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5 Loalizing resonanes 266 Loal density of states 286.1 Eliminating the non resonant energies . . . . . . . . . . . . . . . . . . . . . . . . . 296.2 Contribution of resonant states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31A Agmon identity 33B Monotony Priniple 34C Spetral approximation 34D Sattering states for the barrier 34E Pointwise estimate for the resolvent 351 Introdution1.1 MotivationThis analysis is motivated by the study of quantum eletroni transport in semiondutor het-erostrutures, like resonant tunneling diodes. It is modelled on the basis of a mean �eld Hartreetype desription of the eletrostati interation of partiles, known as the Shrödinger-Poissonsystem. The modelling of resonant tunneling diodes inludes the following harateristi features:1. Steady eletroni urrents are observed. This an be ahieved only within the modelling ofout-of-equilibrium quantum systems.2. The I−V urves of suh devies present negative di�erential resistane. We are in a far fromequilibrium regime, for whih the linear response theory is questionnable.3. A very rih nonlinear phenomenology an be observed in suh devies, with hysteresis phe-nomena (see [JLPS℄, [PrSj℄) and even steadily osillating urrents (see [KKetal℄).4. The general wisdom about these systems says that the nonlinear e�ets are governed by littlenumber of resonant states.This artile is a part of a larger program, namely the understanding of the nonlinear dynam-is of these out-of-equilibrium quantum systems. One issue is to prove rigorously that a simpleShrödinger-Poisson system in a far from equilibrium regime, that is when the steady states show astrong anisotropy in the momentum variable at the quantum sale, an lead to multiple solutions tothe nonlinear stationary problem with non trivial bifuration diagrams. A �rst hek was providedby Jona-Lasinio, Presilla and Sjöstrand in [JLPS℄, [PrSj℄. A seond issue whih goes de�nitelyfurther than those previous works is the explanation of the prodution of omplex bifuration di-agrams in terms of the geometry of the potential, whih requires an aurate analysis of tunnele�ets.The present work was ahieved on the basis of former works by the seond author and of theph-D thesis of the third author. This analysis lead the three authors to the introdution of someredued model whih happens to be very e�ient in the numerial simulation of realisti devies(see [BNP℄). Only the �rst part of the mathematial analysis is provided here and omplementswill be presented in a forthoming artile [BNP2℄.2



The points 1) and 2) above are now well understood. A presentation an be done within aLandauer-Büttiker approah [BuLa℄, [Lan℄, [ChVi℄ and [BDM℄ whih involves the sattering states.This modelling allows a strong anisotropy of the oupation number with respet to the momentumand it de�nitely di�ers from all the approah where the density matrix looks like a funtion of theHamiltonian [BKNR1℄, [BKNR2℄. This latter modelling (and probably the entropy maximizingapproah of [DMR℄ as well) better suits the situation of little variations from the thermodynamialequilibrium, ends with orreted drift-di�usion models and annot produe multiple solutions dueto monotoniity properties. It should be noted that all these modelling onsider the reservoirs as�xed objets whih only provide some kind of inhomogeneous boundary onditions, in omparisonwith the theoretial analysis of non equilibrium steady states widely studied within the frameworkof the von Neumann algebrai approah of statistial physis and whih onerns the evolution ofthe full system, small system plus reservoirs (see for example [JaPi℄).For our model, a omplete general funtional framework whih athes the proper nonlinear steadystates and provides a well de�ned nonlinear dynamis was provided in [Ni3℄, after using a phase-spae approah with some spei� tools of the time dependent approah in sattering theory.Besides the building of a proper funtional framework, those models beame even more inter-esting after the artiles of Jona-Lasinio, Presilla and Sjöstrand [JLPS℄, [PrSj℄ where onviningheuristi arguments and alulations on those simple nonlinear systems were provided as an expla-nation for observed hysteresis phenomena, in agreement with point 3). Then the question arosewhether a omplete explanation from an asymptoti analysis on the Shrödinger-Poisson systemor whether new nonlinear phenomena ould be predited in some more omplex geometri settinglike a multiple wells problem. For instane, no real explanation is provided in [JLPS℄, [PrSj℄ forthe presene or the absene of hysteresis phenomena aording to the geometry of the barrier po-tentials. Our redued model (see [NiPa℄, [BNP℄ and forthoming artile [BNP2℄) provides suh anexplanation, with additional results.Finally point 4) provides the relevant asymptoti. Resonant states are e�etive when the imag-inary part of resonanes are small. Suh a behavior an be ahieved when the potential barrier arehigh or large and it is well formulated within a semilassial asymptoti (small parameter h → 0,imaginary part of resonanes of order O(e−c/h)). Nevertheless a full semilassial asymptoti with
O(1) large wells would lead to a large number of resonant states within a �xed energy interval.Point 4) an be ful�lled by onsidering quantum wells in a semilassial island. The introdutionof the small parameter h > 0 as a resaled Fermi-length as well as a full justi�ation of this asymp-toti regime within the presentation of realisti devies has been done in [BNP℄.From a mathematial point of view, this problem presents two spei� di�ulties.

• A non usual multiple wells problem has to be onsidered: it is not exatly a semilassialproblem and it is nonlinear.
• The introdution of resonanes requires the implementation of a omplex deformation andthe study of non self-adjoint operators.Fortunately, the one-dimensional framework provides some simpli�ations or aurate estimateswhih allow a omplete analysis. First a uniform ontrol on the nonlinear potential with the helpof some monotony priniples an be obtained in W 1,∞. Hene the nonlinear potential an bereplaed by an h-dependent potential, with uniform bounds in W 1,∞. Some standard argumentsof the semilassial analysis for resonanes (see [HeSj1℄), for multiple wells (see [HeSj2℄, [HeSj3℄),or for the Breit-Wigner formula (see [GeMa℄) have to be adapted. Again the weak regularity ispartly ompensated by the fat that we work on a 1D problem. This artile is almost self-ontainedin the sense that the proofs whih are exatly the same as in the usual semilassial setting were3



not reprodued. Preise referenes are given for these tehnial parts. Nevertheless some detailshave to be heked in order to ensure that these tehniques an be adapted with the quantum wellsand the limited regularity of the nonlinear semilassial potential. The 1D Shrödinger-Poissonsystem studied here admits natural a priori regularity estimates, uniform with respet to the smallparameter h → 0. This leads asymptotially to a perfet splitting of the quantum and lassialsales.1.2 Quantum frameworkIn the whole study, the framework is the following: h > 0 denotes the semilassial parameterobtained in realisti ases as a resaled Fermi length (see [BNP℄) and I := [a, b] is a given ompatinterval of the real line. Let P h
B the Shrödinger operator on the real line:
P h

