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Unitary polarized Fermi gases

F. Chevy

École normale supérieure, 24, rue Lhomond, Paris, France

Summary. — Although recent theoretical and experimental progress have consid-
erably clarified pairing mechanisms in spin 1/2 fermionic superfluid with equally
populated internal states, many open questions remain when the two spin popula-
tions are mismatched. We show here that, taking advantage of the universal behavior
characterizing the regime of infinite scattering length, the macroscopic properties of
these systems can be simply and quantitatively understood in the regime of strong
interactions.

1. – Introduction

Pairing lies at the core of the standard Bardeen-Cooper-Schrieffer mechanism for

metal superconductivity, and the very natural question to know whether it could survive

population imbalances between the two spin states naturally arose very soon after its

development [1, 2]. It was pointed out that pairing was indeed robust to some amount

of mismatch between the chemical potentials of the two species, but the fate of the

system after the critical imbalance is reached has long been a mystery. The absence of

clear answer to this problem was due in particular to the absence of an experimental

system on which the various scenarios envisioned could be tested: existence of a spatially

modulated order parameter (Fulde, Ferrel, Larkin and Ovshinikov, or FFLO, phases)

[3, 4, 5], or the extension to trapped systems[6, 7, 8, 9], deformed Fermi surfaces [10],
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2 F. Chevy

interior gap superfluidity [11], phase separation between a normal and a superfluid state

through a first order phase transition [12, 13, 14, 15], BCS quasi-particle interactions

[16] or onset of p-wave pairing [17]. When the strength of the interactions is varied, a

complicated phase diagram mixing several of these scenarios is expected [18, 19, 20].

This issue was revived by the possibility of obtaining fermionic superfluids with ultra

cold atoms [21, 22, 23, 24, 25, 26], where spin imbalance could be controlled and main-

tained for a long time. This led to a series of experiments performed at MIT [27, 28]

and Rice [29, 30] which clearly demonstrated a phase separation between regions char-

acterized by different polarizations (i.e. spin population imbalances, by analogy with

magnetism). The number of phases obtained by the two groups is however different. In

Rice experiment, the cloud is constituted of a core where both spin populations are equal,

surrounded by a shell of majority atoms only while at MIT a third phase mixing both

species with unequal densities is intercalated between the previous ones, a discrepancy

which is not yet fully explained [31, 32, 32, 33, 34, 35, 36, 37, 38].

In what follows we wish to explore the various consequences of these experiments. By

contrast to most recent works on the subject, we would like to avoid the use of BCS mean

field, which is known to give good qualitative insight to the problem under study, but fails

when precise quantitative estimates are needed. Our scheme is based on a combination

of exact variational analysis and Monte-carlo simulations. We will demonstrate that, in

agreement with MIT experiments, three phases are expected in homogeneous systems.

To compare with experimental results, we will make use of Local Density Approximation

(LDA) which leads to quantitative agreement with MIT’s data. Finally, following [31], we

will show how Rice’s apparently contradictory results can be interpreted as a breakdown

of local density approximation in elongated traps.

2. – Universal phase diagram of a homogeneous system

Let us first consider an ensemble of spin 1/2 fermions of mass m trapped in a box of

volume V . In the s-wave approximation, the hamiltonian Ĥ is given by

Ĥ =
∑

k,σ

ǫkâ
†
k,σâk,σ +

gb

V

∑

k,k′,q

â†k+q,↑a
†
k′−q,↓âk′,↓âk,↑,(1)

where ǫk = ~
2k2/2m, âk,σ annihilates a particle of spin σ and momentum k and gb

is the coupling constant characterizing s-wave interactions between atoms. This choice

of interaction potential is singular and yields unphysical results and to get rid of the

divergencies resulting by the zero range of the potential, we introduce an ultraviolet cut-

off qc in momentum space (or equivalently, we work on a lattice of step 1/qc). When

qc goes to infinity, the Lippmann-Schwinger formula obtained by the resolution of the

two-body problem yields the following relationship between the bare coupling constant

and the scattering length a
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1

gb
=

m

4π~2a
− 1

V

∑

k

1

ǫk
,(2)

where the sum over k is restricted to k < qc.

