀ t ≥ τ, g(t, .) ≥ η 1B(0,δ)(v)(2.23)

with τ = τ1 = t1/2 and some constant η = η1 > 0, δ = δ1 > 1. Let us emphasize that
here we make use of Lemma 4.6, Lemma 4.7 and Lemma 4.8 in [24] where the constants
exhibited in these ones are uniform in α ∈ [α0, 1) thanks to the uniform Lp ∩L1

3 estimates
assumed on g.

Now, on the one hand, from [24, Lemma 4.8], there exists κ ∈ (0,∞) such that

Q+
α (1B(0,1),1B(0,1)) ≥ κ1B(0,

√
5/2)

which in turns implies

∀ δ > 0, Q+
α (1B(0,δ),1B(0,δ)) ≥ κ δ−N−1 1B(0,

√
5/2 δ).(2.24)
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On the other hand, there exists κ′ ∈ (0,∞) such that

∀ δ > 0, ∀ s ∈ [0, 1], Us(1B(0,δ)) ≥ κ′ e−C δ 1B(0,δ).(2.25)

From (2.23) with η = η1, δ = δ1, and making use of (2.22), (2.24), (2.25), we get that
(2.23) holds with

τ = τ2 = τ1 +
t1
22
, δ = δ2 =

√
5

2
δ1 and η = η2 = (τ2 − τ1)κ

′′ η2
1 e

−C′ δ1 ,

where κ′′ = κκ′ and C ′ depends on C and N . Iterating the argument we get that (2.23)

holds with τ = τk = τk−1 + t1 2−k = (1 − 2−k) t1, δ = δk+1 =
(√

5/2
)k+1

and

ηk+1 = (κ′′ t1)
1+2+...+2k−1

η2k

1 e−C
′ (δk+2 δk−1+...+2k−1 δ1) 2−[k+2 (k−1)+...+2k−1 1] ≥ A2k+1

,

with A :=
√
κ′′ t1

√
η1 e

−C′ δ1/2. In other words, using that
(√

5
2

)8
> 2, we have proved

∀ t ≥ t1, ∀ k ∈ N, g(t, v) ≥ A2k
1B(0,2k/8 δ1)(v),

from which we easily conclude. ⊓⊔

2.2 Estimates on the difference of two self-similar profiles

In this subsection we take advantage of the mixing effects of the collision operator in order
to show that the L1 norm of their difference of two self-similar profiles (corresponding to the
same inelasticity coefficient) indeed controls the Hk∩L1(m−1) norm of their difference for
any k ∈ N and for some exponential weight function m, uniformly in terms of α ∈ [α0, 1).

Proposition 2.7 For any k > 0, there is m = exp(−a |v|), a ∈ (0,∞) and Ck > 0 such
that for any α ∈ [α0, 1) and any Gα,Hα ∈ Gα there holds

‖Hα −Gα‖Hk∩L1(m−1) ≤ Ck ‖Hα −Gα‖L1 .(2.26)

Proof of Proposition 2.7. We proceed in three steps. It is worth mentioning that all the
constants in the proof are uniform in terms of the normal restitution coefficient α ∈ [α0, 1),
as they only depend on the uniform bounds of Proposition 2.1 and some uniform bounds
on the collision kernel.

Step 1. Control of the L1 moments. We prove first that there exists A,C ∈ (0,∞) such
that

∀α ∈ [α0, 1),

∫

RN

|Hα −Gα| eA |v| dv ≤ C

∫

RN

|Hα −Gα| dv.

Let us consider some normal restitution coefficient α ∈ [α0, 1) and two self-similar profiles
G,H ∈ Gα (here again, we omit the subscript α when there is no confusion). We denote
D = G −H, S = G +H and ϕ = |v|2p sgn(D), p ∈ 1

2 N, p ≥ 3/2, where sgn(D) denotes
the sign of D. The equation for D reads

0 = Qα(G,G) −Qα(H,H) − ρ (1 − α)∇v · (v D)

= 2 Q̃α(D,S) − ρ (1 − α)∇v · (v D).(2.27)
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Multiplying equation (2.27) by ϕ, we get

0 =

∫

RN×RN×SN−1

BDS∗
[
ϕ′
∗ + ϕ′ − ϕ∗ − ϕ

]
dv dv∗ dσ

−ρ (1 − α)

∫

RN

∇v(vD) |v|2p sgn(D) dv

≤
∫

RN×RN

|u| |D|S∗Kp dv dv∗ + 2

∫

RN×RN

|u| |D|S∗ |v∗|2p dv dv∗

+ρ

∫

RN

|D| v · ∇(|v|2p) dv

with

Kp(v, v∗) :=

∫

SN−1

(|v′|2p + |v′∗|2p − |v|2p − |v∗|2p) b(σ · u) dσ.

From [8, Corollary 3, Lemma 2], there holds

Kp(v, v∗) ≤ γp Σp − (1 − γp) (|v|2p + |v∗|2p)

where (γp)p=3/2,2,... is a decreasing sequence of real numbers such that

0 < γp < min

{
1,

4

p+ 1

}
,(2.28)

and Σp is defined by

Σp :=

kp∑

k=1

(
p
k

)(
|v|2k |v∗|2p−2k + |v|2p−2k |v∗|2k

)
,

with kp := [(p + 1)/2] is the integer part of (p + 1)/2 and

(
p
k

)
stands for the binomial

coefficient. As a consequence,

(1 − γ3/2)

∫

RN×RN

|v|2p |u|S∗ |D| dv dv∗ ≤ γp

∫

RN×RN

|u| |D|S∗ Σp dv dv∗

+2

∫

RN×RN

|u| |D|S∗ |v∗|2p dv dv∗ + 2 ρ p

∫

RN

|D| |v|2p dv.

Using Lemma 2.3 in order to estimate L(S) from below, the inequality |u| ≤ |v|+ |v∗| and
introducing the notations

dk :=

∫

RN

|D| |v|2k dv, sk :=

∫

RN

S |v|2k dv,

we get, for some numerical constant C ∈ (0,∞),

ρ

C
dp+1/2 ≤ γp Sp +

(
d0 sp+1/2 + d1/2 sp

)
+ 2 ρ pdp,(2.29)

with

Sp :=

kp∑

k=1

(
p
k

)(
dk+1/2 sp−k + dk sp−k+1/2 + dp−k+1/2 sk + dp−k sk+1/2

)
.
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From Proposition 2.1, or more precisely (2.20), we know that sk ≤ ρΓ(k+ 1/2)xk for any
k ≥ 1 and for some x ∈ (1,∞). By Hölder’s inequality, we also have

d
1+ 1

2p
p ≤ dp+ 1

2
d

1
2p

0 .

Repeating the proof of [8, Lemma 4], for any a ≥ 1, there exists A > 0 such that

Sp ≤ Aρ (d0 + d1/2) Γ(a p+ a/2 + 1)Zp

with
Zp := max

k=1,..,kp

{δk+1/2 σp−k, δk σp−k+1/2, δp−k+1/2 σk, δp−k σk+1/2},

and

δk :=
dk

(d0 + d1/2) Γ(a k + 1/2)
, σk :=

sk
ρΓ(a k + 1/2)

.

We may then rewrite (2.29) as

Γ(a p+ 1/2)1/2p δ1+1/2p
p ≤ Aγp

Γ(a p+ a/2 + 1)

Γ(ap+ 1/2)
Zp + (σp+1/2 + σp) + 2 ρ p δp.

On the one hand, from (2.28), there exists A′ such that

Aγp
Γ(ap+ a/2 + 1)

Γ(ap+ 1/2)
≤ A′ pa/2−1/2 ∀ p = 3/2, 2, . . .

On the other hand, thanks to Stirling’s formula n! ∼ nn e−n
√

2πn when n → ∞ and the
estimate (2.28), there exists A′′ > 0 such that

(1 − γp) Γ(a p + 1/2)1/2p ≥ A′′ pa/2 ∀ p = 3/2, 2, . . .

Therefore,
pa/2 δ1+1/2p

p ≤ pa/2−1/2 Zp + (σp+1/2 + δ1 σp) + 2 ρ p δp.

We finally obtain
dk ≤ xk Γ(ak + 1/2) (d0 + d1/2),

and we easily conclude as in [8, Proof of Theorem 1] or in [23, Proof of Proposition 3.2,
Step 2].

Step 2. Control of the L2 norms. For k = 0, the propagation of the L2 norm is immediate
using the result [24, Corollary 2.3]. Indeed one just has to split the collision kernel as
in [24, Section 2.4]. For the truncated and regularized part Q+

S (we use the notation
introduced in step 2 the proof of Proposition 2.1), [24, Corollary 2.3] together with some
basic interpolation yield the following control:

∫

RN

(
Q+
S (S,D) +Q+

S (D,S)
)
Ddv ≤ C ρ1+2θ ‖D‖2−2θ

L2

for some explicit C > 0 and θ ∈ (0, 1). For the remaining term Q+
R, we use the same

control as in [24, Proof of Proposition 2.5] to get
∫

RN

(
Q+
R(S,D) +Q+

R(D,S)
)
Ddv ≤ ε

(
‖D‖L1

2
+ ‖D‖L2

1/2

)
‖D‖L2

1/2
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for some ε which can be taken as small as wanted by the truncation. Gathering these
estimates, we get

∀ ε > 0

∫

RN

Q̃+(S,D)D dv ≤ ε ‖D‖2
L2

1/2
+Cε

where Cε depends on weighted L1 and L2 norms of S, on L1 norms on D and on ε. Using
equation (2.30) with i = 0, Lemma 2.3 to treat the term L(D), and some elementary
interpolation, we deduce that

‖D‖L2
1/2

≤ C ‖D‖L1
2

for some constant C > 0, which concludes the proof for k = 0 using the previous step on
the L1 moments.

Step 3. Control of the Hk norms. From the previous step and some interpolation, in
order to conclude it is enough to prove (2.26) for any k ∈ N and m ≡ 1. We proceed by
induction on k. For any i ∈ NN , the equation satisfied by ∂iD is

∂iQ+(S,D) + ∂iQ+(D,S) − ∂i(L(D)S) − L(S) ∂iD

−
∑

0<i′≤i

(
i′

i

)
∂i

′
L(S) ∂i−i

′
D − ρ (1 − α) ∂i∇ · (v D) = 0.

We deduce that

C

∫

RN

(∂iD)2 (1 + |v|) dv ≤
∫

RN

(
∂iQ+(S,D) + ∂iQ+(D,S)

)
∂iDdv(2.30)

−
∑

0≤i′≤i

(
i′

i

)∫

RN

∂i
′
L(D) ∂i−i

′
S ∂iDdv

−
∑

0<i′≤i

(
i′

i

)∫

RN

∂i
′
L(S) ∂i−i

′
D∂iDdv

droping the non-positive term.
The induction is initialized by Step 2. Let us assume the induction step k ≥ 0 to be

proved, and let us consider some i ∈ NN such that |i| = k + 1. Using equation (2.30)
and [24, Theorem 2.5] to estimate the gain term, we find easily

‖∂iD‖L2 ≤ C
(
‖D‖L1

q
+ ‖D‖

H
k+(3−N)/2
q

)

for some q > 0. Therefore we obtain by interpolation (since (3−N)/2 < 1 for N ≥ 2), for
another q′ possibly larger:

‖D‖Hk+1 ≤ C
(
‖D‖L1

q′
+ ‖D‖Hk

)
.

This concludes the proof, using interpolation, the induction hypothesis k, and the Step 1
on the L1 moments. ⊓⊔

28



3 The elastic limit α → 1

3.1 Dependency of the collision operator according to the inelasticity

In this subsection we show that the collision operator depends continuously on the inelas-
ticity coefficient α ∈ [0, 1]. Since it is an unbounded operator, this continuous dependency
is expressed in the norm of the graph of the operator or in some weaker norm. We start
showing that this dependency of the collision operator is Lipschitz, and even C1,η for any
η ∈ (0, 1), when allowing a loss (in terms of derivatives and weight) in the norm they are
expressed. Let define the formal derivative of the collision operator according to α by

Q′
α(g, f) := ∇v ·

(∫

RN

∫

SN−1

g(′v∗(α)) f(′v(α)) b |u|
(
u− |u|σ

4α2

)
dσ dv∗

)

or by duality

〈Q′
α(g, f), ψ〉 :=

∫

RN

∫

RN

∫

SN−1

g∗ f b |u|
( |u|σ − u

4

)
∇ψ(v′α) dσ dv∗ dv.

Proposition 3.1 Let us fix a smooth exponential weight m = exp(−a |v|s), a ∈ (0,+∞),
s ∈ (0, 1). Then

(i) For any k, q ∈ N the exists C ∈ (0,∞) such that for any smooth functions f, g (say
in S(RN )) and any α ∈ [0, 1] there holds

‖Q±
α (g, f)‖

W k,1
q (m−1)

≤ Ck,m ‖f‖
W k,1

q+1(m
−1)

‖g‖
W k,1

q+1(m−1)
(3.1)

‖Q′
α(g, f)‖

W k,1
q (m−1)

≤ Ck,m ‖f‖
W k+1,1

q+2 (m−1)
‖g‖

W k+1,1
q+2 (m−1)

.(3.2)

(ii) Moreover, for any smooth functions f, g and for any α,α′ ∈ [0, 1], there holds

‖Q+
α (g, f) −Q+

α′(g, f) − (α− α′)Q′
α(g, f)‖W−2,1

q (m−1)

≤ |α− α′|2 ‖f‖L1
q+3(m

−1) ‖g‖L1
q+3(m−1).(3.3)

(iii) As a consequence, there holds

‖Q+
α′(g, f) −Q+

α (g, f)‖W k
q (m−1) ≤ C |α− α′| ‖f‖

W 2k+3,1
q+3 (m−1)

‖g‖
W 2k+3,1

q+3 (m−1)
,(3.4)

and for any η ∈ (1, 2), there exists kη ∈ N, qη ∈ N and Cη ∈ (0,∞) such that

‖Q+
α (g, f) −Q+

α′(g, f) − (α− α′)Q′
α(g, f)‖L1(m−1)

≤ Cη |α− α′|η ‖f‖
W

kη,1
qη (m−1)

‖g‖
W

kη,1
qη (m−1)

.(3.5)

Proof of Proposition 3.1. First by classical convolution-like estimates (see for instance [28]
in the elastic case, and [17] in the inelastic case, as well as the proof of Proposition 3.2
below) we easily have (3.1) and (3.1).
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Next, in order to prove (3.3) we proceed by duality. Let us consider ϕ ∈ S(RN ) and
define ψ := ϕ 〈v〉qm−1. We compute

I :=

∫

RN

[
Q+
α (g, f) −Q+

α′(g, f) − (α− α′)Q′
α(g, f)

]
ψ(v) dv

=

∫

RN×RN×SN−1

|u| b g∗ f
[
ψ(v′α) − ψ(v′α′) − (α− α′)

( |u|σ − u

4

)
· ∇ψ(v′α)

]
dv dv∗ dσ.

Hence, if one denotes by ξv,v∗,σ(α) := ψ(v′α) (for given fixed values of v, v∗, σ), we obtain
(omitting the subscripts for clarity)

|I| =

∫

RN×RN×SN−1

|u| b g∗ f
[
ξ(α) − ξ(α′) − (α− α′) ξ′(α)

]
dv dv∗ dσ

≤ (α− α′)2
∫

RN×RN×SN−1

|u| b g∗ f sup
α∈(0,1)

|ξ′′(α)| dv dv∗ dσ.

We then easily conclude that (3.3) holds using that 〈v′〉q (m′)−1 ≤ C 〈v〉q (m)−1 〈v∗〉q (m∗)−1

for some constant C ∈ (0,∞).
Last, we prove (3.4) by using the following interpolation on J = Q+

α (g, f)−Q+
α′(g, f)−

(α− α′)Q′
α(g, f):

‖J‖
W k,1

q (m−1)
≤ ‖J‖W−2,1

q (m−1) ‖J‖W 2(k+1),1
q (m−1)

and using (3.3) on the first term in the right-hand side, and (3.1,3.2) on the second term
in the right-hand side. It yields

∥∥Q+
α (g, f) −Q+

α′(g, f) − (α − α′)Q′
α(g, f)

∥∥
W k,1

q (m−1)
≤ C |α−α′| ‖f‖

W 2k+3,1
q+3 (m−1)

‖g‖
W 2k+3,1

q+3 (m−1)

and (3.4) follows by using (3.2) again.
Then the proof of (3.5) is done in the same way using suitable interpolation. ⊓⊔
We next state a mere (Hölder) continuity dependency on α, which is however stronger

than Proposition 3.1 in some sense, since it is written in the norm of the graph of the
operator for one the argument.

