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B Universal lower bound for gaps 281 IntrodutionWe omplete the asymptoti analysis started in [BNP1℄ of some out-of-equilibrium 1D Shrödinger-Poisson system arising from the modelling of resonant tunelling diodes. This problem is a nonlinearproblem whose funtional framework was onsidered in [BDM℄, [Ni3℄ within a Landauer-Büttikerapproah [BuLa℄, [ChVi℄, [Lan℄ (see also [NiPa℄, [Pat℄, [JLPS℄, [PrSj℄, [BNP℄, [BNP1℄). We reallthat the analysis has been redued, in [BNP1℄, to an h-dependent linear problem after providinguniform estimates for the initial semilinear problem. Hene we onsider for h > 0 going to zeroand for some �xed interval I = [a, b] the Shrödinger operator on the real line,
P h := − d2

dx2
+ Ṽh −Wh, Ṽh := −B + V h, V h ∈W 1,∞(a, b) , (1.1)where

B(x) = −Bx− a

b− a
1[a,b](x) −B · 1[b,+∞)(x) (1.2)and B is a non-negative onstant. The potential B simply models the applied bias. The familyof potentials (V h)h∈(0,h0) has uniformly bounded seond derivatives ∂2

xV
h = ∂2

xṼh in Mb([a, b])whih onverge weakly to some measure µ0 ∈ Mb([a, b]), with the additional boundary onditions
V h(a) = V h(b) = 0 .Reall that this makes a bounded family of funtions Ṽh in W 1,∞(a, b) and whih onverges in

C0,α(I), α < 1, to a funtion Ṽ0, ∂2
xṼ(0)

∣

∣

(a,b)
= µ0

∣

∣

(a,b)
. We assume that

inf
h∈(0,h0),x∈I

Ṽh(x) =: Λ0 > 0. (1.3)Finally, the potential −Wh desribes quantum wells aording to
Wh(x) =

N
∑

i=1

wi

(

x− ci
h

)

, (1.4)where c1 < . . . < cN are N given points in (a, b) and the funtions wi are ontinuous1 positivefuntions supported in [−κ, κ] for some �xed κ > 0. We shall use the onvention c0 = a and
cN+1 = b. The Hamiltonian Hh is the self-adjoint realization of P h on the real line with domain
H2(R)

∀u ∈ D(Hh) = H2(R), Hhu := P hu. (1.5)Reall that the notation P is used for the di�erential operator while H is reserved for some losednon neessary self-adjoint realization as an unbounded operator on L2.The potentials wi, i = 1, . . . , N , is hosen so that the spetrum σ(Hi) of the Hamiltonians Hi =
−∆ − wi satis�es

Ṽh(ci) + inf σ(Hi) ≥ κi > 0 ,with κi independent of h. With suh an assumption the operator Hh has a purely ontinuousspetrum equal to [−B,∞).Due to the applied bias B ≥ 0, the dispersion relation assoiated with the Hamiltonian Hh reads
λk :=

∣

∣

∣

∣

k2 if k > 0,
k2 −B if k < 0.

(1.6)1In [BNP1℄, the nonlinear analysis was arried out with only wi ∈ L∞(I).2



For k ∈ R suh that λk ∈ (−B,+∞) \ {0}, the inoming sattering state ψ−(k, x) is the solutionof
P hψh

−(k, ·) = λkψ
h
−(k, ·) , (1.7)with the normalizationfor k > 0 ψ−(k, x) =







ei kx
h + rk e

−i kx
h for x < a ,

tk e
i
(λk+B)1/2x

h for x > b ,for k < 0 ψ−(k, x) =







tk e
−i

(λk)1/2x

h for x < a ,

ei kx
h + rk e

−i kx
h for x > b .The square root z1/2 is hosen with the rami�ation along the half-line iR− in order to ensure that

e−i(λk)1/2x deays exponentially as x→ −∞ when λk ∈ (−B, 0) .This an be redued to k-dependent transparent boundary onditionsfor k > 0







[

h∂x + iλ
1/2
k

]

u(a) = 2ikei ka
h ,

[

h∂x − i(λk +B)1/2
]

u(b) = 0,
(1.8)for k < 0







[

h∂x + iλ
1/2
k

]

u(a) = 0,

[

h∂x − i(λk +B)1/2
]

u(b) = 2ikei kb
h .

(1.9)The oe�ients tk and rk are the transmission and re�exion oe�ients and satisfy for λk > 0

|rk|2 +

√

λk

λk +B
|tk|2 = 1. (1.10)Denote, for i = 1, . . . , N by σi the set of negative eigenvalues of the Hamiltonian Hi = −∆ − wiwith D(Hi) = H2(R)

σi := {ei
k}k∈Ki ⊂ (−∞; 0), Ki ⊂ N, i = 1, . . . , N . (1.11)The set of asymptoti resonant energies is de�ned as

E0 :=

N
⋃

i=1

Ei, Ei := σi + Ṽ0(ci). (1.12)Let us reall as well the notion of asymptoti resonant wells assoiated with λ ∈ E0:
Jλ := {i ∈ {1, . . . , N} s. t. λ ∈ Ei} .The multipliity mλ of the asymptoti resonant energy λ is given by

mλ := #Jλ.Like in [BNP1℄, we fous on positive energies: We �x an energy domain (Λ∗,Λ
∗) ⊂ (0,Λ0), and weonsider the funtions

θ ∈ C0
c ((Λ∗,Λ

∗)) , θ ≥ 0 , (1.13)and g(k) = θ(λk)1R+(k) . (1.14)3



The funtion of the asymptoti momenum is the operator with (ontinuous in 1D) kernel
g(Kh

−)[x, y] =

∫

k

g(k)ψh
−(k, x)ψh

−(k, y)
dk

2πh
, (1.15)and we are interested in the asymptoti of the partile density nh(x) de�ned by

∫ b

a

ϕ(x) dnh(x) = Tr [g(Kh
−)ϕ(x)

]

, ∀ϕ ∈ C0
c ((a, b)) ,or equivalently

nh(x) =

∫

k

g(k)|ψh
−(k, x)|2 dk

2πh
.The result of [BNP1, Theorem 1.6℄ states that, possibly after extrating a subsequene, the measure

dnh onverges weakly to dn0 in Mb((a, b)) with
dn0 =

∑

λ∈E0

∑

i∈Jλ

tλi θ(λ) δx=ci , tλi ∈ [0, 1] . (1.16)Our aim here is the aurate determination of the oe�ients tλi aording to the geometry of thepotential.Reall that this result, [BNP1, Theorem 1.6℄, is essentially obtained by heking that the tλi 'sare equal to 1 when the funtion g(k) is replaed by θ(λk) and g(Kh
−) by θ(Hh). In this artile,we fous on the anisotropi ase when g(k) = θ(λk)1R+(k) annot be written as a funtion of theenergy. Note that due to the deomposition

θ(Hh) = g−(Kh
−) + g+(Kh

−), g−(k) = 1k<0 · θ(λk), g+(k) = 1k>0 · θ(λk), (1.17)the result an be tranformed into a result for funtions g− supported on negative momentum andeven arries over to more general ombination.2 Assumptions and resultsSine (1.16) is a loal result on the energy axis while the set of asymptoti resonant energies E0 is�nite, the analysis an be partly simpli�ed after the next assumption.Assumption 1 Suppose that the support of funtion θ and therefore g(k) = 1k>0 · θ(λk), ontainsonly one asymptoti resonant energy supp θ ∩ E0 = {λ0} .The next assumptions are tehnially more serious. Some spei� on�gurations allow to handleaurately and quite simply the disussion with respet to the geometry in terms of the Agmondistane.De�nition 2.1 With an energy λ ∈ R and a potential V ∈ L∞(I), is assoiated the Agmon(possibly degenerate) distane d(., .;V, λ) de�ned by :
∀x, y ∈ I, d(x, y;V, λ) =

∣

∣

∣

∣

∫ y

x

√

(V (t) − λ)+ dt

∣

∣

∣

∣

. (2.1)4



Notation 1 The Agmon distane assoiated with the asymptoti potential Ṽ0 and the asymptotiresonant energy λ0 is denoted by d0. It is de�ned by
d0(x, y) :=

∣

∣

∣

∣

∫ y

x

√

Ṽ0(τ) − λ0 dτ

∣

∣

∣

∣

,With this distane, let
S0 := d0(∪i∈Jλ0

{ci}, ∂I), SU := max
i,j∈Jλ0

d0(ci, cj), SI := d0(a, b) (2.2)be respetively the distane between the λ0-resonant wells and the boundary ∂I = {a, b}, the diam-eter of the union of the resonant wells, and the diameter of the island.It is sometimes onvenient to introdue the set
U = {c1, . . . , cN} .Finally, introdue for η0 > 0 the quantity

S̃U := max
τ∈[c1,cN ]

√

Ṽ0(τ) + η0 − λ0 |cN − c1|,whih measures the diameter of the area whih ontains all the wells.Notie that S̃U is written in terms of some L∞-norm of the potential instead of an integral. Theparameter η0 is introdued in order to ensure S̃U > SU . It an be hosen arbitrarily small.De�nition 2.2 We say that the λ0-resonant wells are gathered (resp. strongly gathered) if andonly if
S0 + SU < SI/2 (resp. S0 +mλ0SU < SI/2). (2.3)As S0 + SU is the greatest distane from the boundary of the island to the resonant wells, theondition S0 + SU < SI/2 expresses that the resonant wells are gathered in one the halves of theisland. This explains the terminology.De�nition 2.3 We say that the wells are isolated if and only if

S0 > 8S̃U and mλ0 = N. (2.4)Inequality (2.4) means that the wells are on�ned in the entral part of the island.Theorem 2.4 Make Assumption 1. Suppose that the λ0-resonant wells are strongly gathered, orsuppose that the wells are isolated (mλ0 = N) and gathered with N = mλ0 . Then the two nextstatements hold:i) The oe�ients tλ0

i , i ∈ Jλ0 , are all equal to 1 if d0(a, ci) < d0(ci, b) for all i ∈ Jλ0 .ii) The oe�ients tλ0

i , i ∈ Jλ0 , are all equal to 0 if d0(a, ci) > d0(ci, b) for all i ∈ Jλ0 .In the �rst ase the wells are on�ned in the left-hand half of the island, whereas in the seondase the wells are on�ned in the right-hand side of the island, this partition being done in termsof the Agmon distane d0. This result an be interpreted in terms of tunneling e�et: in ase i)the tunneling e�et is easier from a to the wells than from the wells to b, the partiles oming from
−∞ (remember g+(−|k|) = 0) are trapped by the wells; in ase ii), the partile esape more easilyfrom the wells to b than they get into the wells from a.5



