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THE COHOMOLOGICAL CREPANT RESOLUTION CONJECTURE

FOR P(1, 3, 4, 4)

SAMUEL BOISSIÈRE, ÉTIENNE MANN AND FABIO PERRONI

Abstract. We prove the cohomological crepant resolution conjecture of Ruan for the

weighted projective space P(1, 3, 4, 4). To compute the quantum corrected cohomology

ring we combine the results of Coates-Corti-Iritani-Tseng on P(1, 1, 1, 3) and our previous

results.

1. Introduction

The Cohomological Crepant Resolution Conjecture, as proposed by Ruan, predicts the

existence of an isomorphism between the Chen-Ruan cohomology ring of a complex Goren-

stein orbifold X and the quantum corrected cohomology ring of any crepant resolution

ρ : Z → X of the coarse moduli space X of X [Rua06]. The quantum corrected co-

homology ring of Z is the ring obtained from the small quantum cohomology of Z after

specialization of the quantum parameters corresponding to the rational exceptional curves

to c1, . . . , cm and the remaining parameters to zero, it is denoted by H⋆
ρ(Z)(c1, . . . , cm)

(see Sec. 2.3). It is an important issue (see [Rua06]) to determine the c1, . . . , cm. Ex-

amples suggest that there can be different choices (see e.g. [BGP08], [CCIT07], [Per07]);

however, if one assumes the validity of Conjecture 4.1 in [CR], then Ruan’s conjecture

follows (Theorem 7.2 in [CR]) and the c1, . . . , cm acquire a precise meaning (see section

11 in [CR]).

In this paper we consider the weighted projective space X = P(1, 3, 4, 4). The quan-

tum corrected cohomology ring depends on four quantum parameters: q1, q2, q3 and q4;

the first three correspond to the components of the exceptional divisor over the trans-

verse singularity, while the fourth corresponds to the component of the exceptional divisor

over the isolated singularity (see Sec. 2.3). Our main result, Theorem 4.1, states that,

for (c1, . . . , c4) ∈ {(i, i, i, 1), (−i,−i,−i, 1)}, the quantum corrected cohomology ring of

Z is isomorphic to the Chen-Ruan cohomology ring of P(1, 3, 4, 4). These values of the

quantum parameters are relevant for the cohomological crepant resolution conjecture and

its generalization, Conj. 4.1 in [CR]. In the previous paper [BMPa], we proved that

H⋆
ρ(Z)(q1, . . . , q4) becomes isomorphic to H⋆

CR(P(1, 3, 4, 4)) when we set the quantum pa-

rameters to (i, i, i, 0) or (−i,−i,−i, 0), which we found strange in regards to the conjecture,
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where the value c4 = 0 is not considered. A motivation for this work was that to clarify

this point.

To prove the theorem, we compute explicitly a presentation of H⋆
ρ(Z)(c1, . . . , c4) with

quantum parameters equal to (i, i, i, 1) and (−i,−i,−i, 1), then we give an explicit isomor-

phism H⋆
ρ(Z;C)(c1, . . . , c4) → H⋆

CR(P(1, 3, 4, 4)). The quantum corrections coming from

the exceptional divisor over the transverse singularity have been computed in [BMPa]. To

compute the quantum corrections coming from the component of the exceptional divisor

over the isolated singularity we use results from [CCIT].

The paper is organized as follows. In Sec. 2 we collect some background material: we

first give a presentation of the Chen-Ruan cohomology ring of P(1, 3, 4, 4); then we describe

the crepant resolution of |P(1, 3, 4, 4)|; finally we write a presentation of H⋆
ρ(Z)(c1, . . . , c4)

with (c1, . . . , c4) = (i, i, i, c4), here c4 is a generic complex number and we assume the

convergence of the power series (6). The fact that (6) converges in a neighborhood of the

origin to an analytic function that admits analytic continuation in 1 ∈ C is proved in Sec.

3; more precisely we show that (6) is equal to a constant structure of the small quantum

cohomology of the crepant resolution of |P(1, 1, 1, 3)| and then use results from [CCIT].

In the last section 4 we prove Theorem 4.1.