Proposition 3.2 For any α,α′ ∈ (0, 1], and any g ∈ L1
1(m

−1), f ∈ W 1,1
1 (m−1), there

holds




‖Q+
α (g, f) −Q+

α′(g, f)‖L1(m−1) ≤ ε(α− α′) ‖f‖W 1,1
1 (m−1) ‖g‖L1

1(m−1),

‖Q+
α (f, g) −Q+

α′(f, g)‖L1(m−1) ≤ ε(α− α′) ‖f‖
W 1,1

1 (m−1)
‖g‖L1

1(m−1).
(3.6)

where ε(r) = C r
1

3+4/s for some constant C (depending only on b).

Proof of Proposition 3.2. For any given v, v∗ ∈ RN , w = v + v∗ 6= 0 and σ ∈ SN−1

we define χ ∈ [0, π/2], cos χ := |σ · ŵ|. Let us fix δ ∈ (0, 1), R ∈ (1,∞) and let
us define θδ ∈ W 1,∞(−1, 1) such that θδ(s) = 1 on (−1 + 2δ, 1 − 2δ), θδ(s) = 0 on
(−1 + δ, 1 − δ)c, 0 ≤ θδ ≤ 1, |θ′δ(s)| ≤ 3/δ, ΘR(u) = Θ(|u|/R) with Θ(x) = 1 on [0, 1],
Θ(x) = 1 − x for x ∈ [1, 2] and Θ(x) = 0 on [2,∞), A(δ) := {σ ∈ SN−1; sin2 χ ≥ δ},
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B(δ) := {σ ∈ SN−1; cos θ ∈ (−1 + 2δ, 1 − 2δ)c or sin2 χ ≤ δ}. We then split Q+ in three
terms, namely

Q+
α = Q+,a

α +Q+,v
α +Q+,r

α

where Q+,r
α is defined by (1.3) with b replaced by br := b θδ(σ · û)ΘR(u), where Q+,v

α is
defined by (1.3) with b replaced by bv := b1A(δ) (1−ΘR(u)) and where Q+,a

α is defined by
(1.3) with b replaced by ba := b (1 − θδ(σ · û))ΘR(u) + b (1 − ΘR(u))1Ac(δ). We split the
proof into three steps.

Step 1. Treatment of small angles. There exists a constant C ∈ (0,∞) such that for any
α ∈ (0, 1] and δ ∈ (0, 1) there holds

‖Q+,a
α (ψ,ϕ)‖L1(m−1) ≤ C δ ‖ψ‖L1

1(m−1)‖ϕ‖L1
1(m−1).

Indeed let us consider some ℓ ∈ L∞ and let us proceed by duality. We estimate

∫

RN

Q+,a
α (ψ,ϕ) ℓ(v)m−1(v) dv =

∫

RN×RN×SN−1

|u| ba ψ∗ ϕℓ
′ (m′)−1 dv dv∗ dσ

≤ ‖ba‖L∞
v,v∗

(L1(SN−1)) ‖ℓ‖L∞ ‖ψ‖L1
1(m−1)‖ϕ‖L1

1(m−1),

and we conclude using that ‖ba‖L∞
v,v∗ (L1(SN−1)) ≤ C (δ + maxv,v∗ |B(δ)|) ≤ C δ.

Step 2. Treatment of large relative velocities. There exists a constant C = Ca,s,b ∈ (0,∞)
such that for any α ∈ (0, 1] and δ ∈ (0, 1) there holds

‖Q+,v
α (ψ,ϕ)‖L1(m−1) ≤

C

Rδ2/s
‖ψ‖L1

1(m−1) ‖ϕ‖L1
1(m−1)(3.7)

We need the following lemma, which we state below and prove at the end of the subsection.

Lemma 3.3 For any δ > 0 and α ∈ (0, 1), there holds

σ ∈ SN−1, sin2 χ ≥ δ implies m−1(v′) ≤ m−k(v)m−k(v∗),(3.8)

with k = (1 − δ/160)s/2.

In order to prove (3.7) we fix ℓ ∈ L∞ and we argue by duality again. We estimate
thanks to Lemma 3.3
∫

RN

Q+,v
α (ψ,ϕ) ℓ(v)m−1(v) dv =

∫

RN×RN×SN−1

|u| bv ψ∗ ϕℓ
′ (m′)−1 dv dv∗ dσ

≤ 1

R

∫

RN×RN×SN−1

|u|2 bv ψ∗ ϕℓ
′ (m)−k (m∗)

−k dv dv∗ dσ

≤ 1

R
‖ℓ‖L∞ ‖ψ‖L1

2(m−k)‖ϕ‖L1
2(m−k)

≤ 1

R
‖ℓ‖L∞ ‖|.|m1−k(.)‖2

L∞ ‖ψ‖L1
1(m−1)‖ϕ‖L1

1(m−1),

from which we easily conclude since x 7→ xm1−k(x) is uniformly bounded by Ca,s (1 −
k)−1/s, Ca,s ∈ (0,∞).
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Step 3. The truncated operator. Let us prove that there exists a constant C ∈ (0,∞)
such that for any δ ∈ (0, 1), α,α′ ∈ (0, 1] and R ∈ (1,∞) there holds

‖Q+,r
α (g, f) −Q+,r

α′ (g, f)‖L1(m−1) ≤ C |α− α′|
(
R2

δ
+
R

δ3

)
‖g‖L1(m−1) ‖f‖W 1,1(m−1).

We closely follow the proof of [23, Proposition 4.3]. We consider some ℓ ∈ L∞, f, g ∈
D(RN ), we proceed by duality and next conclude thanks to a density argument. We have

I :=

∫

RN

[Q+,r
α (g, f) −Q+,r

α′ (g, f)]m−1 ℓ dv

=

∫

RN×RN×SN−1

|u|ΘR(u) bδ g∗ f
[
ℓ(v′α)m

−1(v′α) − ℓ(v′α′)m−1(v′α′)
]
dv dv∗ dσ.

With the notations of Lemma 2.2 we perform the changes of variables v 7→ v′α = φα(v) and
v 7→ v′α′ = φα′(v) (for fixed v∗ and σ) with jacobians Jα and Jα′ . Observing that without
restriction we may assume α ≤ α′ and therefore Oα = v∗ + Ωωα(δ) ⊂ Oα′ = v∗ + Ωωα′(δ)

since s 7→ ωs(0) is an increasing function, we get

I =

∫

RN×SN−1

∫

Oα\Oα′

g∗ ℓ
′ (m−1)′ F (φ−1

α )J−1
α dv′ dv∗ dσ

+

∫

RN×SN−1

∫

Oα′

g∗ ℓ
′ (m−1)′ F (φ−1

α )
[
J−1
α − J−1

α′

]
dv′ dv∗ dσ

+

∫

RN×SN−1

∫

Oα′

g∗ ℓ
′ (m−1)′

[
F (φ−1

α ) − F (φ−1
α )
]
J−1
α dv′ dv∗ dσ

= I1 + I2 + I3,

with F (w) := |w − v∗|ΘR(w − v∗) f(w) bδ(σ · ŵ − v∗). For the first term I1 we use the
backward change of variables v′ 7→ v = φ−1

α (v′) (for fixed v∗ and σ) and we get

I1 =

∫

RN×SN−1

∫

RN

|u|ΘR(u) f g∗ ℓ(v
′
α)m−1(v′α) bδ 10≤û·σ≤η dv∗ dv dσ

with η := ω−1
α ◦ ωα′(δ) ≤ C δ−3/2 |α − α′| for some constant C ∈ (0,∞). Since v 7→ |v|s/2

is an increasing subadditive function, we also have |v′α|s ≤ (|v|2 + |v∗|2)s/2 ≤ |v|s + |v∗|s,
which implies m(v′α) ≤ Cm−1m−1

∗ for some constant C ∈ (0,∞) (depending of ζ). As a
consequence, we obtain

|I1| ≤ C Rδ−3/2 |α− α′| ‖b‖L∞ ‖ℓ‖L∞ ‖f‖L1(m−1) ‖g‖L1(m−1).

For the term I2, using the backward change of variable v′ 7→ v = φ−1
α′ (v′) (for some

fixed v∗ and σ) and using the bounds (2.4) on Jα and |J−1
α − J−1

α′ |, we obtain

|I1| ≤ C Rδ−3 |α− α′| ‖b‖L∞ ‖ℓ‖L∞ ‖f‖L1(m−1) ‖g‖L1(m−1).

In order to estimate I3, we introduce αt := (1 − t)α + t α′ and, thanks to (2.3)-(2.2),
we get

|I3| ≤
C

δ
|α− α′|

∫ 1

0

∫

RN×SN−1

∫

Oαt

|g∗| |ℓ′| (m−1)′ |v′ − v|
∣∣∣∇wF (φ−1

αt
(v′))

∣∣∣ dv′dv∗dσdt.

32



Using finally the backward change of variable v′ 7→ v = φ−1
αt

(v′) and the uniform bound
(2.4) on Jαt , t ∈ [0, 1], on v∗ + Ωδ, we get

|I3| ≤ C

(
R2

δ
+
R

δ2

)
|α− α′| ‖b‖W 1,∞ ‖ℓ‖L∞ ‖g‖L1(m−1) ‖f‖W 1,1(m−1).

Gathering the estimates established in Steps 1, 2 and 3, we deduce the first inequality in
(3.6). The second inequality in (3.6) is proved in a similar way (using symmetric changes
of variable, allowed by the truncation). ⊓⊔
Proof of Lemma 3.3. We proceed in three steps.

Step 1. Assume first that (2/
√

5) |v∗| ≤ |v| ≤ (
√

5/2) |v∗|. Using the fact that x 7→ xs/2

is an increasing and subadditive function, there holds

|v′|s ≤ (|v|2 + |v∗|2)s/2 ≤ (9/4)s/2 |v∗|s,

and then by symmetry and because s ≤ 1

|v′|s ≤ 1

2
(9/4)s/2 (|v|s + |v∗|s) ≤

3

4
(|v|s + |v∗|s).

In that case, (3.8) holds with k = 3/4.

Step 2. We shall first show that for any v, v∗ ∈ RN and σ ∈ SN−1, there holds

|v′|2, |v′∗|2 ≤ |v|2 + |v∗|2 −
1 + α

8
sin2 χ |v + v∗|2.(3.9)

We recall the formula

v′ :=
v + v∗

2
+

1

2

[
1 − α

2
u+

1 + α

2
|u|σ

]
, v′∗ :=

v + v∗
2

+
1

2

[
1 − α

2
u− 1 + α

2
|u|σ

]
.

Straightforward computations yield (denoting S = v + v∗)

|v′|2 ≤ |S|2
4

+
1

4

[
1 + α2

2
|u|2 +

1 − α2

2
|u|2 cos θ

]
+

1 − α

4
(S · u) +

1 + α

4
|S| |u| cosχ.

We deduce the bound from above

|v′|2 ≤ |S|2
4

+
|u|2
4

+
1 − α

4
|S| |u| + 1 + α

4
|S| |u| cosχ.

Then by applying twice Young’s inequality

|v′|2 ≤ |S|2
(1

4
+

1 − α

8

)
+ |u|2

(1

4
+

1 − α

8

)
+

1 + α

4
|S| |u| cosχ,

≤ |S|2
(1

4
+

1 − α

8

)
+ |u|2

(1

4
+

1 − α

8
+

1 + α

8

)
+

1 + α

8
|S|2 cos2 χ,

≤ |S|2
2

+
|u|2
2

+
1 + α

8
|S|2 (cos2 χ− 1),

from which we deduce (3.9).
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Step 3. Assume that sin2 χ ≥ δ and that either (2/
√

5) |v∗| ≥ |v| or |v| ≥ (
√

5/2) |v∗|. In
the first case, we have

|v + v∗| ≥ (1 − (2/
√

5)) |v∗| + (2/
√

5) |v∗| − |v| ≥ (1 − (2/
√

5)) |v∗|,

which then implies

|v + v∗| ≥ (1 − (2/
√

5)) (
√

5/2) |v| ≥ (1 − (2/
√

5)) |v|.

The same inequalities are proved in a similar way in the second case. We deduce

|v + v∗|2 ≥ 1

2
(1 − (2/

√
5)) (|v|2 + |v∗|2).

We then deduce from (3.9) that |v′|2 ≤ (1−δ/160) (|v|2 + |v∗|2) and we conclude that (3.8)
holds as in Step 1. ⊓⊔

3.2 Quantification of the elastic limit α → 1

We begin with a simple consequence of Proposition 3.1.

Corollary 3.4 There exists k0, q0 ∈ N such that for any ai ∈ (0,∞) i = 1, 2, 3, there
exists an explicit constant C ∈ (0,∞) such that for any function g satisfying

‖g‖Hk0∩L1
q0

≤ a1, g ≥ a2 e
−a3 |v|8 ,

there holds
|DH,α(g) −DH,1(g)| ≤ C (1 − α),

where we recall that DH,α is defined in (2.18).

Proof of Corollary 3.4. We write

DH,α(g) −DH,1(g) =

∫∫∫
b |u|

[
g′α g

′
∗α − g′ g′∗] dv dv∗ dσ (=: I1)

+

∫∫∫
b |u| g g∗ [ log g′α + log g′∗α − log g′ − log g′∗] dv dv∗ dσ (=: I2).

For the first term, thanks to Proposition 3.1, we have

|I1| ≤ ‖Q+
α (g, g) −Q+

1 (g, g)‖L1 ≤ C (1 − α) ‖g‖2
W 3,1

3

.

For the second term, we write

|I2| = 2
∣∣∣〈(Q+

α (g, g) −Q+
1 (g, g)) 〈v〉8 , 〈v〉−8 log g〉

∣∣∣

≤ 2 ‖Q+
α (g, g) −Q+

1 (g, g)‖L1
8
‖〈v〉−8 log g‖L∞

≤ C (1 − α) ‖g‖2
W 3,1

11

(| log ‖g‖L∞ | + | log a2| + a3)

≤ C (1 − α) a2
1 (| log a1| + | log a2| + C a3),
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thanks to Proposition 3.1 and the bounded embedding Hk0 ∩ L1
q0 ⊂ L∞ ∩W 3,1

11 for k0, q0
large enough (see Proposition B.1). We conclude the proof gathering these two estimates.
⊓⊔

Let us recall now two famous inequalities, namely the Csiszár-Kullback-Pinsker in-
equality (see [14, 22]) and the so-called entropy-entropy production inequalities (the ver-
sion we present here is established in [31]) that we will use several time in the sequel.

Theorem 3.5 (i) For a given function g ∈ L1
2, let us denote by M [g] the Maxwellian

function with the same mass, momentum and temperature as g. For any 0 ≤ g ∈
L1

2(R
N ), there holds

‖g −M [g]‖2
L1 ≤ 2 ρ(g)

∫

RN

g ln
g

M [g]
dv.(3.10)

(ii) For any ε > 0 there exists kε, qε ∈ N and for any A ∈ (0,∞) there exists Cε =
Cε,A ∈ (0,∞) such that for any g ∈ Hkε ∩ L1

qε such that

g(v) ≥ A−1 e−A |v|8, ‖g‖Hkε∩L1
qε

≤ A,

there holds

Cε ρ(g)
1−ε

(∫

RN

g ln
g

M [g]
dv

)1+ε

≤ DH,1(g).(3.11)

We have then the following estimate on the distance between Gα and Ḡ1 for any
self-similar profile Gα.

Proposition 3.6 For any ε > 0 there exists Cε (independent of the mass ρ) such that

∀α ∈ [α0, 1) sup
Gα∈Gα

‖Gα − Ḡ1‖L1
2
≤ Cε ρ (1 − α)

1
2+ε(3.12)

where we recall that Ḡ1 is the Maxwellian function defined by (1.25)–(1.27).

Proof of Proposition 3.6. On the one hand, for any inelasticity coefficient α ∈ [α0, 1) and
profile Gα, there holds from (2.19) together with Corollary 3.4 and the uniform estimates
of Proposition 2.1

DH,1(Gα) ≤ DH,α(Gα) + ρ2 O(1 − α) ≤ ρ2 O(1 − α).(3.13)

On the other hand, introducing the Maxwellian function Mθ with the same mass, momen-
tum and temperature as Gα, that is Mθ given by (1.26) with u = 0 and θ = E(Gα)/ρ,
and gathering (3.13), (3.11), (3.10) with the uniform estimates of Proposition 2.1 and
interpolation inequality, we obtain that for any q, ε > 0 there exists Cq,ε such that

∀α ∈ [α0, 1) ‖Gα −Mθ‖2+ε
L1

q
≤ Cq,ε ρ

2+ε (1 − α).(3.14)

Next, from (2.16), we have

b1

∫

RN

∫

RN

GαGα∗ |u|3 dv dv∗ − ρ

∫

RN

Gα |v|2 dv = (1 − α)
b1
2

∫

RN

∫

RN

GαGα∗ |u|3 dv dv∗
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and then
|Ψ(θ)| ≤ C1 ‖Gα −Mθ‖L1

3
+ C2 ρ

2 (1 − α),(3.15)

where we have used that Gα and Mθ are bounded thanks to Proposition 2.1 and we have
defined

Ψ(θ) = ρ

∫

RN

Mθ |v|2 dv − b1

∫

RN

∫

RN

MθMθ∗ |u|3 dv dv∗.(3.16)

By elementary changes of variables, this formula simplifies into

Ψ(θ) = k1 θ − k2 θ
3/2

with k1 = ρ2N and, using (A.3),

k2 = ρ2 b1

∫

RN×RN

M1,0,1 (M1,0,1)∗ |u|3 dv dv∗ = 23/2 ρ2 b1 m3/2(M1,0,1).

