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Classification of epileptic motor manifestations
using attitude sensors

Guillaume Becq, Member, IEEE, Stéphane Bonnet*, Lorella Minotti, Régis Guillemaud and Philippe Kahane

Abstract— Several kinds of epileptic seizures generally result
in motor disorders. In an order to quantify movements observed
during these seizures, attitude sensors (AS) (triaxis accelerometer
coupled with triaxis magnetometer) were placed on epileptic
patients. Video recordings synchronized with AS during seizures
were analyzed by an expert and divided for each limb into
events corresponding to different classes of motor manifestations.
For each classified event an extraction of dynamic, spectral
and angular features was realized. A feature subset selection
was realized using artificial neural networks and decision trees.
The best artificial neural network obtained with 20 % of errors
was simulated on whole recordings of the patients using 4 s

epochs of signal. This classification process provides a stereotypic
evolution of motor manifestations that can point out movements
and emphasize epileptic patterns observed during seizures.

Index Terms— epilepsy, movement, seizures, attitude sensors,
classification, supervised learning, feature subset selection, mon-
itoring, accelerometer, magnetometer.

I. INTRODUCTION

EPILEPTIC seizures are manifestations of brain dysfunc-

tion, starting from one or several areas and propagating

to different ones. The prevalence of epilepsy is important since

0.5 to 1% of the average population is concerned [1], with an

incidence of 0.05% and higher rates during childhood and

old age [2]. Epilepsy is associated with a ×2 to 2.5 rate

mortality [3] and the cost of hospitalization are high with a

rate of approximately 100 euros per day in France.

There are several kinds of epileptic seizures and lot of

efforts are made to classify them into similar pathologies [4].

An important number of these seizures are associated with

movements disorders. This is the result of the propagation of

the electrical seizure on a path into the brain through the motor

area. A classification of the observed motor manifestation

has recently been proposed by Lüders [5]. Actually, the

observation of the movement generated during a seizure is

used as a diagnostic tool by doctors.

In all epilepsy units, an electroencephalographic (EEG )

recording system is often coupled with a video recording

system in order to monitor the evolution of the epileptic seizure

and track epileptic focus(es). Although EEG recording is the

gold standard to analyze epileptic seizure and understand it,
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the video gives clues to precise and focalize doctor’s attention.

However, video presents qualitative information often hard

and long to analyze. Several solutions have been proposed

to quantify movement and help doctor for its analysis.

Some use specialized video processing technics [6]–[8],

with or without markers set on patient’s limbs. The major

benefit of such approaches is that it uses a device already

available at the patients’ bedside. One drawback is the poor

resolution of the quantification of movement and the difficulty

to reconstruct the movement from 2D images. Another draw-

back when using markers is when some disappear from the

field of view, leading to indetermination.

Another equipment used in medicine for the quantification

of movement is the accelerometer [9]. In neurology, this sensor

has been studied principally for Parkinson’s disease [10]–[13]

or to detect hand tremors [14].

3D types of this sensors have been used for epilepsy [15]

where visual analysis of signals has revealed stereotypical

patterns of motor seizures and has given some clues for

automatic analyses. The advantage of accelerometer sensors is

their low cost and their low consumption of energy enabling

an ambulatory monitoring. The drawback is an indetermination

of a class of movement in the horizontal plane, like undesired

rotation of the head on the right or left, usually observed

during seizures.

In order to obtain a full characterization of 3D movements,

it is possible to coupled magnetic sensors with accelerometers.

This coupled sensor is often referred as attitude sensor (AS)

and it has been used, for example, in a biomedical context

for the evaluation of vertical inclination and horizontal az-

imuth [17]. This solution is cheap and needs low energy as

compared to gyroscope sensors measuring angular rates and

enabling 3D movements characterization.

The aim of our study was to investigate the use of attitude

sensors in the context of epilepsy units, to quantify movements

observed during seizures and to propose a tool for its analysis

in 3D. For that we have positioned three attitude sensors on the

limbs of epileptic patients and collected data into an epileptic

unit. With analyzed signals of recorded seizures, an automated

classification into motor manifestations have been realized

based on a medical expertise. The different procedures retained

for data acquisition, feature extraction and supervised learning

are presented and empirical performances of the system are

evaluated.

First of all we will present the materials used to monitor

epileptic patients and collect data. Then we will present the

methods used: to split motor manifestation observed during
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seizures into classified events; to create a database from

feature extraction of signals corresponding to theses classified

events; to learn classifiers using supervised learning based

on artificial neural networks or decision trees. Results will

be separated into the description of signals by class, the

analysis of events duration, the model obtained by supervised

learning and the simulation on whole recordings. A discussion

will precede a conclusion by pointing out the benefits and

drawbacks of attitude sensors and our methods to classify

attitude sensors data into motor manifestations for monitoring

epileptic movements.