2. Background

The weighted projective space P(1, 3, 4, 4) is the quotient stack [C4 − {0}/C⋆], where

C⋆ acts diagonally with weights w0 = 1, w1 = 3, w2 = 4 and w3 = 4, it will be denoted

by X . The coarse moduli space X := |P(1, 3, 4, 4)| is a projective variety whose singular

locus is the disjoint union of the curve C := {[0 : 0 : x2 : x3]} ⊂ X and the isolated point

P := [0 : 1 : 0 : 0] ∈ X . Along C, X has transverse A3 singularities (see [Per07]), the

point P is a singularity of type 1
3
(1, 1, 1), according to Reid’s notation [Rei87].

2.1. The Chen-Ruan cohomology. To compute the Chen-Ruan cohomology ringH⋆
CR(X ;C)

we follow [BMPb]. The twisted sectors are indexed by the set T :=
{

exp(2πiγ) | γ ∈
{

0, 1
3
, 2
3
, 1
4
, 1
2
, 3
4

}}

.

For any g ∈ T, X(g) is a weighted projective space: set I(g) := {i ∈ {0, 1, 2, 3} | gwi = 1},
then X(g) = P(wI(g)), where (wI(g)) = (wi)i∈I(g). The inertia stack is the disjoint union of

the twisted sectors:

IX = ⊔g∈TP(wI(g)).

As a vector space, the Chen-Ruan cohomology is the cohomology of the inertia stack;

the graded structure is obtained by shifting the degree of the cohomology of any twisted

sector by twice the corresponding age, age(g). We have

Hp
CR(X ;C) = ⊕g∈TH

p−2age(g)(P(wI(g));C)(1)

= Hp(P(1, 3, 4, 4);C)⊕Hp−2(P(3);C)⊕Hp−4(P(3);C)⊕
Hp−2(P(4, 4);C)⊕Hp−2(P(4, 4);C)⊕Hp−2(P(4, 4);C).
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A basis of H⋆
CR(X ;C) is easily obtained in the following way: set

H,E1, E2, E3, E4 ∈ H2
CR(X ;C)

be the image of c1 (OX (1)) ∈ H2(X ;C), 1 ∈ H0(X(exp(πi/2));C), 1 ∈ H0(X(exp(πi));C),

1 ∈ H0(X(exp(πi3/2));C) and 1 ∈ H0(X(exp(2πi/3));C) respectively, under the inclusion

H⋆(P(wI(g))) → H⋆
CR(X ) determined by the decomposition (1). As a commutative C-

algebra, the Chen-Ruan cohomology ring is generated by H,E1, E2, E3, E4 with relations

(see [BMPb]):

HE4, E1E1 − 3HE2, E1E2 − 3HE3, E1E3 − 3H2,

E2E2 − 3H2, E2E3 −HE1, E3E3 −HE2, 16H
3 − E3

4 ,

H2E1, H
2E2, H

2E3, E1E4, E2E4, E3E4.

We see that the following elements form a basis of H⋆
CR(X ;C) which we fix for the rest of

the paper:

(2) 1, H, E1, E2, E3, E4, H
2, HE1, HE2, HE3, E

2
4 , H

3.

Remark 2.1. Note that the elements of our basis are different from those used in

[BMPb] by a combinatorial factor.

Other methods are suitable in order to compute the Chen-Ruan cup product of weighted

projective spaces, here are a few: the results in [BCS05] provide a presentation of the

Chen-Ruan cohomology ring for a general toric Deligne-Mumford stack; results from

[Man08] and from [CCLT].

2.2. The crepant resolution. We study some properties of the crepant resolution of

X := |P(1, 3, 4, 4)|. We begin with the following

Proposition 2.2. The variety X = |P(1, 3, 4, 4)| has a unique crepant resolution ρ :

Z → X, up to isomorphism.