We next observe that Ψ ∈ C∞(0,∞) and Ψ is strictly concave. It is also obvious that the
equation Ψ(θ) = 0 for θ > 0 has a unique solution which is θ̄1 defined in (1.27), and that
we have

Ψ(θ) ≤ Ψ′(θ̄1) (θ − θ̄1) = −k1 (θ − θ̄1)/2

as well as
Ψ(θ) = θ [k1 − k2 θ

1/2] = k2 θ [θ̄
1/2
1 − θ1/2].(3.17)

Plugging this expression for Ψ into (3.15) and using the lower bound (2.17) on the tem-
perature θ and the estimate (3.14) we obtain that for any ε > 0 there is Cε ∈ (0,∞) such
that

∀α ∈ (α0, 1)
∣∣∣θ1/2 − θ̄

1/2
1

∣∣∣
2+ε

≤ Cε (1 − α).(3.18)

Namely, we have thus proved that the temperature of Ḡα converge (with rate) to the
expected temperature θ̄1. In order to come back to the norm of Gα − Ḡ1, we first write,
using Cauchy-Schwarz’s inequality,

‖Gα − Ḡ1‖L1
−N

≤ ‖Gα −Mθ‖L1
−N

+ ‖Mθ − Ḡ1‖L1
−N

≤ ‖Gα −Mθ‖L1 + CN ‖Mθ − Ḡ1‖L2 ,(3.19)

and we remark that
‖Mθ − Ḡ1‖2

L2 ≤ C ρ2 |θ1/2 − θ̄
1/2
1 |.(3.20)

Gathering (3.19) with (3.20), (3.18) and (3.14) we deduce that for any ε > 0 there is
Cε ∈ (0,∞) such that

∀α ∈ (α0, 1) ‖Gα − Ḡ1‖2+ε
L1
−N

≤ Cε ρ
2+ε (1 − α),

and (3.12) follows by interpolation again. ⊓⊔
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4 Uniqueness and continuity of the path of self-similar pro-
files

4.1 The proof of uniqueness

Theorem 4.1 There exists a constructive α1 ∈ (0, 1) such that the solution Gα of (1.30)
is unique for any α ∈ [α1, 1]. We denote by Ḡα this unique self-similar profile.

That is an immediate consequence of the following result.

Proposition 4.2 There is a constructive constant η ∈ (0, 1) such that

G, H ∈ Gα, α ∈ (1 − η, 1)

‖G− Ḡ1‖L1
2
≤ η, ‖H − Ḡ1‖L1

2
≤ η



 implies G = H.

Proof of Theorem 4.1. Let us assume that Proposition 4.2 holds. Then Proposition 3.6
implies that there is some explicit ε ∈ (0, 1) such that for α ∈ (1 − ε, 1] one has

sup
Gα∈Gα

‖Gα − Ḡ1‖L1
2
≤ η

where η is defined in the statement of Proposition 4.2. Up to reducing η, it is always
possible to take η ≤ ε, and the proof is completed by applying Proposition 4.2. ⊓⊔
Proof of Proposition 4.2. Let us consider any exponential weight function m with
s ∈ (0, 1), a ∈ (0,+∞), or with s = 1 and a ∈ (0,∞) small enough. Let us also define
O = C0,0,0 ∩ L1(m−1) the subvector space of of L1(m−1) of functions with zero energy,
ψ = C (|v|2 −N)M1,0,1 such that E(ψ) = 1, and Π the following projection

Π : L
1(m−1) → O, Π(g) = g − E(g)ψ.

Finally, let us introduce Φ the following non-linear functional operator

Φ : [0, 1) × (W 1,1
1 (m−1) ∩ Cρ,0) → R ×O,

and
Φ(1, ·) : (L1

1(m
−1) ∩ Cρ,0) → R ×O,

by setting

Φ(α, g) =
(
(1 + α)DE (g) − 2 ρ E(g), Π

[
Qα(g, g) − τα divv(v g)

])
.

It is straightforward that Φ(α,Gα) = 0 for any α ∈ [α0, 1] and Gα ∈ Gα, and that the
equation

Φ(1, g) = (0, 0)

has a unique solution, given by g = Ḡ1 = Mρ,0,θ̄1 defined in (1.25), (1.27).
The function Φ is linear and quadratic in its second argument by inspection, and easy

computations yield the following formal differential according to the second argument at
the point (1, Ḡ1):

D2Φ(1, Ḡ1)h = Ah :=

(
4 D̃E (Ḡ1, h) − 2ρ E(h), 2 Q̃1(Ḡ1, h)

)
(4.1)
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where Q̃α is defined in (1.8) and

D̃E (g, h) := b1

∫ ∫

RN×RN

g h∗ |u|3 dv dv∗.

Notice that we can remove the projection on the last argument in (4.1) since the elastic
collision operator always has zero energy.

Then we have the

Lemma 4.3 The linear functional

A : L
1
1(m

−1) → R ×O
h 7→ Ah = D2Φ(1, Ḡ1)h

is invertible: it is bijective with A−1 bounded with explicit estimate.

Proof of Lemma 4.3. Since the spectrum of the linear operator L1 defined on L1(m−1)
(with domain L1

1(m
−1)) includes 0 as a discrete eigenvalue associated with the eigenspace

KerL1 = Span{Ḡ1, v1 Ḡ1, . . . , vN Ḡ1, |v|2 Ḡ1} by [27, Theorem 1.3] and since moreover
O ∩ KerL1 = {0}, we deduce that it is invertible from O ∩ L1

1(m
−1) onto O. Moreover

the work [27, Section 4] provides explicit estimates on the norm of its inverse. We deduce
immediately that L−1

1 maps O onto itself with explicit bound.
For any h ∈ L1(m−1), we decompose

h = h1 φ1 + h⊥, with h1 :=
E(h)

E(φ1)
∈ R, h⊥ ∈ O,

where we recall that φ1 is defined in (1.33). Then, using the characterization (1.30) of Ḡ1,

Ah =

(
b1

∫

RN×RN

Ḡ1(v)h
⊥(v∗) |u|3 dv dv∗

+h1

[
b1

∫

RN×RN

|v|2 Ḡ1 Ḡ1∗ |u|3 dv dv∗ − 2ρ

∫

RN

Ḡ1 |v|4 dv
]
, L1(h

⊥)

)
.

The claimed invertibility follows from the fact that C∗ = 2N ρ2 θ̄2
1 6= 0. Indeed, from

(A.2) and (A.4) there holds

C∗ := b1

∫

RN×RN

|v|2 Ḡ1 Ḡ1∗ |u|3 dv dv∗ − 2ρ

∫

RN

Ḡ1 |v|4 dv

= ρ2 θ̄2
1

[
b1 θ̄

1/2
1

∫

RN×RN

M1,0,1 (M1,0,1)∗ |v|2 |u|3 dv dv∗ − 2

∫

RN

M1,0,1 |v|4 dv
]

= ρ2 θ̄2
1

[
b1 θ̄

1/2
1

√
2 (2N + 3)m3/2(M1,0,1) − 2N(N + 2)

]
,

and we conclude thanks to formula (1.27). ⊓⊔
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Let us come back to the proof of Proposition 4.2. We write

Gα −Hα = A−1
[
AGα − Φ(α,Gα) + Φ(α,Hα) −AHα

]

= A−1 (I1, I2)(4.2)

with (recall that the bilinear operators D̃E and Q̃α are symmetric)

{
I1 := 4 D̃E (Ḡ1, Gα −Hα) − (1 + α)D(Gα) + (1 + α)D(Hα)

I2 := Π I2,1 + Π I2,2

and {
I2,1 := 2 Q̃1(Ḡ1, Gα −Hα) −Qα(Gα, Gα) +Qα(Hα,Hα)

I2,2 := ρ (1 − α)∇v · (v (Hα −Gα)).

On the one hand,

I1 = 2D(2Ḡ1 − (Gα +Hα), Gα −Hα) + (1 − α)D(Gα +Hα, Gα −Hα)

so that

|I1| ≤ C3

(
‖Ḡ1 −Gα‖L1

3
+ ‖Ḡ1 −Hα‖L1

3

+(1 − α) ‖Gα‖L1
3
+ (1 − α) ‖Hα‖L1

3

)
‖Gα −Hα‖L1

3

≤ η1(α) ‖Gα −Hα‖L1
1(m−1)(4.3)

with η1(α) → 0 when α→ 1 (with explicit rate, for instance η1(α) = C1 (1−α)1/3) because
of Propositions 2.1 and 3.6.

On the other hand,

I2,1 = Q1(Ḡ1, Gα −Hα) −Qα(Ḡ1, Gα −Hα) +Q1(Gα −Hα, Ḡ1) −Qα(Gα −Hα, Ḡ1)

+Qα(Ḡ1 −Gα, Gα −Hα) +Qα(Gα −Hα, Ḡ1 −Hα).

From Proposition 3.2 there holds

‖Q1(Ḡ1, Gα −Hα) −Qα(Ḡ1, Gα −Hα)‖L1(m−1) ≤ ε(α) ‖Gα −Hα‖L1
1(m−1)

‖Q1(Gα −Hα, Ḡ1) −Qα(Gα −Hα, Ḡ1)‖L1(m−1) ≤ ε(α) ‖Gα −Hα‖L1
1(m−1)

with ε(α) → 0 as α → 1 (with again explicit rate, for instance ε(α) = C ′
1 (1 − α)1/12 if

s = 1/2 in the formula of m). From elementary estimates in L1(m−1) we have

‖Qα(Ḡ1 −Gα, Gα −Hα) +Qα(Gα −Hα, Ḡ1 −Hα)‖L1(m−1)

≤ C4

(
‖Gα − Ḡ1‖L1

1(m−1) + ‖Hα − Ḡ1‖L1
1(m−1)

)
‖Gα −Hα‖L1

1(m−1).

Together with Propositions 3.6 we thus obtain

‖I2,1‖L1(m−1) ≤ η2(α) ‖Gα −Hα‖L1
1(m−1)(4.4)
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for some η2(α) → 0 as α → 1. Here we can take for instance (when s = 1/2 in the
formula of m) η2(α) = C2 (1 − α)1/12 for some C2 ∈ (0,∞) by picking a suitable ε and
interpolating.

Finally from Proposition 2.7 there holds

‖I2,2‖L1(m−1) ≤ C5 (1 − α) ‖Gα −Hα‖L1
1(m−1).(4.5)

Gathering (4.3), (4.4) and (4.5) we obtain from (4.2) and Lemma 4.3

‖Gα −Hα‖L1
1(m−1) ≤ η(α) ‖A−1‖ ‖Gα −Hα‖L1

1(m−1)

for some function η such that η(α) → 0 as α→ 1 (with explicit rate). Hence choosing α1

close enough to 1 we have η(α) ‖A−1‖ ≤ 1/2 for any α ∈ [α1, 1). This implies Gα = Hα

and concludes the proof. ⊓⊔

4.2 Differentiability of the map α 7→ Ḡα at α = 1

Lemma 4.4 The map [α1, 1] → L1(m−1), α 7→ Ḡα is continuous on [α1, 1] and differen-
tiable at α = 1. More precisely, there exists Ḡ′

1 ∈ L1(m−1) and for any η ∈ (1, 2) there
exists a constructive Cη ∈ (0,∞) such that

‖Ḡα − Ḡ1 − (1 − α) Ḡ′
1‖L1(m−1) ≤ Cη (1 − α)η ∀α ∈ (α0, 1).(4.6)

Proof of Lemma 4.4. We split the proof into four steps.

Step 1. For the continuity we use a classical stability argument. Let us consider a sequence
(αn)n≥0 such that αn ∈ [α1, 1] and αn → α. From the uniform bound (2.1), we may extract
a subsequence (Ḡαn′ ) which strongly converges in L1(m−1) to a function Gα. Passing to
the limit in the equations (1.30) associated to the normal restitution coefficient αn and
written for Gαn′ , we deduce that Gα satisfies (1.30) associated to the normal restitution
coefficient α. From the uniqueness of the solution proved in Theorem 4.1, there holds
Gα = Ḡα and thus the whole sequence Ḡαn converges to Ḡα.

Step 2. We next prove that there exists an explicit constant C such that

∀α ∈ [α1, 1] ‖Ḡα − Ḡ1‖L1(m−1) ≤ C (1 − α).

We write

Ḡα − Ḡ1 = A−1 [AḠα − Φ(α, Ḡα) + Φ(1, Ḡ1) −AḠ1]

= A−1 (J1, J2)(4.7)

with {
J1 := 4 D̃E (Ḡ1, Ḡα − Ḡ1) + 2 D̃E (Ḡ1, Ḡ1) − (1 + α) D̃E (Ḡα, Ḡα)

J2 := ΠJ2,1 + ΠJ2,2

and {
J2,1 := Q1(Ḡ1, Ḡα) +Q1(Ḡα, Ḡ1) −Qα(Ḡα, Ḡα)

J2,2 := ρ (1 − α)∇v · (v (Ḡα)).
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On the one hand,

J1 = −2 D̃E (Ḡ1 − Ḡα, Ḡ1 − Ḡα) + (1 − α)D(Ḡα, Ḡα)

so that

|J1| ≤ C ‖Ḡ1 − Ḡα‖2
L1

3
+ C (1 − α).

On the other hand,

J2,1 = −Q1(Ḡ1 − Ḡα, Ḡ1 − Ḡα) +Q1(Ḡα, Ḡα) −Qα(Ḡα, Ḡα).

Hence using Propositions 2.7, 3.1, and the bound (2.1), we deduce

|J2,1| ≤
∥∥Ḡα − Ḡ1

∥∥2

L1
2
+ C (1 − α)

and we also have straightforwardly J2,2 = O(1 − α). Gathering all these estimates, we
thus obtain from (4.7)

‖Ḡα − Ḡ1‖L1
1(m−1) ≤ ‖A−1‖

[
‖Ḡα − Ḡ1‖2

L1
1(m−1) + C (1 − α)

]
.

Using then the explicit result of quantification of the elastic limit in Proposition 3.6, we
have that for some α2 ∈ [α1, 1) close enough to 1:

∀α ∈ [α2, 1] ‖A−1‖ ‖Ḡα − Ḡ1‖L1
1(m

−1) <
1

2

and thus we get

∀α ∈ [α2, 1], ‖Ḡα − Ḡ1‖L1
1(m−1) ≤ 2C ‖A−1‖ (1 − α)

which implies the claimed estimate.

Step 3. In order to prove the differentiability we must slightly improve the estimate estab-
lished in the preceding step. On the one hand we exhibit what should be the derivative
of Ḡα at α = 1, and denote it by R. Formally differentiating equation (1.30) at α = 1 we
have

Q′
1(Ḡ1, Ḡ1) + 2Q̃1(R, Ḡ1) + ρ∇v · (v Ḡ1) = 0.

On the other hand, we may compute

〈Q′
α(Ḡ1, Ḡ1), |.|2〉 =

1

4

∫ ∫ ∫

RN×RN×SN−1

b |u| Ḡ1 Ḡ1∗ (|u|σ − u) ·
(
|u|σ

)
dv dv∗ dσ

= 2DE (Ḡ1).(4.8)

Next, diving the equation (1.23) on the energy of Gα by (1−α) and formally differentiating
the resulting expression we get

2 ρ E(R) − D̃E (Ḡ1, Ḡ1) − 4 D̃E (R, Ḡ1) = 0.

We now rigorously define R in the following way

Ḡ′
1 = R := A−1

(
− D̃E (Ḡ1, Ḡ1),−F

)
, F := Q′

α(Ḡ1, Ḡ1) + ρ∇v · (v Ḡ1).
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Note that R is well-defined since E(F ) = 0 because of (4.8) and the definition of Ḡ1.

Step 4. We finally come back to the Step 2 and we shall construct a Taylor expansion of
order 1. We want to estimate

Ḡα − Ḡ1 + (α− 1) Ḡ′
1 = A−1

(
J1 − (α− 1) D̃E (Ḡ1, Ḡ1), J2 − (1 − α)F

)
.

On the one hand

J1 − (α−1) D̃E (Ḡ1, Ḡ1) = −2 D̃E (Ḡ1 − Ḡα, Ḡ1 − Ḡα)+ (1−α)
(
D(Ḡα, Ḡα)− D̃E(Ḡ1, Ḡ1)

)

so that we obtain straightforwardly

|J1 − (α− 1) D̃E (Ḡ1, Ḡ1)| ≤ C (1 − α)2.