II. MATERIALS

A. Monitoring of epileptic patients

Data acquisition has been realized from November 2005

to June 2006 in the epilepsy unit of the Grenoble hospital

in preparation of a clinical study accepted in July 2006.

The epilepsy unit hosts severe epileptic patients, generally

pharmacoresistants to antiepiletic drugs, for precise investiga-

tion of the epileptic pathway associated to individual illness.

This investagation is realized in order to prepare surgical

intervention such as extrusion, isolation or coagulation of the

affected pathologic areas. The exploration for the diagnosis

of epileptic focus is principally realized either with scalp or

stereotaxic (EEG ), coupled with audio video recordings at

patient’s bedside. The exploration can last from one to four

weeks.
1) Video EEG: The epilepsy unit is composed of two bed-

rooms, each equipped with Brain Quick video-EEG monitoring

from the Micromed company [19]. The system is composed of

an SD 128 amplifier accepting up to 128 leads with a 16 bits
resolution and selectable sampling rate from 256 to 1024Hz.

The system is connected to a computer for data centralization

with an optical link. Videos recordings are realized using a

resolution of 720 × 576 pixels, at a rate of 25 fps, using an

MS-MPEG 4 v 2 encoding and audios using a monochannel

at 44.1 kHz using a GSM 6.10 encoding. Audios-videos and

EEG recordings are synchronized with Micromed System Plus

patient data management system software.
2) Attitude sensors: Triaxis accelerometers (Acc) and mag-

netometers (Mag) are collected on a chip encapsulated in a

silicon rectangular parallelepiped measuring 50×30×15mm
as described in [20]. This constitutes one attitude sensor (AS).

Three AS are linked to a data logger (Trident system developed

at CEA\Leti) positioned at the bedside of the patient with 3m
wires enabling the mobility of the patient. Sensors are inserted

into a flexible fabric sew over a belt specifically designed

for the study. The belt is adjustable to the circumference of

the selected limb by self gripping fasteners. The fabric is

washable and easily supported by the patient. An example

of the placement of the sensors at the bedside is presented

Figure 1. Accelerometer sensors are ranging from ±1.7G with

a precision of 1e−3G. Magnetometers sensors are ranging

±?nT with a precision of 1e−3 nT . Magnetometers were

calibrated at the center of each bed using a method based on

a least square normalization proposed by Merayo [21]. Three

sensors were positioned on people according to three locations

selected from Table I.

Fig. 1. Attitude sensors set on an epileptic patient. A specific design for
the positioning of the sensor has been realized into flexible fabric with self
gripping fasteners to be easily adjustable to the anatomy of the limb and well
supported by the patient.

TABLE I

ABBREVIATIONS FOR SENSORS LOCATION

Abbreviation Location Sensor position

O Other parts –

LLL Left lower limb Left ankle

LUL Left upper limb Left wrist

H Head Frontal

A Axis –

RUL Right upper limb Right wrist

RLL Right lower limb Right ankle

3) Data logger: Data from sensors are parsed into a data

logger (Trident) developed by our laboratories. The energy

of the data logger can be supplied by two 1.5V LR4–

AA energy cells for an autonomy of about 24h or can be

supplied with a transformer certified for medical applications

for infinite recordings. Data can be stored to a multimedia

card (MMC) enabling the system to be portable or directly to

a PC computer through an RS232 connection. In this case, an

opto-coupling unit has been introduced to isolate the patient

from the computer electrical source coming from the hospital

network. The Trident system enables a recording of data at

46Hz with a resolution of 16 bits. Data corresponds to the

18 signals coming from the 3 AS each sensing 3 Acc and

3 Mag, plus a marker coming from an external source for

systems synchronization.

4) Synchronization unit: In order to synchronize the video-

EEG system and the data logger, a synchronization unit has

been introduced into the process. The synchronization unit

collects a signal from an output of the Micromed system

originally introduced to drive intermittent photic stimulation

(IPS), detects the intermittent patterns and translates it to a
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Fig. 2. Diagram of the data acquisition process at the bedside of the
patient. Micromed system enabling Video-EEG recordings and Trident system
connected to attitude sensors are synchronized through a Synchronization
unit. Video-EEG data are recorded following the usual protocol. AS data and
marker data are recorded directly to the Trident system on a multimedia card
(MMC) or to a PC through an RS232 connection. The synchronization is made
with an intermittent photic stimulation (IPS) signal driven by the medical staff
thanks to Micromed software. Dotted lines represents isolated links to ensure
patient safety.

Fig. 3. Visualization of the synchronized recordings after merging data
from the two systems. Video (right) EEG (top) and AS (bottom) data can be
observed together.

marking signal (binary signal) then transfers it to the Trident

unit for data recordings. The synchronization unit is linked

to the Trident system through an electrical relay to ensure

electrical isolation.

A diagram of the data recording process is proposed in

Figure 2.