To anticipate the analysis of inhomogeneous systems, we work in the grand canonical

ensemble, where the atom numbers fluctuate and only their expectation values are kept

constant. Introducing the chemical potentials µ↑,↓ as Lagrange multipliers associated

with the constraints on atom numbers, we need to find the ground state of the grand

potential Ω̂ given by

Ω̂ = Ĥ − µ↑N̂↑ − µ↓N̂↓.(3)

In what follows, we replace the minimization condition on Ω = 〈Ω̂〉 by a maximization

problem on the pressure P , using the thermodynamical relation Ω = −PV . Moreover,

we assume µ↑ > µ↓ and we restrict ourselves to the unitary limit where a = ∞. This

choice of scattering length leads to a deep simplification of the formalism, due to the

universality characterizing this regime. Indeed, from dimensional analysis [39], we can

show that for an arbitrary scattering length, the pressure P of a given phase is given by

some relation

P (m, ~, a, µ↑, µ↓) = P0(µ↑, ~,m)f(µ↓/µ↑, 1/kF↑a),

where P0 is the pressure of an ideal Fermi gas with chemical potential µ↑ and kF↑ is

the Fermi wave vector associated with µ↑. At unitarity, 1/kFa = 0 and f is therefore

function of η = µ↓/µ↑ yielding the universal relation

P

P0
= g(η),(4)

where g(µ↓/µ↑) = f(µ↓/µ↑, 0).

Although the general minimization of the grand potential is an extremely challenging

and still open problem, we first note that two exact eigenstates of the system can be

found.

1. Fully polarized ideal gas. If we consider a fully polarized system containing no

minority atom, the interaction term in Ĥ disappears, and we are left with a pure

ideal gas of majority atoms. The pressure of this normal phase is simply the Fermi

pressure, and we have in particular P/P0 = 1.

2. Fully paired superfluid. Let |SF〉µ be the ground state of the balanced potential

Ω̂′ = Ĥ −µ(N̂↑ + N̂↓). Since Ω̂′ commutes with the atom number operators, |SF〉µ
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can be chosen as an eigenstate of both N̂↑,↓, with N̂↑|SF〉µ = N̂↓|SF〉µ. Going back

to the unbalanced problem, we write Ω̂ as

Ω̂ = Ĥ +
µ↑ + µ↓

2
(N̂↑ + N̂↓) +

µ↑ − µ↓

2
(N̂↑ − N̂↓).(5)

We see readily that for µ = (µ1 + µ2)/2 we have Ω̂|SF〉µ = Ω̂′|SF〉µ, which proves

that |SF〉µ is also an eigenstate of the imbalanced grand potential. The pressure

in this superfluid phase can be calculated using known results for the unitary bal-

anced superfluid for which the universal relationship between chemical potential

and density reads

µ↑ = µ↓ = ξ
~

2

2m
(6π2n↑)

2/3,(6)

where ξ ∼ 0.42 is a universal number that was evaluated both experimentally

[24, 41, 40, 42, 29] and theoretically [43, 44, 45, 14]. Integrating Gibbs-Duhem

identity (see appendix), one then obtains for the imbalanced system

PSF =
1

15π2

(
m

ξ~2

)3/2

(µ↑ + µ↓)
5/2,(7)

hence PSF/P0 = (1 + η)5/2/(2ξ)3/2.

The variation of the pressure versus η is displayed in Fig. 1. We see that for small

imbalances, i.e. η smaller than ηc = (2ξ)3/5 − 1 ∼ −0.10, the fully paired superfluid

is more stable than the fully paired normal phase, confirming the stability of pairing

against a small mismatch of the Fermi surfaces. The experimental results presented in

ref. [28] suggest that the two classes of states we have until now restricted ourselves are

not sufficient to fully capture the physics of imbalanced systems. In particular, a mixed

normal phase, containing atoms of both species in unequal proportions, must be taken

into account. A sketch of g(η) for this intermediate phase is shown in Fig 1. On this

more general phase diagram, the parameters ηα and ηβ are of special importance, since

they characterize the phase transitions between the three different phases. A glance at

Fig. 1 shows that they must satisfy the inequality

ηα < ηc < ηβ ,

and the next section is devoted to an improvement of these bounds.