Theorem 2.5 Assume that the wells are isolated aording to De�nition 2.3 (mλ0 = N). Let
λh

1 < . . . < λh
mλ0

be the eigenvalues of the Dirihlet Hamiltonian Hh
I on I = [a, b] onverging to λ0as h → 0 with the normalized eigenvetors φh

1 , . . . , φ
h
mλ0

. Fix ε ∈ (0, 1/2 min0≤i6=i′≤N+1 |ci − ci′ |)and let ψ̃h
−(k, ·) be the generalized eigenfuntions of H̃h = Hh + Wh. Then the oe�ient tλ0

i ,
i = 1, . . . ,mλ0 , is obtained as the limit of the quantity

mλ0
∑

j=1

∫ ci+ε

ci−ε

|φh
j (x)|2 dx

1 +

√

λh
j

∣

∣

∣

〈

φh
j , W

hψ̃h
−(−

√

λh
j +B, ·)

〉∣

∣

∣

2

√

λh
j +B

∣

∣

∣

〈

φh
j , W

hψ̃h
−(+

√

λh
j , ·)

〉∣

∣

∣

2

, (2.5)
as h→ 0 (after possibly extrating a subsequene).From this result non trivial ases for whih not all the tλi belong to {0, 1} will be exhibited inSetion 8, in partiular in Proposition 8.5 and Proposition 8.6.When N = 1, we will establish that, the oe�ient tλ0

1 belongs to (0, 1) only if d0(a, c1) = d0(c1, b).In the ase of two wells N = 2, the values of tλ0
1 and tλ0

2 have to ful�ll the next rules1. tλ0
1 = 1 and tλ0

2 ∈ [0, 1] if d0(a, c1) < d0(c2, b);2. tλ0
1 ∈ [0, 1] and tλ0

2 = 0 if d0(a, c1) > d0(c2, b);3. 1 ≥ tλ0
1 ≥ tλ0

2 ≥ 0 if d0(a, c1) = d0(c2, b).All these rules whih were proved only for isolated wells and espeially the general ondition tλ0
1 ≥

tλ0
2 have a very natural interpretation within the probabilisti presentation of quantum mehanis.They are probably valid in all ases although our proof requires some spei� assumptions. Theywere taken as granted in the numerial appliations treated in [BNP℄. Note that our results provideessentially a omplete understanding of what is going on when there is no interation of resonanes,or when the interation of resonant states involves only two wells. In the �nal nonlinear problempresented in [BNP℄, [BNP1℄, the oe�ients tλi play the role of Lagrange multipliers whih havean arbitrary value in [0, 1] when the assoiated onstraint for the asymptoti resonant energy orthe Agmon distanes is saturated.Finally note that the assumptionmλ0 = N in the seond ase of Theorem 2.4 (isolated and gatheredwells) is not ruial. It is assumed here in order to avoid some unessential tehnialities whih havealready been onsidered in [BNP1℄ and are treated in the sligthly simpler �rst ase.3 Redution of the relevant energy intervalIn [BNP1℄, a small h-dependent energy domain around λ0 has been introdued. Let Hh

I denotethe Dirihlet realization of P h on the interval I = [a, b] and let {λh
1 , . . . , λ

h
mλ0

} be the orderedeigenvalues onverging to λ0 as h→ 0. Set
Ωh := {z ∈ C s.t. Re (z) ∈ Kh, Im (z) ∈ [−4h, 4h]} (3.1)with Kh := [λ0 − αh, λ0 + αh] (3.2)and αh := 4 max

{

h, |λ0 − λh
j |, j = 1, . . . ,mλ0

}

. (3.3)The Proposition 6.4 of [BNP1℄ yields the next energy interval redution.6



Proposition 3.1 Under Assumption 1, the onvergene
lim
h→0

Tr [g(Kh
−)ϕ(x)

]

− g(
√

λ0)Tr [1Kh
(Hh)1(0,+∞)(K

h
−)ϕ(x)

]

= 0holds for any ϕ ∈ C0
c ((a, b)) .Hene we will mainly fous on the energies lying in Kh and on the spetral parameters lyingin Ωh in the sequel.4 Lower bound for the imaginary parts of the resonanesIn this simple one-dimensional problem where the potential is pieewise onstant outside a om-pat interval, the resonanes are easily introdued after an expliit omplex deformation of thetransparent boundary onditions (1.8)-(1.9). The operator Hh

ζ is de�ned for a omplex ζ lying ina neighborhood of λ ∈ (−B, 0) by
D(Hh

ζ ) =

{

u ∈ H2(I),

[

h∂x + iζ1/2
]

u(a) = 0,
[

h∂x − i(ζ +B)1/2
]

u(b) = 0

}

, (4.1)
Hh

ζ u = P hu = [−h2∆ + Vh(x)]u , ∀u ∈ D(Hh
ζ ) . (4.2)The resonanes are then exatly the omplex values z for whih the operator (Hh

z − z) is notinjetive (see [BNP1℄ for this spei� ase and [BaCo℄, [HeSj1℄, [HiSi℄ for more general versions ofthe omplex deformation).It was proved in [BNP1℄ that the resonanes onverging to λ0 lie in a Õ(e−2S0/h)-neighborhoodof the Dirihlet eigenvalues (see [BNP1, Proposition 5.2℄). Hene we get the usual result that theimaginary part of resonanes onverging to λ0 are exponentially smallIm (zh) = Õ(e−
2S0

h ) .Providing a lower bound for the imaginary part of resonanes is a standard result within thesemilassial analysis of resonanes (see [HeSj1℄). We hek it with a more pedestrian approahfor our 1D problem where the potential does not �t exatly with the semilassial setting and hasa limited regularity. Note that the lower bound an be muh smaller than the upper bound in themultiple well ase.Proposition 4.1 For any η > 0, there exists a positive onstant Cη > 0 suh that for any reso-nane zh onverging to λ0, one has
Cηe

−
2S0−η

h ≥ −Im (zh) ≥ C−1
η e−

2(S0+SU )+η

h . (4.3)Proof: Let zh suh a resonane and uh a normalized resonant state assoiated, that is an elementin the kernel of Hh
zh − zh with L2(I)-norm equal to 1. It satis�es

−h2∆uh + Vh(x)uh = zhuh,
∥

∥uh
∥

∥

L2(I)
= 1 ,with the boundary onditions provided by uh ∈ D(Hh

zh) . By taking the imaginary part of theidentity (A.1) applied with V = Vh, u2 = u1 = uh, z = zh and ϕ ≡ 0 one gets
− Im (zh) = hRe (

√

zh +B)|uh(b)|2 + hRe (
√
zh)|uh(a)|2. (4.4)7



If the imaginary part of zh is too small, uh satis�es a Cauhy problem in x = a with small datasbeause of the resonant boundary onditions and limh→0 z
h = λ0 ∈ (Λ∗,Λ

∗). We next hek thatsuh a smallness is limited by the normalization assumption ∥∥uh
∥

∥

L2 = 1. In order to get this, set
F (x) :=





uh(x)

ih
duh

dx
(x)



 . (4.5)
F satis�es the ODE on I

ih
dF

dx
= Ah(x)F (x), Ah(x) :=

(

0 1
zh − Vh 0

)

, Vh = Ṽh −Wh. (4.6)Endow C2 with the standard hermitian norm. If ρh(x) denotes the spetral radius of Ah(x)Ah(x)T ,one gets the estimate
∣

∣

∣

∣

h
dF

dx

∣

∣

∣

∣

2

≤ ρh(x)|F (x)|2. (4.7)By Gronwall's lemma this yields
|F (x)| ≤ min

(

|F (a)|e 1
h

R

x
a

|zh−Vh(τ)|1/2 dτ ; |F (b)|e 1
h

R

b
x
|zh−Vh|1/2 dτ

)

, (4.8)for all x ∈ I. The transparent onditions given by uh ∈ D(Hh
zh) imply

|F (a)|2 = |uh(a)|2(1 + |zh|), |F (b)|2 = |uh(b)|2(1 + |zh +B|) . (4.9)Apply now the Agmon estimate tehnique like in [DiSj℄ in order to hek that the resonantwave funtion onentrates in the wells: Taking the real part of the identity (A.1) with V = Vh,
z = zh, u1 = u2 = uh and ϕ(x) = d(x, suppWh; Ṽh − ε0,Re zh) with ε0 > 0 leads to

0 =

∫ b

a

∣

∣

∣
h∂x(e

ϕ
h uh)

∣

∣

∣

2

dx+ ε0

∫

I\suppW h

∣

∣

∣
e

ϕ
h uh

∣

∣

∣

2

dx

+

∫suppW h

(Ṽh(x) −Wh(x) − Re zh)
∣

∣uh
∣

∣

2
dx

+ h Im [(zh)1/2] e2
ϕ(a)

h

∣

∣uh(a)
∣

∣

2
+ h Im [(zh +B)1/2] e2

ϕ(b)
h

∣

∣uh(b)
∣

∣

2
.Sine limh→0 z

h = λ0 > 0 and Im (zh) = Õ(e−2S0/h) and from (4.4) we dedue the estimate
∫

I\suppW h

∣

∣

∣h∂x(e
ϕ
h uh)

∣

∣

∣

2

+ ε0

∣

∣

∣e
ϕ
h uh

∣

∣

∣

2

dx ≤ Õ
(

e−4
S0
h

)

max
{

e
2ϕ(a)

h , e
2ϕ(b)

h

}

−
∫suppW h

(Ṽh(x) −Wh(x) − Re zh)
∣

∣uh
∣

∣

2
dx .Owing to ϕ(a) ≤ d0(a, U) and ϕ(b) ≤ d0(b, U) for h > 0 small enough and to ∥∥uh