On the other hand,
J2 − (1 − α)F := ΠJ2,1 + ΠJ2,2

with

J2,1 = −Q1(Ḡ1 − Ḡα, Ḡ1 − Ḡα) +Q1(Ḡα − Ḡ1, Ḡα) −Qα(Ḡα − Ḡ1, Ḡα)

+Q1(Ḡ1, Ḡα − Ḡ1) −Qα(Ḡ1, Ḡα − Ḡ1) + (1 − α)∇v · (v (Ḡα − Ḡ1))

and
J2,2 = Q1(Ḡ1, Ḡ1) −Qα(Ḡ1, Ḡ1) − (1 − α)K.

It is clear from Propositions 3.1, the bound of Step 2, and some interpolation with the
uniform bounds (2.1), that

‖J2,1‖L1(m−1), ‖J2,2‖L1(m−1) ≤ Ck (1 − α)k

for any k ∈ (1, 2). ⊓⊔

5 Study of the spectrum and semigroup of the linearized
problem

In this section we shall obtain the geometry of the spectrum of the linearized rescaled
inelastic collision operator for a small inelasticity, as well as estimates on its resolvent
and on the associated linear semigroup. This is based on the properties of the elastic
linearized operator and some perturbation arguments again. In order to do so, one needs
some common functional “ground” for the the linearized operators in the limit of vanishing
inelasticity. This common functional setting is given by the study [27] in which the spectral
study of the elastic linearized operator is made in L1 spaces with exponential weights ea |v|

s
,

a ∈ (0,+∞), s ∈ (0, 1).
We thus consider the operator

g 7→ Qα(g, g) − τα∇v · (v g)

and some fluctuations h around the self-similar profile Ḡα: that means g = Ḡα + h with
h ∈ L1(m−1) where m is a fixed smooth exponential weight function, as defined in (1.28).
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The corresponding linearized unbounded operator Lα acting on L1(m−1) with domain
dom(Lα) = W 1,1

1 (m−1) if α 6= 1 and dom(L1) = L1
1(m

−1), is defined in (1.31) (it is
straightforward to check that it is closed in this space). Since the equation in self-similar
variables preserves mass and the zero momentum, the correct spectral study of Lα requires
to restrict this operator to zero mean and centered distributions (which are preserved as
well), that means to work in L1(m−1). When restricted to this space, the operator Lα is
denoted by L̂α. We denote by R(L̂α) the resolvent set of L̂α, and by Rα(ξ) = (L̂α − ξ)−1

its resolvent operator for any ξ ∈ R(L̂α).
Let us recall that for the linearized elastic hard spheres Boltzmann equation the spec-

trum and the asymptotic stability have been studied by many authors since the pioneering
works by Hilbert [20], Carleman [12] and Grad [18], and we refer for instance to [27] for
more references. The result established for L1 (and translated straightforwardly to L̂1)
in [27] is the following:

Theorem 5.1 (i) There exists a decreasing sequence of real discrete eigenvalues (µn)n≥1

(that is: eigenvalues isolated and with finite multiplicity) of L̂1, with “energy” eigen-
value µ1 = 0 of multiplicity 1 and “energy” eigenvector φ1 (defined in (1.33)), µ2 < 0
and limµn = µ∞ ∈ (−∞, 0) such that the spectrum Σ(L̂1) of L̂1 in L1(m−1) writes

Σ(L̂1) = (−∞, µ∞] ∪ {µn}n∈N.

In particular, L̂1 is onto from O ∩ L1
1(m

−1) onto O.

(ii) The resolvent R1(ξ) has a sectorial property for the spectrum substracted from the
“energy” eigenvalue, namely there is a constructive µ2 < λ < 0 such that

∀ ξ ∈ A, ‖R1(ξ)‖L1(m−1) ≤ a+
b

|ξ + λ| ,

with

A =

{
ξ ∈ C, arg(ξ + λ) ∈

[
−3π

4
,
3π

4

]
and ℜe ξ ≤ λ

2

}
.

(iii) The linear semigroup S1(t) associated to L̂1 in L1(m−1) writes

∀ t ≥ 0 S1(t) = Π1 +R1(t),

where Π1 is the projection on the eigenspace associated to µ1 and R1(t) is a semigroup
which satisfies

∀ t ≥ 0 ‖R1(t)‖L1(m−1) ≤ C eµ2 t

with explicit constant C.

The main result proved in this section is a perturbation result which extends Theo-
rem 5.1 in the following way. Let us define for any x ∈ R the half-plane ∆x by

∆x = {ξ ∈ C, ℜe ξ ≥ x}.

Theorem 5.2 Let us fix µ̄ ∈ (µ2, 0), k, q ∈ N and m a smooth weight exponential function
with s ∈ (0, 1). Then there exists α2 ∈ (α1, 1) such that for any α ∈ [α2, 1] the following
holds:
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(i) The spectrum Σ(L̂α) of L̂α in W
k,1
q (m−1) writes

Σ(L̂α) = Eα ∪ {µα}, Eα ⊂ ∆c
µ̄,

where µα is a 1-dimensional real eigenvalue which does not depend on the choice of
the space W

k,1
q (m−1) and satisfies (1.32).

(ii) The resolvent Rα(ξ) in W
k,1
q (m−1) is holomorphic on a neighborhood of ∆µ̄\{µα}

and there are explicit constants C1, C2 such that

sup
z∈C, ℜe z=µ̄

‖Rα(z)|‖
W

k,1
q (m−1)→W

k,1
q (m−1)

≤ C1

and

‖Rα(µ̄+ is)‖
W

k+1,1
q+1 (m−1)→W

k,1
q (m−1)

≤ C2

1 + |s| .

(iii) The linear semigroup Sα(t) associated to L̂α in W
k,1
q (m−1) writes

Sα(t) = eµα t Πα +Rα(t),

where Πα is the projection on the (1-dimensional) eigenspace associated to µα and
where Rα(t) is a semigroup which satisfies

‖Rα(t)‖
W

k+2,1
q+2 (m−1)→W

k,1
q (m−1)

≤ Ck e
µ̄ t(5.1)

with explicit bounds.

Remark 5.3 Note that we do not claim that the resolvent Rα is sectorial for α < 1 and
it is likely that indeed it is not (because of the contribution of the drift term). Moreover, it
is not clear how to make the spectral study in the Hilbert setting L2(m−1) with convenient
weight function m. In particular, we are not able to prove Proposition 3.2 in an L2

framework. In such a situation the spectral study and the obtaining of constructive rate of
decay on the semigroup become tricky. Let us emphasize also that (as most of the results
established in this paper) this result is not an easy consequence of perturbation theory of
unbounded operator since the elastic limit α → 1 is strongly bad-behaved (for instance
neither the relative bound nor the operator gap of [21] go to 0) because of the anti-drift
term.

5.1 Recalls and improvments of technical tools from [27]

Proposition 5.4 In the statement of Theorem 5.1 one can replace everywhere L1(m−1)

by W k,1
q (m−1), k, q ∈ N.

Let us first recall the key decomposition of L̂1 in [27, Section 2] (re-written within the
notation of this paper):

Let 1E denote the usual indicator function of the set E, let Θ : R → R+ be an even
C∞ function with mass 1 and support included in [−1, 1] and Θ̃ : RN → R+ a radial C∞
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function with mass 1 and support included in B(0, 1). We define the following mollification
functions (ǫ > 0): {

Θǫ(x) = ǫ−1 Θ(ǫ−1x), (x ∈ R)

Θ̃ǫ(x) = ǫ−N Θ̃(ǫ−1x), (x ∈ RN).

Then we consider the decompositions

L1(g) = Lc1(g) − Lν(g) with Lν(g) := ν g

where Lc1 splits between a “gain” part L+
1 (denoted so because it corresponds to the

linearization of Q+) and a convolution part L∗ (not depending on α) as

Lc1(g) = L+
1 (g) − L∗(g) with L∗(g) := M [g ∗ Φ],

(we do not write the subscript 1 when there is no dependency on α). Then for any δ ∈ (0, 1)
we set

L+
1,δ(g) = Iδ(v)

∫

RN×SN−1

Φ(|v − v∗|) bδ(cos θ) [g′M ′
∗ +M ′g′∗] dv∗ dσ,

where
Iδ = Θ̃δ ∗ 1{|·|≤δ−1},

and
bδ(z) =

(
Θδ2 ∗ 1{−1+2δ2≤z≤1−2δ2}

)
b(z).

This approximation induces L1,δ = L+
1,δ − L∗ − Lν . Then the key result is that this

approximation converges (in the norm of the graph) to the original linearized operator
L1 as δ → 0, first in the small classical linearization space L2(Ḡ−1

1 ) (this technical result
was in fact mostly already included in Grad’s results [18]), and second most importantly
in the larger space L1(m−1). On the basis of this approximation result the spectrum is
then proved to be the same in both functional spaces, and then the norm of the resolvents
within these two functional spaces are related by an explicit control.

Hence the keys elements of the proof which are to be extended are, on the one hand,
the approximation argument (which has to be extended from an L1(m−1) setting to an

W k,1
q (m−1) setting), and, on the other hand the explicit control on the resolvent in the

space L2(M−1) provided by the self-adjointness structure of the collision operator in this
space and the explicit estimates on the spectral gap (see [6]), which has to be extended to
an Hk(M−1) setting. Then the rest of the proof of [27] would extend as well (up to minor
technical modifications) to W k,p(m−1).

Therefore for the first point let us prove the

Proposition 5.5 For any k, q ∈ N and g ∈W k,1
q+1(m

−1), we have

∥∥∥
(
L+

1 − L+
1,δ

)
(g)
∥∥∥
W k,1

q (m−1)
≤ ε(δ) ‖g‖

W k,1
q+1(m−1)

where ε(δ) > 0 is an explicit constant going to 0 as δ goes to 0.

Proof of Proposition 5.5. The case k = q = 0 is provided by Proposition 3.2. Then
higher-order derivatives follows by differentiation, and the incoporation of a polynomial
weight is trivial. ⊓⊔

Concerning the second point let us prove the
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Proposition 5.6 The spectrum Σ(L1) of L1 in L2(M−1) is the same in any Hk(M−1),
k ∈ N. Moreover the control on the resolvent, which was (self-adjoint operator)

‖R1(ξ)‖L2(M−1) ≤
1

dist(ξ,Σ(L1))

in the space L2(M−1), extends into

∀ ξ ∈ A, ‖R1(ξ)‖Hk(M−1) ≤
Ck

dist(ξ,Σ(L1))
,

with

A =

{
ξ ∈ C, arg(ξ + λ) ∈

[
−3π

4
,
3π

4

]
and ℜe ξ ≤ λ

2

}
,

for any k ∈ N and some explicit constant Ck > 0,

Proof of Proposition 5.6. A quick way to prove the result for instance is the following.
It is easy to prove by induction on k ∈ N the following estimate on the Dirichlet form:

∑

|s|≤k
as 〈∇sL1(g),∇sg〉L2(M−1) ≤ −τk



∑

|s|≤k
‖Π̄(∇sg)‖2

L2(M−1)




for some explicit τk > 0 and as > 0, |s| ≤ k, and where Π̄ denotes the orthogonal projection
in L2(M−1) onto the functions with zero mass, momentum and energy. Therefore we
deduce on L̂1 that its semigroup satisfies

∀ k ∈ N, ‖et L̂1‖Hk(M−1) ≤ Ck

and that obviously the same is true on the stable subspace of functions with zero energy.
Then by interpolation with the rate of decay of the semigroup for functions with zero
energy in L2(M−1), we deduce that

∀ ε > 0, k ∈ N, ‖et L̂1Π‖Hk(M−1) ≤ Cε,k e
−(µ2−ε) t

for some explict Cε,k > 0, and where Π is the orthogonal projection in L2(M−1) onto
functions with zero energy. This implies on the resolvent that for any k ∈ N,

∀ ξ ∈ A, ‖R1(ξ)‖Hk(M−1) ≤ C ′
k,

with

A =

{
ξ ∈ C, arg(ξ + λ) ∈

[
−3π

4
,
3π

4

]
and ℜe ξ ≤ λ

2

}
,

for some explicit C ′
k > 0. Then the result follows by straightforward interpolation with

the estimates on the resolvent in L2(M−1). ⊓⊔
Then we can conclude to the following extension of point (ii) of Theorem 5.1:

Proposition 5.7 We have

∀ ξ ∈ A, ‖R1(ξ)‖W
k,1
q (m−1)

≤ ak,q +
bk,q

|ξ + λ| ,

with

A =

{
ξ ∈ C, arg(ξ + λ) ∈

[
−3π

4
,
3π

4

]
and ℜe ξ ≤ λ

2

}
.

for any k, q ∈ N and some explicit constant ak,q, bk,q > 0.
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5.2 Decomposition of L̂α and technical estimates

We fix once for all some µ̄ ∈ (µ2, 0) and we split the proof of Theorem 5.2 into four steps,
detailed in the following four subsections.

Let us introduce the operator

Pα = L1 − Lα = L+
1 −L+

α + τα∇v · (v ·).

Our first step in this subsection is to estimate the convergence to 0 of the first part of
this operator in suitable norm. Namely we prove

Lemma 5.8 (i) For any k, q ∈ N, there exists C = Ck,q,m such that

∥∥L+
α (g)

∥∥
W k,1

q (m−1)
≤ C ‖g‖

W k,1
q+1(m−1)

, ‖Lα(g)‖W k,1
q (m−1)

≤ C ‖g‖
W k+1,1

q+1 (m−1)
.

(ii) For any k, q ∈ N, there is a constructive function ε : (0,∞) → (0,∞) satisfying

ε(α) → 0 as α goes to 1 and such that for any g ∈W k,1
q+1(m

−1)

∥∥(L+
1 − L+

α

)
(g)
∥∥
W k,1

q (m−1)
≤ ε(α) ‖g‖

W k,1
q+1(m−1)

.

(iii) There exists C ∈ (0,∞) such that for any g ∈W 3,1
3 (m−1), we have

‖(L1 − Lα) (g)‖L1(m−1) ≤ C (1 − α) ‖g‖W 3,1
3 (m−1).

Proof of Lemma 5.8. The case k = q = 0 is proved in Proposition 3.2. Then higher-order
derivatives are obtained from the L1(m−1) estimates by straightforward differentiation,
and the incoporation of polynomial weights is trivial. ⊓⊔

Now let us consider some ξ ∈ C and let us define

Aδ = L+
1,δ − L∗

and
Bα,δ(ξ) = ν + ξ + (L+

1,δ − L+
1 ) + Pα

(let us recall that the approximation L+
1,δ was defined in the beginning of Subsection 5.1.

It yields the decomposition
Lα − ξ = Aδ −Bα,δ(ξ).

Then we have the

Lemma 5.9 Let us consider any k, q ∈ N and ξ such that ℜe ξ ≥ −min ν. Then

(i) For any δ > 0, the operator Aδ : L1 → W∞,1
∞ (m−1) is a bounded linear operator

(more precisely it maps functions of L1 into C∞ functions with compact support).

(ii) For δ ∈ [0, δ∗] and α ∈ [α2, 1] for some constructive δ∗ > 0 and α2 ∈ (α1, 1)
(depending on a lower bound on dist(ξ, ν(RN ))), the operator

Bα,δ : W k+1,1
q+1 (m−1) →W k,1

q (m−1)

is invertible
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(iii) The inverse operator Bα,δ(ξ)
−1 satisfies for δ ∈ [0, δ∗] and α ∈ [α3, 1]:

∥∥Bα,δ(ξ)−1
∥∥
W k,1

q (m−1)→W k,1
q (m−1)

≤ C1

dist(ℜe ξ, ν(RN ))

and ∥∥Bα,δ(ξ)−1
∥∥
W k+1,1

q (m−1)→W k,1
q (m−1)

≤ C2

dist(ξ, ν(RN ))

for some explicit constants C1, C2 > 0 depending on k, q, δ∗, α2 and a lower bound
on dist(ℜe ξ, ν(RN )).

Proof of Lemma 5.9. For ξ ∈ ν(RN )c, it was proved in [27, Proposition 4.1, Theorem 4.2]
the convergence to 0 of (L+

1,δ − L+
1 ) as δ → 0 (which was done in L1

1(m
−1) → L1(m−1)

in [27] and is extended in any W k,1
q+1(m

−1) → W k,1
q (m−1) by Proposition 5.5), we deduce

as in [27] that for δ small enough (depending on a lower bound on the coercivity norm of
ν + ξ, that is on a lower bound on dist(ξ, ν(RN ))), we have

‖(L+
1,δ − L+

1 )g‖
W k,1

q (m−1)
≤ 1

2
‖(ν + ξ) g‖

W k,1
q+1
.