B := −h2 d
2

dx2
+ B, B ≡ BI + B∞, (1.1)where

BI(x) := −B
x− a

b− a
1[a,b](x), B∞(x) := −B · 1[b,+∞)(x), (1.2)and B is a non negative onstant. The potential B simply desribes the applied bias. The refereneHamiltonian is the self-adjoint realization in the Hilbert spae L2(R) of P h

B:
D(Hh

B) = H2(R), ∀u ∈ D(Hh
B), Hh

Bu := P h
Bu. (1.3)Sine several self-adjoint (or non self-adjoint) losure of the same di�erential operator will beonsidered, the notation P refers to the di�erential operators ating on C∞

0 , while H will be usedfor its realization as an unbounded operator on L2.We restrit our analysis in this work to operators in the form
P h[V ] := P h

B + V, V ∈ L∞(I), (1.4)and denote by Hh[V ] the self-adjoint realization in L2(R) of P h[V ]:
D(Hh[V ]) = H2(R), ∀u ∈ D(Hh[V ]), Hh[V ]u := P h[V ]u, (1.5)after identifying V ∈ L∞(I) with V (x)1I(x) ∈ L∞(R).Of partiular interest is the ase where the potential V = V h depends on the small parameter

h and desribes quantum wells in an island with li�s. It splits into
V h := V0 + V h

NL, V0 := Ṽ0 −Wh, Ṽ0, V
h
NL ∈W 1,∞(I). (1.6)The funtion Ṽ0, whih models the island potential, an be any non negative Lipshitz funtionindependent of h. Pratially it is simply a onstant potential on I, Ṽ0(x) = V0 1I(x) with V0 ∈ R+.The funtion Wh, whih desribed the quantum wells, is de�ned by

Wh(x) :=

N
∑

i=1

wi

(

x− ci
h

)

. (1.7)In this de�nition of Wh, the positions (ci)
N
i=1 are N given points in (a, b) and wi are non negative

L∞-funtions supported in the interval [−κ, κ], with κ > 0 �xed. We denote by Uh the supportof the funtion Wh and U := ∪N
i=1 {ci} the region where the quantum wells onentrate, and set

c0 := a, cN+1 := b (see Figure 1). 4
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Λ∗Figure 1: Total potential B + V h −Wh.Assumption 1 Suppose that
Λ0 := inf

x∈I
Ṽ0(x) + B(x) > 0 , (1.8)and �x the parameters Λ∗ and Λ∗ so that 0 < Λ∗ < Λ∗ < Λ0.We will fous on the energy range λ ∈ [Λ∗,Λ

∗].Finally the funtion V h
NL desribes the mean �eld nonlinear potential whih takes into aountthe repulsive eletrostati interation. It will be given as a solution to the Poisson equation on

I = [a, b] and will satisfy
∀h > 0, V h

NL ∈W 1,∞(I), V h
NL ≥ 0. (1.9)Suh Hamiltonians are used in the modelling of quantum eletroni transport in mesosopistrutures like resonant tunelling diodes (RTD) or super-latties. The nonlinear steady states anbe studied within a Landauer-Büttiker approah: see [BuLa℄, [Lan℄, [ChVi℄ and [BDM℄ or [Ni3℄ forpossible funtional frameworks onerned with the extension to the nonlinear analysis inludingthe nonlinear dynamis. This approah involves the sattering wave funtions and requires theanalysis of the ontinuous spetrum of Hh[V ]. Sine for any potential V ∈ L∞(I), Hh[V ] is aompatly supported L∞-perturbation of the referene Hamiltonian Hh

B or the Hamiltonian withstep potential −h2∆+B∞, the limiting absorption priniple holds. By standard arguments ([Ya2℄,[Pat℄) one even gets the absene of imbedded eigenvalues
∀h > 0, σess(Hh[V ]) = σa(Hh[V ]) = [−B;∞), (1.10)and the sattering states of Hh[V ] are indeed well de�ned for any V ∈ L∞(I).Remark 1 Under the non neessary additional assumption
∀i ∈ {1, . . . , N} , Ṽ0(ci) + inf σ (−∆ − wi) > 0 , (1.11)one an even hek like in Theorem 3.4 or Theorem 3.6 that there is no eigenvalue at all for h > 0small enough (and V h

NL ≥ 0) ;
σ(Hh[V ]) = σac(H

h[V ]) = [−B,+∞) .5



We fous on the energies λ ∈ [Λ∗,Λ
∗].We onsider the inoming sattering states ψh

−(k, ·) of the Hamiltonian Hh[V ] parameterized bythe wave vetor k (we omit to write the dependene with respet to the potential for satteringstates). They provide a diagonalization ofHh[V ] over the ontinuous spetrum (see formula (1.19)).Preisely, introdue �rst the dispersion relation assoiated with the referene Hamiltonian Hh
BDe�nition 1.1 Set for k ∈ R∗

λk :=

∣

∣

∣

∣

k2 if k > 0,
k2 −B if k < 0.

(1.12)This dispersion relation (1.12) gives, for the wave vetor k, the energy λk of the inoming planewave represented by ψh
−(k, ·). Again, we are mostly interested in the k's suh that λk ∈ [Λ∗,Λ

∗].By de�nition, the inoming generalized eigenfuntion ψh
−(k, ·) de�ned for k ∈ R solves thedi�erential equation:

P hψh
−(k, ·) = λkψ

h
−(k, ·), (1.13)with the normalization (of inoming plane waves)for k > 0 ψ−(k, x) =







ei kx
h + rk e

−i kx
h for x < a

tk e
i
(λk+B)1/2x

h for x > b ,
(1.14)for k < 0 ψ−(k, x) =







tk e
−i

(λk)1/2x

h for x < a

ei kx
h + rk e

−i kx
h for x > b .