Proof. This is a direct consequence of the following facts: the 3-fold singularity
1
3
(1, 1, 1) has a unique crepant resolution (see e.g. [FN04]) and any variety with transverse

ADE singularities has a unique crepant resolution ([Per07], Prop. 4.2), up to isomor-

phism. �

An explicit model for the crepant resolution ρ : Z → X can be constructed using

methods from toric geometry, we follow [Ful93]. The toric variety X is associated to the

lattice Z3 and the fan Σ, where Σ is the fan whose cones are generated by proper subsets of

{v0 := (−3,−4,−4), v1 := (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1)} ⊂ Z3. The 3-dimensional

cones which correspond to singular open affine subvarieties of X are: σ1 := 〈v0, v2, v3〉,
σ2 := 〈v0, v1, v3〉, σ3 := 〈v0, v1, v2〉. More precisely, σ1 gives rise to the isolated singularity,
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while σ2 and σ3 to the transverse one. To resolve the isolated singularity, we subdivide

σ1 by inserting the ray generated by

Q4 := (−1,−1,−1) =
1

3
v0 +

1

3
v2 +

1

3
v3.

To resolve the transverse singularity, we subdivide σ2 and σ3 by inserting the rays gener-

ated by

Q1 := (0,−1,−1) =
1

4
v0 +

3

4
v1,

Q2 := (−1,−2,−2) =
1

2
v0 +

1

2
v1,

and Q3 := (−2,−3,−3) =
3

4
v0 +

1

4
v1.

The subdivision Σ′ is shown in Figure 1. Then we set Z to be the toric variety associated

PSfrag replacements

v1

v2v3

v0

Q1

Q2

Q3

Q4

Figure 1. Polar polytopes of |P(1, 3, 4, 4)| and crepant resolution

to Z3 and Σ′, and ρ : Z → X to be the morphism associated to the identity Z3 → Z3.

Lemma 2.3. The morphism ρ : Z → X defined above is a crepant resolution.

Proof. Since any cone of Σ′ is generated by a part of a basis of the lattice, it follows

that Z is smooth, [Ful93] Sec. 2.1. The crepancy of ρ follows from the existence of a

continuous Σ-piecewise linear function h′ : R3 → R such that h′(Qi) = h′(vj) = −1, for

any i ∈ {1, 2, 3, 4} and j ∈ {0, 1, 2, 3}, [Ful93] Sec. 3.4. �
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Observe that Σ′ is the maximal projective subdivision of the polytope of |P(1, 3, 4, 4)|
(see [CK99] or [Voi96]).

2.3. Quantum corrected cohomology ring of Z. Let us denote by bj (resp. ei) the

first Chern class of the holomorphic line bundle associated to the torus invariant divisor

in Z corresponding to the ray generated by vj (resp. Qi), for any j ∈ {0, 1, 2, 3} (i ∈
{1, 2, 3, 4} resp.). Set h = 1

12

(

∑3
i=0 bi +

∑4
j=1 ej

)

, then H⋆(Z;C) ∼= C[h, e1, e2, e3, e4]/I

where I is the ideal generated by (see [BMPa] for more details)

3he4, e1e3, e1e4, e2e4, e3e4,

e21 − 10he1 − 4he2 − 2he3 + 24h2,

e1e2 + 3he1 + 2he2 + he3 − 12h2,

e22 − 6he1 − 12he2 − 2he3 + 24h2,

e2e3 + 3he1 + 6he2 + he3 − 12h2,

e23 − 6he1 − 12he2 − 14he3 + 24h2,

16h2e1, 16h
2e2, 16h

2e3, 16h
3 − 1

27
e34.

Let us fix the following basis of H⋆(Z;C):

ψ0 = 1, ψ1 = h, ψ2 = e1, ψ3 = e2, ψ4 = e3, ψ5 = e4,(3)

ψ6 = h2, ψ7 = he1, ψ8 = he2, ψ9 = he3, ψ10 = e24, ψ11 = h3,

with dual basis:

ψ0 = 48h3, ψ1 = 48h2, ψ2 = −3he1 − 2he2 − he3, ψ
3 = −2he1 − 4he2 − 2he3,

ψ4 = −he1 − 2he2 − 3he3, ψ
5 =

1

9
e24, ψ

6 = 48h, ψ7 = −3e1 − 2e2 − e3,

ψ8 = −2e1 − 4e2 − 2e3, ψ
9 = −e1 − 2e2 − 3e3, ψ

10 =
1

9
e4, ψ

11 = 48 · 1.

