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We prove the cohomological crepant resolution conjecture of Ruan for the weighted projective space P(1, 3, 4, 4). To compute the quantum corrected cohomology ring we combine the results of Coates-Corti-Iritani-Tseng on P(1, 1, 1, 3) and our previous results.

Introduction

The Cohomological Crepant Resolution Conjecture, as proposed by Ruan, predicts the existence of an isomorphism between the Chen-Ruan cohomology ring of a complex Gorenstein orbifold X and the quantum corrected cohomology ring of any crepant resolution ρ : Z → X of the coarse moduli space X of X [START_REF] Ruan | The cohomology ring of crepant resolutions of orbifolds[END_REF]. The quantum corrected cohomology ring of Z is the ring obtained from the small quantum cohomology of Z after specialization of the quantum parameters corresponding to the rational exceptional curves to c 1 , . . . , c m and the remaining parameters to zero, it is denoted by H ⋆ ρ (Z)(c 1 , . . . , c m ) (see Sec. 2.3). It is an important issue (see [START_REF] Ruan | The cohomology ring of crepant resolutions of orbifolds[END_REF]) to determine the c 1 , . . . , c m . Examples suggest that there can be different choices (see e.g. [START_REF] Bryan | The orbifold quantum cohomology of C 2 /Z 3 and Hurwitz-Hodge integrals[END_REF], [START_REF]The crepant resolution conjecture for type A surface singularities[END_REF], [START_REF] Perroni | Chen-Ruan cohomology of ADE-singularities[END_REF]); however, if one assumes the validity of Conjecture 4.1 in [CR], then Ruan's conjecture follows (Theorem 7.2 in [CR]) and the c 1 , . . . , c m acquire a precise meaning (see section 11 in [CR]).

In this paper we consider the weighted projective space X = P(1, 3, 4, 4). The quantum corrected cohomology ring depends on four quantum parameters: q 1 , q 2 , q 3 and q 4 ; the first three correspond to the components of the exceptional divisor over the transverse singularity, while the fourth corresponds to the component of the exceptional divisor over the isolated singularity (see Sec. 2.3). Our main result, Theorem 4.1, states that, for (c 1 , . . . , c 4 ) ∈ {(i, i, i, 1), (-i, -i, -i, 1)}, the quantum corrected cohomology ring of Z is isomorphic to the Chen-Ruan cohomology ring of P(1, 3, 4, 4). These values of the quantum parameters are relevant for the cohomological crepant resolution conjecture and its generalization, Conj. 4.1 in [CR]. In the previous paper [BMPa], we proved that H ⋆ ρ (Z)(q 1 , . . . , q 4 ) becomes isomorphic to H ⋆ CR (P(1, 3, 4, 4)) when we set the quantum parameters to (i, i, i, 0) or (-i, -i, -i, 0), which we found strange in regards to the conjecture, where the value c 4 = 0 is not considered. A motivation for this work was that to clarify this point.

To prove the theorem, we compute explicitly a presentation of H ⋆ ρ (Z)(c 1 , . . . , c 4 ) with quantum parameters equal to (i, i, i, 1) and (-i, -i, -i, 1), then we give an explicit isomorphism H ⋆ ρ (Z; C)(c 1 , . . . , c 4 ) → H ⋆ CR (P(1, 3, 4, 4)). The quantum corrections coming from the exceptional divisor over the transverse singularity have been computed in [BMPa]. To compute the quantum corrections coming from the component of the exceptional divisor over the isolated singularity we use results from [CCIT].