(1.15)The square root z1/2 is hosen with the rami�ation along the half-line iR− in order to ensure that
e−i(λk)1/2x deays exponentially as x→ −∞ when λk ∈ (−B, 0) .These oe�ients determine the sattering matrix (rk, tk) for positive energies λk > 0. They arelinked for λk > 0 by the relation

|rk|
2 +

√

λk

λk +B
|tk|

2 = 1, λk > 0 . (1.16)Sine the wave vetor k is a log-derivative, this normalization of the wave funtions an be writtenin terms of boundary onditions at x = a and x = b, in this spei� one-dimensional ase �ttingwith realisti problems:
[

h∂x + iλ
1/2
k

]

|x=a
u = 2ikei ka

h ,

[

h∂x − i(λk +B)1/2
]

|x=b
u = 0, for k > 0 (1.17)and [

h∂x + iλ
1/2
k

]

|x=a
u = 0,

[

h∂x − i(λk +B)1/2
]

|x=b
u = 2ikei kb

h , for k < 0 . (1.18)Thus the problem over the real line is redued to a boundary problem on I with boundary onditionsdepending on the spetral parameter (1.17)-(1.18). These boundary onditions are exat transpar-ent boundary onditions. This setting makes rather easy the omplex deformation argument usedin the analysis of resonanes (see [BaCo℄, [HeSj1℄ or [HiSi℄ for a more general introdution). Hereonsidering a omplex λk around any positive value is easily implemented beause the oe�ientson the boundary onditions at x = a and x = b depend holomorphially on λk (or k).We end this setion with three elementary properties :6



1. With this normalization, it appears that for any non negative ontinuous funtion θ on
[Λ∗,Λ

∗], the operator 1Iθ(H
h[V ])1I is an integral operator. Moreover the kernel is given by

1Iθ(H
h[V ])1I [x, y] =

∫

k

θ(λk)ψh
−(k, x)ψh

−(k, y)
dk

2πh
, (x, y) ∈ I × I. (1.19)2. Note that beause of the regularity of ψh

−, it follows by Merer's theorem (see [Si, Thm 3.5℄)that this operator is trae-lass, with a trae equal to the diagonal integral.3. Note also that beause the solutions to the ODE (1.13) in the interval I is a 2-dimensionallinear subspae, say Sλk
⊂ H2(a, b), onditions (1.17)-(1.18) form an a�ne system in Sλk

.Resonanes around positive energies orrespond to the exeptional omplex values of λk = zfor whih the ontinuous linear funtionals de�ning this system are proportional.1.3 Shrödinger-Poisson systemHere we are interested in the study of the stationary ase. We �rst �x the pro�le of the inomingbeam of eletrons over the struture between a and b.Notation 1 Fix a ontinuous non negative funtion k 7→ g(k) suh that g(k) = 0 if λk /∈ (Λ∗,Λ
∗),see (1.12).A beam of eletrons orresponds to a superposition of sattering states with density g. Theeletroni density is then desribed by the measure dng[V ] de�ned by

dng[V ](x) :=

∫

R

g(k)|ψh
−(k, x)|2

dk

2πh
. (1.20)It is onvenient to introdue the funtion g(Kh

−) of the asymptoti momentum operator de�ned(see [DeGe℄, [Ni3℄ for a more general presentation) aording to:
g(Kh

−)[x, y] =

∫

R

g(k)ψh
−(k, x)ψh

−(k, y)
dk

2πh
.Its loalized version 1Ig(K

h
−)1I has the integral kernel

1Ig(K
h
−)1I [x, y] =

∫

R

g(k)1I(x)ψ
h
−(k, x)ψh

−(k, y)1I(y)
dk

2πh
. (1.21)The operator g(Kh

−) is a density matrix and the density ful�lls the weak formulation
∀ϕ ∈ C0(I),

∫

I

ϕ(x)dng [V ](x) = Tr [1Ig(K
h
−)1Iϕ]. (1.22)Note that in the partiular ase where g(k) is a funtion of the energy, i.e. g(k) ≡ θ(λk), g(Kh

−) isa funtion of the Hamiltonian
g(Kh

−) = θ(Hh) . (1.23)Funtions of the Hamiltonian an be viewed as equilibrium states (and even thermodynamialequilibrium states when θ is dereasing). For suh states, the urrent through the devie is null.Hene out-of-equilibrium steady states with a non vanishing urrent have to be desribed witha funtion g(k) whih is not a funtion of the energy. In order to make this situation lear, weassume the next possibly extendible assumption (see [BNP℄ for an easy generalization towardsmore realisti problems). 7



Assumption 2 Fix a non negative funtion θ ∈ C0
c ((Λ∗,Λ

∗)) and assume that
g(k) = 1k>0 · θ(λk). In partiular, 0 ≤ g(k) ≤ θ(λk). (1.24)The Shrödinger-Poisson system is an Hartree model whih inludes the self-onsistent eletro-stati potential within the devie (a ≤ x ≤ b). Hene the nonlinear potential V h

NL is a solutionto
{

Hh[V h] = Hh
B + Ṽ0 −Wh + V h

NL,

−∆V h
NL = dng[V

h], V h
NL = (a) = V h

NL(b) = 0.
(1.25)Note that the assumption g ≥ 0 yields dng[V

h] ≥ 0 and V h
NL ≥ 0.It is known, (see [BDM℄, [Ni3℄) , that the system (1.25) admits solutions, for �xed h > 0. Further-more with the absene of negative eigenvalues provided by the ondition (1.11), it is easily hekedthat the solutions to (1.25) are the only steady states of the nonlinear dynamis studied in [Ni3℄.Yet, uniform estimates with respet to h are not given in [Ni3℄. We are now interested in thestruture of the set of asymptoti solutions as h → 0. A �rst step onsists in getting a prioriestimates on the semi-linear problem. This is performed in Setion 2. Sine for a given h > 0 thedensity dng[V

h] is a bounded positive measure, we introdue the following spaes:De�nition 1.2 Call (Mb(I), ‖ · ‖b) the Banah spae of bounded omplex measures on [a, b] andlet
BV 2