It was also proved that Aδ maps functions of L1 into C∞ functions with compact
support (with explicit estimates).

Let now consider Bα,δ(ξ) only in the case k = q = 0 (estimates for higher-order deriva-
tives and weights are obtained by straightforward differentiation and computations). From
Lemma 5.8 we have for α close enough to 1 (depending on a lower bound on dist(ξ, ν(RN ))),

∥∥(L+
1 − L+

α

)
g
∥∥
L1(m−1)

≤ 1

2
‖(ν + ξ) g‖L1(m−1).

By considering the semigroup on L1(m−1) of Bα,δ(ξ) and computing the evolution of the
norm in symmetric form using the formula for the differentiation of the complex modulus
of a function

∇|h| =
∇h h̄+ h∇h̄

2 |h| ,

it is easily seen that

‖eBα,δ(ξ) tg‖L1(m−1) ≥ ‖(ν + ℜe ξ) g‖L1(m−1) −
1

2
‖(ν + ℜeξ) g‖L1(m−1)

and therefore for α close enough to 1 (depending on a lower bound on dist(ξ, ν(RN ))), we
deduce that

‖eBα,δ(ξ) tg‖L1(m−1) ≥
1

2
‖(ν + ℜe ξ) g‖L1(m−1)

and thus that the operator is invertible with its inverse bounded by

‖Bα,δ(ξ)−1‖L1(m−1) ≤
2

dist(ℜe ξ, ν(RN ))
.

Moreover by computing separately the evolution of the L1(m−1) norm in non-symmetric
form (thus keeping ν + ξ but creating a term of the form O(1 − α) times a W 1,1

1 (m−1)

norm) and the evolution of the W 1,1
1 (m−1) norm in symmetric form: it yields easily

‖eBα,δ(ξ) tg‖W 1,1(m−1) ≥
1

2
‖(ν + ξ) g‖L1(m−1) +

1

2
‖(ν + ξ)∇vg‖L1(m−1)

which implies the result, by droping the second term. ⊓⊔
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5.3 Geometry of the essential spectrum and estimates on the eigenvalues

First concerning the geometry of the spectrum, following the same strategy as in [27,
Subsection 3.2] we can prove the

Proposition 5.10 Let us pick any k, q ∈ N and m a smooth exponential weight function
(as defined in (1.28)). Then for any α ∈ [α2, 1], the spectrum of Lα in W

k,1
q (m−1) is

composed of a part included in ∆c
−ν0 (containing all possible essential spectrum), and a

remaining part included in ∆−ν0 exclusively composed of discrete eigenvalues.

Proof of Proposition 5.10. We follow the same method as in the proof of [27, Proposi-
tion 3.4]. One uses the decomposition

Lα = Aδ −Bα,δ(0),

the compactness of the first part Aδ and the coercivity

‖Bα,δ(0)‖L1(m−1) ≥ ‖ν g‖L1(m−1) − ε(δ) ‖ν g‖L1(m−1)

of the second part (where ǫ(δ) → 0 as δ → 0). Then one applies Weyl’s theorem and show
that (for any δ > 0) ∆−ν0+ǫ(δ) has to be a Fredhom set with indices (0, 0) (except possibly
for a countable family of points) since [a,+∞) is included in the resolvent set for a big
enoug. ⊓⊔

Second concerning the discrete part of the spectrum, that is the isolated eigenvalues
with finite multiplicity, following the same strategy as in [27, Proof of Proposition 3.5] we
can prove the

Proposition 5.11 Let us fix µ̄ ∈ (µ2, 0). Then for any α ∈ [α2, 1] (where α2 is obtained
from Lemma 5.9 for this choice of µ̄), for any µ ∈ ∆µ̄ and φ ∈W 1,1

1 satisfying

Lα(φ) = µφ

in L1, we have
‖φ‖W k,1(m−1) ≤ Ck,m ‖φ‖L1

2

for any k ∈ N and m = exp(−a |v|s), a > 0, s ∈ (0, 1), where the constant Ck,m depends
on k, m and a lower bound on µ̄− µ.

Proof of Proposition 5.11. Let us sketch the idea of the proof. We use the decomposition

0 = Lαφ− µφ = Aδφ−Bα,δ(µ)φ

and the fact that for the choices made for µ and α in the assumptions we have (adjusting
δ as in Lemma 5.9) Bα,δ(µ) is invertible in any W k,1(m−1) with explicit bound, and Aδ
maps L1 into C∞ functions with compact support. ⊓⊔

Remark 5.12 An alternative proof could be to adapt the proof of Proposition 2.7.
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5.4 Estimate on the resolvent and global stability of the spectrum

Lemma 5.13 Let us pick k, q ∈ N and m a smooth exponential weight function (as defined

in (1.28)) and consider the operator Lα in W
k,1
q (m−1). Then

(i) For any ξ ∈ R(L1), there is αξ ∈ [α2, 1) such that ξ ∈ R(Lα) for any α ∈ [αξ, 1].

(ii) More precisely, the resolvent Rα(ξ) satisfies the two following estimates for α ∈
[α2, 1):

‖Rα(ξ)‖
W

k,1
q (m−1)

≤
C1 + C2 ‖R1(ξ)‖W k+1,1

q+1 (m−1)

1 − C3 (1 − α) ‖R1(ξ)‖W k+1,1
q+1 (m−1)

‖Rα(ξ)‖
W

k+1,1
q+1 (m−1)→W

k,1
q (m−1)

≤ 1

δ(ξ)

C ′
1 + C ′

2 ‖R1(ξ)‖W k+1,1
q+1 (m−1)

1 − C3 (1 − α) ‖R1(ξ)‖W k+1,1
q+1 (m−1)

with δ(ξ) := dist(ξ, ν(RN )) and where the constants Ci, C
′
i, i = 1, 2, 3 depend on a

positive lower bound on dist(ℜe ξ, ν(RN )).

(iii) Finally, for any compact set K ⊂ ρ(L1) there exists αK ∈ [α2, 1), CK ∈ (0,∞) such
that

∀ ξ ∈ K, α ∈ (αK , 1] ‖Rα(ξ)‖
W

k,1
q (m−1)

≤ CK ,

∀ ξ ∈ K, α, α′ ∈ (αK , 1] ‖Rα(ξ)h−Rα′(ξ)h‖L1(m−1) ≤ CK (1 − α) ‖h‖
W 3,1

3
.

Proof of Lemma 5.13. We split the proof into three steps.

Step 1. Let us consider the following operator defined from W
k,1
q (m−1) to W k+1,1

q+1 (m−1)
(which is seen to be well-defined at a glance)

Iα,δ(ξ) := −Bα,δ(ξ)−1 + R1(ξ)Aδ Bδ,α(ξ)
−1.

Some straightforward computations show that

(Lα − ξ) Iα,δ(ξ) = −Aδ Bα,δ(ξ)−1 + Id +
[
Id − PαR1(ξ)

]
Aδ Bα,δ(ξ)

−1

which simplifies into

(Lα − ξ) Iα,δ(ξ) =: Jα,δ(ξ) := Id − PαR1(ξ)Aδ Bα,δ(ξ)
−1 =: Id −Kα,δ(ξ).

First using that
‖Pαh‖W

k,1
q (m−1)

≤ C (1 − α) ‖h‖
W k+1,1

q+1 (m−1)
,

the control of R1(ξ) in W
k+1,1
q+1 (m−1) and the regularization property of Aδ we deduce that

Kα,δ(ξ) = PαR1(ξ)Aδ Bδ,α(ξ)
−1 = O(1 − α)

in the norm of bounded operators on W k,1
q (m−1), and therefore for (1 − α) small enough

(with explicit bound) we get that

‖Kα,δ(ξ)‖W k,1
q (m−1)

≤ C3 (1 − α) ‖R1(ξ)‖W
k+1,1
q+1 (m−1)

< 1
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and Id −Kα,δ(ξ) is invertible in W k,1
q (m−1). As a consequence

(Lα − ξ) Iα,δ(ξ) (Id −Kα,δ(ξ))
−1 = Id

W
k,1
q (m−1)

and we have proved that Lα − ξ admits a right-inverse, namely so that Iα(ξ) (Id −
Kα,δ(ξ))

−1. This proves that the operator Lα − ξ is onto.

Step 2. In order to show that Lα − ξ is invertible and that we have identified the
resolvent it remains to prove that it is one-to-one. Let us consider the eigenvalue equation
(Lα − ξ)h = 0 which writes

(L1 − ξ)h = Pαh

from which we deduce (using Proposition 5.11 to get regularity bounds on h)

‖h‖
W

k,1
q (m−1)

≤ ‖R1(ξ)‖W
k,1
q (m−1)

‖Pαh‖W
k,1
q (m−1)

≤ C (1 − α) ‖R1(ξ)‖W
k,1
q (m−1)

‖h‖
W

k+1,1
q+1 (m−1)

≤ C ′ (1 − α) ‖R1(ξ)‖W
k,1
q (m−1)

‖h‖
W

k,1
q (m−1)

.

Therefore for (1 − α) small enough (depending on the norm of R1(ξ)) we have that nec-
essarily h = 0, and thus the operator (Lα − ξ) is one-to-one.

For α satisfying all the previous conditions, the operator (Lα − ξ) is bijective from

W
k+1,1
q+1 (m−1) to W

k,1
q (m−1) and its inverse is given by

Rα(ξ) = Iα,δ(ξ)Jα,δ(ξ)
−1

from which we get the desired bound on the resolvent thanks to the study of Bα,δ(ξ)
−1 in

Lemma 5.9. At this point we have proved points (i), (ii) and the first estimate in (iii).

Step 3. The second estimate in point (iii) is obtained from the resolvent identity

Rα(ξ) −R1(ξ) = Rα(ξ) [L1 − Lα]R1(ξ),

together with the previous estimates on the resolvent and point (iii) in Lemma 5.8. ⊓⊔
Remark that this lemma proves the point (ii) in Theorem 5.2. Moreover, as a con-

sequence of this estimate on the resolvent Rα(ξ), we may go one step further in the
localization of the spectrum of L̂α around 0.

Corollary 5.14 Let us fix µ̄ ∈ (µ2, 0). In any W
k,1
q (m−1) there is some constant C ∈

(0,∞) such that
∀α ∈ [α2, 1], Σ(L̂α) ∩ ∆µ̄ ⊂ B(0, C (1 − α)).

Proof of Corollary 5.14. The proof follows from the estimates in point (ii) of Lemma 5.13,

together with the fact that (Proposition 4.1 of [27] in L1(m−1) extended to W
k,1
q (m−1) by

the previous discussion):

∀ ξ ∈ ∆µ̄, ‖R1(ξ)‖W
k,1
q (m−1)

≤ a+
b

|ξ|

for some explicit constants a, b > 0. We get thus that ‖Rα(ξ)‖
W

k,1
q (m−1)

< ∞ if ξ ∈ ∆µ̄

and |ξ| ≥ C (1 − α), which concludes the proof. ⊓⊔

51



5.5 Fine study of spectrum close to 0

Let us fix r ∈ (0, |µ̄|] and let us choose any αr ∈ [α2, 1) such that C (1−αr) < r (with the
notations of Corollary 5.14) in such a way that Σ(L̂α) ∩ ∆λ̄ ⊂ B(0, r) for any α ∈ [αr, 1].
We may then define the spectral projection operator (see [21])

Πα := − 1

2π i

∫

S(0,r)
Rα(ζ) dζ(5.2)

in any W
k,1
q (m−1), with S(0, r) := {ξ ∈ C, |ξ| = r}. The operator Πα is the projection

operator on the sum of eigenspaces associated to eigenvalues lying in the half plane {ξ ∈
C, ℜe ξ ≥ −r}, see [21]. In particular the operator Π1 is the projection on the energy
eigenline Rφ1, where we recall that φ1 is the energy eigenfunction defined by (1.33).

Lemma 5.15 The operator Πα satisfies

(i) For any k ∈ N and any exponential weight function m (as defined in (1.28)), it is
well-defined and bounded in Wk

q (m
−1).

(ii) Moreover there is a constant C > 0 (depending on m) such that

∀α, α′ ∈ [αr, 1] ‖Πα − Πα′‖
W 3,1

3 (m−1)→L1(m−1)
≤ C |α′ − α|.(5.3)

Proof of Lemma 5.15. It is a straightforward consequence of (5.2) and Lemma 5.13. ⊓⊔

Corollary 5.16 There exists α3 ∈ [α2, 1) such that for any α ∈ [α3, 1) there holds

Σ(L̂α) ∩ ∆µ̄ = {µα} and the eigenspace associated to µα ∈ R is 1-dimensional.

This eigenvalue is called the energy eigenvalue. We may furthermore remark that Corol-
lary 5.14 implies

∀α ∈ [α3, 1) |µα| ≤ C (1 − α).(5.4)

Proof of Corollary 5.16. We already know that Σ(L̂α) ∩ ∆µ̄ is entirely composed of
discrete spectrum. Therefore we have to prove that it is of dimension 1. Indeed once this
is proved, the fact that µα ∈ R is trivial since the operator is real, and the control (5.4) is
trivial from Corollary 5.14.

Let us define the space Xα := Πα(L1(m−1)) + Π1(L
1(m−1)) endowed with the norm

‖ · ‖L1(m−1). From Proposition 5.11, there exists a constant C1 > 0 such that

∀ψ ∈ Xα, ‖ψ‖W 3,1
3 (m−1) ≤ C1 ‖ψ‖L1(m−1).

Thanks to the definition of Πα and Π1 and to Lemma 5.15, we then get

‖Πα − Π1‖Xα→Xα ≤ C2 sup
ψ∈Xα

sup
z∈S(0,r)

‖(Rα(z) −R1(z))ψ‖L1(m−1)

‖ψ‖L1(m−1)

≤ C ′
2 (1 − α) sup

ψ∈Xα

‖ψ‖W 3,1
3 (m−1))

‖ψ‖L1(m−1)

≤ C ′′
2 (1 − α) < 1,
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for (1−α) small enough. By classical operator theory (see for instance the arguments pre-
sented in [21, Chap 1, paragraph 4.6] in order to prove [21, Lemma 4.10]) one deduces that
dimension(Πα) = dimension(Π1). Since dimension(Π1) = 1 (as recalled in Theorem 5.1),
this concludes the proof. ⊓⊔

Let us introduce for any ψ ∈ L1 the decomposition

ψ = Π1ψ + Π⊥
1 ψ = (π1ψ)φ1 + Π⊥

1 ψ,

where π1ψ ∈ R is the coordinate of Π1ψ on Rφ1 (defined thanks to the projection Π1).
For any α ∈ [α3, 1) we denote by φα the unique eigenfunction associated to µα such that
‖φα‖L1

2
= 1 and π1φα ≥ 0.

We can now establish a first order approximation of the eigenfunction φα.

Lemma 5.17 For any k, q ∈ N and any exponential weight function m (as defined in (1.28)),
there exists C such that

∀α ∈ [α3, 1] ‖φα − φ1‖W k,1
q (m−1)

≤ C (1 − α).(5.5)

Remark 5.18 We immediately deduce from Lemma 5.17 that φα(0) < 0 for α close
enough to 1, and therefore, we get that this definition of φα coincides with the definition
in Theorem 1.1.

Proof of Lemma 5.17. On the one hand, from the normalization conditions, we have

‖φ1 − Π1φα‖L1
2

= |1 − π1φα| =
∣∣∣ ‖φα‖L1

2
− ‖Π1φα‖L1

2

∣∣∣

≤ ‖φα − Π1φα‖L1
2

= ‖Π⊥
1 φα‖L1

2
.

We then deduce

‖φ1 − φα‖L1
2
≤ ‖Π1φα − φα‖L1

2
+ ‖Π⊥

1 φα‖L1
2
≤ 2 ‖Π⊥

1 φα‖L1
2
.(5.6)

On the other hand, the eigenfunction φα satisfies

L̂1(φα) = [L̂1(φα) − L̂α(φα)] − µα φα.

Recall that from Proposition 5.11 one has uniform bounds in W∞,1
∞ (m−1) on φα in terms

of its L1
2 norm which has been fixed to 1, so that for any α ∈ [α3, 1], ‖φα‖W k,1

q (m−1)
≤ C.

Using Proposition 3.1 and Proposition 5.11 we get

‖L̂1φα‖L1(m−1) = O(1 − α).

Using that L̂1 is invertible from Π⊥
1 L1

1(m
−1) to L1(m−1) we deduce that

‖Π⊥
1 φα‖L1(m−1) = O(1 − α).(5.7)

We conclude the proof of (5.5) holds for the L1
2 norm gathering (5.6) and (5.7):

∀α ∈ [α3, 1] ‖φα − φ1‖L1
2
≤ C (1 − α).
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Let now consider the eigenfunctions Φα associated to µα for α ∈ [α3, 1] such that
π1Φα > 0 with the normalization condition ‖Φα‖W k,1(m−1) = 1. Proceeding similarly as

before (by working in the space W k,1(m−1)), we can get

‖Φα − Φ1‖W k,1(m−1) = O(1 − α).