∥

∥

L2 = 1 we get
∫

I\suppW h

∣

∣

∣h∂x(e
ϕ
h uh)

∣

∣

∣

2

+ ε0

∣

∣

∣e
ϕ
h uh

∣

∣

∣

2

dx ≤ Cfor some onstant independent of h > 0 (small enough). Let χ a ut-o� funtion whih anelsaround the boundary of I. Then, χuh is lose to an eigenfuntion for the Dirihlet operator8



Hh
I . Using [Hel, p. 30�31℄ (or [HeSj2℄), we an prove that uh has asymptotially no mass in thenon-resonant wells.From this we onlude that the onstant κ1 > 0 an be hosen so that there exists i ∈ Jλ0 suhthat the L2-norm of uh on [ci −κ1h, ci +κ1h] is greater than 1

2
1

mλ0
, for h > 0 small enough. Using(4.8) and integrating on [ci − κ1h, ci + κ1h], one obtains from (4.8) and (4.9)

1

4m2
λ0

≤ min
(

|uh(a)|2(1 + |zh|)
∫ ci+κ1h

ci−κ1h

e
2
h

R

x
a

|zh−Vh(τ)|1/2 dτ dx ;

|uh(b)|2(1 + |zh +B|)
∫ ci+κ1h

ci−κ1h

e
2
h

R

b
x
|zh−Vh(τ)|1/2 dτ dx

)

. (4.10)In the integral with respet to τ , one an replae Vh by Ṽh modulo O(h), sine eah well is ofdiameter κh. Fix now ε1 > 0. For h > 0 small enough we an assume
|Ṽh(x) − Ṽ0(x)| ≤ ε1and ∣

∣zh − λ0

∣

∣ ≤ ε1 .This leads �nally to
1/(4m2

λ0
) ≤ eCκ1 min

(

2h|uh(a)|2(1 + |zh|)e
2(d0(a,ci)+Cε1

h ; 2h|uh(b)|2(1 + |zh +B|)e
2d0(ci,b)+Cε1

h

)

≤ C′
∣

∣Im zh
∣

∣ e
2d0(ci,∂I)+C′ε1

h .The lower bound of (4.3) appears as a neessary ondition owing to d0(ci, ∂I) ≤ S0 +SU by taking
C′ε1 ≤ ε . �Remark 4.2 • Note that in the single well ase N = 1, SU = 0, one reovers a logarithmiequivalent to |Im zh| .

• Note that the lower bound of (4.3) an be improved slightly by notiing d0(ci, ∂I) is less than
min {S0 + SU , SI/2}.5 Resolvent estimates around an asymptoti resonant energyIn this setion, we play with the expliit expression of the determinant and the inverse of �nitedimensional matries after the Grushin redution of the resonane problem, in the spirit [TaZw℄.The next expression of the resolvent was derived in [BNP1℄ after introduing a Grushin problem :

1I(H
h − z)−1

1I = (Hh
z − z)−1 = F (z) − E+(z)(E−+(z))−1E−(z) , (5.1)for all z ∈ Ωh and where F is a holomorphi trae lass operator-valued funtion. For any ompatset K ⊂ (a, b), there exists cK suh that the estimate

∀ϕ ∈ C0(K), |Tr (F (z)ϕ)| = Oϕ(e−cK/h), h→ 0 , (5.2)holds uniformly for z ∈ Ωh and h ∈ (0, h0). The meromorphi part is of �nite rank with polesloated exatly at the resonanes zh
1 , . . . , z

h
mλ0

of P h.The labelling of the resonanes is done aording to the labelling of the Dirihlet eigenvalues9



λh
1 , . . . , λ

h
mλ0

with ∣∣zh
j − λh

j

∣

∣ = Õ
(

e−2S0/h
).Moreover, the approximated expansion

E−+(z) = diag [(z − λh
1

)

, . . . ,
(

z − λh
mλ0

)]

+ Õ
(

e−
2S0

h

) (5.3)
= diag [(z − zh

1

)

, . . . ,
(

z − zh
mλ0

)]

+ Õ
(

e−
2S0

h

)

, (5.4)
E−(z) = E−

0 ψ + Õ
(

e−
S0
2h

)

, (5.5)
E+(z) = χE+

0 + Õ
(

e−
S0
2h

)

. (5.6)hold with ∥∥E+
0

∥

∥ and ∥∥E−
0

∥

∥ uniformly bounded and where ψ and χ are ut-o� funtions (see [BNP1,Setion 5 and Setion 6.2℄).Proposition 5.1 The estimate
∥

∥(E−+(λ))−1
∥

∥ = Õ
(

e
2(mλ0

−1)SU
h

[

min
j=1,...,mλ0

|λ− zh
j |
]−1

)holds for any real λ ∈ Ωh ∩ R, when ‖ ‖ denotes any �xed norm on Mmλ0
(C) .Proof. We start to prove that there exists a funtion fh suh that

∀z ∈ Ωh, detE−+(z) =

mλ0
∏

j=1

(z − zh
j )fh(z) inf

h>0
inf
Ωh

|fh(z)| ≥ c > 0. (5.7)Fix any norm on Mmλ0
(C). The funtion fh : z 7→ detE−+(z)

∏mλ0

j=1 (z − zh
j )−1 is meromorphion Ωh, does not anel, and has removable singularities at z = zh

j . We apply then the maximummodulus priniple to the matrix elements. Beause of (5.4) and the loation of the resonanes wehave detE−+(z) =

mλ0
∏

j=1

(z − zh
j ) + Õ

(

e−
2S0

h

)

, (5.8)and on the boundary of Ωh, |z − zh
j | ≥ Ch, C > 0. Consequently, f is bounded by below by 1/2for h su�iently small. This proves (5.7).In order to evaluate the norm of (E−+(z))−1, we use the representation

(E−+(z))−1 =
1detE−+(z)

omE−+(z)T , (5.9)where Γ(z) := omE−+(z)T denotes the transpose matrix of the ofators. Let us make moreexpliit the form of the general element Γij(z) in order to get the estimate. In general, by denoting
ε(z) the residual matrix in (5.4) the entry Γij(z) is a sum of (mλ0 − 1)! homogeneous monomialsof order mλ0 − 1 in the matrix elements of E−+(z), among whih there are r diagonal elements
(0 ≤ r ≤ mλ0 − 1). Suh a monomial writes

r
∏

k=1

(z − zh
jk

+ εik,ik
)

mλ0
−1

∏

l/∈{1,...,r}

εσ(il),il
, σ ∈ Smλ0

−1 . (5.10)10



The estimate of ∥∥(E−+(z))−1
∥

∥ is then derived from an upper bound of quantities like
thr (z) =

r
∏

k=1

(

z − zh
jk

+ εik,ik

)

mλ0
−1

∏

k/∈{1,...,r}

εσ(ik),ik

mλ0
∏

j=1

(z − zh
j

, 0 ≤ r ≤ mλ0 − 1. (5.11)For any �xed r ∈ {0, . . . ,mλ0 − 1} and λ ∈ R, the inequality
|thr (λ)| ≤ Cr max

0≤r1≤r

Õ
(

e−
2(mλ0

−r1−1)S0

h

)

mλ0
−r1
∏

k=1

|zh
jk

− λ|
≤ Cr max

0≤r1≤r

Õ
(

e−
2(mλ0

−r1−1)S0

h

)

|zh
j1 − λ|

mλ0
−r1
∏

k=2

|Im zjk
|ombined with the lower bound (4.3) yields

∣

∣thr (λ)
∣

∣ ≤ Cr max
0≤r1≤r

Õ
(

e
2(mλ0

−r1−1)SU

h

)

min
j

∣

∣λ− zh
j

∣

∣

≤ Cr

Õ
(

e
2(mλ0

−1)SU

h

)

min
j

∣

∣λ− zh
j

∣

∣

.

�6 Case of strong gathernessWe prove Theorem 2.4 under the strong gatherness assumption (see De�nition 2.2) that we reallhere:
S0 +mλ0SU < SI/2 . (6.1)Atually the result will be proved under the simplifying assumption that all the wells are λ0-resonant, mλ0 = N . The Lemma 6.1 given in the end of this Setion will make lear that thisassumption is not restritive.Proof of Theorem 2.4 under the strong gatherness assumption: First note that the twostatements i) and ii) an be dedued one from the other with a omplementary argument providedby the relation (1.17) with the funtions of the energy for whih tλj = 1 was proved in [BNP1℄.Hene we want to prove
lim
h→0

Tr [g(Kh
−)ϕ

]

= 0in the ase ii). Aording to Proposition 3.1, it is equivalent to
lim
h→0

Tr [gh(Kh
−)ϕ

]

= 0 ,with gh(k) = 1(0,+∞)(k)1Kh
(λk) .Let ψ−(k, x) (λk ∈ Kh) be the generalized eigenfuntion de�ned by (1.8)-(1.9) for the potential Vhand ψ̃−(k, x) be the generalized eigenfuntion assoiated with the �lled potential Ṽh = Vh +Wh .Set

uh(k, ·) := ψh
−(k, ·) − ψ̃h

−(k, ·) = (Hh
k2 − k2)−1Whψ̃h

−(k, ·). (6.2)11



so that
|ψh

−(k, x)|2 ≤ 2|ψ̃h
−(k, x)|2 + 2|uh(k, x)|2 . (6.3)If we denote by K̃h

− the asymptotial momentum for H̃h, we get for any ϕ ∈ C0
c ((a, b); R+):

0 ≤ Tr (gh(Kh
−)ϕ) ≤ Tr (gh(K̃h

−)ϕ) + 2‖ϕ‖2
∞

∫

k>0,λk∈Ih

‖uh(k, ·)‖2
L2

x

dk

2πh
. (6.4)If we ome bak to the expression (5.1) of the resolvent (Hh

k2 − k2)−1, we get
uh(k, ·) = F (k2)Whψ̃h

−(k, ·) − E+(k2)(E−+(k2))−1E−(k2)Whψ̃h
−(k, ·), (6.5)and �nally

‖uh(k, ·)‖2
L2

x
≤ 2‖F (k2)Whψ̃h

−(k, ·)‖2 + 2‖T (k2)Whψ̃h
−(k, ·)‖2 , (6.6)by setting

T (k2) := E+(k2)(E−+(k2))−1E−(k2) . (6.7)The �rst term of (6.6) uniformly goes to 0 when h→ 0, beause F is bounded in the operator-normandWhψ̃h
−(k, ·) is Õ(e−d0(a,Uh))/h), aording to the Proposition 6.2 in Setion 6.1 of [BNP1℄. ByProposition 5.1, it follows that the seond term is bounded by