0 (I) :=
{

V ∈ C0(I) |V ′′ ∈ Mb(I), V (a) = 0 = V (b)
}

, (1.26)normed by ‖V ‖ := ‖V ‖∞ + ‖V ′′‖b.With this norm , BV 2
0 (I) is a Banah spae ontinuously embedded in W 1,∞(I) and ompatlyembedded in the Hölder spaes C0,α(I) for α ∈ (0, 1).1.4 ResultsTheorem 1.3 Consider problem (1.25). Then for h > 0 su�iently small:i) The family of potentials (V h

NL)h>0 is uniformly bounded in L∞(I).ii) The family of measures (dng[V
h])h>0 is bounded in Mb(I) and the family (V h

NL)h>0 is boundedin BV 2
0 (I).iii) Consequently, the family of potentials (V h

NL)h>0 is bounded in W 1,∞(I) and relatively ompatin the Hölder spae C0,α(I) for any α ∈ (0, 1).We then try to identify the weak∗ possible limits dn0
g of the measure dng[V

h]. Owing to theboundedness stated in Theorem 1.3 ii), we shall make the next simplifying assumption whih makessense after possibly extrating a subsequene (hn)n∈N.Assumption 3 The onvergene
dng[V

h]
h→0
⇀ dn0

gholds for the weak topology of Mb(I) = C0(I)′.The following notations for the total potential
Vh := V h + B = Ṽ0 + V h

NL −Wh + B, (1.27)and for the total potential with �lled wells
Ṽh := Vh +Wh = Ṽ0 + V h

NL + B, (1.28)8



are onvenient. The solution to
− ∆V = dn0

g , V (a) = V (b) = 0 (1.29)is denoted V 0
NL and we set

Ṽ0 := Ṽ0 + V 0
NL + B . (1.30)Theorem 1.3 has the next onsequene.Corollary 1.4 Make the Assumption 3. Then the �lled potential Ṽh is uniformly bounded in

W 1,∞(I) and onverges in C0,α(I) to Ṽ0 as h→ 0 for any α < 1. Moreover if the seond derivative
∂2

xṼ0 is a bounded measure, the weak onvergene
∂2

xṼ
h h→0
⇀ ∂2

xṼ
0 = ∂2

xṼ0 − dn0
galso holds in Mb(I).Remark 2 Note that the solution of the asymptoti Poisson equation does not depend on thepossible mass of dn0

g onentrated on x = a or x = b. Indeed the asymptoti potential V 0
NL forgetsany boundary layer and the boundary value problem (1.29) is equivalently written with the restritedmeasure dn0

g

∣

∣

(a,b)
.The idea leading to an aurate desription of the the asymptoti density dn0

g is the following:suppose in a �rst step that the wells are �lled, that is Wh = 0 and Vh = Ṽh. In the lassialpiture, the inoming partiles of energy λk ≤ Λ∗ are re�eted by the li�s, so one expets that
dn0

g ≡ 0 in (a, b). Now, the introdution of the wells Wh generates trapped quantum statestransformed into resonant states after the interation with the ontinuous spetrum. The tunnele�et allows these states to be oupied in a stationary setting. Besides, the quantum wells with an
O(h)-diameter produe two interesting e�ets. Firstly the density will asymptotially onentratelike delta-funtions in positions around the ci's. Seondly the resonant energies attahed to one wellare separated by O(1) gaps (see Remark 3 below). With a �nite number of wells, this asymptotiimplements the general wisdom that the nonlinear system is essentially governed by �nite numberof resonant states of the system (point 4 of our introdution). The relevany of this asymptoti,with quantum wells in a semilassial island, has been arefully heked in [BNP℄ with numerialdata �tting with realisti situations.To state our results we need the notion of asymptoti resonant energy.Notation 2 Denote, for i = 1, . . . , N , by σi the set of the eigenvalues of the Hamiltonian −∆−wion the real line

σi :=
{

ei
k

}

k∈Ki
⊂ (−∞, 0), Ki ⊂ N, i = 1, . . . , N. (1.31)De�nition 1.5 We will say that λ ∈ R is an asymptoti resonant energy for the potential Vh ifand only if

λ ∈ E0 :=

N
⋃

i=1

Ei, Ei := σi + Ṽ0(ci). (1.32)Moreover, we de�ne the multipliity mλ of the asymptoti resonant energy λ as
mλ := #Jλ, where Jλ := {i ∈ {1, . . . , N} s.t. λ ∈ Ei} . (1.33)Finally, for i = 1, . . . , N, we will say that the well ci is resonant at the energy λ (or λ-resonant) ifand only if i ∈ Jλ. 9



Remark 3 The set σi + Ṽ0(ci) is nothing but the set of the eigenvalues of the Hamiltonian Ĥ1
i :=

−∆−wi + Ṽ0(ci) on R, whih is unitarily equivalent to the Hamiltonian Ĥh
i := −h2∆−wi(·/h)+

Ṽ0(ci).Theorem 1.6 Make the Assumptions 1 and 3 and �x a non negative funtion θ ∈ C0
c ((Λ∗,Λ

∗))and assume the onvergene of Ṽh stated in Corollary 1.4. Let dng[V
h] be the density de�nedaording to (1.20) and Assumption 2 or by taking g(k) = θ(λk). Then the weak limit dn0

g satis�es
dn0

g

∣

∣

(a,b)
=
∑

λ∈E0

∑

i∈Jλ

tλi θ(λ) δx=ci , (1.34)with the following spei�ations:i) In the ase of a funtion of the Hamiltonian, that is g(k) = θ(λk), all the tλi 's are equal to 1 forevery λ ∈ E0 and i ∈ Jλ.ii) If g(k) = 1k>0 · θ(λk), then for every λ ∈ E0 and i ∈ Jλ, t
λ
i lie in the interval [0, 1].Finally, the asymptoti nonlinear potential V 0

NL whih solves (1.29) is an a�ne funtion on eahinterval [ci, ci+1], i = 0, . . . , N .Note that the sum is a �nite sum, sine the set E0 ∩ supp θ is �nite. Observe immediately thatpoint ii) follows from i) beause if one denotes
θλ(k) := θ(λk) (1.35)one has 0 ≤ dng[V

h] ≤ dnθλ
[V h], and ii) is obtained by Theorem 1.3 and Poisson's equation (1.25).Moreover, the nonlinearity asymptotially lies in a �nite dimensional subspae A of C0(I) :