Unitary polarized Fermi gases 5

h

h
b

h
a

-1.0 -0.5 0.0 0.5 1.0 

0 

1 

2 

3 

4 

5 

6 

7 

 
 

  

  

P
/
P

0

hc

Fig. 1. – Sketch of the grand potential Ω as a function of η = µ↓/µ↑. Ω is normalized to the
grand potential Ω0 of the pure ideal gas of chemical potential µ↑. Full line: paired superfluid;
dotted line: fully polarized normal phase; dashed line: intermediate mixed phase. ηα and ηβ

designate the critical values for the two transitions between the superfluid/mixed phase and the
mixed phase/fully polarized Fermi gas.

3. – The N+1 body problem

Theoretically, the existence of the intermediate phase can be demonstrated by the

study of the N+1 body problem, in other word the study of the ground state of the

majority Fermi sea in the presence of a single minority atom. This particular system

corresponds to an intermediate phase with η → η+
β and we will prove that it yields the

inequality ηβ < ηc.

To address the N+1 body problem, we use a variational scheme, that we will compare

to recent predictions based on Monte-Carlo simulations [46]. Let us consider the following

trial state |ψ〉

|ψ〉 = φ0|FS〉 +
∑

k,q

φk,q |k, q〉,

where |FS〉 is a spin up Fermi sea plus a spin down impurity with 0 momentum, and

|k, q〉 is the perturbed Fermi sea with a spin up atom with momentum q (with q lower

than kF ) excited to momentum k (with k > kF ). To satisfy momentum conservation,

the impurity acquires a momentum q − k.
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The energy of this state with respect to the non interacting ground state is 〈Ĥ〉 =

〈Ĥ0〉 + 〈V̂ 〉, with

〈ψ|Ĥ0|ψ〉 =
∑

k,q

|φk,q|2(ǫk + ǫq−k − ǫq),

and

〈ψ|V̂ |ψ〉 =
gB

V




∑

q

|φ0|2 +
∑

k,k′,q

φk′,qφ
∗
k,q +

∑

k,q,q′

φk,qφ
∗
k,q′ +

∑

q,k

(φ∗0φk,q + φ0φ
∗
k,q)



 ,

where ǫk = ~
2k2/2, and the sums on q and k are implicitly limited to q < kF and k > kF .

As we will check later, φk,q ∼ 1/k2 for large momenta (see below, eqn. (10)), in order to

satisfy the short range behavior 1/r of the pair wave function in real space. This means

that most of the sums on k diverge for k → ∞. This singular behavior is regularized by

the renormalization of the coupling constant gB using the Lippman-Schwinger formula.

It implies that gB vanishes for large cutoff, thus yielding a finite energy. However, it

must be noted that the third sum in 〈ψ|V̂ |ψ〉 is convergent and when multiplied by gB

will give a zero contribution to the final energy and can therefore be omitted in the rest

of the calculation.

The minimization of 〈Ĥ〉 with respect to φ0 and φk,q is straightforward and yields

the following set of equations

gB

V

∑

q

φ0 +
gB

V

∑

q,k

φk,q = Eφ0(8)

(ǫk + ǫq−k − ǫq)φk,q +
gB

V

∑

k′

φk′,q +
gB

V
φ0 = Eφk,q,(9)

where E is the Lagrange multiplier associated to the normalization of |ψ〉, and can also

be identified with the trial energy. Let us introduce χ(q) = φ0 +
∑

k φk,q. We see from

eqn. 9 that

φk,q = −gB

V

χ(q)

ǫk + ǫq−k − ǫq − E
.(10)

As expected, we note here the 1/ǫk ∼ 1/k2 dependence for large k. Inserting this

expression in the definition of χ, we obtain

χ(q) = φ0 −
gB

V

∑

k

χ(q)

ǫk + ǫq−k − ǫq − E
,
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that is

χ(q) =
φ0/gB

1
gB

+ 1
V

∑
k>kF

1
ǫk+ǫq−k−ǫq−E

Finally, eqn. (8) can be recast as Eφ0/gB =
∑

q<kF
χ(q)/V , that is, using the explicit

expression for χ(q):

E =
1

V

∑

q<kF

1
1

gB

+ 1
V

∑
k>kF

1
ǫk+ǫq−k−ǫq−E

.