‖T (k2)Whψ̃h
−(k, ·)‖2 = Õ





e−
2d(a,U)

h e
4(N−1)SU

h

min
j=1,...,N

|k2 − zh
j |2



 . (6.8)But, for any resonane zh ∈
{

zh
1 , . . . , z

h
N

}, writing zh = Eh − iΓh, Eh = Re (zh), Γh = −Im (zh),gives
1

|k2 − zh|2 =
1

Γh

Γh

(k2 − Eh)2 + Γh2 . (6.9)The latter fator is uniformly bounded in L1(Rk), while the �rst fator is estimated owing to (4.3)by
1

Γh
= Õ

(

e
2(S0+SU )

h

)

.By putting all the inequalities together, the integral in (6.4) is dominated by
Õ
(

e−
2d(a,U)

h e
4(N−1)SU

h

)

× Õ
(

e
2(S0+SU )

h

)

.We onlude by realling the assumptions
d(a, U) = SI − (S0 + SU )

−2SI + 4(S0 +NSU ) < 0 .

�The next arguments show that the assumption mλ0 = N is easily removed. Let H̃h
k2,nr be theoperator with the same domain as Hh

k2 and assoiated with the potential
Ṽh

nr = Vh +
∑

j∈Jλ0

wj

(

x− cj
h

)

,where all the resonant wells are �lled. In [BNP1℄ suh an Hamiltonian was denoted by H̃k2 (λ0)and it was proved (see Proposition 4.3) that it satis�es the same resolvent estimate as H̃k2 . Henethe previous proof arries over to the ase when mλ0 < N as soon as the generalized eigenfuntions
ψ̃h
−,nr(k, x) orresponding to the partially �lled wells share the same properties as the ψ̃h

−(k, x) .This is given by the next Lemma. 12



Lemma 6.1 For k > 0 suh that λk ∈ Kh, the pointwise estimate
ψ̃h
−,nr(k, x) = ψ̃h

−(k, x) + Õ
(

e−
d0(a,Uh

nr)+d0(Uh
nr,x)

h

)holds for any x ∈ I = [a, b] with a uniform ontrol of the onstants with respet to x ∈ I. The set
Uh

nr is supp Wh
nr with Wh

nr = Wh −∑j∈Jλ0
wj

(

.−cj

h

) .Proof: The funtion ε(k, ·) := ψ̃h
−,nr(k, ·) − ψ̃h

−(k, ·) is in the domain of Hh
k2,nr and, sine

P̃ h −Wh
nr = P h

nr, it follows that
ψ̃h
−,nr(k, ·) = ψ̃h

−(k, ·) − (Hh
k2,nr − k2)−1Wh

nrψ̃
h
−(k, ·). (6.10)It was shown that ψ̃h

−(k, x) = O(h−1)e−d0(a,x) uniformly w.r.t k, whereas the kernel of (Hh
k2,nr−

k2)−1 is Õ(e−d0(x,y)). �7 Isolated WellsWe assume in this setion mλ0 = N .7.1 Preliminary resultsIn the ase of isolated wells, the geometri assumption ensures that the resonanes are simple.More preisely, the gaps between the Dirihlet eigenvalues onverging to λ0 are muh larger thanthe imaginary parts of all the orresponding resonanes. This does not orrespond exatly to thease mλ0 = 1 beause the energy domain Kh = Ωh ∩ R has to be splitted into exponentially smallenergy intervals with a re�ned analysis whih was not really arried out in [BNP1℄. This will leadin partiular in Setion 7.2 to a re�ned version of the Breit-Wigner type formula for the loaldensity of states already onsidered in [BNP1℄ after [GeMa℄.The �rst result whih is an appliation of the universal lower bound of gaps given in [KiSi℄,introdues the quantity S̃U .Proposition 7.1 Let λh
1 < . . . < λh

mλ0
be the eigenvalues of Hh

I , the Dirihlet realization of P hon I onverging to λ0. There exists a onstant CU > 0 suh that for h > 0 su�iently small
∀j 6= k, |λh

j − λh
k | ≥ C−1

U e−
S̃U
h . (7.1)When the wells are isolated, eah dis entered on λh

j with radius (3CU )−1e−S̃U /h ontains thereforeonly one resonane of P h for h > 0 small enough.Proof: Consider the Hamiltonian Ĥh on the whole line R with domain H2(R) and de�ned by
∀u ∈ H2(R), Ĥhu := P̂ hu, P̂ h := −h2d2/dx2 + V̂h, (7.2)

V̂h = 1(−∞,b) · Vh(a) + 1I · Vh + 1(b,∞) · Vh(b). (7.3)The potential V̂h is a ontinuous funtion onstant outside I and oiniding with Vh on I. Byonstrution, one has
inf σess(Ĥh

)

≥ Λ0 > Λ∗. (7.4)13



Besides, the number of eigenvalues of Ĥh is bounded w.r.t. h > 0. Apply then the Theorem 2from [KiSi℄ given in Appendix B with [aKS , bKS] = [c1 − κh, cN + κh] and α2
KS = Λ0 (the KSindex refers to Kirsh and Simon's notations). This provides a lower bound for the splitting of theeigenvalues of Ĥh, lying around λ0, namely

|λ̂h
j − λ̂h

k | ≥ Ce−
S̃U
h . (7.5)Now, if λh is one of the eigenvalues of Hh

I in this interval with φh a orresponding L2-normalizedeigenfuntion, one has with the exponential deay estimates (see [BNP1, Proposition 3.3℄)
Ĥhχφh = λhχφh + [P h, χ]φh, ‖[P h, χ]φh‖L2 ≤ Cηe

−
S0−cη

h , (7.6)for a smooth ut-o� funtion χ supported in (a, b) and equal to 1 outside an η-neighborhood ofits boundary ∂I = {a, b}. Sine Hh
I is self-adjoint, an orthonormal basis of mλ0 eigenvetors

φh's assoiated with eigenvalues λh onverging to λ0 an be onsidered. The exponential deayof these eigenvetors (see [BNP1, Proposition 3.3℄) ensures that the Gram matrix of the χφh's isexponentially lose the unit matrix. Aording to [Hel℄, [HeSj2℄ (see also [BNP1, Appendix C℄),
Ĥh has at least mλ0 eigenvalues onverging to λ0.Conversely, if λ̂h is an eigenvalue of Ĥh with eigenfuntion φ̂h, one has in L2(I)

Ĥhχφ̂h = λ̂hχφ̂h + [P h, χ]φ̂h, (7.7)with the same estimate of the remainder term [P h, χ]φ̂h as in (7.6) owing to the exponential deayof φ̂h (Use again the Agmon estimate). A �rst appliation of the results of [Hel℄, [HeSj2℄ (seealso [BNP1, Appendix C℄) ensures that there is a bijetion between the eigenvalues of Hh
I and theeigenvalues of Ĥh onverging to λ0, with variations of order Õ(e−S0/h) whih are muh smallerthan the gaps (7.5). �The previous loalization of resonanes an be ombined with the Grushin formulation (5.1).Unfortunately this does not produe an aurate enough information. We now want to use thelower bound on the gaps in order to onsider separately every pair (λh

j , z
h
j ) made of a Dirihleteigenvalue with the assoiated resonane, although this still allows interating wells. Improvedresolvent estimates and a better desription of the generalized wave funtion is needed. In [BNP1℄the kernel of the resolvent (Hh

• −z)−1 was studied when dist(z, σ(Hh
I )) is larger than hC (or e−S1/hwith the notations of [BNP1℄). Here we have to work with only dist(z, λh

j ) ≥ (C/100)e−S̃U/h, thatis muh loser to the Dirihlet eigenvalue λh
j (e−S̃U/h = o(e−SU/h) = o(e−S1/h)). Let us start witha lemma about the Dirihlet realization whih ompletes the results of [BNP1℄.Lemma 7.2 Let Hh

I be the Dirihlet realization on the interval I of the operator P h. Let zh belongto Ωh with h ∈ (0, h0), h0 small enough. Set
r(h) = dist(zh, σ(Hh

I )) ,and assume r(h) > 0. The kernel of the resolvent (Hh
I − zh)−1 satis�es

(Hh
I − zh)−1[x, y] =

Õ
(

e−
d0(x,y)−SU

h

)

min (r(h), 1)with uniform onstants with respet to x, y ∈ I, when d0 denotes the Agmon distane d(., .; Ṽ0, λ0) .14



Proof: We already proved in [BNP1, Proposition 3.7 and Corollary 3.8℄ the estimate
(Hh

I − zh)−1[x, y] = Õ
(

e−
d0(x,y)

h

)

, when r(h) ≥ hC ; (7.8)and in [BNP1, Proposition 3.9℄ the estimate
∣

∣φh
j (x)

∣

∣+
∣

∣∂xφ
h
j (x)

∣

∣ = Õ
(

e−
d0(x,U)

h

)

, (7.9)whih holds for any normalized eigenfuntion φh
j assoiated with an eigenvalue λh

j , j ∈ {1, . . . ,mλ0},onverging to λ0 as h→ 0. Reall that U gathers all the wells
U = {c1, . . . , cN} .Consider the spetral projetor

Πh
I = Id− 1

2iπ

∫

∂Ωh

(z −Hh
I )−1 dz = Id−

mλ0
∑

j=1

|φh
j 〉〈φh

j | .Write for z ∈ Ωh \ σ(Hh
I )

(Hh
I − z)−1 = (Hh

I − z)−1Πh
I + (Hh

I − z)−1(Id− Πh
I )

