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Collection and Exploratory Analysis of Attitude Sensor Data in an
Epilepsy Monitoring Unit

Guillaume Becq*, Stéphane Bonnet, Lorella Minotti
Michel Antonakios, Régis Guillemaud and Philippe Kahane

Abstract— The aim of this paper is to present the collection
of attitude sensor data from an epilepsy monitoring unit and
the results of standard exploration using principal component
analysis. The collection of data from attitude sensors positioned
on three limbs of epileptic patients at their bedside is described.
The analysis of the data focuses, on one hand, on motor features
extraction from attitude sensor data and on the other hand,
on visual segmentation of seizures into events corresponding to
motor manifestations classes by an expert. Principal component
analysis is then realized over these features and groups of
data are localized according to the expert classification. This
exploration indicates a possible discrimination between these
motor manifestation classes.

Index Terms— epilepsy, movement, seizures, attitude sensors,
feature extraction, principal component analysis, monitoring,
accelerometer, magnetometer.

I. INTRODUCTION

PILEPSY is one of the most important neurologi-

cal disorders affecting both adults and children [1].
Epilepsy is characterized by the spontaneous repetition of
epileptic seizures which denote brain dysfunction. During
an epileptic seizure, an excessive electrical discharge, arising
from one brain area, may propagate into other brain areas and
induce different clinical manifestations. The chronological
organization of these ictal clinical manifestations is actually
reflecting the electrical pathway during the discharge. For
instance, frontal epileptic seizures are often characterized by
the occurrence of one-sided or two-sided motor manifesta-
tions of limbs, head or body axis.

The semiological seizure analysis is usually performed in
an Epilepsy Monitoring Unit (EMU) by recordings and visu-
alizing seizures with video-EEG recordings. This is essential
for the identification of epileptogenic areas in the brain and
the comprehension of different clinical and EEG patterns.

Although EEG recording is the gold standard to analyze
epileptic seizure, video gives also many clues for the diag-
nostic. However, video essentially presents qualitative infor-
mation, which is often hard and long to process. Moreover
data visual inspection by EEG technicians is rather subjective
and does not allow comparing between different motor
patterns. Several solutions have been proposed recently to
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quantify movement in an automated, unsupervised and real-
time manner.

Different authors have proposed to detect and diagnose
epileptic seizures using video analysis with or without mark-
ers fixed on human body [2]-[4]. This approach is attractive
because it can be based on the routine video-EEG procedure
performed in every EMU but a major limitation is that the
person (or the markers) should remain in the field-of-view
of the camera.

A much powerful approach is based on body-mounted sen-
sors like accelerometers or rate gyroscopes [S]-[8]. MEMS
technology is well-suited to monitor epilepsy since it allows
quantifying intensity, frequency and duration of movements.
Furthermore inertial sensors are well adapted for applications
of ambulatory measurement of human movements: high
integration, small weight and low cost. As a consequence
they can be used outside the clinical setting.

In order to obtain a full characterization of 3D epileptic
movements, we propose to combine magnetic sensors with
accelerometers into the same attitude sensor module [9].
Magnetometers are primarily intended to characterize move-
ment in the horizontal plane as it can be observed during
tonic episodes. Furthermore, these sensors are also sensitive
to tremors while being insensitive to accelerations.

This paper aims at showing that quantitative analysis of
wrist and head movements, by means of attitude sensors, pro-
vides objective measures for the characterization of epileptic
seizures and reveals that an automated classification of motor
manifestations could be possible. This is done by using
principal component analysis (PCA).

In the first section, we describe the clinical environment
of this study and then we present the different features that
were extracted to characterize epileptic motor manifestations
occurring during seizures. Preliminary results are proposed
in the last section.

II. MATERIALS

The EMU in CHU Grenoble is composed of two bed-
rooms, each one equipped with Brain Quick video-EEG
acquisition system from Micromed [10]. It is composed of an
amplifier accepting up to 128 leads with selectable sampling
rate from 256 to 1024 H z (16 bits resolution). An optical link
insures data transmission to a computer in the monitoring
room. Audios-videos and EEGrecordings are synchronized
with Micromed System Plus patient data management system
software. In addition to the daily routine, a protocol was



Fig. 1. Attitude sensors (AS) set on patients in an epilepsy unit. On the left,
a silicon rectangular parallelepiped was first set on a wrist with adhesive
tape. For patient and staff convenience, special dedicated self gripping belts
were designed and set on the left wrist (middle), right wrist (not shown)
and on the head (right).

elaborated with the medical staff to collect motion infor-
mation during seizure from body-mounted attitude sensors.
To capture upper limb activities, three sensor modules, each
containing a tri-axial accelerometer and a tri-axial mag-
netometer, were used. These attitude sensors (dimension:
50 mm x 30 mm x 15 mm) were mounted on both wrist and
head segments using straps (Fig. 1). The fabric is washable
and well supported by patients.