The paper is organized as follows. In Sec. 2 we collect some background material: we first give a presentation of the Chen-Ruan cohomology ring of P(1, 3, 4, 4); then we describe the crepant resolution of |P(1, 3, 4, 4)|; finally we write a presentation of H ⋆ ρ (Z)(c 1 , . . . , c 4 ) with (c 1 , . . . , c 4 ) = (i, i, i, c 4 ), here c 4 is a generic complex number and we assume the convergence of the power series (6). The fact that (6) converges in a neighborhood of the origin to an analytic function that admits analytic continuation in 1 ∈ C is proved in Sec. 3; more precisely we show that (6) is equal to a constant structure of the small quantum cohomology of the crepant resolution of |P(1, 1, 1, 3)| and then use results from [CCIT]. In the last section 4 we prove Theorem 4.1.

Background

The weighted projective space P(1, 3, 4, 4) is the quotient stack [C 4 -{0}/C ⋆ ], where C ⋆ acts diagonally with weights w 0 = 1, w 1 = 3, w 2 = 4 and w 3 = 4, it will be denoted by X . The coarse moduli space X := |P(1, 3, 4, 4)| is a projective variety whose singular locus is the disjoint union of the curve C := {[0 : 0 : x 2 : x 3 ]} ⊂ X and the isolated point P := [0 : 1 : 0 : 0] ∈ X. Along C, X has transverse A 3 singularities (see [START_REF] Perroni | Chen-Ruan cohomology of ADE-singularities[END_REF]), the point P is a singularity of type 1 3 (1, 1, 1), according to Reid's notation [START_REF] Reid | Young person's guide to canonical singularities, Algebraic geometry[END_REF].

2.1. The Chen-Ruan cohomology. To compute the Chen-Ruan cohomology ring H ⋆ CR (X ; C) we follow [BMPb]. The twisted sectors are indexed by the set T := exp(2πiγ) | γ ∈ 0, 1 3 , 2 3 , 1 4 , 1 2 , 3 4 . For any g ∈ T, X (g) is a weighted projective space: set I(g) := {i ∈ {0, 1, 2, 3} | g w i = 1}, then X (g) = P(w I(g) ), where (w I(g) ) = (w i ) i∈I(g) . The inertia stack is the disjoint union of the twisted sectors: IX = ⊔ g∈T P(w I(g) ).

As a vector space, the Chen-Ruan cohomology is the cohomology of the inertia stack; the graded structure is obtained by shifting the degree of the cohomology of any twisted sector by twice the corresponding age, age(g). We have

H p CR (X ; C) = ⊕ g∈T H p-2age(g) (P(w I(g) ); C) (1)
= H p (P(1, 3, 4, 4); C) ⊕ H p-2 (P(3); C) ⊕ H p-4 (P(3); C) ⊕ H p-2 (P(4, 4); C) ⊕ H p-2 (P(4, 4); C) ⊕ H p-2 (P(4, 4); C).

A basis of H ⋆ CR (X ; C) is easily obtained in the following way: set

H, E 1 , E 2 , E 3 , E 4 ∈ H 2 CR (X ; C) be the image of c 1 (O X (1)) ∈ H 2 (X ; C), 1 ∈ H 0 (X (exp(πi/2)) ; C), 1 ∈ H 0 (X (exp(πi)) ; C), 1 ∈ H 0 (X (exp(πi3/2
)) ; C) and 1 ∈ H 0 (X (exp(2πi/3)) ; C) respectively, under the inclusion H ⋆ (P(w I(g) )) → H ⋆ CR (X ) determined by the decomposition (1). As a commutative Calgebra, the Chen-Ruan cohomology ring is generated by H, E 1 , E 2 , E 3 , E 4 with relations (see [BMPb]):

HE 4 , E 1 E 1 -3HE 2 , E 1 E 2 -3HE 3 , E 1 E 3 -3H 2 , E 2 E 2 -3H 2 , E 2 E 3 -HE 1 , E 3 E 3 -HE 2 , 16H 3 -E 3 4 , H 2 E 1 , H 2 E 2 , H 2 E 3 , E 1 E 4 , E 2 E 4 , E 3 E 4 .
We see that the following elements form a basis of H ⋆ CR (X ; C) which we fix for the rest of the paper:

(2) 1, H, E 1 , E 2 , E 3 , E 4 , H 2 , HE 1 , HE 2 , HE 3 , E 2 4 , H 3 .
Remark 2.1. Note that the elements of our basis are different from those used in [BMPb] by a combinatorial factor.