= (Hh
I − z)−1Πh

I +

mλ0
∑

j=1

1

λh
j − z

|φh
j 〉〈φh

j | ,where the �rst term is holomorphi with respet to z ∈ Ωh. In terms of Shwartz kernels one gets
(Hh

I − z)−1Πh
I [x, y] = (Hh

I − z)−1[x, y] −
mλ0
∑

j=1

1

λh
j − z

φh
j (x)φh

j (y) .The maximum priniple ombined with the estimate (7.8) for z ∈ ∂Ωh and the deay estimate(7.9) imply
∀z ∈ Ωh,

∣

∣(Hh
I − z)−1Πh

I [x, y]
∣

∣ ≤ Õ
(

e−
d0(x,y)−SU

h

)

.An obvious estimate of the polar term derived again from (7.9) yields the result.
�Below are two results for the �lled wells potential Ṽh. The �rst Lemma is a spei� ase ofProposition 4.3 in [BNP1℄. The seond one is a onsequene of Proposition 6.2 in [BNP1℄.Lemma 7.3 For z ∈ Ωh the resolvent estimate

∣

∣

∣(H̃h
z − z)−1[x, y]

∣

∣

∣ = Õ
(

e−
d0(x,y)

h

)holds with uniform onstant with respet to x, y ∈ I.Lemma 7.4 For λ ∈ Kh = Ωh∩R, the generalized wave funtions ψ̃h
−(

√
λ, .) and ψ̃h

−(−
√
λ+B, .),whih solve (1.7)-(1.8) with Wh ≡ 0, satisfy

ψ̃h
−(

√
λ, .) = Õ

(

e−
d0(a,x)

h

) and ψ̃h
−(−

√
λ+B, x) = Õ

(

e−
d0(x,b)

h

)

,with uniform onstants with respet to x ∈ [a, b].15



7.2 Breit-Wigner formulasWe provide here an aurate information on the resolvent (Hh
λ − λ)−1 = 1I(H

h − λ)−1
1I , for

λ ∈ Kh, in terms of resonanes.The domain
Kh ×

[

−(20CU )−1e−
S̃U
h , (20CU )−1e−

S̃U
h

]

=

{

z ∈ Ωh, |Im z| ≤ (20CU )−1e−
S̃U
h

}will be overed by Nh = Õ(eS̃U /h)-open diss with radius (10CU )−1e−S̃U /h entered on the realaxis. They are labelled so that the mλ0 �rst ones are entered around the Dirihlet eigenvalues λh
j

ωh
j =

{

z ∈ C,
∣

∣z − λh
j

∣

∣ < (10CU )−1e−
S̃U
h

}

,and the notation ωh
j with j > mλ0 is used for all the other ones.

&%
'$

&%
'$

&%
'$

Kh

×λh
1

×zh
1

×λh
2

×zh
2

×λh
3

×zh
3

?̃O(e−
2S0

h )
���

O(e−
S̃U
h )

-�

O(e−
S̃U
h )ΩhProposition 7.5 For j ∈ {1, . . . ,mλ0}, let zh

j be the resonane of Hh assoiated with the Dirihleteigenvalue λh
j , ∣∣zh

j − λh
j

∣

∣ = Õ(e−2S0/h) . For any j ∈ {1, . . . , Nh} the resolvent (Hh
z − z)−1 isdeomposed in ωh

j as
(

Hh
z − z

)−1
= gh

j (z) +
1[1,mλ0

](j)

zh
j − z

Ah
jwhere gh

j (z) is an holomorphi operator-valued funtion of z ∈ ωh
j with the next properties:1. For j ∈ {1, . . . ,mλ0}, the operator Ah

j is lose to the Dirihlet spetral projetor |φh
j 〉〈φh

j |:
∥

∥Ah
j − |φh

j 〉〈φh
j |
∥

∥ = Õ
(

e−
S0−6S̃U

2h

)

. (7.10)2. If χ1 and χ1/2 are two C∞
0 ((a, b)) ut-o� funtions suh that χ̺ ≡ 1 on U and ∂xχ̺ issupported in {x ∈ (a, b), ̺S0 − η ≤ d0(x, U) ≤ ̺S0 + η} with ̺ ∈ {1/2, 1} and η > 0, thenthere is a onstant Cη > 0 and a onstant c > 0 independent of η > 0, suh that the di�erene

Dh
j (z) = gh

j (z) −
[

(H̃h
z − z)−1(1 − χ1/2) + χ1(H

h
I − z)−1χ1/2 −

1[1,mλ0
](j)

zh
j − z

Ah
j

] (7.11)satis�es
∀z ∈ ∂ωh

j ,
∥

∥Dh
j (z)

∥

∥ ≤ Cη e
−

S0−6S̃U −cη

2h . (7.12)16



Proof: The proof of this result relies on two leading ideas. One is the Laurent expansion (withthe exat poles zh
j ) of the meromorphi funtion (Hh

z − z)−1 whih is handled like in the proof ofLemma 7.2. The other one is the approximation of the resolvent (Hh
z − z)−1 by

Rh = (H̃h
z − z)−1(1 − χ1/2) + χ1(H

h
I − z)−1χ1/2 , (7.13)already onsidered in [BNP1, Proposition 4.3℄.We fous on the ase j ∈ {1, . . . ,mλ0}, sine the other ase j > mλ0 will be dedued easily fromthis one by taking Ah

j = 0. The expression (7.13) leads to
∀z ∈ ωh

j \
{

λh
j

}

, (Hh
z − z)Rh = 1 − ε = 1 − ε0 − ε1with ε0 = Wh(H̃h

z − z)−1(1 − χ1/2)and ε1 = −
[

P h, χ1

]

(Hh
I − z)−1χ1/2 .Lemma 7.3 and Lemma 7.2 provide the estimates

‖ε0‖ ≤ Cη e
−

S0−cη
2h ,and ‖ε1‖ ≤ Cη

e−
S0−cη−2SU

2h

r(h)
≤ Cη (10CU ) e−

S0−cη−4S̃U
2h ,for any z ∈ ∂ωh

j with r(h) =
∣

∣z − λh
j

∣

∣ = (10CU )−1e−S̃U /h . Hene the assumption S̃U < S0/4 andtaking η > 0 small enough ensure the onvergene of the series
(Hh

z − z)−1 = Rh
∞
∑

k=0

εk = Rh +Rh
∞
∑

k=1

εk, for z ∈ ∂ωh
j . (7.14)We now onsider the Laurent expansion of (Hh

z − z)−1 in ωh
j

(Hh
z − z)−1 = gh

j (z) +
1

zh
j − z

Ah
j , (7.15)where zh

j is the resonane of Hh lying in ωh
j aording to Proposition 7.1. Computing the residueof (Hh

z −z)−1, equal to (7.14) with Rh given by (7.13), along the ontour ∂ωh
j provide the estimates

∥

∥Ah
j − |φh

j 〉〈φh
j |
∥

∥ ≤ e−
S0−cη

2h + sup
z∈∂ωh

j

∥

∥

∥

∥

∥

Rh
∞
∑

k=1

εk

∥

∥

∥

∥

∥

≤ C′
ηe

−
S0−cη−4S̃U

2h × e
S̃U
h ,after using

‖Rh‖ ≤ C‖(H̃z − z)−1‖ + C‖(HI − z)−1‖ = O
(

e
S̃U
h

)

.This yields (7.10).For the seond estimate, notie the identity
Dh

j (z) = gh
j (z) −Rh +

1

zh
j − z

Ah
j = Rh

∞
∑

k=1

εkand (7.12) is dedued from
∥

∥

∥

∥

∥

Rh
∞
∑

k=1

εk

∥

∥

∥

∥

∥

≤ C′
ηe

−
S0−cη−6S̃U

2h for z ∈ ∂ωh
j .
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Remark 7.6 The estimates of the error terms ould be improved by studying more arefully the�rst terms of the series ∑∞
k=1 ε

k in the spirit of [HeSj1℄ or [BNP1, Proposition 4.3℄. It is not anessential issue here.Below is the Breit-Wigner formula whih will be used.Proposition 7.7 Assume that the wells are isolated and take the notations λh
j , φh

j zh
j and ωh

jintrodued before for j ∈ {1, . . . ,mλ0}. In ωh
j one has the next equality of meromorphi funtions

〈

φh
j , (Hh

z − z)−1φh
j

〉

=
1 + Õ

(

e−
S0−6S̃U

2h

)

zh
j − z

+ Õ
(

e−
S0−8S̃U

2h

)

,and the uniform estimate
∥

∥gh
j (z)

∥

∥ = Õ
(

e−
S0−8S̃U

2h

)

.Proof: Let us write
〈φh

j , (Hh
z − z)−1φh

j 〉 = 〈φh
j , g

h
j (z)φh

j 〉 +
1

zh
j − z

〈φh
j , A

h
j φ

h
j 〉 .Aording to (7.10) the seond term has the form

1

zh
j − z

〈φh
j , A

h
j φ

h
j 〉 =

1 + Õ
(

e−
S0−6S̃U

2h

)

zh
j − z

.The �rst term is holomorphi in ωh
j and it su�es to �nd an estimate along ∂ωh

j . We use thedeompostion (7.11)
〈φh

j , g
h
j (z)φh

j 〉 = 〈φh
j ,
[

Dh
j (z) + (H̃h

z − z)−1(1 − χ1/2)
]

φh
j 〉

+ 〈φh
j , χ1(H

h
I − z)−1(χ1/2)φ

h
j 〉 −

1 + Õ
(

e−
S0−6S̃U

2h

)

zh
j − z

.This leads to
〈

φh
j , g

h
j (z)φh

j

〉

= Õ
(

e−
S0−6S̃U

2h

)

+
zh

j − λh
j

(

zh
j − z

) (

λh
j − z

) +
Õ
(

e−
S0
2h

)

∣

∣λh
j − z

∣

∣

+
Õ
(

e−
S0−6S̃U

2h

)

∣

∣zh
j − z

∣

∣

,for all z ∈ ∂ωh
j and the maximum priniple yields the �rst result.The estimate of ∥∥gh

j (z)
∥

∥ follows essentially the same lines. �We end this setion with a redution of the energy interval whih is thiner than the one of Propo-sition 3.1.Proposition 7.8 With the previous notations, set for any j ∈ {1, . . . ,mλ0}