Every module was linked by a 4 m wire to a data acqui-
sition system, a so-called Trident system, positioned at the
patients bedside. All signals were multiplexed and sampled
at 46 Hz (16 bits resolution) using the Trident system. The
energy was supplied by an AC-DC voltage transformer
with medical safety approval. Data (18 digital signals) were
redirected to a computer in the monitoring room via RS-232
link for recording. An opto-coupling device was introduced
to isolate the patient from the computer electrical source
coming from the hospital network.

In order to synchronize the video-EEG system and the
Trident system, a synchronization was designed. This unit
collected a TTL signal (0-5V, 1 Hz) from the Micromed
system as it is currently done currently to drive intermittent
photic stimulation (IPS). The synchronization unit provided
then a dry contact to the Trident system and this binary
information was stored altogether with data.

In practice, the technical staff should activate the IPS
at the beginning and end of the recording session. The
diagram of the data acquisition process is illustrated in Fig. 2.
Finally, video-EEG data and motion data were merged in
an offline process into a single file by dealing with time
synchronization and resampling.

Data were recorded on 17 patients, 12 women, 5 men, aged
from 8 to 45 years during 211 half days of 3/ recordings
session. Within this period, only 9 patients generated motor
seizures with a total of 29 seizures. This corresponds to a
ratio of approximately 1.4 episodes per week of working
days.

III. METHODS

A. Motor manifestation classification

Seizures were visually detected by the medical staff using
video EEG and temporally defined by an electrical beginning
to, a clinical beginning ¢; and an electrical end ¢, as in Fig. 3.

PC #1 : MICROMED TRIDENT

Attitude
Sensors

AS
Synchro-
-nization Bed

Unit

LAN

PC #2
Staff monitoring room

Patient's bedroom

Fig. 2. AS data coming from the different locations are recorded on an
isolated PC thanks to the Trident System conversion. In order to synchronize
EEG -video data from the Micromed system and AS data, an intermittent
photic stimulation (IPS) signal is routed to be used as a marker present in
both recordings. Data synchronization is made offline with own dedicated
softwares.

Each seizure was visually analyzed by an expert in order
to segment each movement from each limb into an event
associated to a class of motor manifestation. For each event,
we used the classification proposed in [11] as a reference and
simplified it into: No movements (NOMVT) no movements
observed; Automatisms (AUTO), repetitive automatic move-
ments of limbs and trunks; Clonic manifestations (CLONIC),
successive contractions of agonist and antagonist muscles
(including myoclonies and clonies); Tonic manifestations
(TONIC), sustained contraction of muscle resulting or not
in a change of position; Tonico-clonic manifestations (TC),
movements combining both clonic and tonic manifesta-
tions; Hypermotor manifestations (HYPER), complex move-
ments more or less rapid, involving the proximal seg-
ment of limbs or trunk; Versive manifestations (VERSIVE),
deviation of the head with or without eyes deviation;
Others manifestations (OTHERS), unclassified manifesta-
tions (e.g. grinning, paining).

For this study VERSIVE was considered as TONIC, TC
was consider as CLONIC and data of the OTHERS class
were discarded. A number of artifacts generated by the
medical staff for clinical evaluation or patient’s care were
removed for data cleaning.

B. Feature extraction

1) General concept: AS data coming from the different
events were collected into a database. They follow a feature
extraction process in order to obtain for each event a vector
containing a set of angular, dynamic, spectral and wavelet
features supposed to be relevant for each class an possibly
useful for classification. A block diagram of the feature
extraction process is presented Fig. 4.

The principal asset of our method based on AS data is the
evaluation of the principal Euler angle and features extraction
from it.

2) Principal Euler angle computation: Using both vector
observations Acc /b and M_ézg s» and combining them into

AS /b» it is possible to estimate the sensors attitude with
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Fig. 3. Data from AS and EEG are merged together. EEG enables an expert
to localize the seizure defining: ¢o the electrical beginning of the seizure,
t1 the clinical beginning of the seizure, and t2 the end of the seizure.
Visual inspection with video enables an expert to segment the seizure into
different events. Data presented here come from the left wrist. Three events
corresponding to tonic, automatism and others manifestation are succeeding
one after another.

respect to a frame of reference [9] !. In this study, we
chose to use the Euler angle/axis representation: a rotation
from the reference frame to the current frame is performed
about the unit axis 4 through angle §. A sample to sample
or instantaneous rotation was determined using: 0(t;) =
f@(AS/b(ti),AS/b(ti_l)) with t; = ts +i/Fs, te = ts +
(N —1)/Fs, t, start time of the event, t. end time of the
event, and fg an estimation function based on least min
squared minimization [9].

3) Angular features: Angular features like in [8] using
gyroscopes for measuring rotation rates were computed: the
root mean square of the signal, referred as the mobility

by Salarian, Mobility = \/ﬁ Ef:l 62(t;); from the

cumulated rotation O(t;) = >.7_, 65(¢;) by removing in-
stantaneous rotations 6, with angular velocities 6(t) * F
fewer than 10°/ s, the median value medg and the range
of values Range.