Other methods are suitable in order to compute the Chen-Ruan cup product of weighted projective spaces, here are a few: the results in [START_REF] Borisov | The orbifold Chow ring of toric Deligne-Mumford stacks[END_REF] provide a presentation of the Chen-Ruan cohomology ring for a general toric Deligne-Mumford stack; results from [START_REF] Mann | Orbifold quantum cohomology of weighted projective spaces[END_REF] and from [CCLT].

2.2. The crepant resolution. We study some properties of the crepant resolution of X := |P(1, 3, 4, 4)|. We begin with the following Proposition 2.2. The variety

X = |P(1, 3, 4, 4)| has a unique crepant resolution ρ : Z → X, up to isomorphism.
Proof. This is a direct consequence of the following facts: the 3-fold singularity 1 3 (1, 1, 1) has a unique crepant resolution (see e.g. [START_REF] Fu | Uniqueness of crepant resolutions and symplectic singularities[END_REF]) and any variety with transverse ADE singularities has a unique crepant resolution ([Per07], Prop. 4.2), up to isomorphism.

An explicit model for the crepant resolution ρ : Z → X can be constructed using methods from toric geometry, we follow [START_REF] Fulton | Introduction to toric varieties[END_REF]. The toric variety X is associated to the lattice Z 3 and the fan Σ, where Σ is the fan whose cones are generated by proper subsets of {v 0 := (-3, -4, -4), v 1 := (1, 0, 0), v 2 = (0, 1, 0), v 3 = (0, 0, 1)} ⊂ Z 3 . The 3-dimensional cones which correspond to singular open affine subvarieties of X are:

σ 1 := v 0 , v 2 , v 3 , σ 2 := v 0 , v 1 , v 3 , σ 3 := v 0 , v 1 , v 2 .
More precisely, σ 1 gives rise to the isolated singularity, while σ 2 and σ 3 to the transverse one. To resolve the isolated singularity, we subdivide σ 1 by inserting the ray generated by

Q 4 := (-1, -1, -1) = 1 3 v 0 + 1 3 v 2 + 1 3 v 3 .
To resolve the transverse singularity, we subdivide σ 2 and σ 3 by inserting the rays generated by

Q 1 := (0, -1, -1) = 1 4 v 0 + 3 4 v 1 , Q 2 := (-1, -2, -2) = 1 2 v 0 + 1 2 v 1 ,
and

Q 3 := (-2, -3, -3) = 3 4 v 0 + 1 4 v 1 .
The subdivision Σ ′ is shown in Figure 1. Then we set Z to be the toric variety associated PSfrag replacements

v 1 v 2 v 3 v 0 Q 1 Q 2 Q 3 Q 4 Figure 1.
Polar polytopes of |P(1, 3, 4, 4)| and crepant resolution to Z 3 and Σ ′ , and ρ : Z → X to be the morphism associated to the identity Z 3 → Z 3 .

Lemma 2.3. The morphism ρ : Z → X defined above is a crepant resolution.

Proof. Since any cone of Σ ′ is generated by a part of a basis of the lattice, it follows that Z is smooth, [Ful93] Sec. 2.1. The crepancy of ρ follows from the existence of a continuous Σ-piecewise linear function h

′ : R 3 → R such that h ′ (Q i ) = h ′ (v j ) = -1, for any i ∈ {1, 2, 3, 4} and j ∈ {0, 1, 2, 3}, [Ful93] Sec. 3.4.
Observe that Σ ′ is the maximal projective subdivision of the polytope of |P(1, 3, 4, 4)| (see [START_REF] Cox | Mirror symmetry and algebraic geometry[END_REF] or [START_REF] Voisin | Symétrie miroir, Panoramas et Synthèses [Panoramas and Syntheses[END_REF]).