A :=
{

V ∈ C0(I) s.t. V|∂I = 0 and V|[ci,ci+1] is a�ne, i = 0, . . . , N
}

. (1.36)In this �nite dimensional spae, the asymptoti nonlinear system an be written either with theoordinate system = (V (ci))i=1,...,N ∈ RN or with the more onvenient one (−V ′(ci + 0)+V ′(ci −
0))i=1,...,N proportionnal to the olletion of total harges in the wells.Theorem 1.6-i) gives a mean to ompute the potential V 0

NL in the partiular ase where g is afuntion of the Hamiltonian. In the anisotropi ase ii) the determination of the tλi 's relies on adisussion on the Agmon distane between the wells. A forthoming paper [BNP2℄ will be dedi-ated to the analysis of these oe�ients.In order to prove the results, we adopt the following strategy: as the problem is a semi-linearproblem, we get a priori estimates for the nonlinear potential (Setion 2), and then redue theanalysis to the linear analysis of the Hamiltonian Hh[V h] with uniform estimates on the potential
(V h)h>0. Useful results on the Dirihlet problem in the interval I with aurate estimates of theresolvent kernel are reviewed in Setion 3. The analysis of resonanes starts in Setion 4 andSetion 5 and ends in Setion 6 with a version of the Breit-Wigner formula for the loal density ofstates.2 A priori EstimatesWe �rst prove some estimates for self-adjoint realizations of P h on Ω = R or Ω an open sub-intervalof I.Consider the di�erential operator P h de�ned by (1.4), for any B ≥ 0 with (1.6)-(1.9), and let P̃ hbe de�ned by

P̃ h[V h] := P h[V h] +Wh ≡ −h2 d
2

dx2
+ Ṽh .10



Remark 4 The ˜ symbol reurrently refers to the situation where the wells are �lled. Aording toour general onvention the letter P refers to the di�erential operator while H refers to some losedrealization as an unbounded operator.Proposition 2.1 Fix a non negative smooth funtion θ̂ ∈ C∞
0 (R), and all Hh

Ω (resp. H̃h
Ω) the self-adjoint realization on L2(Ω) of P h (resp. P̃ h) with domain H1

0 (Ω) ∩H2(Ω). Then, for any givenompat subset K ⊂ R, and h > 0, the operators 1K θ̂(H
h
Ω)1K and 1K θ̂(H̃

h
Ω)1K are trae-lass.Moreover the estimateTr [1K θ̂(H

h
Ω)1K ] − Tr [1K θ̂(H̃

h
Ω)1K ] ≤ CK

(

1 +
∥

∥

∥Ṽh
∥

∥

∥

L∞

)holds with a onstant CK independent of h ∈ (0, h0).Proof: In dimension 1 and for any �xed h > 0, these operators are trae lass (see [Si℄). Forthe omparison, we use the Dynkin-Hel�er-Sjöstrand formula (see [Dav℄, [HeSj4℄, [Ni1℄):
θ̂(Hh

Ω) =
1

2iπ

∫

C

∂
˜̂
θ

∂z̄
(z)(z −Hh

Ω)−1dz ∧ dz̄, (2.1)where ˜̂
θ is a ompatly supported almost-analyti extension of θ̂. Apply then the seond resolventformula for z /∈ R and write with P̃ h − P h = Wh:

1K(z −Hh
Ω)−1

1K − 1K(z − H̃h
Ω)−1

1K = −1K(z −Hh
Ω)−1Wh(z − H̃h

Ω)−1
1K . (2.2)Introdue then a smooth ut-o� funtion χ, equal to 1 on a �xed neighborhood of Uh if Ω 6= R,and take χ ≡ 1 if Ω = R. Write the r.h.s of eq. (2.2)

[1K(z −Hh
Ω)−1χ][Wh(i+ h2∆)−1][(i+ h2∆)χ(z − H̃h

Ω)−1
1K ], (2.3)where −∆ denotes the free Laplaian on R. By the spetral theorem, the �rst fator of (2.3) is abounded operator with norm O(|Im(z)|−1) uniformly w.r.t. h > 0. Sine the operator [Wh(i +

h2∆)−1] is unitarily equivalent to Wh=1(i+ ∆)−1, it is trae lass uniformly with respet to h, z.Indeed the latter writes f(x)g(−i∇) whose symbol is L1 (see [ReSi3, Thm XI. 20, p. 47℄).For the last fator, the deomposition
(i+ h2∆)χ(z − H̃h

Ω)−1 = (i+ h2∆)χ(i+ h2∆Ω)−1
[

1 + (i− z + Ṽh)(z − H̃h
Ω)−1

]

,leads to
∥

∥

∥(i+ h2∆)χ(z − H̃h
Ω)−1

∥

∥

∥ ≤ CK
〈z〉

|Im(z)|

(

1 +
∥

∥

∥Ṽh
∥

∥

∥

L∞

)

.

�Proposition 2.1 says that the quantum wells an be forgotten for a uniform global estimate ofthe density of states. Thanks to a monotony priniple shown in [Ni2℄, one an prove the followingresult:Proposition 2.2 Consider the Shrödinger-Poisson system (1.20)-(1.25). Then the family ofpotentials (V h
NL)h>0 is uniformly bounded in L∞.11



Proof: For a given funtion F, we will denote by Fλ the funtion k 7→ F (λk) (see (1.12) for thede�nition of λk). By assumption on the shape of the inoming beam of eletrons, one has:
0 ≤ g(k) ≤ θλ(k), (2.4)so we will �rst study the density of partiles orresponding to the equilibrium state desribed by

θλ, that is the measure dnθλ
[V h]. The proof onsists in ontrolling the total mass of the measuresby similar quantities relative to other Hamiltonians. In dimension 1, the regularity provided bythe Poisson equation with bounded measure as a right-hand side allows the integration by parts

1

2

∫ b

a

(

dV h
NL

dx

)2

dx =

∫ b

a

V h
NLdng[V

h](x) ≤

∫ b

a

V h
NLdnθλ

[V h](x) . (2.5)Now, hose a non negative smooth ompatly supported funtion θ̂ ∈ C∞
0 (R) dereasing over