We get rid of the bare coupling constant gB by using the Lippman-Schwinger equation,

which finally yields the following implicit equation for E

E =
1

V

∑

q<kF

1

m
4π~2a − 1

V

∑
k<kF

1
2ǫk

+ 1
V

∑
k>kF

(
1

ǫk+ǫq−k−ǫq−E − 1
2ǫk

) .(11)

Before addressing the unitary limit case, let us show that this formula allows us

to recover the known exact results in the limit of small scattering lengths where the

denominator is dominated by the 1/a term. The correction to the energy is therefore

E ∼ 1

V

∑

q<kF

4π~
2a

m
=

4π~
2a

m

N

V

where N is the total number of majority atoms. We thus see that the trial state recovers

the mean-field prediction for low interactions. For a → 0+ (BEC regime), a little more

involved calculation allows one to recover the classical molecular binding energy E ∼
−~

2/ma2. Finally in the case of the unitary regime relevant to experiments, eqn. (11) is

solved numerically and yields E ∼ −0.3~
2k2

F /m, that is ηβ < −0.60, a value remarkably

close to that obtained in Monte-Carlo simulations [46].

4. – Trapped system and comparison with MIT experiment

The model presented in the previous section adresses only the situation of a homo-

geneous system and to compare with experiments, we need to extend the formalism

developed in the previous section to the case of trapped systems. To this purpose we

make use of the Local Density Approximation (LDA), in which we assume that the

chemical potential of species σ varies as

µσ(r) = µ0
σ − V (r),(12)
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where V is the trapping potential. From this relation, we see that varying r is equivalent

to varying the chemical potentials of the two species, and in particular their ratio η(r)

The two phase transitions described in the previous section will happen for radii r = Rα,β

such that µ↓(Rα,β)/µ↑(Rα,β) = ηα,β . Moreover, since the outer rim is constituted by a

normal ideal gas, the boundary R↑ of the majority component is given by the condition

µ↑(R↑) = 0.

In an isotropic harmonic trap, we can combine these three relations to eliminate the

parameters µ
(0)
σ , thus obtaining the general relation relating the three radii Rα,β,↑:

(
Rα

R↑

)2

=
(Rβ/R↑)

2 − q

1 − q
,(13)

where q = (ηα−ηβ)/(1−ηβ). One striking consequence of this equation is the prediction

of a threshold at which Rα vanishes, corresponding to the disappearance of the fully

paired superfluid. This transition happens when the ratio (Rβ/R↑)
2 reaches the critical

value q. From the upper and lower bounds obtained for ηα and ηβ , we see that q > 0.30.

This prediction of LDA is remarkably well verified in MIT’s experiments [28] for

which the three phases discussed above were indeed observed, and eq. (13) could be

tested experimentally (Fig. 2). On this graph, we see that for large imbalance, the linear

scaling predicted by eq. (13) is indeed satisfied, with q ∼ 0.32, in agreement with the

lower bound obtained earlier. The deviation from theory observed for (Rβ/R↑)
2 & 0.5

is not yet fully understood. However, it must be noted that the discrepancy takes place

in a regime of low imbalance, where the phase transitions take place in the tail of the

density distribution. In these regions of low density, we may observe a breakdown of the

LDA, or of the hydrodynamical expansion that was used to infer the experimental radii.

The value q ∼ 0.32 obtained from the comparison with experimental data can help

us improve the bounds for ηα,β . Indeed, this relation fixes the relative values of ηα and

ηβ . When combined with the bounds found in the previous section, we obtain indeed

− 0.62 < ηβ < −0.60(14)

−0.10 < ηα < −0.088(15)

From the previous analysis, we see that the combination of theoretical arguments and

analysis of experimental data allows for a precise determination of the thresholds of the

different phase transitions. Knowing the values of ηα,β as well as the exact equation of

state in the fully polarized and fully paired phases, we can even obtain some upper and

lower bounds for the equation of state of the mixed phase, using the concavity of the

grand potential [36].
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Fig. 2. – Comparison of equation (13) with experimental data from MIT. A fit to the data yields
q ∼ 0.32. Inset: sketch of the density profile. The full (resp. dashed) line corresponds to the
density of the majority (resp. minority) component. Rα marks the end of the superfluid region,
Rβ that of the mixture and R↑ is the frontier of the majority cloud.