Data recorded on both systems are merged offline with a

software developed by our laboratories running under Matlab

(The MathWorks, Inc.) [18]. Synchronization is made after

eliminating the temporal delay between the two systems

computable according to the marker signs on both recordings.

An example of a visualization of the resulting file with the

viewer of the Micromed system is proposed Figure 3.

B. Data collection, population and data processing

A protocol has been elaborated to collect the data with the

medical staff in order to be applied on a daily routine. A

checklist has been proposed to respect the synchronization of

data presented previously. Data analyzed in this article comes

from the setting of this protocol (submitted to a committee

for the protection of patient that has received an agreement in

June 2006 for further studies).

TABLE II

MOTOR MANIFESTATIONS CLASSES

Abbreviations Name Class # Color

R G B

NOMVT no movements ω1 255 255 255

AUTO automatisms ω2 128 0 0

CLONIC clonic manifestations ω3 0 255 255

TONIC tonic manifestations ω4 0 0 255

TC tonico-clonic manifestations ω5 0 255 0

HYPER hypermotor manifestations ω6 255 0 0

VERSIVE versive manifestations ω7 128 0 128

OTHERS others manifestations – – – –

Data has been recorded on 17 patients, 12 women, 5 men,

aged from 8 to 45 years 24, 2±11, 2 y during 211 half days of

3h recordings. On these patients, only 9 have generated motor

seizures. Only 29 seizures were obtained corresponding to a

ratio of approximately 1.4 episodes per week of working days.

Data have been processed offline on an x86 Intel PC at

1, 5GHz with 512Mo of memory. Matlab has been used to

process the data using signal processing, wavelet, identification

and statistical toolboxes.

III. METHODS

A. Medical expert classification

Each seizure has been analyzed and segmented into events

corresponding to different motor manifestations for each part

of the body. This has been done to attribute to signals

contained in each event, a class of manifestation given by

an expert. This classification task, corresponding to a visual

scoring of motor manifestation thanks to video, has been the

base for the supervised learning realized on features extracted

from these signals.

1) Definition of manifestations: Seven types of motor man-

ifestations have been retained which corresponds in part to the

classification proposed by Lüders et al. [5]. Abbreviations of

the different classes are listed in Table II.

• No movements: No movements are observed.

• Automatisms: Gestures mimicking a task more or less

repetitive but being unusual in the context when it

appears. Observations are made at the distal part of

members, principally from hands, feet or mouth.

• Clonic manifestations: successive contractions of agonist

and antagonist muscles, more or less repetitive. This class

includes myoclonies and clonies.

• Tonic manifestations: alteration of the tonus of a muscle

resulting or not in a change of position more or less

quickly of the affected part of the body. This class

includes dystonies, atonies, hypotonies, hypertonies.

• Hypermotor manifestations: succession of movements,

more or less rapid, violent and repetitive, principally

generated at the level of the trunk or at the proximal

part of the limb.

• Tonico-clonic manifestations: movements combining

both clonic and tonic manifestations.
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• Versive manifestations: external rotation of the head as-

sociated with eyes deviation into one direction.

• Others manifestations: unclassified manifestations with

light movements such as grinning, paining . . .

2) Visual scoring: Each video sequences corresponding to a

recorded seizures has been analyzed and segmented into events

corresponding to movement manifestations. This work was

realized for each part of the body according to the different

classes previously described. The different time of the seizure

were identified on the EEG signals and noted t0 start of the

electrical seizure, t1 start of the clinically observable seizure

(visually observable by behavior changes) and t2 end of the

seizure for temporal definition of the seizure. Visual example

is given in Figure 4.

3) Data entry and visualization: Results from the visual

scoring has been entered into a computer by applying the

formalism introduced by Table I and Table II in a text format

and saved into files in order to be used for data mining. For

each entry, time stamp for the beginning and end of the event

has been noted according to the date format YYYYMMD-

DTHHMMSS (iso 8601) with a precision rounded to the near

second. An example of such text file following this format is

given Appendix I.

A direct application of such an entry is visualization of

the seizure that can be obtained directly by processing files

to generate graphics. For these graphics, we have decided

to represented each manifestation with a colored box with

color associated to a manifestation class as defined in Table II

horizontal. The different part of the body can be represented

in vertical. We have decided to starting from the left part at the

top of the graph to the right part of the body at the bottom of

the body with head and axis in the middle in correspondence

to the visualization of EEG montage proposed in monitoring.

Examples of such a representation are given in Fig. 9(a), 9(b)

et 9(c) for three patients.

4) Artifacts collection: All video sequences of seizures

have been analyzed to collect all the different artifacts occur-

ring during motor manifestations. These artifacts results from

three principal causes : the test by the medical staff of a limb

to determine its state (for example to evaluate the tonicity

of the limb standing in a position); the unnatural movement

created by the reflex handling of the patient body by the

medical staff to protect him or replace him in a good position;

others unexpected artifacts caused to sensors due to the patient

himself or the staff for example the displacement of the sensor

out of its original position.