(−B,Λ∗) and with support inluded in (−∞,Λ∗) suh that
0 ≤ θ ≤ θ̂. (2.6)We then get by positivity of V h

NL and the expression of the measure in (1.20)
1

2

∫ b

a

(

dV h
NL

dx

)2

dx ≤

∫ b

a

V h
NLdnθλ

[V h](x) ≤

∫ b

a

V h
NLdnθ̂λ

[V h](x). (2.7)Set then
V h

2 := V h − V h
NL ≡ Ṽ0 −Wh, (2.8)and onsider now the Hamiltonian Hh

2 := Hh
B + V h

2 . Apply then the monotony priniple (seeAppendix B) with H1 = Hh
2 = Hh

B +V h
2 and H2 = Hh

B + V h: the last term of (2.7) is bounded by
∫ b

a

V h
NLdnθ̂λ

[V h](x) ≤

∫ b

a

V h
NLdnθ̂λ

[V h
2 ](x)

≤ ‖V h
NL‖L∞(I)

∫ b

a

dnθ̂λ
[V h

2 ](x). (2.9)Applying Proposition 2.1 gives, oming bak to (2.8)
∫ b

a

dnθ̂λ
[Ṽ0 −Wh](x) ≤ C +

∫ b

a

dnθ̂λ
[Ṽ0](x) , (2.10)the onstant C being independent of h sine the potential Ṽ0 does not depend on h. Finally,we need an upper bound for the density of partiles in the island I in the ase of the potential

Ṽ0 + B. For this, we redue the problem to the ase of the onstant potential on I and equal to
Λ∗. Apply again the monotony priniple with H1 = Hh

B − B + Λ∗ and H2 = Hh
B + Ṽ0. Sine

H2 −H1 = Ṽ0 +B −Λ∗ =: δV is larger than Λ0 −Λ∗ > 0 aording to (1.8), one has uniformly on
I

δV (x) > inf
I

(Ṽ0 + B) − Λ∗ ≥ Λ0 − Λ∗ =: α > 0, and δV (x) ≤ ‖Ṽ0‖L∞ . (2.11)By writing dn∗
θ̂λ

for the measure dnθ̂λ
[Λ∗ − BI ], the inequality

α

∫ b

a

dnθ̂λ
[Ṽ0] ≤

∫ b

a

δV · dnθ̂λ
[Ṽ0] ≤

∫ b

a

δV · dn∗
θ̂λ

≤ ‖Ṽ0‖L∞

∫ b

a

dn∗
θ̂λ
,12



implies
0 ≤

∫ b

a

dnθ̂λ
[Ṽ0] ≤

‖Ṽ0‖L∞

α

∫ b

a

dn∗
θ̂λ
. (2.12)Sine ∫ b

a dn
∗
θ̂
is a onstant not depending on h (see Appendix D for expliit formulas), we get,ombining (2.7), (2.10) and (2.12)

1

2
‖V h

NL‖
2
H1

0
≤

(

C +
‖Ṽ0‖L∞

α

∫ b

a

dn∗
θ̂

)

‖V h
NL‖L∞ . (2.13)We onlude with the standard imbedding of H1

0 in L∞. �Theorem 1.3 gathers the results of Proposition 2.2 with the next result.Proposition 2.3 The family of measures (dng[V
h])h is uniformly bounded in Mb(I). It followsthat the family of potentials (V h

NL) is bounded in BV 2
0 (I). In partiular it is a relatively ompatfamily in every Hölder spae C0,α(I), α ∈ (0, 1).Proof: By de�nition of dnθλ

and simple omparison, one gets
∫

I

dng[V
h] ≤

∫

I

dnθλ
[V h] = Tr [1Iθ(H

h)1I ] ≤ Tr [1I θ̂(H
h)1I ].Apply again Proposition 2.1, sine now the family of potentials is uniformly bounded in L∞. Againthe uniform boundedness of the right-hand side with respet to h > 0 omes from (2.9), (2.10),(2.12) and Appendix D. �3 Results on the Dirihlet ProblemFrom now, we systematially make Assumption 3 and redue the analysis to a linearanalysis of Hh[V h].For the ontribution of the resonanes in the evaluation of spetral quantities, the idea on-sists in onsidering the non-self adjoint boundary value problem with omplex oe�ients in theboundary onditions (1.17)(1.18) as a perturbartion of the homogeneous Dirihlet problem.3.1 Some notationsIn order to measure the error, we shall use several standard tools:1) The h-dependent Hs-norms:

‖u‖2
s,h :=

∑

k≤s

‖hk∂k
xu‖

2
L2(I), (u ∈ Hs(I)) (3.1)will be used mainly with s = 0, 1, 2.2) The Agmon distane is de�ned for any potential V ∈ L∞(I) aording toDe�nition 3.1 For an energy λ ∈ R and a potential V, we de�ne the Agmon distane by :

∀x, y ∈ I, d(x, y;V, λ) =

∣

∣

∣

∣

∫ y

x

√

(V (t) − λ)+ dt

∣

∣

∣

∣

. (3.2)13



For our estimates, we should take V = Vh. Yet, it is equivalent to work with the distane relativeto the potential Ṽh sine the support of Wh is inluded in a �nite union of intervals with diameter
2κh.Moreover owing to the lower bound

∀λ ∈ [Λ∗,Λ
∗], ∀x ∈ I, inf

h>0, x∈I
Ṽh(x) − λ ≥ Λ0 − Λ∗ =: δ > 0, (3.3)all the Agmon distanes (depending on Ṽh) are uniformly equivalent to the usual Eulidean dis-tane.3) Finally in the analysis of the tunnel e�et, it is usual to introdue the estimates within the nextsetting.De�nition 3.2 For an h-dependent vetor f(h) in a normed spae E with norm ‖ ‖E and apositive real valued funtion g(h), we write

f(h) = Õ (g(h)) , (as h→ 0) (3.4)if there exists η0 > 0 suh that
∀η ∈ (0, η0), ∃Cη > 0, ∀h ∈ (0, h0), ‖f(h)‖E ≤ Cηe