Because the eigenspace associated to µα is of dimension 1, we have Φα = cα φα for some
constant cα ∈ (0,∞). Then

|c1 − cα| = ‖cα φα − c1 φα‖L1
2
≤ ‖Φα − Φ1‖L1

2
+ |c1| ‖φ1 − φα‖L1

2
= O(1 − α).

We then easily conclude that (5.5) holds for any W k,1(m−1) norm. ⊓⊔
We now use the linearized energy dissipation equation to get a second order expansion

of the eigenvalue.

Lemma 5.19 For α ∈ [α3, 1], the eigenvalues µα satisfies (with explicit bound)

µα = −ρ (1 − α) + O(1 − α)2.

Proof of Lemma 5.19. By integrating the eigenvalue equation

L̂αφα = µα φα

against |v|2 and dividing it by (1 − α), we get

µα
1 − α

E(φα) = 2 ρ E(φα) − 2 (1 + α) D̃(Ḡα, φα).

Using the rate of convergence of Ḡα → Ḡ1 and φα → φ1 established in Lemma 4.4 and
Lemma 5.17 we deduce that

µα
1 − α

E(φ1) = 2 ρ E(φ1) − 4 D̃(Ḡ1, φ1) + O(1 − α).(5.8)

Then we compute thanks to (A.1) and (A.2)

E(φ1) = 2N c0 ρ θ̄
2
1,(5.9)

where c0 is still the normalizing constant in (1.33) such that ‖φ1‖L1
2

= 1. Similarly, using

(A.3), (A.4) and the relation (1.27) which make a link between b1 and θ̄1, we find

D̃(Ḡ1, φ1) =
3

2
N c0 ρ

2 θ̄2
1.(5.10)

We conclude gathering (5.8), (5.9) and (5.10). ⊓⊔
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5.6 The map α 7→ Ḡα is C1

The fact that the path of self-similar profiles α 7→ Ḡα is C0 on [α3, 1] and C1 at α = 1 was
already proved in Lemma 4.4. Therefore we have to prove that it is C1 for α ∈ [α3, 1).

Let us define the functional

(α, g) 7→ Ψ(α, g) := Qα(g, g) − τα∇v(v g).

The map Ψ is C1 from R × (W 1,1
1 (m−1) ∩ Cρ,0) into L1(m−1) and it is such that for

any α ∈ [α1, 1), the equation Ψ(α, g) = 0 has only one solution which is the profile Ḡα.
Moreover, for any α ∈ [α3, 1), the linearized operator D2Ψ(α, Ḡα) = Lα is invertible
from W1,1(m−1) into L1(m−1) because of the spectral properties of Lα established in
Theorem 5.2 (i) & (ii) (note that here there is no eigenvalue approaching 0 at α). Then
using the same strategy as in Subsection 4.2 based on the implicit function theorem we
easily conclude that α 7→ Ḡα is C1 from [α3, 1) into L1(m−1). That ends the proof of
Theorem 1.1 (ii).

5.7 Decay estimate on the semigroup

We start with a lemma on non sectorial semigroups in Banach spaces. This result is a
tool for deriving constructive decay rate on non sectorial semigroups, from the knowkedge
on the resolvent of their generator. We do not try to prove such a decay rate for the
semigroup in the norm of the Banach space but instead in a weaker norm (corresponding
to the norm of the graph of some power of its generator), which shall be sufficient for our
study of the linearized stability of the non-linear equation (1.29).

Lemma 5.20 Let A be a closed unbounded operator on a Banach space E with dense
domain dom(A). We denote by S(t) the associated semigroup, by R(A) the associated
resolvent set and by R = R(ξ) the resolvent operator defined on R(A). Assume that we
have a sequence of Banach spaces E2 ⊂ E1 ⊂ E0 = E decreasing for inclusion (in most
cases this sequence shall be provided by Ek = dom(Ak) endowed with the norm of the graph
of Ak). We assume on the operator that:

(i) the resolvent set R(A) contains the half plan ∆a for some a ∈ R, together with the
estimates

sup
s∈R

‖R(a + i s)‖E0→E0 ≤ C1

and

∀ s ∈ R, ‖R(a + i s)‖E1→E0, ‖R(a+ i s)‖E2→E1 ≤ C2

1 + |s|
for some constants C1, C2 > 0;

(ii) the semigroup S(t) satisfies

∀ t ≥ 0, ‖S(t)‖E2→E0 ≤ C3 e
b t(5.11)

for some constants C3, b > 0.

Then for any a′ > a, there exists a constant C4 depending only on a, b, a′, C1, C2, C3

such that
∀ t ≥ 0, ‖S(t)‖E2→E0 ≤ C4 e

a′ t.(5.12)
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Proof of Lemma 5.20. We split the proof into two parts.

Step 1. The first bound on the resolvent implies that for any x ∈ E0

‖R(a+ is)x‖E0 → 0, |s| → ∞.

Indeed we first consider x ∈ dom(A) and then argue by density (since the domain dom(A)
is dense). When x ∈ dom(A) the result is proved by the relation

R(z)x = z−1 [ − Id + R(z)A] x.

Step 2. Then consider the following integral of R(z)x on a vertical segment with real
part a (for some M > 0)

IM (x) :=

∫ a+iM

a−iM
eztR(z)x dz.

The function z → R(z) is differentiable on this segment and we can perform an integration
by part:

IM (x) =
e(a+iM) t

t
R(a+ iM)x− e(a−iM) t

t
R(a− iM)x−

∫ a+iM

a−iM

ezt

t
R(z)2x dz

where we have used R′(z) = R(z)2. Now we estimate the E0 norm of this quantity:

‖IM (x)‖E0 ≤
∥∥∥∥∥
e(a+iM) t

t
R(a+ iM)x

∥∥∥∥∥
E0

+

∥∥∥∥∥
e(a+iM) t

t
R(a+ iM)x

∥∥∥∥∥
E0

+C2
2

ea t

t

(∫ +∞

−∞

1

(1 + |s|)2 ds
)

‖x‖E2 .

Therefore the integral is semi-convergent and we can pass to the limit M → +∞ and use
(see [32, 4]) that

S(t)x =
1

2iπ
lim
M→∞

∫ a+iM

a−iM
eztR(z)x dz =

1

2iπ
lim
M→∞

IM

to obtain (the two boundary terms go to 0 as M → +∞ from the first step)

‖S(t)x‖E0 ≤ C ′
2

ea t

t
‖x‖E2 , with C ′

2 = C2
2

(∫ +∞

−∞

1

(1 + |s|)2 ds
)
.(5.13)

Using (5.11) for t ≤ 1 and (5.13) for t ≥ 1, we conclude that (5.12) holds with C4 =
max(C ′

2, C3 e
b−a′). ⊓⊔

Proof of point (iii) in Theorem 5.2. The point (ii) of Theorem 5.2 was proved in
Lemma 5.13 and it shows that the operator L̄α = (Id−Πα) L̂α together with the sequence

of Banach spaces Ei = W
k+i,1
i (m−1), i = 0, 1, 2, for any fixed k ∈ N and any exponential

weight function m (as defined in (1.28)), satisfies the assumption (i) of Lemma 5.20 for
any a ∈ (µ2, 0). Moreover it is trivial to prove that it satisfies the assumption (ii) of
Lemma 5.20 for some explicit b > 0 from the decomposition Lα = Aδ − Bα,δ(ξ) already
introduced. ⊓⊔
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6 Convergence to the self-similar profile

In this section, we consider the nonlinear rescaled equation (1.29) and we prove the con-
vergence of its solutions to the self-similar profile. As a preliminary let us recall some
result on propagation and appearance of moments and regularity which is picked up from
[24, Proposition 3.1, Theorem 3.5, Theorem 3.6].

Lemma 6.1 Let us consider gin ∈ L1
3 ∩ Cρ,0 and the associated solution g ∈ C([0,∞);L1

3)
to the rescaled equation (1.29). Then

(i) For any exponential moment weight m (as defined in (1.28)) with exponent s ∈
(0, 1/2) and any time t0 ∈ (0,∞), there exists a constant M1 = M1(t0) such that

sup
[t0,∞)

‖g(t, ·)‖L1(m−1) ≤M1.(6.1)

Moreover, if gin ∈ L1(m−1) for some polynomial or exponential (with exponent s ∈
(0, 1)) moment weight m then (6.1) holds (for this weight m) with t0 = 0 and some
constant M1 = M1(‖gin‖L1(m−1)).

For the two following points we now assume that for some constants c1, T ∈ (0,∞)
there holds

inf
[0,T ]

E(g(t, ·)) ≥ c1,(6.2)

and we state some smoothness properties of the solution g which depend on c1 but
not on T nor α.

(ii) Assume (6.2). Then for any k0 ∈ N there is q0 = q0(k0) ∈ N such that if ‖gin‖Hk0∩L1
q0

≤
C0 holds, then for any c1 ∈ (0,∞) there exists C1 = C1(C0, c1) ∈ (0,∞) such that
for any time T ∈ (0,∞), we have

∀ t ∈ [0, T ], ‖g(t, ·)‖Hk1 ≤ C1,(6.3)

with k1 = 0 if k0 = 0 and k1 = k0 − 1 if k0 ∈ N∗.

(iii) Assume (6.2) and that gin ∈ L2, with ‖gin‖L2∩L1
3
≤ M1 ∈ (0,∞). Then there exists

λ ∈ (−∞, 0) and for any exponential weight function m with exponent s ∈ (0, 1/2)
and any k ∈ N, there exists a constant K (which depends on ρ, c1,M1, k,m) such
that we may split g = gS + gR with

∀ t ∈ [0, T ], ‖gS(t, ·)‖Hk∩L1(m−1) ≤ K, ‖gR(t, ·)‖L1
3
≤ K eλ t.(6.4)

Remark 6.2 It is worth mentioning that these estimates are uniform with respect to the
inelasticity parameter α ∈ (0, 1). Indeed, one the one hand, this was already the case for
the moment estimate (6.1) in [24, Proposition 3.1]. On the other hand (6.3) and (6.4)
from [24, Theorem 3.5, Theorem 3.6] were (partially) based on the use of the damping
effect of the anti-drift term (whose coefficient was fixed to τ = 1). Here the damping effect
of the anti-drift term vanishes (τα → 0) but it is replaced (as for the elastic Boltzmann
equation) by the lower bound on the energy (6.2) which allows for a control from below
on the convolution term L(g) appearing in the loss term of the collision operator (see
Lemma 2.3), which is enough to conclude also in this case.

57



6.1 Local linearized asymptotic stability

Let us first consider the nonlinear evolution equation (1.15) in L1(m−1) ∩ Hk, and the
associated equation on the fluctuation h of a solution g around the unique equilibrium
Ḡα: g = Ḡα + h and

∂th = Lαh+Qα(h, h).

Let us start by stating an inequality that we shall need in the sequel.

Lemma 6.3 For any exponential weight function m (as defined in (1.28)), there is a
constant C ∈ (0,∞) such that for any h ∈W 3,1

3 (m−1) and any α ∈ (0, 1),

‖ΠαQα(h, h)‖L1(m−1) ≤ C (1 − α) ‖h‖2
W 3,1

3 (m−1)
.

Proof of Lemma 6.3. We write

ΠαQα(h, h) = Πα(Qα(h, h) −Q1(h, h)) + (Πα − Π1)Q1(h, h).

On the one hand, from Lemma 5.15 (i) and (3.4), there is C ∈ (0,∞) such that

‖Πα(Qα(h, h) −Q1(h, h))‖L1(m−1) ≤ C (1 − α)‖h‖2
W 3,1

3 (m−1)
.

On the other hand, from (5.3) and (3.1), we get

‖(Πα − Π1)Q1(h, h)‖L1(m−1) ≤ C (1 − α) ‖h‖2
W 3,1

3 (m−1)
.

The proof of the lemma is immediate by gathering the two previous estimates. ⊓⊔
We now state a first local linearized stability result.

Proposition 6.4 For any α ∈ [α3, 1), the self-similar profile Ḡα is locally asymptotically
stable, with domain of stability uniform according to α ∈ [α3, 1).

More precisely, let us fix ρ ∈ (0,∞) and some exponential weight function m as
in (1.28). There is k1, q1 ∈ N∗ such that for any M0 ∈ (0,∞) there exists C, ε ∈ (0,∞)
such that for any α ∈ [α3, 1], for any gin ∈ Hk1 ∩ L1(m−q1) with mass ρ, momentum 0
satisfying

‖gin‖Hk1∩L1(m−q1 ) ≤M0, ‖gin − Ḡα‖L1(m−1) ≤ ε,(6.5)

the solution g to the rescaled equation (1.29) with initial datum gin satisfies

∀ t ≥ 0, ‖Πα (gt − Ḡα)‖L1(m−1) ≤ C ‖gin − Ḡα‖L1(m−1) e
µα t,(6.6)

∀ t ≥ 0, ‖(Id − Πα) (gt − Ḡα)‖L1(m−1) ≤ C ‖gin − Ḡα‖L1(m−1) e
(3/2) µα t.(6.7)

Proof of Proposition 6.4. Step 1. Let us first denote by c1 the constant given in Step 5
of Proposition 2.1 such that

∀α ∈ [α1, 1), E(Ḡα) ≥ 2 c1.

We may then fix ε0 ∈ (0,∞) in such a way that

‖g − Ḡα‖L1(m−1) ≤ ε0 implies E(g) ≥ c1,(6.8)
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and define
T∗ := sup {T, E(gt) ≥ c1 ∀ t ∈ [0, T ]} ∈ (0,∞].

From Lemma 6.1 (i) & (ii), there exists M ∈ (0,∞) (depending on ρ, c1, k1, q1,M0) such
that for any T ∈ (0,∞) there holds

sup
t∈[0,T∗]

‖g‖Hk1∩L1(m−q1 ) ≤M.(6.9)

Let us now consider the fluctuation ht = gt− Ḡα. Thanks to the mass and momentum
conservations, it satisfies ht ∈ C0,0 for all times, as well as the bound (6.9). We define the
following decomposition on h:

h1 = Παh and h2 = (Id − Πα)h =: Π⊥
αh.

Since the spectral projection Πα commutes with the linearized operator Lα, the equation
on h1 writes

∂th
1 = µα h

1 + ΠαQα(h, h).

Multiplying that equation by (sign h)m−1 and integrating in the velocity variable, we
deduce thanks to Lemma 6.3 and to (B.2), (6.9) that on (0, T∗) the following holds

d

dt
‖h1‖L1(m−1) ≤ µα ‖h1‖L1(m−1) + C (1 − α) ‖h‖2

W 3,1
3 (m−1)

≤ (1 − α)
[
C1 ‖h1‖3/2

L1
2

+ C1‖h2‖3/2

L1
2
− C2 ‖h1‖L1(m−1)

]
,(6.10)

for some constants C1 depending on M and the possible choice C2 = ρ/2 for C2. For the
second part h2 we have the following equation

∂th
2 = Π⊥

α Lα h2 + Π⊥
αQα(h, h).

Since the linearized operator Lα restricted to Π⊥
α generates the semigroup Rα(t) defined

in point (iii) of Theorem 5.2, the Duhamel formula reads

h2(t) = Rα(t)hin +

∫ t

0
Rα(t− s)Π⊥

αQα(h, h)(s) ds.

From (5.1) and (3.1) we have

‖h2(t)‖L1(m−1) ≤ C eµ̄ t ‖hin‖L1(m−1) + C

∫ t

0
eµ̄ (t−s) ‖h(s)‖2

W 2,1
2 (m−1)

ds.

We deduce

‖h2
t ‖L1(m−1) ≤ C3 e

µ̄ t ‖h2
in‖ + C4

∫ t

0
eµ̄ (t−s)

(
‖h1

s‖
3/2
L1(m−1)

+ ‖h2
s‖

3/2
L1(m−1)

)
ds.(6.11)

with C4 depending on M thanks to (B.2) and (6.9). It is then easy to show by comparison
arguments from (6.10) and (6.11) that there are 0 < ε2 ≤ ε1 ≤ ε0 (one can take for
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instance ε1 ≤ ε0/2 satisfying 2C1 ε
1/2
1 < C2 and 2C4 ε

1/2
1 < 1/2 and next ε2 ≤ ε1 satisfying

C3 ε2 < ε1/2) such that

‖h1
in‖L1(m−1) + ‖h2

in‖L1(m−1) ≤ ε2 implies sup
t∈[0,T∗]

max
{
‖h1

t ‖L1(m−1), ‖h2
t ‖L1(m−1)

}
≤ ε1.

(6.12)
Gathering (6.8) and (6.12) we deduce that there exists ε ∈ (0, ε2) such that under condition
(6.5) there holds T∗ = ∞ as well as

sup
t∈(0,∞)

‖g − Ḡα‖L1(m−1) ≤ 2 ε1 ≤ ε0.