In the same way as motor manifestation collection, the

different artifacts have been entered to a computer in order

to be used for data mining. This was done in order to remove

corrupted signals by artifacts that can not be used for data

processing and supervised learning.

B. Database creation for supervised learning

Thanks to the scoring realized by the expert, AS signals

from each manifestation and for each location has been

collected for features extraction. In this study, location has not

been taken into account for the learning of classifiers and data

LUL

RUL

H

ECG

EEG L

EEG R

Acc

Mag

Mag

Mag

Acc

Acc

Time (min)

t
0
t
1

t
2

t
s

t
e

t
s

t
e

t
s
t
e
t
s
t
e

Compute 
Euler angles

AS t s

...

AS t ={Acct xyz  ,Mag t 
x
y

z }
...

AS t e 


Feature 
extraction
 Angular

 Dynamic
 Spectral
 Wavelet
 Identification

F 1⋮F d

For each event
from    to    t s t e

Fig. 4. Feature extraction process. Accelerometric data are passed through
a filter and grouped with magnetometric data to obtain attitude sensor (AS)
data. AS data are used to compute rotation components between two samples.
Rotation and AS data are used to obtain features supposed to be relevant of
motor manifestations events.

from different location have been mixed together and grouped

only by manifestation class.

1) General concept: AS signals from the different events

have been processed following the block diagram given Fig. 4

that produces features grouped into the following components:

angular, temporal, dynamic, spectral, wavelet and identifica-

tion. The different features extracted from the AS sensors are

summarized in Table III.

Some features have been used for the supervised learning,

some others have been used for the determination of parame-

ters for windowing. ts is used to defined the beginning of the

event, te is used for the end of the event.

2) Angular features:

a) Angular computation from AS: The interest of AS is to

enable for any measure, to compute the rotation of the sensor

to its actual position, from a referential.

Given a vector associated to a body ASb(t), of measures

combining 3D Acc(t) and Mag(t), and a referential ASref ,

it is known that both the rotation matrix of Euler’s angles or

the Euler’s principal angles (θ) and axis can be computed in

condition that sensors accelerations are not important [20].

In this study, we have focused on instantaneous rotation by

computing the angular rotations from samples to samples. We

only retained Euler’s principal angle as a variable of interest
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TABLE III

LIST OF FEATURES ASSOCIATED TO MANIFESTATION EVENTS

Feature Notation Description

1 k index of event

2 ifile index of file

3 ipat index of patient

4 ibed index of bedroom

5 dT duration

6 τstep Time constant for step input

7 τramp Time constant for ramp input

8 Med
‖ ~Acc‖

median of ‖ ~Acc‖

9 Mean
‖ ~Acc‖

mean of ‖ ~Acc‖

10 En
‖ ~Acc‖

entropy of ‖ ~Acc‖

11 Mobility Mobility

12 Range Range of rotation

13 MedΘ Median of rotation

14 SEF10,Accml
Spectral edge frequency at

10 % for Accml

15 SEF95,Accml
” 95 % ” Accml

16 SEF10,Magml
” 10 % ” Magml

17 SEF95,Magml
” 95 % ” Magml

18 SEF10,Θ ” 10 % ” Θ

19 SEF95,Θ ” 95 % ” Θ

20 WΘ(δ1) Wavelet coefficients ratio

in δ1 band for Θ

21 WΘ(δ2) ” δ2 ” Θ

22 WΘ(δ3) ” δ3 ” Θ

23 WAccml
(δ1) ” δ1 ” Accml

24 WAccml
(δ2) ” δ2 ” Accml

25 WAccml
(δ3) ” δ3 ” Accml

26 iType Motor manifestation class

27 iLoc Location

and extracted features from it.

b) Angular features extraction: We have based our fea-

ture extraction and adapted our methods from the work by

Salarian [10] with gyroscopes with a measure of rotation rate.

We have first computed the root mean square of the signal,

referred as the mobility by Salarian, by applying Eq. 1, taking

into account that we were working with instantaneous rotations

θ(t) (rotation between AS(t) and AS(t− 1)) with ti = ts +
i/Fs and te = ts + (N − 1)/Fs:

Mobility =

√

√

√

√

1

(N − 1)

N−1
∑

i=1

θ2(ti) (1)

We have also selected instantaneous rotations θs with an-

gular velocities θ(t) ∗Fs higher than 10 o/ s and removed the

others considering them to be no movement as in Salarian, to

compute the cumulated rotation Θ according to:

Θ(tj) =

j
∑

i=1

θs(ti) (2)

From this cumulated angular rotation, we have extracted

two statistical features as in Salarian: the median value medΘ

and the range of values Range.