η
h g(h) .3.2 Deay estimateLike in Proposition 2.1, Ω denotes an open interval in I and Hh

Ω the self-adjoint Dirihlet realiza-tion of P h[V h] with domain H1
0 (Ω) ∩H2(Ω).We shall use the following result about the deay of the eigenfuntions of Hh

Ω.Proposition 3.3 Suppose that UΩ := {c1, . . . , cN} ∩ Ω is not empty. For every h > 0 su�-iently small, let λh ∈ (Λ∗,Λ
∗) be an eigenvalue of Hh

Ω and φh an L2-normalized orrespondingeigenfuntion:
(Hh

Ω − λh)φh = 0.Then, the estimate
∀x ∈ Ω,

∣

∣

∣

∣

dj

dxj
φh(x)

∣

∣

∣

∣

≤ Ch−2j−1e−
d̃h(x,UΩ)

h , j ∈ {0, 1} ,holds with C > 0 uniform w.r.t h ∈ (0, h0) if d̃h stands for the Agmon distane for the potential
Ṽh at the energy λh.Remark 5 Note that ontrary to the general use, we do not introdue at this level the Õ but anaurate estimate made possible in this simple one-dimensional ase. This aurate estimate willbe ombined in the proof of Theorem 3.4 with the uniform Lipshitz estimate on Ṽh (see espeially(3.11), (3.12), (3.13)). This provides a omplete splitting between the semilassial and quantumsale in spite of a limited regularity assumption.Proof: Set Ω = [α, β]. 1) Let us begin with the estimate of φh(x).Apply the Agmon identity of Appendix A with P = P h, z = λh, u1 = u2 = φh and ϕ(x) =
d̃h(x, UΩ) where φh is an eigenfuntion of Hh

Ω with eigenvalue λh. Sine Vh − λh − ϕ′2 = −Wh,the inequalities ϕ = O(h) in Uh and ‖φh‖L2 = 1 imply
e±

ϕ
h = O(1) in Uh and ∫

(Vh − λh − ϕ′2) |vh|2 = O(1).14



From the Agmon identity, we dedue an estimate for vh = eϕ/hφh :
∣

∣

∣

∣

‖h
dvh

dx

∥

∥

∥

∥

L2

= O(1).Sine vh(α) = vh(β) = 0, it follows
∥

∥vh
∥

∥

L2 +

∥

∥

∥

∥

dvh

dx

∥

∥

∥

∥

L2

= O

(

1

h

)

.This implies
‖vh‖L∞ = O

(

1

h

)

,and then
∀x ∈ Ω, |φh(x)| ≤

C

h
e−d̃h(x,UΩ).2) For the estimate of dφh/dx, we use the equation







−h2d
2φh

dx2
+ Vhφh = λhφh,

φh(α) = φh(β) = 0.As φh ∈ C1([α, β]), there exists c ∈ (α, β) suh that dφh

dx (c) = 0. The funtion g de�ned by
g = eϕ/h dφh/dx satis�es







h2g′ = hϕ′e
ϕ
h
dφh

dx
+ h2e

ϕ
h
d2φh

dx2
,

h2g(c) = 0.Using the equation satis�es by φh, we dedue
h2g′ = hϕ′

(

e
ϕ
h φh

)′

− |ϕ′|2 e
ϕ
h φh + (Vh − λh) e

ϕ
h φh

= hϕ′ dv
h

dx
− |ϕ′|2vh + (Vh − λh)vh.Then ‖h2g′‖L2 = O(1/h). Cauhy-Shwarz inequality gives the L∞-estimate for g : |g(x)| ≤ C/h3for any x ∈ [α, β] and also of dφh/dx :

∀x ∈ Ω = [α, β],

∣

∣

∣

∣

dφh

dx
(x)

∣

∣

∣

∣

≤
C

h3
e−d̃h(x,UΩ).

�Remark. When the potential is regular, a better estimate like
∀x ∈ Ω,

∣

∣φh(x)
∣

∣ ≤ Ch−
1
2 e−d̃h(x,UΩ)/h,holds and even a omplete WKB expansion is possible. Here the low regularity and the onen-tration of the quantum wells prevent from suh an aurate result.15



3.3 Spetrum for one single wellFrom the spetral viewpoint, we are interested in loalizing the eigenvalues of Hh
Ω in the limit

h→ 0. The �rst result onerns the problem with one well.Theorem 3.4 Let Ω be a sub-interval of (a, b) ontaining exatly one well ci, i ∈ {1, . . . , N}.Then :i) Every eigenvalue of Hh
Ω in (Λ∗,Λ

∗) onverges, and the limit belongs to the set Ei (see (1.32)).ii) For every λ0 ∈ (Λ∗,Λ
∗) ∩ Ei and any �xed small enough ε > 0, the Dirihlet Hamiltonian Hh

Ωhas exatly one eigenvalue in [λ0 − ε, λ0 + ε] for h ∈ (0, hε).Proof: Call {λh
1 , . . . , λ

h
r} the eigenvalues of Hh

Ω in the interval [Λ∗,Λ
∗], and φh

1 , . . . , φ
h
r anorthonormal system of orresponding eigenfuntions. Beause of Proposition 2.1, sine the rank ofthe spetral projetions are given by traes of funtions of Hh

Ω one has:
r = O(1), h→ 0(take for θ a smooth version of the funtion 1[ε,Λ0], ε > 0 small). The idea is to use the elliptiityof the problem, and the saling of the wells in order to replae the potential Ṽh near a well by aonstant one. Let Ĥh the Hamiltonian with domain H2(R) given by:

∀u ∈ D(Ĥh), Ĥhu := P̂ hu, P̂ h := −h2 d
2

dx2
+ Ṽh(ci) · 1− wi

(

x− ci
h

)

. (3.5)This Hamiltonian is unitarily equivalent to −∆ + Ṽh(ci) − wi(· − ci), whose eigenvalues is the set
Eh

i := Ei + αh
i , αh

i = Ṽh(ci) − Ṽ0(ci) → 0, h→ 0. (3.6)Sine ‖Ṽh − Ṽ0‖C0 → 0 when h → 0, for any λ0 ∈ [Λ∗,Λ
∗] ∩ Ei there exists ε0 > 0 suh that

Ĥh has exatly one eigenvalue in (λ0 − ε0, λ0 + ε0). To analyze the spetrum of Hh in the wholeset [Λ∗,Λ
∗], we then hoose, for eah λ0, two numbers ε+0 > 0, ε−0 > 0 suh that the intervals

(λ0 − ε−0 , λ0 + ε+0 ) are disjoint and their union overs a ompat neighborhood of [Λ∗,Λ
∗] and suhthat Ĥh has no eigenvalues in eah annulus {ε0 < |λ− λ0| < 2 min{ε+0 , ε

−
0 }}.