5. – Elongated systems and Rice’s experiment

Surprisingly, similar experiments performed at Rice University showed no evidence of

an intermediate phase, but rather the coexistence of the fully paired and fully polarized

phases only. Measurements of the axial radii of the two phases from ref. [29] are presented

in Fig. 3 and can be compared with the model presented above when omitting the

intermediate mixed phase [37]. In these conditions, the inner superfluid region is now

defined by the condition µ↓(r)/µ↑(r) < ηc and is bounded by the radius R↓ defined by

R2
↓ =

2

mω̄2

(
µ0
↓ − ηcµ

0
↑

1 − ηc

)
.(16)

Atoms of the minority species are located in the paired superfluid phase only. We

thus have

N↓ =

∫

r<R↓

n↓(r) d3r =
2

3πξ3/2

(
µ0
↑ + µ0

↓

~ω̄

)3

g(R↓/R̄),(17)
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Fig. 3. – Rice’s radius measurement and comparison with a two phase model. The radius Ri is
scaled in units of the Thomas Fermi radius of an ideal gas with a the same atom number Ni.

where R̄2 = (µ0
↑ + µ0

↓)/mω̄
2 and

g(x) =
x
√

1 − x2
(
−3 + 14 x2 − 8 x4

)
+ 3 arcsin(x)

48
.(18)

Excess atoms of the majority species are located between r = R↓ and r = R↑ such

that mω̄2R2
↑/2 = µ0

↑. The number of excess atoms is therefore N↑−N↓ =
∫ R↑

R↓
n1(r) d3r,

hence

N↑ −N↓ =
2

3π

(
2µ0

↑

~ω̄

)3

(g(1) − g(R↓/R↑)).(19)

Dividing by (19) by (17) yields the implicit equation for η0 = µ0
↓/µ

0
↑ as a function of

N↑/N↓

N↑

N↓

= 1 + ξ3/2 8

(1 + η0)3
g(1) − g(R↓/R↑)

g(R↓/R̄)
.(20)
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Equation (20) is solved numerically and the value obtained for η0 is then used to

calculate the radii R↑ and R↓. The predicted evolution of the Ri versus the population

imbalance P = (N↑ − N↓)/(N↑ + N↓) is shown in Fig. 2. To follow Ref. [29], we

have normalized each Ri to the Thomas-Fermi radius RTF associated to an ideal gas

containing Ni atoms. The agreement with the experimental data is quite good as soon

as P & 0.1, a remarkable result, since the model presented here contains no adjustable

parameter, as soon as the value of ξ is known.

Despite this remarkable agreement, this simple two phase+local density approxima-

tion model fails to captures all experimental features. In particular, a qualitative discrep-

ancy occurs in the comparison between the theoretical and integrated density profiles.

Indeed, as shown in [47], LDA at unitarity implies a constant density difference in the

paired superfluid region, in contradiction with experimental data. One solution to this

problem was presented in [32, 31]. In these papers, it is noted that in the presence of

phase transitions, the description of the sharp frontier separating to adjacent phases in-

volves the introduction of density gradient terms in the energy. When the interface in

thin enough, they can be encapsulated in a new surface tension energy term reading [31]

ΩST =

∫

S

γ(µ↑↓(r))d2S,

where S is the interface between the two phases, and γ is the surface tension constant,

which should dimensionally vary as

γ = λ
mµ2

↑

~2
.