3) Dynamical features: The extraction of dynamical fea-

tures has been principally based on the norm of acceleration,

supposed to be an aggregated information of both tri-axis

dynamics. It has been retained for its potential to discriminate

no movement, normal movement, and hypermotor movements

with high acceleration. ‖ ~Acc‖ has been calculated using Eq. 3.

‖ ~Acc‖(t) =
√

Accx(t)2 +Accy(t)2 +Accz(t)2 (3)

We have also retained the entropy of the norm of accel-

eration in order to have a feature weighting the complexity

of the signal in the sense of a deterministic signal with few

states versus a stochastic signal with several states. We used

the Shannon’s entropy given in Eq. 4 where pi denotes the

probability to be in the state i. We used a quantification of

16 bits between 0 and 3G and computed hi = ni/N =
♮(‖ ~Acc‖(t) = qi)/N , with ni the number of samples at level

qi and N the number of samples in the event. hi log (hi) has

been considered to be null for hi = 0 to obtain Eq. 5.

En = −

∫

i∈R

pi log(pi) di (4)

En‖ ~Acc‖ = −
∑

i

hi log(hi) (5)

4) Spectral features: Spectral edge frequency (SEF) can be

seen as a robust summary of the spectral behavior of a signal,

indicating the frequency value for which α% of the spectral

power is obtained.

We have computed SEF at 10 and 95 % (respectively SEF10

and SEF95) in order to quantify the frequencies during visual

interpretation of clonic manifestations (0.2 – 5Hz), with

energy in high frequencies expecting an important SEF95,

or slow tonic postural manifestation, with energy in low

frequencies expecting an important SEF10.

Let Sxx(fi) be the power spectral density computed at

frequency fi for signal x. We can define Pxx,rel(0, f) the

relative power in the frequency band [0, f ] by Eq. 6 mapping

to [0, 1].

Pxx,rel(0, f) =

∑f
fi=0 Sxx(fi)

Pxx,tot(f)
(6)

With Pxx,tot(f) the total power defined by Eq. 7 with Fs

sampling frequency of the signal x:

Pxx,tot(f) =

Fs/2
∑

fi=0

Sxx(fi) (7)

Then the spectral edge frequency at level α% can be defined

as:

SEFα = max
f

{f |Pxx,rel(f) ≤ α/100} (8)

We have computed SEFα for Accml, Magml and Θ.

5) Wavelet features: The wavelet analysis was used in order

to work accurately in the frequency domain of the signals with-

out making assumption of the length of the window or of the

stationarity of them. For the time-frequency analysis we have

computed the coefficients of the continuous wavelet transform

using a Morlet atom wavelet ψ(t) ∼ exp (−x2/2) cos(5x),
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with the Matlab wavelet toolbox based upon Eq. 9, where a
denotes a scale parameter and b a lag parameter:

Cx(a, b) =

∫ ∞

−∞

x(t)ψ(a, b, t)dt (9)

The different scales retained where chosen to correspond to

the pseudofrequencies grouped into three different bands δ3 =
{23, 20, 17, 14, 12, 10, 9}Hz, δ2 = {8, 7, 6, 5, 4, 3, 2}Hz,

δ1 = {1.25, 1, 0.75, 0.5, 0.25, 0.1, 0.05}Hz. Results of such a

decomposition for different prototypic manifestations is given

Fig. 6 (bottom) and represents the evolution of the different

wavelet coefficients at different scales over time.

For feature wavelet based extraction, we have retained the

ratio of coefficients in a given band to the sum of all coeffi-

cients Wx(δi) with scales a associated to the pseudofrequency

band δi defined previously:

Wx(δi) =
∑

a∈δi

∑

b

Cx(a, b)/
∑

a

∑

b

Cx(a, b) (10)

At the end of this process, we have obtained three features

for each event respectively for Accml, Magml and Θ.

6) Identification features: The observation of tonic and

versive manifestations have led us to consider two specific

kinds of model-based movements: the first is like an answer

to a positioning command and the manifestation stops when

the limb reaches a given position, this is particularly observed

during tonic manifestation; the second is like the answer of a

pursuit command as if the limb was following an offsetting

position, this is particularly observed during versive manifes-

tation. We have made the assumption that these movements

could be modeled by first order models represented by their

answer time τramp or τstep.

The cumulated rotation Θ(t) computed on the principal

Euler’s angle has been selected to identify these parameters.

An example of such signal and their associated models are

given Fig. 5.

We used the identification toolbox from Matlab to identify

the parameters, after matching the best delayed step or ramp

signal according to a maximization of the correlation between

signals.

C. Supervised learning

1) General concept: From here, for each manifestation

event, we have on one hand a classification given by an expert,

on the other hand the extracted features. The aim of supervised

learning is to estimate the parameters of a model that can

classify each event represented by its extracted features into

its given class given by the expert.