4) Dynamical features: We used the norm of acceler-
ation ||Acc||(t) to compute dynamical features as a good
candidate to discriminate movements versus no move-
ments [ Ace||(t) = +/Acc,(t)? + Ace,(t)2 + Acc,(t)2.
The entropy of the norm of acceleration, EnH Ave| T
— >, hilog(h;), was also retained with a quantification of
16 bits between 0 and 3G to compute h; = n;/N, with n;

'Thg measurement model for the accelerometer is given by: Acc = g—
¥+nouse. The components of this vector quantity are resolved in the body-
fixed frame: Acc /b = (Accz,Accy,Accz)t. The measured acceleration
signal is a combination of a low-frequency component due to the sensor
orientation with respect to gravity (g) and a high-frequency component due
to the sensor movement itself (v). For slow movements, the accelerometer
is principally acting as an inclinometer and the norm of the accelerometer is
close to 1 g. The separation between the two components is approximately
achieved by low-pass filtering (Butterworth, 4th order, cut-off frequency:
0.5 Hz). The measurement model for the magnetometer is simplified into:
Mag = Mag.,rtn +noise. Where M?zgea”h denotes the Earth magnetic
field vector. The components of this vector quantity are resolved in the body-
fixed frame: Mag,, = (Magz, Magy, Mag:)*.
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Fig. 4. Feature extraction block diagram. Data from accelerometer
Acc(t) and from magnetometer Mag(t) are grouped together to form an
attitude sensor vector AS (t). Filtering, Euler angles computation and norm
computation leads to new variables for features extraction. This is done for
data of each event, resulting in one vector of features associated to each
event.

the number of samples at level ¢; (n; = # (|| Acc||(t) = @),
N the number of samples in the event and h;log (h;) = 0
for hl = 0.

5) Spectral features: Spectral features were evaluated
using the spectral edge frequency (SEF), indicating the
frequency value for which a% of the spectral power is
obtained for 10 and 95 % (respectively SEFiy and SE Fys).
Features for © and medio-lateral axis component for Acc
and Mag (Accpmy, Magp,) were computed.

6) Wavelet features: Wavelet features were evaluated us-
ing a ratio of wavelet coefficients in different scales bands.
Coefficients came from a continuous wavelet transform,
Cy(a,b) = ffooo x(t) v¥(a, b, t)dt, a being a scale parameter
and b a lag parameter, using a Morlet atom wavelet ¢ (t) ~
exp (—x?/2) cos(5x), with the Matlab wavelet toolbox [12].
The different scales retained where chosen to correspond
to the pseudofrequencies grouped into three different bands
ds = {23, 20, 17, 14, 12, 10, 9} Hz, 62 = {8, 7, 6, 5,
4,3,2} Hz, 6; = {1.25, 1, 0.75, 0.5, 0.25, 0.1, 0.05} Hz.
Features for Accp,;, Mag,, and © were computed.

C. Principal component analysis

Features data were standardized using the transformation
Y; = X]'U_j“ 2 with X; vectors made from the samples of the
Jjth feature, 11; and o; the mean and standard deviation of
these samples. 30 uniform random samples from each sample
were introduced into the database for data regularization. A
principal component analysis was realized in order to find
the best linear combinations of all features retaining the best
singular values of the correlation matrix. This often results
in better separation of data in the new basis and indicates

possible discrimination.

IV. RESULTS

226 manifestations events were scored, representing in
each class: 42 NOMVT, 25 AUTO, 17 CLONIC, 70 TONIC,
21 TC, 20 HYPER, 11 VERSIVE, 20 OTHERS.
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Data projection on the four first principal components. In the diagonal, figure indicates histograms of data for this component. Each data

corresponding to one event is represented by its new coordinates (scores) in the principal components basis. A color indicates the motor manifestation class
of the event. 30 random samples from each original sample were generated to simulate densities. 3D scatters in a 3 first components basis are represented

on the right top with different fields of view.

Results of the principal component analysis can be repre-
sented by the scores of each event in the new basis consti-
tuted with the principal component. A cloud representation of
the new data point with projection over the four first principal
components is given Fig. 5. Each data is represented by a
circle with a color indicating the motor manifestation class
of the associated event.

By visualizing this representation, it is clear that projec-
tions on the first, second and third components indicate a
possible discrimination between classes TONIC, CLONIC,
HYPER and NO MVT. This is emphasized by 3D scatter
plots from different points of view. Class AUTO seems to be
difficult to discriminate since lot of its samples are melted
with other classes. Projections on the 4th components do
not seem to introduce better discrimination for one class or
another.

Histograms on the first and second components indicate
a large proportion of TONIC classes separated from other
classes (especially CLONIC classes). Histogram on the third
component indicates a little evidence for class NOMVT vs
others (left part of the histogram). Histogram on the fourth
component indicates also that classes are not well separated
with this projection.

V. DISCUSSION

Using AS data and applying PCA indicates that an auto-
matic classification of features extracted from this data into
motor manifestations relative to epilepsy can be possible.

The discrimination between classes suffers principally
from the proximal nature of some manifestations and on the
weak discriminative power of some retained features that
must be investigated.

We expect to learn classifiers with the best features.
This will allow us to obtain automatic succession of motor

manifestations classes and generate graphs as a tool for neu-
rologists to characterize the stereotaxic evolution of motor
manifestations during seizures.
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