Step 2. In a second step, coming back to (6.11) and to the integral version of (6.10) and
setting y(t) = ‖h1‖ + |µα| ‖h2‖, we obtain

y(t) ≤ C5 e
µα t y(0) + C6 |µα|

∫ t

0
eµα (t−s) y(s)3/2 ds.(6.13)

Then we have to the following variant of the Gronwall lemma whose proof is the same
that the one of [27, Lemma 4.5] and is therefore skipped:

Lemma 6.5 Let y = y(t) be a nonnegative continuous function on R+ such that for some
constants a, b, θ, µ > 0,

y(t) ≤ a e−µtX + b

(∫ t

0
e−µ(t−s)y(s)1+θ ds

)

(as compared to [27, Lemma 4.5], X needs not necessarily be y(0)). Then if X and b are
small enough, we have

y(t) ≤ CX e−µt.

for some explicit constant C > 0.

Thanks to the uniform smallness estimate on y(t) we can apply the lemma with θ = 1/4
for instance, and we get

y(t) ≤ C7 y(0) e
µα t

from which we deduce the estimate (6.6) for the h1 part of g− Ḡα. Finally, we may insert
that estimate on h1 in (6.11) and we get

‖h2(t)‖L1(m−1) ≤ C ′
3 (eµ̄ t + e(3/2) µα t) ‖hin‖L1(m−1) + C4

∫ t

0
eµ̄ (t−s) ‖h2(s)‖3/2

L1(m−1)
ds.

The same kind of computation yields to

‖h2
t ‖ ≤ C8 e

(3/2) µα t ‖h(0)‖

from which (6.7) follows. ⊓⊔
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6.2 Nonlinear stability estimates

In this subsection we shall prove that when the inelasticity is small, depending on the size of
the initial datum (but not necessary close to the self-similar profile), the equation (1.15)
is stable. This relies mainly on the fact that the entropy production timescale is of a
different order (much faster) that the energy dissipation timescale as α → 1. This point
is familiar to physicists (see for instance [9]) which separate, for granular gases with small
inelasticity, the molecular timescale (the level where entropy production effects dominate)
and the cooling timescale (much slower than the molecular timescale).

Proposition 6.6 Define k2 := max{k0, k1}, q2 := max{q0, q1, 3}, where ki and qi are
defined in Theorem 3.5 and Corollary 3.4. For any ρ, E0, M0 there exists α4 ∈ [α3, 1),
c1 ∈ (0,∞) and for any α ∈ [α4, 1] there exist ϕ = ϕ(α) with ϕ(α) → 0 as α → 1
and T = T (α) (possibly blowing-up as α → 1) such that any initial datum 0 ≤ gin ∈
L1
q2 ∩Hk2 ∩ Cρ,0,E0 with

‖gin‖L1
q2

∩Hk2 ≤M0,

the solution g associated to the rescaled equation (1.29) satisfies

∀ t ≥ 0, E(gt) ≥ c1

and for all α′ ∈ [α4, 1) and then all α ∈ [α′, 1]

∀ t ≥ T (α′),
∥∥gt − Ḡα

∥∥
L1

2
≤ ϕ(α′).(6.14)

Proof of Proposition 6.6. Let us consider a solution g ∈ C([0,∞);L1
q2 ∩ Hk2) to the

rescaled equation (1.29) with given initial datum gin, whose existence has been established
in [23, 24]. We split the proof of the Proposition into five steps.

Step 1. From the propagation and appearance of uniform moment bounds [24, Proposi-
tion 3.1, (iii)], which it is worth noticing have been obtained uniformly with respect to the
elastic coefficient (see also [8]), there exists C1 ∈ (0,∞) such that

sup
t≥0

‖g‖L1
q2

≤ C1.(6.15)

Let us define c1 := min{E(Ḡ1), E0}/4, and

T∗ := sup {T ; ∀ t ∈ [0, T ], E(g(t, ·)) ≥ c1}.(6.16)

Next from the equation on the evolution of energy

E ′(t) = −(1 − α2) b1DE(g) + (1 − α) 2 ρ E(6.17)

and (6.15) there holds
|E ′(t)| ≤ C2 (1 − α) ∀ t ≥ 0

(take for instance C2 = 2 b1 C
2
1 +C1), from which we deduce that we necessarily have

T∗ ≥ C3 (1 − α)−1

(take for instance C3 = (3/4) E0/C2).
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Step 2. From point (ii) of Lemma 6.1, we have for some constant C5 ∈ (0,∞)

∀ t ∈ [0, T∗] ‖gt‖Hk2 ≤ C4.(6.18)

Moreover from Lemma 2.6, for any time t1 ∈ (0, T∗), there exists some constant C5 =
C5(ρ,C4, t1) such that

∀ t ∈ [t1, T∗] g(t, v) ≥ C−1
5 e−C5 |v|8 .(6.19)

Step 3. With the notations of Theorem 3.5, we compute the evolution of the relative
entropy of g(t, ·) with respect to the associated Maxwellian M [g(t, ·)], and we obtain

d

dt
H(g|M [g]) =

d

dt
H(g) − d

dt

∫

RN

g ln M [g] =
d

dt
H(g) − ρN

2 E
d

dt
E

= −DH,α(g) − ρN

2 E (1 − α)DE (g).

Next from Lemma 3.4 and the estimates (6.15), (6.16), (6.18) and (6.19) we have

d

dt
H(g|M [g]) = −DH,1(g, g) + O(1 − α) on (t1, T∗).

Then from (3.11), we are then led to the following differential inequation on the relative
entropy

d

dt
H(g|M [g]) ≤ −C6H(g|M [g])2 +C7 (1 − α) on (t1, T∗).

By straightforward computations we deduce that independently of the value of H(gt1 |M [gt1 ])
(this “loss of memory” effect is typical of differential equations with overlinear damping
terms), we have

∀ t ∈ [t1, T∗], H(gt|M [gt]) ≤ C8 (1 − α)1/2
1 + e−C9 (1−α)1/2 (t−t1)

1 − e−C9 (1−α)1/2 (t−t1)

for some explicit constants. As a conclusion, defining t2 := t1 + C−1
9 (1 − α)−1/2 and

choosing ᾱ ∈ [α3, 1) in such a way that t2 < T∗ we have for α ∈ [α′, 1)

∀ t ∈ [t2, T∗] H(g(t)|M [g]) ≤ C10 (1 − α)1/2.

Finally, using Csiszár-Kullback-Pinsker inequality (3.10), as well as Hölder inequality, we
obtain under the same conditions on α and the time variable:

‖g −M [g]‖L1
3
≤ C ‖g −M [g]‖1/2

L1 ‖g‖1/2

L1
6
≤ CH(g|M [g])1/4 ≤ C (1 − α)1/8.(6.20)

Step 4. Now let us go back to the energy equation (6.17). First, with the help of the
moment bound (6.15), one may write

E ′(t) = 2 (1 − α) [ρ E − b1DE(g) + O(1 − α)].

Thanks to (6.20) we deduce

E ′(t) = 2 (1 − α) (ρ E − b1DE (M [g]) + O((1 − α)1/8)) on (t2, T∗).

62



Finally, thanks to (3.16), (3.17) and the relation E(g) = ρN θ(g), we get on (t2, T∗)

E ′(t) := Σ(E(t), α) = (1 − α) [k3 E (Ē1/2
1 − E1/2) + O((1 − α)1/8)],(6.21)

where Ē1 = ρN θ̄1 with θ̄1 is the quasi-elastic self-similar temperature defined in (1.27).
We may then choose α′′ ∈ [α′, 1) such that Σ(c1, α) > 0 for any α ∈ [α′′, 1). We conclude by
maximum principle that T∗ = ∞ for α ∈ [α′′, 1). In particular, all the previous estimates
on g are uniform on (t2,∞).

Step 5. Thanks to (6.21) we easily get

d

dt
(E − Ē1)

2 ≤ −(1 − α) [k5 (E − Ē1)
2 + O((1 − α)1/8)],

so that (for some constants a, b > 0)

∀ t ≥ t2, |E(t) − Ē1| ≤ |E(t2) − Ē1| e−a (1−α) (t−t2) + b (1 − α)1/8.

Setting T (α) = max{t2, c (1 − α)−1} for some suitable constant c > 0, we then obtain

|E − Ē1| = O((1 − α)1/8) on [T (α),∞).(6.22)

In order to conclude that (6.14) holds, we write

g(t) − Ḡα = (g(t) −M [g(t)]) + (M [g(t)] − Ḡ1) + (Ḡ1 − Ḡα),

and we estimate the first term thanks to (6.20), the second term thanks to (6.22) and the
third term by (3.12). ⊓⊔

6.3 Decomposition and Liapunov functional for smooth initial datum

The proof of the gobal convergence (point (v) of Theorem 1.1) for smooth initial data only
amounts to connect the two previous results of Propositions 6.4 and 6.6 by choosing α such
that ϕ(α) ≤ ε where ε is the size of the attraction domain in Proposition 6.4 and ϕ(α)
is defined in Propositions 6.6. More precisely, we state without proof the straightforward
combination of Propositions 6.6 and Proposition 6.4.

Corollary 6.7 Let us fix an exponential weight function m as in (1.28), with exponent s ∈
(0, 1). Then for any ρ, E0, M0 there exists C and α5 ∈ [α4, 1) (depending on ρ, E0, M0,m)
such that for any α ∈ [α5, 1) and any initial datum 0 ≤ gin ∈ L1(m−q2) ∩Hk2 satisfying

gin ∈ Cρ,0,E0, ‖gin‖L1(m−q2 )∩Hk2 ≤M0,

the solution g associated to the rescaled equation (1.29) satisfies

∀ t ≥ 0, ‖Πα (gt − Ḡα)‖L1(m−1) ≤ C eµα t,

∀ t ≥ 0, ‖(Id − Πα) (gt − Ḡα)‖L1(m−1) ≤ C e(3/2) µα t.

Remark 6.8 Note that the constant C in the rate of decay does not depend on α. This
comes from the fact the size of the linearized stability domain is uniform as α goes to 1
in Proposition 6.4, which allows in Propositions 6.6 to pick a fixed α′ such that in the
estimate (6.14) ϕ(α′) is less than this size, and therefore that the time T (α′) required to
enter this neighborhood does not blow-up as α goes to 1.
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As a by-product of the previous propositions, we state and prove a result which pro-
vides a partial answer to the question (important from the physical viewpoint) of finding
Liapunov functionals for this particles system. Let us define the required objects. We
consider a fixed mass ρ and some restitution coefficient α whose range will be specified
below. At initial times, non-linear effects dominate and therefore we define

H1(g) := H(g|M [g]) + (E − Ēα)2

where Ēα = E(Ḡα) is the energy of the self-similar profile corresponding to α and the mass
ρ. At eventual times, linearized effects dominate. Therefore we define a quite natural
candidate from the spectral study:

H2(g) := ‖h1‖2
L1(m−1) + (1 − α)

∫ +∞

0

∥∥Rα(s)h2
∥∥2

L2 ds,

with h1 = Παh, h
2 = Π⊥

αh and h = g − Ḡα.

Proposition 6.9 There is k4 ∈ N big enough (this value is specified in the proof) such
that for any exponential weight function m as defined in (1.28), any time t0 ∈ (0,∞)
and any ρ, E0,M0 ∈ (0,∞), there exists κ∗ ∈ (0,∞) and α6 ∈ [α5, 1) such that for any
α ∈ [α6, 1] and initial datum gin ∈ Hk4 ∩ L1(m−1) satisfying

gin ∈ Cρ,0,E0, ‖gin‖Hk4∩L1(m−1) ≤M0, gin(v) ≥M−1
0 e−M0 |v|8 ,

the solution g to the rescaled equation (1.29) with initial datum gin is such that the func-
tional

H(gt) = H1(gt)1{H1(gt)≥κ∗} + H2(gt)1{H1(gt)≤κ∗}
is decreasing for all times t ∈ [0,+∞). Moreover, H(g(t, ·)) is strictly decreasing as long
as g(t, ·) has not reached the self-similar state Ḡα.

Proof of Proposition 6.9. We split the proof into three steps.

Step 1: Initial times. Taking k4 ≥ k2 and α ∈ [α4, 1), we know from the proof of Proposi-
tion 6.6 that the solution g satisfies that

∀ t ∈ [t0,∞), ‖g(t, ·)‖Hk4∩L1(m−1) ≤M1, g(t, v) ≥M−1
1 e−M1 |v|8 ,

for some constant M1 ∈ (0,∞) (recall that α4 was adjusted in terms of ρ, E0,M0). Coming
back then to Steps 3 and 4 in the proof of Proposition 6.6, we obtain the two following
differential equation on (t0,∞)

d

dt
H(g|M [g]) ≤ −K1H(g|M [g])2 + O(1 − α)

and
d

dt
E = 2 ρ (1 − α)

[
K2 E (Ē1/2

α − E1/2) (E − Ēα) + O((1 − α)1/8)
]
,

for some constants Ki ∈ (0,∞). We easily deduce that for any κ ∈ (0,∞) there exists
ακ ∈ [α5,∞) such that

d

dt
H1(gt) < 0 for any t ∈ (0,∞) such that H1(gt) ≥ κ.(6.23)
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Step 2: Eventual times. Let us first remark that from point (iii) in Theorem 5.2 (iii) and
the interpolation inequality (B.2), for any q ∈ N∗ there exists k, k′ ∈ N and Ci ∈ (0,∞)
such that

∥∥Rα h2
∥∥
L2 ≤ C1

∥∥Rα h2
∥∥
W k,1(m−q/2)

≤ C2 e
µ̄ s
∥∥h2
∥∥
W k+2,1

2 (m−q/2)
≤ C3 e

µ̄ s ‖h‖Hk′∩L1(m−q) ,

so that, taking k4 big enough, the functional H2(g(t, .)) is well-defined for any times
t ∈ (0,∞). First observe that from (6.10) there holds

d

dt
‖h1‖2

L1(m−1) ≤ (1 − α)
[
K1 ‖h‖5/2

L1(m−1)
−K2 ‖h1‖2

L1(m−1)

]
.(6.24)

Second, we compute (with the notation of Subsection 5.7)

d

dt

∫ +∞

0

∥∥Rα(s)h2
t

∥∥2

L2 ds = 2

∫ +∞

0

∫

RN

(es L̄α h2) [es L̄α (L̄αh2 + Π⊥
αQα(h, h))] ds dv.

On the one hand,

I1 = 2

∫ +∞

0

∫

RN

(es L̄α h2) [es L̄α L̄αh2] dsdv

=

∫ +∞

0

d

ds
‖es L̄α h2‖2

L2 ds = −‖h2‖2
L2 .

On the other hand,

I2 = 2

∫ +∞

0

∫

RN

(Rα(s)h2) [Rα(s)Π⊥
αQα(h, h))] dsdv

≤ 2C2
1

∫ +∞

0
‖Rα(s)h2‖W k1,1(m−q/2) ‖Rα(s)Π⊥

αQα(h, h)‖W k1,1(m−q/2) ds

≤ C ′
2

(∫ +∞

0
e2µ̄ s ds

)
‖h2‖

W
k1+1,1
2 (m−q/2)

‖Qα(h, h)‖
W

k1+1,1
2 (m−q/2)

≤ C ′
3 ‖h2‖3/4

L2 ‖h2‖1/4

Hk3∩L1(m−1)
‖h‖3/2

L2 ‖h‖1/2

Hk3∩L1(m−1)
,

for some k3 ∈ N given by Proposition B.1. Taking k4 ≥ k3, we then obtain

d

dt

∫ +∞

0

∥∥Rα(s)h2
t

∥∥2

L2 ds ≤ K3 ‖h‖9/4
L2 − ‖h2‖2

L2 .(6.25)

Gathering (6.24) and (6.25) and using some interpolation again, we deduce that there
exists κ′ ∈ (0,∞) such that

d

dt
H2(gt) < 0 for any t ∈ (0,∞) such that ‖ht‖L1 ≤ κ′.(6.26)

Step 3. We conclude putting together (6.23) and (6.26), and using (3.10), (3.12) in order
to prove that

H1(g) ≤ κ implies ‖ht‖L1 ≤ κ′,

for α ∈ [α6, 1] for some α6 ∈ [α5, 1). ⊓⊔
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6.4 Global stability for general initial datum

We first state and prove a regularity result on the iterated gain term which is the inelastic
collision operator version of the same result proved for the elastic collision operator in
[26, 1].