In a mathematical framework, the problem of classification

is to find a function C mapping features vectors in a space of

d dimensions into a class represented by an integer number:

C : R
n → N (11)

(F1, · · · , Fn)t 7→ ωi, ωi ∈ {ω1, · · · , ωK} (12)

For more general details about supervised learning and more

generally machine learning, the reader is referred to [22], [23].

For the classification, we have used neural networks and

decision trees. In order to select the best informative features

and reduced the dimension of the input space, we have used

features subset selection heuristic: we have used a sequential

forward selection [23] for neural networks and pruning for

decision trees.

2) Data cleaning, preprocessing and performance evalua-

tion: Cleaning of the database has been realized using multiple

criterion. Data coming from events with a duration < 2 s or >
150 s have been discarded because they have been considered

as irrelevant. Data coming from events with several artifacts

have been manually removed. Data have been normalized

using a z transformation zj = (xj − µj)/σj with µj and σj

estimated mean and variance from feature j.
For regularization, artificial growing of the database has

been realized by duplicating 30 times each sample of class

k, adding uniform noise [25] with a variance σjk
, variance of

feature j estimated from samples in class k.

Classifiers learnings have been realized over stratified sub-

sets of examples, i. e. by selecting the same number of samples

for each class set to 100. The empirical error, error between

the classification given by the classifier from the learning set

and the classification given by the expert, has been used as

the performance criterion.

3) Neural network classifiers: Artificial neural networks

(ANN) selected for this study have been multilayer perceptrons

(MLP) with one hidden layer for their ability in discriminant

analysis. We have used J neurons in the input layer, 10 in

the hidden layer and K in the outputs. The dimension in

the hidden layer has been used after a test on the dimension

from 1 to 20 and selected where no performances has been

obtained. J corresponds to the dimension of the input space

being the dimension of the features subset. K corresponds to

the dimension of the output space being the number of desired

classes. Tangent sigmoid (y = 2
1+e2x − 1), linear (y = x) and

log-sigmoid (y = 1
1+ex ) transfer functions have been used

respectively for input layer, hidden layer and output layer.

MLP weights have been randomly initialized using the

Nguyen-Widrow layer initialization function and their opti-

mization have been obtained using a Levenberg-Marquardt

method [24]. Due to random initialization, for each set, 15

MLP have been evaluated and the best one has been retained.

4) Decision trees: A decision tree has been generated using

the statistical toolbox from Matlab.

5) Features subset selection: In order to reduce the input

space dimension for neural networks, we used a sequential

forward selection (SFS) algorithm. It is a greedy algorithm

which starts with an empty set of retained features, tests

samples according to the set of features retained, and selects

features one after another by minimizing a given criterion.

For example, at step one, if d features are enabled, SFS starts

by learning model with one feature. It tests the performances

obtained with the d models and selects the model with feature

(ir1) that maximizes the performance. At step two, SFS tests

d − 1 models constructed with the retained feature (ir1)

and one of the d − 1 remaining features. At the end of

the process, d subsets are presented with their associated

performances, respectively with dimension 1 to d. The analysis
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Fig. 5. Identification of the parameter of a first order model from tonic or versive movements appearing as : a) positioning command, b) pursuit command.
Before identification, delays between step or ramp inputs and outputs are found according to a maximum of correlation.

of the progression of the selection enables to select a subset

satisfying the Occam’s razor principle that is to take the model

with the minimal dimension since no or few performances are

gained when complexifying the system. The selection is done

following the algorithm proposed in Appendix II.

For the decision tree, we have pruned the original decision

tree at the minimal level where all the classes were repre-

sented.

IV. RESULTS

226 manifestations events have been scored, representing in

each class: 42 NOMVT, 25 AUTO, 17 CLONIC, 70 TONIC,

21 TC, 20 HYPER, 11 VERSIVE, 20 OTHERS.

For this study, versive manifestations have been consid-

ered as tonic manifestations (ω4 = {ω4, ω7}), tonico-clonic

manifestations have been considered as clonic seizures (ω3 =
{ω3, ω7}) and others manifestations have not been taken into

account. 51 events have been removed during cleaning The

addition of noisy examples into the database for regularization

have lead to a database with 5425 examples: 1178 NOMVT,

620 AUTO, 1147 CLONIC, 2015 TONIC, 465 HYPER.

A. Description of observed signals by class

According to the classification and the computer entries of

expert’s analysis, prototypical examples of signals by class can

be obtained easily and represented as in Fig. 6. In a signal

processing view, one can notice that :

• Tonic: low frequencies for Acc et Mag associated to low

rotations lasting for 3 s to 20 s [1], [5], [15]

• Versive: Same as Tonic with favorite direction.

• Clonic: Typical 0.2 – 5Hz frequencies [5], [15] from

Acc and Mag.

• TonicoClonic: Both clonic and tonic components.

• Hypermotor: melted frequencies with high accelerations.

• Automatisms: melted frequencies with repetitive patterns.
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Fig. 7. Histogram of the constant time obtained from identification for tonic
manifestations.