Here, λ is a numerical factor that will be determined by comparison with experi-

ments and we have used the fact that at the coincidence between the phases, the ra-

tio µ↓/µ↑ is fixed and equal to ηc, meaning that the two chemical potentials are no

longer independent. We can minimize the total grand potential Ω = Ωbulk + ΩST, where

Ωbulk = −
∫

(PN + PSF) d3r is the bulk contribution to the energy. Following [31] we

simplify the analysis by assuming that the interfaces are ellipsoidal, and for λ ∼ 10−4

one obtains the results presented in Fig. 4, which coincides with experimental data. The

absence of capillary effects at MIT can be explained by a smaller trap aspect ratio and

a larger atom number of atoms compared with Rice’s experimental situation, as shown

by a simple scaling argument [31].

6. – Conclusion

The formalism presented here allows for a simple and quantitative description of

macroscopic properties of polarized Fermi gases in the regime of strong interaction. This

analysis is nevertheless far from being complete, since it does not give any information on

the superfluid nature of the various phases. For instance, the mixed region of the phase
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Fig. 4. – Integrated density difference in Rice experiments, and comparison with the surface
tension model (data from [31]). Dashed line, LDA prediction: the density difference is flat in
the superfluid region, in contradiction with experimental date. Full line: Two phase model
incorporating surface tension effect. The same surface tension parameter λ =∼ 10−4 is used for
all three graphs.

diagram may contain superfluid and normal subdomains, the transition between this

two regimes being characterized by a universal number ηγ ∈ [ηβ , ηα]. The quantitative

understanding of these superfluid properties will require beyond mean-field theories, such

as the Monte-Carlo calculations of [46].
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8. – Appendix: thermodynamical relations for the grand potential

Let us consider a homogeneous many-body system characterized by a hamiltonian Ĥ0

and containing particles of p different species labelled by i = 1..p. In the grand canonical

ensemble, one looks for the ground state of this system by letting the atom numbers

fluctuate, but keeping the expectation values 〈N̂i=1..p〉 fixed. This therefore requires to

find the ground state of the grand potential Ω̂(µi) = Ĥ −
∑p

i=1 µiN̂i, where the µi are

Lagrange multiplier that we interpret as chemical potentials.

Let |ψ(µi, V )〉 be the ground state of the grand potential, we set Ω(µi, V ) = 〈ψ(µi, V )|Ω̂|ψ(µi, V )〉.
Using Hellman-Feynman relation, we can write that

∂Ω

∂µi
= 〈ψ(µi, V )| ∂Ω̂

∂µi
|ψ(µi, V )〉 = −〈N̂i〉,(21)

from which we deduce that
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dΩ =
∑

i

−Nidµi +
∂Ω

∂V
dV.(22)

By definition, and by analogie with classical thermodynamics, we identify ∂V Ω with

−P , the pressure in the system.

Let us now us the extensivity of the potential: when the volume is multiplied by

some scaling factor λ, Ω is multiplied by the same factor. In other words, we have

Ω(λV, µi) = λΩ(V, µi). Taking λ = 1/V , we get Ω(V, µi) = VΩ(1, µi). Differentiating

this with respect to V , we note that Ω(1, µi) = −P , hence

Ω = −PV(23)

From this equation, we see that the minimum grand potential is state has also the

highest pressure. P can moreover be calculated by differentiating Ω and using equations

(23) and (22). We then obtain the Gibbs-Duhem relation

dP =
∑

i

nidµi,(24)

where ni = Ni/V is the density of species i. From equation (24), we see that the pressure

(hence the grand potential) can be obtained simply from the knowledge of the equation

of state ni(µj).

8
.
1. Concavity. – Since, by definition, |ψ(µi)〉 is the ground state of Ω̂(µi), we have

for any δµi

〈ψ(µi + δµi)|Ω̂(µi)|ψ(µi + δµi)〉 ≥ 〈ψ(µi)|Ω̂(µi)|ψ(µi)〉(25)

Moreover, if one notes that Ω̂(µi) = Ω̂(µi + δµi) +
∑

j δµjN̂j , we see that for any δµi

Ω(µi + δµi) +
∑

j

δµjNj(µi + δµi) ≥ Ω(µi)(26)

Finally, recalling that Ni = ∂µi
Ω and after expansion of equation (26) to second order

in δµi, we obtain

∂2Ω

∂µi∂µj
δµiδµj ≤ 0,(27)

hence proving the concavity of the grand-potential (or conversely the convexity of the

pressure).
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