2.3. Quantum corrected cohomology ring of Z. Let us denote by b j (resp. e i ) the first Chern class of the holomorphic line bundle associated to the torus invariant divisor in Z corresponding to the ray generated by v j (resp. Q i ), for any j ∈ {0, 1, 2, 3} (i ∈ {1, 2, 3, 4} resp.). Set h = 1 12 3 i=0 b i + 4 j=1 e j , then H ⋆ (Z; C) ∼ = C[h, e 1 , e 2 , e 3 , e 4 ]/I where I is the ideal generated by (see [BMPa] for more details) 3he 4 , e 1 e 3 , e 1 e 4 , e 2 e 4 , e 3 e 4 ,

e 2 1 -10he 1 -4he 2 -2he 3 + 24h 2 , e 1 e 2 + 3he 1 + 2he 2 + he 3 -12h 2 , e 2 2 -6he 1 -12he 2 -2he 3 + 24h 2 , e 2 e 3 + 3he 1 + 6he 2 + he 3 -12h 2 , e 2 3 -6he 1 -12he 2 -14he 3 + 24h 2 , 16h 2 e 1 , 16h 2 e 2 , 16h 2 e 3 , 16h 3 - 1 27 e 3 4 .
Let us fix the following basis of H ⋆ (Z; C):

ψ 0 = 1, ψ 1 = h, ψ 2 = e 1 , ψ 3 = e 2 , ψ 4 = e 3 , ψ 5 = e 4 , (3) 
ψ 6 = h 2 , ψ 7 = he 1 , ψ 8 = he 2 , ψ 9 = he 3 , ψ 10 = e 2
4 , ψ 11 = h 3 , with dual basis:

ψ 0 = 48h 3 , ψ 1 = 48h 2 , ψ 2 = -3he 1 -2he 2 -he 3 , ψ 3 = -2he 1 -4he 2 -2he 3 , ψ 4 = -he 1 -2he 2 -3he 3 , ψ 5 = 1 9 e 2 4 , ψ 6 = 48h, ψ 7 = -3e 1 -2e 2 -e 3 , ψ 8 = -2e 1 -4e 2 -2e 3 , ψ 9 = -e 1 -2e 2 -3e 3 , ψ 10 = 1 9 e 4 , ψ 11 = 48 • 1.
Let M ρ (Z) ⊂ A 1 (Z; Z) be the cone of effective 1-cycles in Z which are contracted by ρ. It is freely generated by Γ i := PD(4he i ) for i ∈ {1, 2, 3} and Γ 4 := PD -1 3 e 2 4 , where PD means Poincaré dual (see e.g. [BMPa]). Let q 1 , q 2 , q 3 , q 4 be formal variables and let Λ := C[[q 1 , . . . , q 4 ]] be the ring of formal power series in q 1 , ..., q 4 . We have an associative product on H ⋆ (Z; Λ) defined as:

(4)

ψ i ⋆ ρ ψ j := Γ∈Mρ(Z) 11 ℓ=0 ψ i , ψ j , ψ ℓ Z 0,3,Γ ψ ℓ q Γ ,
where . . . Z 0,3,Γ is the Gromov-Witten invariant of Z of genus zero, three marked points, homology class Γ and q

Γ := q d 1 1 • • • q d 4 4 for Γ = d 1 Γ 1 + ... + d 4 Γ 4 ∈ M ρ (Z).
In [BMPa] we computed explicitly the product (4) whenever ψ i = e 4 or ψ j = e 4 ; as a result it follows that, in these cases, the power series involved in (4) converge in a neighborhood of the origin. We will see in Section 3 that also e 4 ⋆ ρ e 4 is convergent in a neighborhood of the origin. Therefore the expression (4) defines a family of C-algebras over the vector space H ⋆ (Z; C) whose structure constants are analytic functions defined in some region of the complex space C 4 . For any c 1 , . . . , c 4 in this region, the algebra obtained by setting q i = c i is the quantum corrected cohomology ring of Z with quantum parameters specialized to c 1 , . . . , c 4 and is denoted by H ⋆ (Z; C)(c 1 , . . . , c 4 ) [START_REF] Ruan | The cohomology ring of crepant resolutions of orbifolds[END_REF].