B. Manifestation event duration

Duration of events by class indicates (mean ± std): AUTO

(11, 59 ± 10, 00 s), CLONIC (20, 47 ± 17, 77 s), TONIC

(11, 00 ± 9, 56 s), HYPER (8, 99 ± 7, 46 s).
The analysis of the histogram of τstep as proposed in

Fig. 7 gives us the repartition of time constant for TONIC

manifestations. It is shown that most values are about 1 s.
Considering that at 3τ , 95% of the answer to a step is realized,

we can consider that with a temporal windowing of duration

> 3 s, all the phenomenon can be observed.

C. Feature subset selection

1) Sequential forward selection: The feature subset selec-

tion by the SFS procedure is given in Figure 8(a). Features

retained in order of appearance are : { Mean‖ ~Acc‖, MedΘ,

Mobility, En‖ ~Acc‖, Range, Med‖ ~Acc‖, WΘ(δ2), WΘ(δ3),

WAccml
(δ2), SEF95,Θ, SEF95,Accml

, SEF10,Θ, WΘ(δ1),
SEF95,Magml

, WAccml
(δ1), WAccml

(δ3)} The progression is

linear with the dimension of the space up to the level 6, when

it decreases and saturates to a maximum performance obtained

with an error rate of approximately 5 %.

The selection indicates that features extracted from the norm

of acceleration (Mean‖ ~Acc‖, En‖ ~Acc‖, Med‖ ~Acc‖) and from
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(a) TONIC (b) VERSIVE (c) CLONIC

(d) TC (e) HYPER (f) AUTO

Fig. 6. Prototypical signals description by class. From top to bottom : superposition of images corresponding to the prototypical manifestation class; Acc
from the y axis and its time frequency representation into 21 scale pseudo-frequencies from 0, 05 Hz to 23 Hz ; Mag from the y axis and its time frequency
representation. a) Tonic, low frequencies for Acc et Mag associated to low rotations; b) versive, same as Tonic with favorite direction to right or left around the
axis; c) Clonic, typical 0.2 – 5 Hz frequencies; d) TonicoClonic, both clonic and tonic components; e) Hypermotor, melted frequencies with high accelerations;
f)Automatisms, melted frequencies with repetitive patterns
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Fig. 8. Feature subset selection : a) SFS, b) pruned tree

the rotation, computed from both the acceleration and the

magnetometers are chosen at first (MedΘ, Mobility, Range).
It shows that spectral or wavelets features are rejected to the

end of the selection process, meaning that classification can

be realized principally on dynamical or angular features.

2) Pruned tree: The selection realized using a pruned

decision tree is presented in Fig. 8(b). Range is selected

first to discriminate no movements versus movements man-

ifestations. Then the entropy of the norm of acceleration

discriminates between tonic movements with low entropy

(few states) and other movements with high entropy (more

complex movements). SEF10 is used to discriminate clonic

movements for which it is higher that ≈ 1Hz, indicating a

poor energetic components and a concentration into a given

frequency band higher than 1Hz. SEF10 is also used to

discriminate hypermotor movements, which have 10 % of their

energy below 0, 19Hz indicating high energetic movements at

low frequencies. Automatisms and tonic manifestations with

high energetic low movements below 1Hz are discriminated

according to their range of rotation with high range of rotation

for this kind of tonic manifestations.

D. Simulations with MLP

The selection indicates that with a MLP with 6 features

as inputs, we can obtain 20 % of errors as compared to the

database. Using the MLP learned from this selection and

using it on whole recordings realizing a feature extraction over

4 s non overlapping windows, leads to motor manifestations

representations of AS recordings as the examples proposed

in Fig. 9(g), 9(h) and 9(i). On these representations all the

movements are classified into one of the manifestation classes

even if movements are non pathologic, indicating the different

times when the patient was active or not.

However, pathological movements occurring during seizures

are also taken into account. A zoom on the seizure episodes

as the one represented in Fig. 9(d), 9(e) and 9(f), gives

the succession of the different motor manifestations during

the seizure, according to the different limbs. This enables

a comprehensive analysis of the temporal stereotypy of the

seizure and points out some interesting patterns.

V. DISCUSSION

From the design of the system and with the results obtained

several points can be discussed.

A. Results

We have seen that classification from AS sensors into

manifestation events was possible using the system designed

in this paper. More precisely, we have seen that seizures were

completely analyzed and can give to the neurologist interesting

components used for diagnosis such as:

• Time of the clinical start of the seizure.

• Stereotaxic localization of this start.

• Motor propagation of the seizure.

• Motor pattern and principal manifestation.

From these different points, the machine can give a pre-

cise quantification of searched components that can help to

diagnose the patient pathology.

An important point in favor of the use of AS sensors is

the fact that rotation extracted from Acc and Mag seems to

be an important variable to compute features selected during

the subset selection. This is true both for neural network and

decision tree.