Let Mρ(Z) ⊂ A1(Z;Z) be the cone of effective 1-cycles in Z which are contracted by

ρ. It is freely generated by Γi := PD(4hei) for i ∈ {1, 2, 3} and Γ4 := PD
(

−1
3
e24
)

, where

PD means Poincaré dual (see e.g. [BMPa]). Let q1, q2, q3, q4 be formal variables and let

Λ := C[[q1, . . . , q4]] be the ring of formal power series in q1, ..., q4. We have an associative

product on H⋆(Z; Λ) defined as:

(4) ψi ⋆ρ ψj :=
∑

Γ∈Mρ(Z)

11
∑

ℓ=0

〈ψi, ψj , ψ
ℓ〉Z0,3,Γψℓq

Γ,

where 〈. . .〉Z0,3,Γ is the Gromov-Witten invariant of Z of genus zero, three marked points,

homology class Γ and qΓ := qd11 · · · qd44 for Γ = d1Γ1 + ...+ d4Γ4 ∈ Mρ(Z).

In [BMPa] we computed explicitly the product (4) whenever ψi 6= e4 or ψj 6= e4; as

a result it follows that, in these cases, the power series involved in (4) converge in a
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neighborhood of the origin. We will see in Section 3 that also e4 ⋆ρ e4 is convergent in a

neighborhood of the origin. Therefore the expression (4) defines a family of C-algebras

over the vector space H⋆(Z;C) whose structure constants are analytic functions defined

in some region of the complex space C4. For any c1, . . . , c4 in this region, the algebra

obtained by setting qi = ci is the quantum corrected cohomology ring of Z with quantum

parameters specialized to c1, . . . , c4 and is denoted by H⋆(Z;C)(c1, . . . , c4) [Rua06].

In particular we have the following presentation for H⋆
ρ(Z)(i, i, i, c4) (see [BMPa] for

more details):

α1 ⋆ρ α2 = α1 ∪ α2, if deg(α1) 6= 2,

h ⋆ρ α = h ∪ α, for anyα,

e1 ⋆ρ e1 = −24h2 + (−2 + 6i)he1 − 4he2 + (−2 − 2i)he3,

e1 ⋆ρ e2 = 12h2 + (−1− 4i)he1 + (2− 4i)he2 + he3,

e1 ⋆ρ e3 = −2ihe1 − 2ihe3,(5)

e2 ⋆ρ e2 = −24h2 + (2 + 2i)he1 + 8ihe2 + (−2 + 2i)he3,

e2 ⋆ρ e3 = 12h2 − he1 + (−2− 4i)he2 + (1− 4i)he3,

e3 ⋆ρ e3 = −24h2 + (2− 2i)he1 + 4he2 + (2 + 6i)he3,

e4 ⋆ρ e4 = ǫ(c4)e
2
4;

where ∪ is the usual cup product, and

ǫ(q) := 1 +
1

9

(
∫

Γ4

e4

)3 ∞
∑

a=1

a3deg
[

M0,0(Z, aΓ4)
]vir

qa(6)

= 1− 3

∞
∑

a=1

a3deg
[

M0,0(Z, aΓ4)
]vir

qa.

A similar presentation holds for H⋆(Z)(−i,−i,−i, c4), also in this case e4 ⋆ρ e4 = ǫ(c4)e
2
4

with ǫ(q) defined in (6).

3. Relations with the quantum cohomology of F3

To state our main result (Theorem 4.1), we need to know that the series (6) converges

in a neighborhood of the origin to an analytic function that admits analytic continuation

at the point 1 ∈ C. To this aim, we show in this section that (6) appears as a structure

constant of the small quantum cohomology of F3, the crepant resolution of |P(1, 1, 1, 3)|,
so that we can use the results of [CCIT] and [CR]. For reader’s convenience, we stick to

the notation of [CCIT].

Let us consider the coarse moduli space of the weighted projective space P(1, 1, 1, 3),

it has an isolated singularity of type 1
3
(1, 1, 1). Let F3 := P(OP2(−3) ⊕ OP2), then there

exists a morphism χ : F3 → |P(1, 1, 1, 3)| which is a crepant resolution. Following the
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notation of [CCIT], let p1 ∈ H2(F3;C) be the class Poincaré dual to the preimage in F3

of a hyperplane in P2; let p2 ∈ H2(F3;C) the class Poincaré dual to the infinity section.

The cohomology ring of F3 has the following presentation

H⋆(F3;C) = C[p1, p2]/〈p31, p22 − 3p1p2〉.