Kj,h = ωh
j ∩ R . (7.16)For any ϕ ∈ C0

c ((a, b)), the limit
lim
h→0

Tr [g(Kh
−)ϕ(x)

]

−
mλ0
∑

j=1

g(
√
λ0)Tr [1Kj,h

(Hh)1(0,+∞)(K
h
−)ϕ(x)

] (7.17)is 0. 18



Proof: We know from (1.16) and [BNP1℄ that the support of ϕ an be assumed to be around
U = {c1, . . . , cN}, for instane inluded in {x ∈ (a, b), d0(x, U) ≤ S0/3}. By Proposition 3.1, the�rst term of (7.17) an be replaed with

g(
√
λ0)Tr [1Kh

(Hh)1(0,+∞)(K
h
−)ϕ

]

.Moreover we have for ϕ ≥ 0,Tr [1Kh\∪j≤mλ0
Kj,h

(Hh)1(0,+∞)(K
h
−)ϕ

]

≤ Tr [ϕ1/2
1Kh\(∪j≤mλ0

Kj,h)(H
h)ϕ1/2

]

≤
Nh
∑

j=mλ0
+1

Tr [ϕ1/2
1Kj,h

(Hh)ϕ1/2
]

,by introduing Kj,h = ωh
j ∩ R for j ∈ {mλ0 + 1, . . . , Nh} and where we reall Nh = Õ

(

eS̃U/h
) .Proposition 7.5 and espeially relation (7.11) give the identity

ϕ1/2(Hh − λ− i0)−1ϕ1/2 = ϕ1/2(Hh
λ − λ)−1ϕ1/2

= ϕ1/2(H̃h
λ − λ)−1ϕ1/2 + ϕ1/2(Hh

I − λ)−1ϕ1/2 + ϕ1/2Dh
j (λ)ϕ1/2 ,valid for all λ ∈ Kj,h with j ∈ {mλ0+1, . . . , Nh}. Indeed, our hoies of supports imply (1 −

χ1/2)ϕ
1/2 ≡ 0 and ϕ1/2χ1 ≡ ϕ1/2χ1/2 ≡ ϕ1/2.This leads to

1

2iπ
ϕ1/2

[

(Hh − λ− i0)−1 − (Hh − λ+ i0)
]

ϕ1/2 =
1

2iπ
ϕ1/2

[

(H̃h
λ − λ)−1 +Dh

j (λ) − h..]ϕ1/2 ,where "h.." stands for "hermitian onjugate". The estimate (7.12) an easily be transformed intoa trae-lass estimate beause of the loalization in x and λ. We use Stone's formula for 1Kj,h
(Hh).After integration w.r.t λ ∈ Kj,h, j > mλ0 , and after summing over j ∈ {1, . . . ,mλ0}, this leads to

Nh
∑

j=mλ0
+1

Tr [ϕ1/2
1Kj,h

(Hh)ϕ1/2
]

= O
(

e−
c
h

)

,when the wells are assumed isolated. �7.3 A Fermi-Golden ruleAn aurate determination of the oe�ients tλ0

i in the ase of isolated wells an be done by �rsteluidating via a Fermi-Golden rule the ontribution of positive and negative momenta in the sizeof the imaginary part of a resonane zh
j = Eh

j − iΓh
j . We keep the same notations λh

j , φh
j , zh

j and
ωh

j introdued before for j ∈ {1, . . . ,mλ0}. The real and imaginary parts of the resonanes zh
j arewritten aording to

zh
j = Eh

j − iΓh
j , for j ∈ {1, . . . ,mλ0} .Proposition 7.9 For any j ∈ {1, . . . ,mλ0} the idendity

Γh
j (1 + o(1)) =

|〈Whψ̃h
−(

√
λ, ·), φh

j 〉|2

4h
√
λ

+
|〈Whψ̃h

−(−
√
λ+B, ·), φh

j 〉|2

4h
√
λ+B

(7.18)holds for any λ ∈ ωh
j . 19



Proof: Let dEh(λ) denote the in�nitesimal spetral projetion of the whole line Hamiltonian
Hh, given by Stone's formula:

dEh(λ) =
1

2iπ

[

(H − λ− i0)−1 − (H − λ+ i0)−1
]

.We shall ompute in two di�erent ways and for a �xed j ∈ {1, . . . ,mλ0} the spetral measure
〈

1Iφ
h
j , dE

h(λ)1Iφ
h
j

〉 of 1I(x)φj .First Stone's formula and Proposition 7.7 lead to
〈

1Iφ
h
j , dE

h(λ)1Iφ
h
j

〉

=
1

2iπ

〈

φh
j ,
[

(Hh
λ − λ)−1 − (Hh,⋆

λ − λ)−1
]

φh
j

〉

=
1

2iπ

(

1 + Õ
(

e−
S0−6S̃U

2h

))

[

1

zh
j − λ

− 1

zh
j − λ

]

+ Õ
(

e−
S0−8S̃U

h

)

=
Γh

j

(

1 + Õ
(

e−
S0−6S̃U

2h

))

π
(

∣

∣λ− Eh
j

∣

∣

2
+
∣

∣Γh
j

∣

∣

2
) + Õ

(

e−
S0−8S̃U

h

)

, (7.19)for all λ ∈ Kj,h .The seond method uses the generalized wave funtions :
〈

1Iφ
h
j , dE

h(λ)1Iφ
h
j

〉

=
|〈ψh

−(
√
λ, ·), φh

j 〉|2

4πh
√
λ

+
|〈ψh

−(−
√
λ+B, ·), φh

j 〉|2

4πh
√
λ+B

.The relation
ψh
−(k, ·) = ψ̃h

−(k, ·) −
(

Hh
λk

− λk

)−1
Wψ̃h

−(k, ·) , (7.20)Proposition 7.5, the exponential deay of φh
j and ψ̃h

−(k, ·) in Lemma 7.4 and Proposition 7.7 leadto
〈

φh
j , ψ

h
−(k, ·)

〉

=
〈

φh
j , ψ̃

h
−(k, ·)

〉

+
〈

φh
j , g

h
j (λk)Whψ̃h

−(k, ·)
〉

+
1

zh
j − λ

〈

φh
j , A

h
jW

hψ̃h
−(k, ·)

〉

= Õ
(

e−
S0
h

)

+ Õ
(

e−
S0
h

)

Õ
(

e−
S0−8S̃U

2h

) (7.21)
+

1

zh
j − λ

〈

φh
j , W

hψ̃h
−(k, ·)

〉

+
Õ
(

e−
S0
h

)

Õ
(

e−
S0−6S̃U

2h

)

∣

∣zh
j − λ

∣

∣

.Owing to Proposition 4.1 and the onditions S̃U > SU and S0 > 8S̃U , the last term is estimatedby
Õ
(

e−
S0
h

)

Õ
(

e−
S0−6S̃U

2h

)

Γh
j

= o





h1/2

√

Γh
j



 .
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The equality of the two expressions (7.19) and (7.21) for λ = Eh
j , and again the assumption

S0 > 8S̃U imply
1

Γh
j

(1 + o(1)) =
1

4h
√

Eh
j

∣

∣

∣

∣

∣

∣

〈

φh
j , W

hψ̃h
−(
√

Eh
j , ·)

〉

Γh
j

+ o





h1/2

√

Γh
j





∣

∣

∣

∣

∣

∣

2

+
1

4h
√

Eh
j +B

∣

∣

∣

∣

∣

∣

〈

φh
j , W

hψ̃h
−(−

√

Eh
j +B, ·)

〉

Γh
j

+ o





h1/2

√

Γh
j





∣

∣

∣

∣

∣

∣

2

.This yields the result for λ = Eh
j . For λ ∈ ωh

j , one writes the equation for u = ψ̃h
−(

√
λ, ·) −

ψ̃h
−(
√

Eh
j , ·) in the form



























(P̃ h − Eh
j )u = Õ

(

e−
S̃U
h

)

ψ̃h
−(

√
λ, ·) ,

h∂xu(a) + i
√

Eh
j u(a) = Õ

(

e−
S̃U
h

)

+ Õ
(

e−
S̃U
h

)

ψ̃h
−(

√
λ, a) ,

h∂xu(b) − i
√

Eh
j +Bu(b) = Õ

(

e−
S̃U
h

)

ψ̃h
−

(√
λ, b
)

.With the Agmon identity (A.1) with ϕ = (1 − η)d0(a, x), η > 0, one gets
∣

∣

∣ψ̃h
−(
√

Eh
j , x) − ψ̃h

−(
√
λ, x)

∣

∣

∣ = Õ
(

e−
d0(x,a)+S̃U

h

)

. (7.22)Note that the right-hand side is o(√hΓh
j ) when x ∈ suppWh owing to Proposition 4.1 and theassumption S̃U > SU . A similar estimate an be obtained for the momentum −

√

Eh
j + λ with thedistane d0(x, b) instead of d0(a, x). Hene the result for λ = Eh

j implies
Γh

j (1 + o(1)) =
1 + o(1)

4h
√
λ

∣

∣

∣

〈

φh
j , W

hψ̃h
−(

√
λ, ·)

〉

+ o(
√

hΓh
j )
∣

∣

∣

2

+
1 + o(1)

4h
√
λ+B

∣

∣

∣

〈

φh
j , W

hψ̃h
−(−

√
λ+B, ·)

〉

+ o(
√

hΓh
j )
∣

∣

∣

2

,for all λ ∈ ωh
j , whih yields the result. �7.4 Values of the oe�ients t

λ0

iIn this paragraph all the previous intermediate results are gathered in order to hek that theoe�ients tλ0

i are the limits of the quantities (2.5), when the wells are isolated. We shall proveTheorem 2.5 and the seond statement of Theorem 2.4 about isolated wells will ome as a orollary.Proof of Theorem 2.5: The formula (1.16) and the redution of the energy interval stated inProposition 7.8 imply that the oe�ient tλi is the limit of the quantity
mλ0
∑

j=1

∫

k>0

∫ ci+ε

ci−ε

1Kj,h
(λk)

∣

∣ψh
−(k, x)