In particular we have the following presentation for H ⋆ ρ (Z)(i, i, i, c 4 ) (see [BMPa] for more details):

α 1 ⋆ ρ α 2 = α 1 ∪ α 2 , if deg(α 1 ) = 2, h ⋆ ρ α = h ∪ α, for any α, e 1 ⋆ ρ e 1 = -24h 2 + (-2 + 6i)he 1 -4he 2 + (-2 -2i)he 3 , e 1 ⋆ ρ e 2 = 12h 2 + (-1 -4i)he 1 + (2 -4i)he 2 + he 3 , e 1 ⋆ ρ e 3 = -2ihe 1 -2ihe 3 , (5) e 2 ⋆ ρ e 2 = -24h 2 + (2 + 2i)he 1 + 8ihe 2 + (-2 + 2i)he 3 , e 2 ⋆ ρ e 3 = 12h 2 -he 1 + (-2 -4i)he 2 + (1 -4i)he 3 , e 3 ⋆ ρ e 3 = -24h 2 + (2 -2i)he 1 + 4he 2 + (2 + 6i)he 3 , e 4 ⋆ ρ e 4 = ǫ(c 4 )e 2
4 ; where ∪ is the usual cup product, and ǫ(q) := 1 + 1 9

Γ 4 e 4 3 ∞ a=1 a 3 deg M 0,0 (Z, aΓ 4 ) vir q a (6) = 1 -3 ∞ a=1 a 3 deg M 0,0 (Z, aΓ 4 ) vir q a .
A similar presentation holds for H ⋆ (Z)(-i, -i, -i, c 4 ), also in this case e 4 ⋆ ρ e 4 = ǫ(c 4 )e 2 4 with ǫ(q) defined in (6).

Relations with the quantum cohomology of F 3

To state our main result (Theorem 4.1), we need to know that the series (6) converges in a neighborhood of the origin to an analytic function that admits analytic continuation at the point 1 ∈ C. To this aim, we show in this section that (6) appears as a structure constant of the small quantum cohomology of F 3 , the crepant resolution of |P(1, 1, 1, 3)|, so that we can use the results of [CCIT] and [CR]. For reader's convenience, we stick to the notation of [CCIT].

Let us consider the coarse moduli space of the weighted projective space P(1, 1, 1, 3), it has an isolated singularity of type 1 3 (1, 1, 1). Let F 3 := P(O P 2 (-3) ⊕ O P 2 ), then there exists a morphism χ : F 3 → |P(1, 1, 1, 3)| which is a crepant resolution. Following the notation of [CCIT], let p 1 ∈ H 2 (F 3 ; C) be the class Poincaré dual to the preimage in F 3 of a hyperplane in P 2 ; let p 2 ∈ H 2 (F 3 ; C) the class Poincaré dual to the infinity section. The cohomology ring of F 3 has the following presentation

H ⋆ (F 3 ; C) = C[p 1 , p 2 ]/ p 3 1 , p 2 2 -3p 1 p 2 .
Let us fix the following basis of H ⋆ (F 3 ; C) (as in [CCIT])

φ 0 = 1, φ 1 = p 2 3 , φ 2 = p 1 p 2 3 , φ 3 = p 2 -3p 1 3 , φ 4 = - p 1 (p 2 -3p 1 ) 3 , φ 5 = p 2 1 p 2 3 ,
then its dual is [CCIT] p is denoted by p 1 ). We want to compute the product p • q p in the small quantum cohomology of F 3 with (q 1 , q2 ) = (1, 0) (see ( 8)).