Let us fix the following basis of H⋆(F3;C) (as in [CCIT])

φ0 = 1, φ1 =
p2
3
, φ2 =

p1p2
3
, φ3 =

p2 − 3p1
3

, φ4 = −p1(p2 − 3p1)

3
, φ5 =

p21p2
3
,

then its dual is

φ0 = p21p2, φ
1 = p1p2, φ

2 = p2, φ
3 = −p1(p2 − 3p1), φ

4 = p2 − 3p1, φ
5 = 3.

The Poincaré dual to the exceptional divisor is p := p2 − 3p1 (in [CCIT] p is denoted by

p1). We want to compute the product p ◦q̂ p in the small quantum cohomology of F3 with

(q̂1, q̂2) = (1, 0) (see (8)).

By definition, we have (see [CCIT], sec. 2.4)

(7) p ◦q̂ p =
∑

γ∈M(F3)

5
∑

ℓ=0

〈p, p, φℓ〉F3

0,3,γ q̂
γφℓ,

where M(F3) ⊂ H2(F3;Z) is the cone of the classes of effective curves, for γ ∈ M(F3)

q̂γ : H2(F3;C)
2πiH2(F3;Z)

→ C⋆ is the function [τ ] 7→ exp
(

∫

γ
τ
)

, 〈. . .〉F3

0,3,γ is the Gromov-Witten

invariant of F3 of genus zero, three marked points and class γ.

Since p1, p2 form a basis of H2(F3;C), any [τ ] can be written as [τ ] = [τ 1p1 + τ 2p2],

therefore

(8) q̂γ([τ ]) = q̂
R

γ
p1

1 q̂
R

γ
p2

2 ,

where q̂i := exp(τ i), i ∈ {1, 2}. Let us consider the classes γ1 := PD(−1
3
p2 = p1(p2−3p1))

and γ2 := PD(p21), they form a basis for M(F3) such that
∫

γi
pj = δij , i, j ∈ {1, 2}. It

follows that the product p ◦q̂ p restricted to q̂ = (q̂1, 0) is given by:

p ◦(q̂1,0) p =
∑

a≥0

5
∑

ℓ=0

〈p, p, φℓ〉F3

0,3,aγ1 q̂
a
1φ

ℓ.

Using the degree axiom, the divisor axiom and
∫

γ1
p2 = 0, we deduce that

p ◦(q̂1,0) p =

∞
∑

a=0

〈p, p, 1
3
p〉F3

0,3,aγ1 · (−p1(p2 − 3p1))q̂
a
1 .

Finally, since p2 := p ∪ p = −3p1(p2 − 3p1), using again the divisor axiom we rewrite the

previous expression as

(9) p ◦(q̂1,0) p =

(

1− 3
∞
∑

a=1

a3deg
[

M0,0(F3, aγ1)
]vir

q̂a1

)

p
2.

Then we have:



8 SAMUEL BOISSIÈRE, ÉTIENNE MANN AND FABIO PERRONI

Lemma 3.1. The power series in (9) is equal to the power series ǫ (see Formula (6)).

Proof. From the uniqueness of the crepant resolution of the singularity 1
3
(1, 1, 1), there

exists an isomorphism between a neighborhood in Z of the component of the exceptional

divisor over [0 : 1 : 0 : 0] ∈ |P(1, 3, 4, 4)| and a neighborhood in F3 of the exceptional

divisor of χ. The isomorphism between these neighborhoods induces isomorphisms of

stacks (see e.g. [Per07], Lemma 7.1):

(10) M0,0(Z, aΓ4) ∼= M0,0(F3, aγ1) ∀a ∈ N− {0}.

Since the virtual fundamental classes of the above stacks depend only on neighborhoods

of the exceptional divisors, it follows that

deg
[

M0,0(Z, aΓ4)
]vir

= deg
[

M0,0(F3, aγ1)
]vir ∀a ∈ N− {0}.

Hence the result follows. �

As a consequence we have:

Corollary 3.2. The series (6) converges in a neighborhood of the origin to an analytic

function f(q) that has analytic continuation in 1 ∈ C. Moreover the value of f(q) at q = 1

is

f(1) =
2πβ1
9β2

2

=
(2π)6

27Γ
(

1
3

)9 ,

where βi =
2π

9Γ( i
3
)
3 , i ∈ {1, 2}.