∣

∣

2
dx

dk

2πh
=

mλ0
∑

j=1

1

2πh

∥

∥1Kj,h
(λk)ψh

−(k, x)
∥

∥

2

L2(R+×[ci−ε,ci+ε])
,21



for any �xed ε > 0.We use again the relation (7.20) between ψh
− and ψ̃h

− and the deomposition of (Hλk
−λk)−1 statedin Proposition 7.5 in order to write when λk ∈ Kj,h

ψh
−(k, ·) = ψ̃h

−(k, ·) − gh
j (λk)Whψ̃h

−(k, ·) − 1

zh
j − λk

〈φh
j , W

hψ̃h
−(k, ·)〉φh

j

−
Ah

j − |φh
j 〉〈φh

j |
zh

j − λk
Whψ̃h

−(k, ·) .By referring to the deay of ψ̃h
− stated in Lemma 7.4 and the estimates for gh

j (λ) and Ah
j −|φh

j 〉〈φh
j |derived from Propositions 7.5 and 7.7, this leads to

∥

∥

∥

∥

∥

1Kj,h
(λk)

[

ψh
− +

1

zh
j − λk

〈φh
j , W

hψ̃h
−(k, ·)〉φh

j

]∥

∥

∥

∥

∥

L2(R+×[ci−ε,ci+ε])

= Õ
(

e−
d0(a,ci−ε)

h

)

+ Õ
(

e−
S0
h

)

Õ
(

e−
S0−8S̃U

2h

)

+
Õ
(

e−
S0
h

)

Õ
(

e−
S0−6S̃U

2h

)

√

Γh
j

.The assumptions S̃U > SU and S0 − 8S̃U > 0 ombined with the lower bound (4.3) for Γh
j leads to

h−1/2

∥

∥

∥

∥

∥

1Kj,h
(λk)

[

ψh
− +

1

zh
j − λk

〈φh
j , W

hψ̃h
−(k, ·)〉φh

j

]∥

∥

∥

∥

∥

L2(R+×[ci−ε,ci+ε])

= o(1) .The inequality (7.22) provides a omparison between ψ̃h
−(k, ·) and ψ̃h

−(
√

λh
j , ·) whih leads to

h−1/2

∥

∥

∥

∥

∥

1Kj,h
(λk)

[

ψh
− +

1

zh
j − λk

〈φh
j , W

hψ̃h
−(
√

λh
j , ·)〉φh

j

]∥

∥

∥

∥

∥

L2(R+×[ci−ε,ci+ε])

= o(1) +
Õ
(

e−
S0
h

)

Õ
(

e−
S̃U
h

)

√

hΓh
j

= o(1) .Computing the integral
∫

R+

∫ ci+ε

ci−ε

1Kj,h
(λk)

∣

∣

∣〈φh
j , W

hψ̃h
−(
√

λh
j , ·)〉

∣

∣

∣

2

∣

∣λk − Eh
j

∣

∣

2
+
∣

∣Γh
j

∣

∣

2

∣

∣φh
j (x)

∣

∣

2
dx

dk

2πh

=

∣

∣

∣〈φh
j , W

hψ̃h
−(
√

λh
j , ·)〉

∣

∣

∣

2

4h
√

λh
j Γh

j

(1 + o(1)) ,and the Fermi golden rule (7.18) with λ = λh
j yields the result. �Proof of Theorem 2.4 for isolated wells: Assume d0(a, ck) > d0(ck, b) for all k ∈ {1, . . . ,mλ0 = N}.The oe�ients tλ0

i are obtained as the limits as h→ 0 of
mλ0
∑

j=1

∣

∣

∣〈φh
j , W

hψ̃h
−(
√

λh
j , ·)〉

∣

∣

∣

2

4h
√

λh
j Γh

j

∫ ci+ε

ci−ε

∣

∣φh
j x
∣

∣

2
dx .22



But the assumption d0(a, ck) > d0(ck, b) for all k, implies
∣

∣

∣
〈φh

j , W
hψ̃h

−(
√

λh
j , ·)〉

∣

∣

∣

2

= Õ
(

e−
SI
h

)

,while the lower bound (4.3) implies
1

hΓh
j

= Õ
(

e
2S0+2SU

h

)

.The ondition S0 + SU < SI/2 yields tλ0

i = 0, for all i ∈ {1, . . . ,mλ0}. �8 Expliit asymptoti valuesIn this setion we derive from an aurate asymptoti analysis of the quantities (2.5) some expliitrules for the oe�ients tλi when the wells are not gathered like in Theorem 2.4. In the two ases
N = 1 or N = 2 with isolated wells, this provides a omplete desription of all the possible limits
dn0
∣

∣

(a,b)
, whih was summarized in the end of Setion 2.We �rst need a simple desription of the Dirihlet eigenfuntions φh

j .Lemma 8.1 Assume N = mλ0 = 1 or N = mλ0 = 2. For i ∈ {1, 2}, let ui denote a normalizedeigenvetor (u2 = 0 when N = 1) of −∆ − wi assoiated with the eigenvalue λ0 + Ṽ0(ci). Thenthere exists αh ∈ R (αh = 0 if N = 1) suh that the Dirihlet eigenvetors φh
j satisfy

(

φh
1

φh
2

)

=

(

cosαh − sinαh

sinαh cosαh

)(

u1

(

.−c1

h

)

u2

(

.−c2

h

)

)

+ oL2(I)(1) .Proof: We now from Theorem 3.6 in [BNP1℄ that the eigenvetor φh
j an be written

φh
j =

∑

i

ph
jiψ

h
i + o(1) ,where (pij)1≤ij≤mλ0

is a unitary matrix and where the ψh
i is a normalized eigenvetors for the onewell problem around ci. By making use of the uniform W 1,∞ estimate of Ṽh in a small interval

[ci − ε, ci + ε] with ε > 0 independent of h > 0 but arbitrarily small like in Theorem 3.4 of [BNP1℄,the exponential deay of Dirihlet eigenvetors in the lassially forbidden region allows to replae
ψh

i with ui with an arbitrarily small error. �Another ingredient of this asymptoti analysis is an aurate desription of the generalizedeigenfuntions of H̃h in the interval I = [a, b]. Introdue the Agmon distane assoiated with thepotential Ṽh at the energy λk:
d̃h(x, y) = d(x, y; Ṽh, λk) =

∣

∣

∣

∣

∫ y

x

√

Ṽh(t) − λk dt

∣

∣

∣

∣

. (8.1)The omparison with the �rst order WKB approximation has to be onsidered. When Ṽh is regularit is a lassial result whih has to be adapted in our ase. The �rst order approximation ψh
app(k, x)is de�ned aording to 23



ase k > 0 : ψh
app(k, x) = (Ṽh(x)−λk)−1/4

[

C−(k)e−d̃h(a,x)/h + C+(k)ed̃h(a,x)/h
] where (C−(k), C+(k))solves the system



























[

−(Ṽh(a) − λk)1/2 + i
√
λk

]

C−(k) = 2ikei ka
h

(

Ṽh(a) − λk

)1/4

,
[

−(Ṽh(b) − λk)1/2 − i
√
λk +B

]

C−(k)

+

[

(

Ṽh(b) − λk

)1/2

− i
√
λk +B

]

(

C+(k)e2
d̃h(a,b)

h

)

= 0 ,

(8.2)ase k < 0 : ψh
app(k, x) = (Ṽh(x)−λk)−1/4

[

C−(k)ed̃h(x,b)/h + C+(k)e−d̃h(x,b)/h
] where (C−(k), C+(k))solves the system



























[

−(Ṽh(a) − iλk)1/2 + i
√
λk

] (

C−(k)e2
d̃h(a,b)

h

)

+
[

(Ṽh(a) − λk)1/2 + i
√
λk

]

C+(k) = 0 ,
[

(

Ṽh(b) − λk

)1/2

− i
√
λk +B

]

C+(k) = 2ikei kb
h (Ṽh(b) − λk)1/4.

(8.3)In our ase, its rather tehnial proof whih requires all the regularity and onvergene assumptionson Ṽh, namely ∂2
xṼh = µ0 in Mb(I), is deferred to a forthoming artile (see [Ni4℄)Proposition 8.2 For any k ∈ R suh that λk ∈ [Λ∗,Λ

∗], onsider the generalized wave funtion
ψ̃(k, x) restrited to the interval I and given by (1.7)-(1.8) with Wh ≡ 0. By introduing the Agmondistane d̃h assoiated with the potential Ṽh and the energy λk aording to (8.1), take the funtion
ψh

app de�ned above. Then the di�erene onverges to 0 with the weighted estimates
max

x∈[a,b]

∣

∣

∣

∣

e
d̃h(a,x)

h

(

ψ̃h(k, x) − ψh
app(k, x)

)

∣

∣

∣

∣

h→0→ 0 for k > 0 ,

max
x∈[a,b]

∣

∣

∣

∣

e
d̃h(x,b)

h

(

ψ̃h(k, x) − ψh
app(k, x)

)

∣

∣

∣

∣

h→0→ 0 for k < 0 .We shall make the next simplifying assumption, whih ensures that some fators do not vanishasymptotially.Assumption 2 Assume that the well potentials wi, i = 1 or 2, are even and that the eigenvetor
ui orresponds to the �rst or seond eigenvalue.Proposition 8.3 Take the same notations and onventions when N = 1 as before. Let d̃h denotesthe Agmon distane for the h-dependent potential Ṽh at the energy λk ∈ Ωh and set for i = 1 or
i = 2

γi,± =
C±(λ

1/2
0 )

(Ṽ0(ci) − λ0)1/4

∫

R

wi (y)ui(y) dy ± C±(λ
1/2
0 )(Ṽ0(ci) − λ0)

1/4

∫

R

y wi(y)ui(y) dy . (8.4)Then the equality
(

〈φh
1 , W

hψ̃h
−(k, ·)〉

〈φh
2 , W

hψ̃h
−(k, ·)〉

)

=

(

cosαh − sinαh

sinαh cosαh

)





γ1,−e
−

d̃h(a,c1)

h

γ2,−e
−

d̃h(a,c2)

h



+ o

(

e
−d̃h(a,c1)

h

)24



holds for k > 0, while the symmetri relation for k < 0 writes
(

〈φh
1 , W

hψ̃h
−(k, ·)〉

〈φh
2 , W

hψ̃h
−(k, ·)〉

)