φ 0 = p 2 1 p 2 , φ 1 = p 1 p 2 , φ 2 = p 2 , φ 3 = -p 1 (p 2 -3p 1 ), φ 4 = p 2 -3p 1 , φ 5 = 3. The Poincaré dual to the exceptional divisor is p := p 2 -3p 1 (in
By definition, we have (see [CCIT], sec. 2.4)

(7) p • q p = γ∈M(F 3 ) 5 ℓ=0 p, p, φ ℓ F 3 0,3,γ qγ φ ℓ , where M(F 3 ) ⊂ H 2 (F 3 ; Z) is the cone of the classes of effective curves, for γ ∈ M(F 3 ) qγ : H 2 (F 3 ;C) 2πiH 2 (F 3 ;Z) → C ⋆ is the function [τ ]
→ exp γ τ , . . . F 3 0,3,γ is the Gromov-Witten invariant of F 3 of genus zero, three marked points and class γ.

Since p 1 , p 2 form a basis of H 2 (F 3 ; C), any [τ ] can be written as

[τ ] = [τ 1 p 1 + τ 2 p 2 ], therefore (8) qγ ([τ ]) = qR γ p 1 1 qR γ p 2 2
, where qi := exp(τ i ), i ∈ {1, 2}. Let us consider the classes γ 1 := PD(-1 3 p 2 = p 1 (p 2 -3p 1 )) and γ 2 := PD(p 2 1 ), they form a basis for M(F 3 ) such that γ i p j = δ ij , i, j ∈ {1, 2}. It follows that the product p • q p restricted to q = (q 1 , 0) is given by:

p • (q 1 ,0) p = a≥0 5 ℓ=0 p, p, φ ℓ F 3 0,3,aγ 1 qa 1 φ ℓ .
Using the degree axiom, the divisor axiom and γ 1 p 2 = 0, we deduce that

p • (q 1 ,0) p = ∞ a=0 p, p, 1 3 p F 3 0,3,aγ 1 • (-p 1 (p 2 -3p 1 ))q a 1 .
Finally, since p 2 := p ∪ p = -3p 1 (p 2 -3p 1 ), using again the divisor axiom we rewrite the previous expression as

(9) p • (q 1 ,0) p = 1 -3 ∞ a=1 a 3 deg M 0,0 (F 3 , aγ 1 ) vir qa 1 p 2 .
Then we have:

Lemma 3.1. The power series in (9) is equal to the power series ǫ (see Formula (6)).

Proof. From the uniqueness of the crepant resolution of the singularity 1 3 (1, 1, 1), there exists an isomorphism between a neighborhood in Z of the component of the exceptional divisor over [0 : 1 : 0 : 0] ∈ |P(1, 3, 4, 4)| and a neighborhood in F 3 of the exceptional divisor of χ. The isomorphism between these neighborhoods induces isomorphisms of stacks (see e.g. [START_REF] Perroni | Chen-Ruan cohomology of ADE-singularities[END_REF], Lemma 7.1):

(10) M 0,0 (Z, aΓ 4 ) ∼ = M 0,0 (F 3 , aγ 1 ) ∀a ∈ N -{0}.

Since the virtual fundamental classes of the above stacks depend only on neighborhoods of the exceptional divisors, it follows that deg M 0,0 (Z, aΓ 4 ) vir = deg M 0,0 (F 3 , aγ 1 )

vir ∀a ∈ N -{0}.
Hence the result follows.

As a consequence we have:

Corollary 3.2. The series (6) converges in a neighborhood of the origin to an analytic function f (q) that has analytic continuation in 1 ∈ C. Moreover the value of f (q) at q = 1 is

f (1) = 2πβ 1 9β 2 2 = (2π) 6 27Γ 1 3 9 ,
where

β i = 2π 9Γ( i 3 ) 3 , i ∈ {1, 2}.
Proof. It follows from [CCIT] (see also [CR] Theorem 7.2) that the statement is true for (9) and Lemma 3.1 implies that it is also true for (6).