Lemma 6.10 There exists a constant C such that for any f, g, h ∈ L1
2(R

N ) and any
α ∈ (0, 1] there holds

‖Q+
α (f,Q+

α (g, h))‖L3 ≤ C ‖f‖L1
2
‖g‖L1

2
‖h‖L1

2
.(6.27)

Proof of Lemma 6.10. We follow [26, lemma 2.1] and [1, lemma 2.1] and we make
use of the Carleman representation introduced in [24, Proposition 1.5]. Let us consider
f, g, h ∈ L1

2(R
N ) and φ ∈ L∞(RN ). We apply twice the weak formulation of the gain term

∫

RN

Q+(f,Q+(g, h))(v)φ(v) dv

=

∫

RN

Q+(g, h)(v)

[∫

RN

f(v2) |v − v2|
∫

S2

φ(w′
2) dσ2dv2

]
dv

=

∫

RN

∫

RN

∫

RN

g(v)h(v1) f(v2)

[
|v − v1|

∫

S2

|v′1 − v2|
∫

S2

φ(v′′2 ) dσ2 dσ1

]
dv dv1 dv2

with w′
2 = V ′(v2, v, σ2), v

′
1 = V ′(v, v1, σ1) and therefore v′′2 = V ′(v2, v′1, σ2). Recall that

for any given v, v∗, σ ∈ RN , we define

w =
v + v∗

2
, u = v − v∗, γ =

1 + e

2
, u′ = (1 − γ)u+ γ |u|σ

and then

V ′ = V ′(v, v∗, σ) =
w

2
+
u′

2
= v +

γ

2
(|u|σ − u)

V ′
∗ = V ′

∗(v, v∗, σ) =
w

2
− u′

2
= v∗ −

γ

2
(|u|σ − u).

We denote by Φ = Φ(v, v1, v2) the term between brackets in the last integral. Introducing
the point w1 and the set Sv,v1,ε defined by

w1 := (1 − γ/2) v + (γ/2) v1, Sv,v1,ε :=
{
z ∈ R

N ;
∣∣∣|z − w1| − (γ/2) |v − v1|

∣∣∣ ≤ ε/2
}
,

we get

Φ =
(2/γ)2

|v − v1|
lim
ε→0

Ψε

ε
, Ψε =

∫

RN

∫

S2

1Sv,v1,ε(v
′
1) |v′1 − v2|φ(v′′2 ) dσ2 dv

′
1.(6.28)

Remarking that v′′2 = v2 + (γ/2) (|u2|σ2 − u2) with u2 = v′1 − v2, we observe that the
integral term Ψε is very similar to the collision term Q+ (here v2 (resp. v1, σ2, γ, v

′′
2 )

plays the role of v (resp. v1, σ, β, ′v) in the gain term) and therefore we may give a
Carleman representation of Ψε. The same computations as performed in [24, Proposition
1.5] yield

Ψε =
4

γ2

∫

RN

∫

Ev2,v′′
2

1Sv,v1,ε(v
′
1) |v′′2 − v2|−1 φ(v′′2 ) dE(v′′3 ) dv′′2
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where Ev2,v′′2 is the hyperplan orthogonal to the vector v2 − v′′2 and passing through the

point Ωv2,v′′2
= v2 +(1−γ−1) (v2−v′′2 ). Here v′′3 stands for the post collision velocity issued

from v′1, that is v′′3 = V ′
∗(v2, v

′
1, σ2), and then, thanks to the momentum conservation,

v′1 := v′′2 + v′′3 − v2. We finally define Πv2,v′′2
the hyperplan orthogonal to the vector v2 − v′′2

and passing through the point Ω′
v2,v′′2

= v′′2 + (1 − γ−1) (v2 − v′′2 ) and we get

Ψε =
4

γ2

∫

RN

∫

Πv2,v′′2

1Sv,v1,ε(v
′
1) |v′′2 − v2|−1 φ(v′′2 ) dE(v′1)dv

′′
2 .(6.29)

Now, arguing as in [1, lemma 2.1], we see that the measure of the intersection Γε between
the plane Πv2,v′′2

and the thickened sphere Sv,v1,ε is bounded by π ε γ |v − v1| and that
v′′1 ∈ Γε implies that v′′2 ∈ Bε with

Bε :=
{
z ∈ R

N ; |z|2 ≤ |v|2 + |v1|2 + 2 ε (|v| + |v1|) + ε2 |v2|2
}
.

Gathering these estimates with (6.28) and (6.29) we get

Φ =
(2/γ)4

|v − v1|
lim
ε→0

1

ε

∫

RN

φ(v′′2 )

|v′′2 − v2|
mes(Γε) dv

′′
2

≤ 24 π

γ3
lim
ε→0

∫

RN

φ(v′′2 )

|v′′2 − v2|
1Bε(v′′2 ) dv′′2 =

24 π

γ3

∫

RN

φ(v′′2 )

|v′′2 − v2|
1B0(v′′2 ) dv′′2

where we have defined B0 := {z ∈ RN ; |z|2 ≤ |v|2 + |v1|2}. Using [1, lemma 2.2] we may
conclude as in the end of [1, lemma 2.1] and therefore (6.27) follows. ⊓⊔

We second establish that the solution g of the rescaled equation (1.29) decomposes
between a regular part and a small remaining part as it has been proved for the elas-
tic Boltzmann equation in [28], and then partially extended to the inelastic Boltzmann
equation in [24]. As compared to this last paper, this result relaxes the assumption on
the initial datum to gin ∈ L1

3, but at the price of the hypothesis of a lower bound on the
energy.

Lemma 6.11 Consider gin ∈ L1
3 and the associated solution g ∈ C([0,∞);L1

3) to the
rescaled equation (1.29). Assume that for some constant ρ, c1,M1, T ∈ (0,∞) there holds

gin ∈ Cρ,0, ‖gin‖L1
3
≤M1, ∀ t ∈ [0, T ], E(g(t, ·)) ≥ c1.(6.30)

Then, there are α7 ∈ [α6, 1) and λ ∈ (−∞, 0), and for any exponential weight function
m (as defined in (1.28) and any k ∈ N, there exists a constant K (which depends on
ρ, c1,M1, k,m) such that for any α ∈ [α7, 1], we may split g = gS + gR with

∀ t ∈ [0, T ], ‖gS(t, ·)‖Hk∩L1(m−1) ≤ K, ‖gR(t, ·)‖L1
3
≤ K eλ t.(6.31)

Proof of Lemma 6.11 The starting point is to write the rescaled equation (1.29) in the
following way

∂g

∂t
+ τα v · ∇vg + ℓ g = Q+

α (g, g),
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with ℓ(t, v) := ταN + L(g(t, ·))(v). Introducing the linear semigroup

(Ut h)(v) = h(v e−τα t) exp

(
−
∫ t

0
ℓ(s, v) ds

)

and using the Duhamel formula, we have

gt = Utgin +

∫ t

0
Ut−sQ

+
α (gs, gs) ds.

We iterate that last identity and we obtain g = gR1 + gS1 with

gR1 = Utgin +

∫ t

0
Ut−sQ

+
α (gs, Usgin) ds, gS1 =

∫ t

0

∫ s

0
Ut−sQ

+
α (gs, Us−uQ

+
α (gu, gu)) du ds.

On the one hand, the energy lower bound (6.30) and Lemma 2.3 imply that there exists
a constant c2 ∈ (0,∞) such that

(Ut h)(v) ≤ e−c2 t (Vξth)(v) with (Vξh)(v) = h(ξ v) and ξt = e−τα t

On the other hand, straightforward homogeneity arguments leads to

Q+
α (g, Vξh) = ξ−N−1 Vξ−1 Q+

α (Vξ−1g, h)

and ‖hξ |.|q‖Lp = ξ−q−N/p ‖h |.|q‖Lp for any functions g, h and positive real ξ. From these
considerations we deduce that

‖gR1 (t)‖L1 ≤ e(N τα−c2) t ‖gin‖L1 + e((N+1) τα−c2) t ‖gin‖L1
1

sup
s≥0

‖gs‖L1
1
≤ C e−(c2/2) t,

for some constant C and for any (1 − α) small enough. In the same way, we have

‖gS1 (t)‖L3 ≤
∫ t

0

∫ s

0
e[(2N/3+1) τα−c2] (t−σ) ‖Q+

α (Vξ−1
s−σ

gs, Q
+
α (gσ , gσ))‖L3 dσds.

Taking (1 − α) smaller if necessary and using Lemma 6.10, we obtain

‖gS1 (t)‖L3 ≤
(∫ t

0

∫ s

0
e−(c2/2) (t−σ) dσ ds

)
sup
s≥0

‖gs‖3
L1

2
,

which ends the proof of (6.31) in the case k = 0, with the help of point (i) of Lemma 6.1.
The general case k ∈ N∗ is then treated by following the strategy introduced in [28] and
using the result of appearance of regularity proved in [24] (and recalled in point (iii) of
Lemma 6.1). ⊓⊔

We third recall a classical L1 stability result for the elastic Boltzmann equation which
has been established in [24, Proposition 3.2] for the rescaled equation (1.29).

Lemma 6.12 Consider 0 ≤ g1
in, g

2
in ∈ L1

3 ∩ Cρ,0 and the two associated solution gi ∈
C([0,∞);L1

3) ∩ L∞(0,∞;L1
3) to the rescaled equation (1.29). There exists Cstab ∈ (0,∞)

(only depending on b and supt≥0 ‖g1 + g2‖L1
3
) such that

∀ t ≥ 0, ‖g2
t − g1

t ‖L1
2
≤ ‖g2

in − g1
in‖L1

2
eCstabt.
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Proof of point (iv) of Theorem 1.1. Let us consider gin ∈ L1
3 ∩ Cρ,0,Ein with ‖gin‖L1

3
≤M0

for some fixed Ein, M0 ∈ (0,∞) and g the associated solution to the rescaled equation
(1.29) which has been built in [24]. We know that there exists M1 ∈ (0,∞) such that

sup
(0,∞)

‖g(t, ·)‖L1
3
≤M1.(6.32)

Step 1. We define

T∗ := sup {T ∈ (0,∞), E(g(t, ·)) ≥ c1 ∀ t ∈ [0, T ]}, c1 := min{Ein, Ē1}/2.

We shall prove that T∗ = +∞. We argue by contradiction, assuming that T∗ < ∞. From
the equation on the energy (6.17) and the uniform estimate (6.32) and from the definition
of T∗ we have

T∗ ≥ C1 (1 − α)−1 and E ′(T∗) ≤ 0.(6.33)

Thanks to Lemma 6.11, we may decompose

g = gS + gR on (0, t1),

with t1 ∈ (0, T∗) to be fixed. At time t1 we initiate a new flow starting from the smooth
part of g. More precisely, we decompose

g = g̃S + g̃R on (t1, T∗),

with g̃S(t1) = [ρ/ρ(gS(t1))] g
S(t1), g̃

S solution (with mass ρ!) to the equation (1.29) on
(t1, T∗) and g̃R := g − g̃S . On the one hand, from (6.31) and Lemma 6.12 we have

‖g̃R(t)‖L1
3
≤ C eCstab (T∗−t1)+λ t1 on (t1, T∗).

We choose t1 = η T∗ with η ∈ (0, 1) in such a way that Cstab (1− η) + λ η = λ/2. We have
then proved

‖g̃R(t)]‖L1
3
≤ C e(λ/2)C1 (1−α)−1

on (t1, T∗).(6.34)

On the other hand, following Step 3 in the proof of Proposition 6.6, we deduce a similar
estimate as (6.20), namely

‖g̃S(T∗, ·) −M [g̃S(T∗, ·)]‖L1
3

= O((1 − α)1/8)(6.35)

for any (1 − α) small enough chosen in such a way that the intermediate time t2 defined
in Step 3 of the proof of Proposition 6.6 satisfies t1 + t2 ≤ T∗. Gathering (6.34) and (6.35)
we obtain

‖g̃(T∗, ·) −M [g(T∗, ·)]‖L1
3

= O((1 − α)1/8).

Coming back to the equation (6.17) on the energy and proceeding like in Step 4 in the
proof of Proposition 6.6, we get

E ′(T∗) ≥ (1 − α)
[
k3 c1 (Ē1/2

1 − c
1/2
1 ) − C (1 − α)1/8

]
> 0

for any (1 − α) small enough. That is in contradiction with (6.33) and we conclude that
T∗ = +∞.
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Step 2. Thanks to the previous step, we have a uniform in time lower bound on the
energy, and therefore we can run the decomposition theorem for all times.

By applying the decomposition theorem as in Step 1 for a given time t ∈ (0,∞),
starting a new flow at t1 = η t taking [ρ/ρ(gS(t1))] g

S(t1, ·) as initial datum, and then
using Corollary 6.7 on the smooth part g̃S(s, ·), s ∈ [t1, t], we find that at time t, the
solution gt decomposes as g̃St + g̃Rt , where g̃St approaches the self-similar profile with rate
C eµα (t−t1), that is C e(1−η) µα t, and the remaining part g̃R goes to 0 with rate C e(λ/2) t.
Since |λ/2| is larger than (1 − η) |µα| for (1 − α) small enough, it concludes the proof of
(1.34). ⊓⊔

A Appendix: Moments of Gaussians

We state here some moments of tensor product of Gaussians.

Lemma A.1 The following identities hold
∫

RN

M1,0,1 |v|2 dv = N,(A.1)

∫

RN

M1,0,1 |v|4 dv = N (N + 2),(A.2)

∫

RN×RN

M1,0,1 (M1,0,1)∗ |u|3 dv dv∗ = 23/2

∫

RN

M1,0,1 |v|3 dv,(A.3)

∫

RN×RN

M1,0,1 (M1,0,1)∗ |v|2 |u|3 dv dv∗ =
√

2 (2N + 3)

∫

RN

M1,0,1(v) |v|3 dv.(A.4)

Proof of Lemma A.1. The proof of (A.1) and (A.2) being straightforward and the proof
of (A.3) being very similar to the proof of (A.4) we only prove (A.4). We first notice that

∫

RN×RN

M1,0,1 (M1,0,1)∗ |v|2 |u|3 dv dv∗

=
1

2

∫

RN×RN

M1,0,1 (M1,0,1)∗ (|v|2 + |v∗|2) |u|3 dv dv∗

=
1

4

∫

RN×RN

M1,0,1 (M1,0,1)∗ (|v + v∗|2 + |v − v∗|2) |u|3 dv dv∗.

Making use of the change of variable (v, v∗) → (x = (v + v∗)/
√

2, y = (v − v∗)/
√

2), we
then get

∫

RN×RN

M1,0,1 (M1,0,1)∗ |v|2 |u|3 dv dv∗

=
√

2

∫

RN×RN

M1,0,1(x)M1,0,1(y) (|x|2 + |y|2) |y|3 dx dy

=
√

2N

∫

RN

M1,0,1(v) |v|3 dv +
√

2

∫

RN

M1,0,1(v) |v|5 dv

=
√

2 (2N + 3)

∫

RN

M1,0,1(v) |v|3 dv.

⊓⊔
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B Appendix: Interpolation inequalities

Lemma B.1 (i) For any k, k∗, q, q∗ ∈ Z with k ≥ k∗, q ≥ q∗ and any θ ∈ (0, 1) there

is C ∈ (0,∞) such that for h ∈W k∗∗,1
q∗∗ (m−1)

‖h‖
W k,1

q (m−1)
≤ C ‖h‖1−θ

W k∗,1
q∗

(m−1)
‖h‖θ

W k∗∗,1
q∗∗

(m−1)
.(B.1)

with k∗∗, q∗∗ ∈ Z such that k = (1 − θ) k∗ + θ k∗∗, q = (1 − θ) q∗ + θ q∗∗.

(ii) For any k, q ∈ N∗ and any exponential weight function m as defined in (1.28), there

exists C ∈ (0,∞) such that for any h ∈ Hk‡ ∩L1(m−12) with k‡ := 8k + 7(1 +N/2)

‖h‖
W k,1

q (m−1)
≤ C ‖h‖1/4

Hk‡
‖h‖1/4

L1(m−12)
‖h‖3/4

L1(m−1)
.(B.2)

Proof of Lemma B.1. The inequality (B.1) in point (i) is a classical result from interpolation
theory. Let us focus on point (ii). We prove the inequality (B.2) for h ∈ S(RN ) and then
argue by density. On the one hand, we observe that for any ℓ there exists C such that

‖h‖2
Hℓ ≤ C ‖h‖L1 ‖h‖

Hℓ† , ℓ† := 2ℓ+ 1 +N/2.

Iterating twice that inequality, we get (for some related exponents k†, k‡)

‖h‖
Hk† ≤ C ‖h‖3/4

L1 ‖h‖1/4

Hk‡
.(B.3)

On the other hand, using first Cauchy-Schwartz inequality, plus the same argument as
above and Hölder’s inequality, we obtain

‖h‖
W k,1

q (m−1)
≤ C‖h‖Hk(m−3/2) ≤ C ‖h‖1/2

L1(m−3)
‖h‖1/2

Hk†

≤ C ‖h‖1/8
L1(m−12)

‖h‖3/8
L1 ‖h‖1/2

Hk†
.(B.4)

We conclude gathering (B.4) and (B.3). ⊓⊔
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