=

(

cosαh − sinαh

sinαh cosαh

)





γ1,+e
−

d̃h(c1,b)

h

γ2,+e
−

d̃h(c2,b)

h



+ o

(

e−
d̃h(c2,b)

h

)

.Proof: Let us fous on the ase k > 0. First the loalisation of the potentialWh and Proposition8.2 implies
∥

∥

∥Whψ̃−(k, ·)
∥

∥

∥

L2
= O

(

e−
d̃h(a,c1)

h

)

.Hene Lemma 8.1 redues the problem to an aurate alulation of
〈

ui

( · − ci
h

)

, Whψ̃h
−(k, ·)

〉

=

∫

R

wi(y)ui(y)ψ̃
h
− (k, ci + hy) dy + o

(

e−
d̃h(a,c1)

h

)

=

∫

R

wi(y)ui(y)
C−(k)

(

Ṽh(ci + hy) − λk

)1/4
e−

d̃h(a,c1+hy)

h dy + o

(

e−
d̃h(a,c1)

h

)

= e−
d̃h(a,c1)

h

∫

R

wi(y)ui(y)

C−(k)

(

1 −
(

Ṽh(ci) − λk

)1/2

y

)

(

Ṽh(ci + hy) − λk

)1/4
dy + o

(

e−
d̃h(a,c1)

h

)

= e−
d̃h(a,c1)

h γi,− + o

(

e−
d̃h(a,c1)

h

)

.We used the Taylor expansion of d̃h with the known uniform regularity of Ṽh in W 1,∞(I). �Remark 8.4 The Assumption 2 is not neessary in the previous proof but it ensures that theoe�ients γi,± do not vanish.Proposition 8.5 Make the tehnial additional Assumption 2 with N = mλ0 = 1. The asymptotiof (2.5) an lead to values tλ0
1 ∈ (0, 1) when and only when d0(a, c1) = d0(c1, b).Proof: When N = mλ0 = 1, the single well is isolated and Theorem 2.5 and Proposition 8.3an be used. This leads to the value tλ0

1 as the limit of
1

1 +

√
λ0√

λ0 +B

∣

∣

∣

∣

∣

∣

∣

γ1,−e
−

d̃h(a,c1)

h + o
(

e−
d̃h(a,c1)

h

)

γ1,+e−
d̃h(c1,b)

h + o
(

e−
d̃h(c1,b)

h

)

∣

∣

∣

∣

∣

∣

∣

2

=

(

1 +

√
λ0√

λ0 +B

∣

∣

∣

∣

γ1,−

γ1,+
e−

d̃h(a,c1)−d̃h(c1,b)

h (1 + o(1))

∣

∣

∣

∣

2
)−1

,where d̃h is the Agmon distane at the energy λh
j . Any value in [0, 1] an be ahieved dependingon the onvergene of d̃h(a, c1) and d̃h(c1, b) to their asymptoti values d0(a, c1) and d0(c1, b). Thedisussion of the omparison of the asymptoti distanes yields the result. �25



Proposition 8.6 Take N = mλ0 = 2 and assume that the two wells are isolated with the tehnialadditional ondition 2. Assume also |λh
2 − λh

1 | = o(h). Then the oe�ients tλ0

i , i = 1, 2 have toful�ll the rules
• tλ0

1 = 1 and tλ0
2 ∈ [0, 1] d0(a, c1) < d0(c2, b) .

• tλ0
1 ∈ [0, 1] and tλ0

2 = 0 if d0(a, c1) > d0(c2, b) .
• 1 ≥ tλ0

1 ≥ tλ0
2 ≥ 0 if d0(a, c1) = d0(c2, b) .Remark 8.7 When |λh

2 −λh
1 | ≥ h2, it is no interation between the wells and we an apply resultsfor the gathered wells with mλ0 = 1.Proof: Aording to Theorem 2.5 and Proposition 8.3 we have to study the limits of the twoquantities

τh
1 =

cos2 αh

1 +

√
λ0(1 + o(1))√
λ0 +B

∣

∣

∣

∣

∣

∣

∣

cosαhγ1,+e
−

d̃h(c1,b)

h − sinαhγ2,+e
−

d̃h(c2,b)

h + o
(

e−
d̃h(c2,b)

h

)

cosαhγ1,−e−
d̃h(a,c1)

h − sinαhγ2,−e−
d̃h(a,c2)

h + o
(

e−
d̃h(a,c1)

h

)

∣

∣

∣

∣

∣

∣

∣

2

+
sin2 αh

1 +

√
λ0(1 + o(1))√
λ0 +B

∣

∣

∣

∣

∣

∣

∣

sinαhγ1,+e
−

d̃h(c1,b)

h + cosαhγ2,+e
−

d̃h(c2,b)

h + o
(

e−
d̃h(c2,b)

h

)

sinαhγ1,−e−
d̃h(a,c1)

h + cosαhγ2,−e−
d̃h(a,c2)

h + o
(

e−
d̃h(a,c1)

h

)

∣

∣

∣

∣

∣

∣

∣

2and
τh
2 =

sin2 αh

1 +

√
λ0(1 + o(1))√
λ0 +B

∣

∣

∣

∣

∣

∣

∣

cosαhγ1,+e
−

d̃h(c1,b)

h − sinαhγ2,+e
−

d̃h(c2,b)

h + o
(

e−
d̃h(c2,b)

h

)

cosαhγ1,−e−
d̃h(a,c1)

h − sinαhγ2,−e−
d̃h(a,c2)

h + o
(

e−
d̃h(a,c1)

h

)

∣

∣

∣

∣

∣

∣

∣

2

+
cos2 αh

1 +

√
λ0(1 + o(1))√
λ0 +B

∣

∣

∣

∣

∣

∣

∣

sinαhγ1,+e
−

d̃h(c1,b)

h + cosαhγ2,+e
−

d̃h(c2,b)

h + o(e−
d̃h(c2,b)

h )

sinαhγ1,−e−
d̃h(a,c1)

h + cosαhγ2,−e−
d̃h(a,c2)

h + o
(

e−
d̃h(a,c1)

h

)

∣

∣

∣

∣

∣

∣

∣

2The di�erene between this two numbers equals
τh
1 − τh

2 = (cos2 αh − sin2 αh)









1

1 +

√
λ0(1 + o(1))√
λ0 +B

̺(cosαh,− sinαh)2

− 1

1 +

√
λ0(1 + o(1))√
λ0 +B

̺(sinαh, cosαh)2









,

26



where the oe�ient ̺ is given by
̺(β1, β2) =

∣

∣

∣

∣

∣

∣

∣

β1γ1,+e
−

d̃h(c1,b)

h + β2γ2,+e
−

d̃h(c2,b)

h + o
(

e−
d̃h(c2,b)

h

)

β1γ1,−e−
d̃h(a,c1)

h + β2γ2,−e−
d̃h(a,c2)

h + o
(

e−
d̃h(a,c1)

h

)

∣

∣

∣

∣

∣

∣

∣

.An easy omputation of the main term of the numerator shows that the di�erene
̺(sinαh, cosαh)2 − ̺(cosαh,− sinαh)2is a non negative number times

[

|γ1,+|2|γ2,−|2 cos4 αh − |γ2,+|2|γ1,−|2 sin4 αh
]

e−
d̃h(a,c1)+d̃h(c2,b)

h + o

(

e−
d̃h(a,c1)+d̃h(c2,b)

h

)

.The expression (8.4) shows that the two produts γ2,−γ1,+ and γ1,−γ2,+ are equal. Hene thedi�erene τh
1 − τh

2 is always non negative, whih leads to
tλ0
1 ≥ tλ0

2 . (8.5)in all ases.It remains to hek tλ0
1 = 1 when d0(a, c1) < d0(c2, b) beause the seond ase is obtained via aomplement argument and the third one says nothing but (8.5). Three possibilities have to beonsidered: cosαh → 0 as h→ 0, sinαh → 0 as h→ 0 or | sinαh|| cosαh| ≥ δ > 0.Assume limh→0 cosαh = 0. Then one has

τh
1 = o(1) +

1 + o(1)

1 + O
(

e−2
d̃h(c2,b)−d̃h(a,c1)

h

)

h→0→ 1 .The ase limh→0 sinαh = 0 is the same as the previous one after replaing αh with π
2 − αh.Assume cosαh ≥ δ > 0. This leads to

τh
1 =

cos2 αh

1 + O
(

e−2
d̃h(c2,b)−d̃h(a,c1)

h

) +
sin2 αh

1 + O
(

e−2
d̃h(c2,b)−d̃h(a,c1)

h

)

h→0→ 1 .

�A Agmon energy identityHere we just give the basi energy identity.Lemma A.1 Let Ω := (α, β) an open interval, V ∈ L∞(ω), z ∈ C and ϕ a lipshitz real funtionon Ω. Denote by P the Shrödinger operator P := −h2d2/dx2 + V. Then for any u1, u2 in H2(Ω),and setting vj := eϕ/huj one has:
∫ β

α

e2
ϕ
h (P − z)u1ū2dx =

∫ β

α

hv′1hv
′
2dx+

∫ β

α

(V − z − ϕ′2)v1v̄2dx

+

∫ β

α

hϕ′(v′1v̄2 − v1v̄
′
2)dx

+h2
(

e2
ϕ(α)

h u′1ū2(α) − e2
ϕ(β)

h u′1ū2(β)
)

. (A.1)This identity is obtained after onjugation of hd/dx by eϕ/h and integration by parts.27



B Universal lower bound for gapsLemma B.1 Let (aKS , bKS) be an interval and let V be a real valued ontinuous on R. Let Enand En−1 be the (n+ 1)th and nth eigenvalues of −d2/dx2 + V and let
λ = max

E∈[En−1,En], x∈(aKS,bKS)
|E − V (x)|1/2.If V (x) ≥ En + α2 on R \ [aKS , bKS] for some α > 0, then

En − En−1 ≥ π

2

[

1

2λ2
+

λ

2
√

|En|(λ2 + |En|)

]−1
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