To compute f (1), consider the map Θ(q) : H ⋆ CR (P(1, 1, 1, 3)) → H ⋆ (F 3 ) defined in [CCIT] (pag. 56) and set q = 0. We consider H ⋆ (F 3 ) with the algebra structure coming from the quantum cohomology when we set the quantum parameter q at (1, 0) (see (8)). Θ(0) is a morphism of algebras, so we have [CCIT] 

1 : 2π 3 β 1 p 2 = Θ(0)(1 1 3 ) = Θ(0)(1 2 3 ) • (1,0) Θ(0)(1 2 3 ) = 3β 2 2 p • (1,0) p, therefore p • (1,0) p = f (1)p 2 = 2πβ 1 9β 2 2 p 2 and f (1) = 2πβ 1 9β 2 2 .
The second equality follows from standard identities of the Γ-function.

1 The careful reader will notice that, in [CCIT],

P(1, 1, 1, 3) is defined as the quotient [C 4 -{0}/C ⋆ ]
where the action has negative weights.

The main result

From the results in [BMPa] and Cor. 3.2 it follows that the power series in (4) converge in a neighborhood of the origin of C 4 to analytic functions that admit analytic continuations in (i, i, i, 1) and in (-i, -i, -i, 1), moreover the following result holds.

Theorem 4.1. For (c 1 , c 2 , c 3 , c 4 ) ∈ {(i, i, i, 1), (-i, -i, -i, 1)} there is a ring isomorphism

H ⋆ ρ (Z; C)(c 1 , c 2 , c 3 , c 4 ) ∼ =
-→ H ⋆ CR (P(1, 3, 4, 4); C) which is an isometry with respect to the Poincaré pairings.

Proof. Let us first consider the case where (c 1 , . . . , c 4 ) = (i, i, i, 1). Let (11) Ξ : H ⋆ ρ (Z; C)(i, i, i, 1) -→ H ⋆ CR (P(1, 3, 4, 4); C) be the linear map defined by the following matrix with respect to the basis (2) and (3), 

                        1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 - √ 2 -2i √ 2 0 0 0 0 0 0 0 0 0 -i √ 2 2i -i √ 2 0 0 0 0 0 0 0 0 0 √ 2 -2i - √ 2 
                       
where α and β are complex numbers to be determined. Note that Ξ coincides with the map (4.3) in [BMPa] except possibly for the image of e 4 and e 4 2 .

Clearly Ξ is an isomorphism of vector spaces if and only if α • β = 0. We have that Ξ(e i ⋆ ρ e j ) = Ξ(e i ) ∪ CR Ξ(e j ) for i, j ∈ {1, 2, 3} [BMPa], therefore it remains to find α and β such that α • β = 0, Ξ(e 4 ⋆ ρ e 4 ) = Ξ(e 4 ) ∪ CR Ξ(e 4 ) and Ξ(e 4 ⋆ ρ e 2 4 ) = Ξ(e 4 ) ∪ CR Ξ(e 2 4 ). This is equivalent to the equations: (12) α 3 = 27f (1) and α • β = 27.

The existence of α and β verifying (12) follows from Corollary 3.2. The fact that Ξ is an isometry is then a direct consequence of [BMPa] and (12).

The case where (c 1 , . . . , c 4 ) = (-i, -i, -i, 1) is similar to the previous one, the linear map H ⋆ ρ (Z; C)(-i, -i, -i, 1) → H ⋆ CR (P(1, 3, 4, 4); C) coincides with (4.4) in [BMPa] on 1, e 1 , e 2 , e 3 , h 2 , he 1 , he 2 , he 3 , h 3 and coincides with (11) on e 4 and e 2 4 . Also in this case the fact that it is a ring isomorphism and that preserves the metrics follows from [BMPa] and (12). This concludes the proof.
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