A confusing point is the fact that spectral or wavelet features

have not been selected even if they were thought to be good

candidates. One reason can be that dynamical or angular

features are more discriminant than others according to the

samples collected in the database. Then, they are selected

at first and others competitive features are rejected at last.

This doesn’t tell that using a model using wavelet or spectral

features would not give good results, but results with other

features are better.

Besides, correlations between the different features exist and

selecting one feature into the model rejects another at this end

of the selection because taking it into account doesn’t improve

the performance. We think that adjusting the frequencies bands

of our model for wavelet features will possibly improve the

results by leading to more discriminant features.

We have used a non specific location of the sensor and

design a model with data coming from all the location to

learn the classifiers. We think that the use of stereotypical

classifier, adapted to a special position, would improve the
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Fig. 9. Representation of the visual scoring by an expert after computer entry. The different parts of the body are represented in Y coordinates, with the left
part of the body at the top and the right part of the body at the bottom with head and axis in the middle. The evolution of the manifestations through time is
obtain with the temporal axis in X-coordinate. This seizure shows priority tonic manifestations.

results, for example by learning classifier adapted to the head

or the hand...

B. Classification

At this stage of design, it is hard to evaluate the performance

of the classifier in term of sensibility and specificity since

all the movements, pathologic or not are classified by the

machine. Besides we see that the classification given by the

expert is not so sensitive that the one given by the machine,

so it would be hard to evaluate the performance of the

classifier by comparing expert versus machine classification

using feature extracted over 4 s windows.

In order to evaluate the detection of seizure, another stage of

processing is required to recognize temporal and stereotypical

patterns associated to seizures from one patient or a group

of patient. After the completion of this stage, the use of

sensitivity and specificity can be relevant. What is sure is that

sensitivity and specificity will be possible only for specific

epileptic seizure and not for all with this pattern recognition

stage. For example a pure TONIC manifestation can not be

detected by this kind of processing since lot of pure TONIC

non pathologic movements are realized in daily life. For this

kind of movement, an analysis of signal between pathological

and non pathological signals must be adapted.

But the aim of our study was not to realized an epileptic

seizure detector, but it was to give a quantification of move-

ment disorder in order to help the decision making of the

neurophysiologist.
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C. Data cleaning and supervised learning

An interesting point is the data cleaning of the database

since lot of data are not prototypical or artifacted by the

introduction of . The data cleaning has been realized on one

part by hand from visual inspection. Further studies need to be

realized to perfect the database but tis is a long time work. The

introduction of automated process to realized it, for example

by using unsupervised learning to cluster data could be an

interesting work.

VI. CONCLUSION

It has been shown that data coming from triaxal accelerom-

eters and magnetometers could be classify into epileptic motor

manifestations. The process for such a classification and its de-

sign have been presented resulting in an empirical performance

of approximately 20 % of errors between a classification given

by an expert and the machine. We think that further studies

will improved the classification given by the machine and that

the feature subset selection will give better results with a larger

database.

The benefits of such a classification have been presented

indicating that it could be helpful for the diagnosis of epileptic

seizures, especially for determining the beginning of the motor

manifestation, the associated limbs or dominant patterns.

Studies are followed to find out epileptic patterns from one

patient or from patients with same pathologies.

APPENDIX I

EXAMPLE OF A SEIZURE FILE

Here is an example of the text resulting from the entry of

the visual scoring by an expert associated to the representation

given in Fig. 9.
After the header containing t0 t1 t2 and the general class of

manifestation, each line corresponds to an event defined with
7 fields separated by a space: Ts Te Loc Subloc Type Subtype
Comment; Ts is the beginning of the event; Ts the end of
the event; Loc the localization and Subloc a sublocalization
if specified; Type is the class of manifestation and Subtype
is a description if specified; Comment contains additional
information or no comments (nc).

t0 20051115T130931 nc
t1 20051115T130938 nc
t2 20051115T131016 nc
TONIC
20051115T130938 20051115T130955 H nc TONIC flexion nc
20051115T130940 20051115T130954 RUL nc TONIC nc nc
20051115T130942 20051115T130947 LLL nc TONIC flexion nc
20051115T130955 20051115T131008 H nc VERSIVE R nc
20051115T131008 20051115T131022 RUL nc AUTO nc nc

APPENDIX II

ALGORITHM FOR THE SEQUENTIAL FORWARD SELECTION

Start

Let Ir := {∅}, indices set of retained features

Let Id := {1, · · · , d}, indices set of disposable features

While (Id 6= {∅}) do
For i ∈ Id do

Ic(i) := Ir ∪ i, indices set of running features to evaluate

Create SIc(i), set of examples with features in Ic(i)
Compute Ξ(i), performance criterion for Ic(i)

End For

Select ir that minimizes Ξ
Update :

Ir := Ir ∪ ir
Id := Id\ir

End While

End
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