Proof. It follows from [CCIT] (see also [CR] Theorem 7.2) that the statement is true

for (9) and Lemma 3.1 implies that it is also true for (6).

To compute f(1), consider the map Θ(q) : H⋆
CR(P(1, 1, 1, 3)) → H⋆(F3) defined in

[CCIT] (pag. 56) and set q = 0. We consider H⋆(F3) with the algebra structure coming

from the quantum cohomology when we set the quantum parameter q̂ at (1, 0) (see (8)).

Θ(0) is a morphism of algebras, so we have [CCIT]1:

2π

3
β1p

2 = Θ(0)(1 1

3

) = Θ(0)(1 2

3

) ◦(1,0) Θ(0)(1 2

3

) = 3β2
2p ◦(1,0) p,

therefore

p ◦(1,0) p = f(1)p2 =
2πβ1
9β2

2

p
2 and f(1) =

2πβ1
9β2

2

.

The second equality follows from standard identities of the Γ-function. �

1The careful reader will notice that, in [CCIT], P(1, 1, 1, 3) is defined as the quotient [C4 − {0}/C⋆]

where the action has negative weights.
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4. The main result

From the results in [BMPa] and Cor. 3.2 it follows that the power series in (4) con-

verge in a neighborhood of the origin of C4 to analytic functions that admit analytic

continuations in (i, i, i, 1) and in (−i,−i,−i, 1), moreover the following result holds.

Theorem 4.1. For (c1, c2, c3, c4) ∈ {(i, i, i, 1), (−i,−i,−i, 1)} there is a ring isomor-

phism

H⋆
ρ(Z;C)(c1, c2, c3, c4)

∼=−→ H⋆
CR(P(1, 3, 4, 4);C)

which is an isometry with respect to the Poincaré pairings.

Proof. Let us first consider the case where (c1, . . . , c4) = (i, i, i, 1). Let

(11) Ξ : H⋆
ρ(Z;C)(i, i, i, 1) −→ H⋆

CR(P(1, 3, 4, 4);C)

be the linear map defined by the following matrix with respect to the basis (2) and (3),
















































1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 −
√
2 −2i

√
2 0 0 0 0 0 0 0

0 0 −i
√
2 2i −i

√
2 0 0 0 0 0 0 0

0 0
√
2 −2i −

√
2 0 0 0 0 0 0 0

0 0 0 0 0 α 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 −
√
2 −2i

√
2 0 0

0 0 0 0 0 0 0 −i
√
2 2i −i

√
2 0 0

0 0 0 0 0 0 0
√
2 −2i −

√
2 0 0

0 0 0 0 0 0 0 0 0 0 β 0

0 0 0 0 0 0 0 0 0 0 0 1

















































where α and β are complex numbers to be determined. Note that Ξ coincides with the

map (4.3) in [BMPa] except possibly for the image of e4 and e4
2.

Clearly Ξ is an isomorphism of vector spaces if and only if α · β 6= 0. We have that

Ξ(ei ⋆ρ ej) = Ξ(ei)∪CR Ξ(ej) for i, j ∈ {1, 2, 3} [BMPa], therefore it remains to find α and

β such that α · β 6= 0, Ξ(e4 ⋆ρ e4) = Ξ(e4) ∪CR Ξ(e4) and Ξ(e4 ⋆ρ e
2
4) = Ξ(e4) ∪CR Ξ(e24).

This is equivalent to the equations:

(12) α3 = 27f(1) and α · β = 27.

The existence of α and β verifying (12) follows from Corollary 3.2. The fact that Ξ is

an isometry is then a direct consequence of [BMPa] and (12).

The case where (c1, . . . , c4) = (−i,−i,−i, 1) is similar to the previous one, the linear

map H⋆
ρ(Z;C)(−i,−i,−i, 1) → H⋆

CR(P(1, 3, 4, 4);C) coincides with (4.4) in [BMPa] on

1, e1, e2, e3, h
2, he1, he2, he3, h

3 and coincides with (11) on e4 and e24. Also in this case the
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fact that it is a ring isomorphism and that preserves the metrics follows from [BMPa] and

(12). This concludes the proof. �
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