Λ∗ Λ∗

λ0
-�

ε0
-�

ε0

-�

ε−0
-�

ε+0
-�

δ
-�

δ

-�

2 min(ε+0 , ε
−
0 )

-�

2 min(ε+0 , ε
−
0 )

-� -�

-� -�Let now η > 0, and χ a smooth ut-o� funtion supported in Ω suh that χ = 1 if d(x, ∂Ω) ≥ 2ηand χ = 0 if d(x, ∂Ω) ≤ η. Owing to the exponential deay of the φh
j 's stated in Proposition 3.3,the estimate

〈

χφh
j , χφ

h
k

〉

L2(Ω)
= δjk + O

(

e−
co
h

)

, j, k ∈ {1, . . . , r}, (3.7)for some c0 > 0 independent on h > 0 and η > 0.For any j ∈ {1, . . . , r}, the funtion χφh
j belongs to the domain of Ĥh with the identity

P̂ hχφh
j = λh

j χφ
h
j + [P h, χ]φh

j + (Ṽh(ci) − Ṽh(x))χφh
j . (3.8)16



Owing to the exponential deay of φh
j , the ommutator term satis�es:

‖[P h, χ]φh
j ‖L2(Ω) = O

(

h−1e−
d̃h(ci,∂Ω)−2η

h

)

, (3.9)where d̃h is the Agmon distane for Ṽh at the energy λh
i . Beause the potential Ṽh is greater than

Λ0 and λh
i ≤ Λ∗ < Λ0, the r.h.s in (3.9) is of order O(e−c′/h) with c′ independent of the potentialand the energy.For the last term of the r.h.s. of (3.8), just write for ε > 0

[Ṽh(ci) − Ṽh(x)]χφh
j = 1|x−ci|≤ε · [Ṽ

h(ci) − Ṽh(x)]χφh
j

+ 1|x−ci|>ε · [Ṽ
h(ci) − Ṽh(x)]χφh

j . (3.10)Sine the family of potentials (Ṽh)h>0 is W 1,∞(I)-bounded, the �rst term is treated by writing
∥

∥

∥1|x−ci|≤ε · [Ṽ
h(ci) − Ṽh(x)]χφh

j

∥

∥

∥

L2(Ω)
≤ ε sup ‖Ṽh‖W 1,∞‖χφh

j ‖L2(Ω) = O(ε), (3.11)and again by the aurate deay estimates of Proposition 3.3, the seond term is estimated by
∥

∥

∥1|x−ci|>ε · (Ṽ
h(ci) − Ṽh(x))χφh

j

∥

∥

∥

L2(Ω)
= O

(

e−
c′0ε

h

)

. (3.12)We then hoose
ε := hα, α ∈ (0, 1), (3.13)and we obtain by ombining (3.12), (3.11), (3.9), (3.8)

∀j = 1, . . . , r, P̂ hχφh
j = λh

jχφ
h
j + O(hα) in L2(Ω) . (3.14)Now, �x δ > 0 suh that Ĥh has no eigenvalue in {ε+0 < λ−λ0 < ε+0 +δ}∪{−ε−0 −δ < λ−λ0 < −ε+0 }and apply Proposition C.1 (see Appendix C) to A = Ĥh, [λ−, λ

+] = [λ0 − ε−0 , λ0 + ε+0 ], N = r,
a = δ > 0, µj = λh

j , ψj = χφh
j , from whih we onlude

~d
(span {χφh

1 , . . . , χφ
h
r},1[λ0−ε−

0 ,λ0+ε+
0 ](Ĥ

h)
)

≤

(

r

1 + o(1)

)1/2
ε

a
= O(hα). (3.15)This last estimate fores Hh to have at most one eigenvalue in [λ0 − ε−0 , λ0 + ε+0 ], r ≤ 1, when

h > 0 is small enough.We �nish by proving i) and ii). For this, let φ̂h
0 be a normalized eigenvetor for the eigenvalue

λ0 of the Hamiltonian Ĥh = −h2d2/dx2+ Ṽ0(ci)−wi((·−ci)/h), unitarily equivalent to −d2/dx2+

Ṽ0(ci)−wi Then φ̂h
0 is an eigenvetor of Ĥh for the eigenvalue λ0+αh

i (see (3.6)). Estimates similarto (3.9), (3.11), (3.12) lead to
P hφ̂h

0 = (λ0 + αh
i )χ̂̂φh

0 + O(hα) in L2(Ω) . (3.16)Apply again Proposition C.1 in a small interval entered around λ0 +αh
i in the following way: sine

Ĥh has at most one eigenvalue in [λ0 − ε−0 , λ0 + ε+0 ], it is easy to hoose a onvenient parameter ain Proposition C.1 (Appendix C) by a simple argument of ounting: set Lj := [jhα/2, (j+ 1)hα/2[,and Kj := −Lj ∪ Lj . If {λ0 + αh
i } + K1 ontains the eigenvalue, one de�nes Ih = [λ0 + αh

i −
2hα/2, λ0 + αh

i + 2hα/2], else Ih = [λ0 + αh
i − hα/2, λ0 + αh

i + hα/2]. This furnishes an interval Ih17



of diameter O(hα/2) around λ0 + αh
i and a real a = a(h) > 0 of order hα/2 leading again withProposition C.1 to

~d
(span (χφ̂h

0 ),1Ih
(Hh

Ω)
)

= O(hα/2) . (3.17)This yields r = 1 and the onvergene of the eigenvalue to λ0. �Remark 6 It follows that the well ci is λ-resonant if and only if there exists a domain Ω ontaining
ci suh that for any open set ω ⊂ Ω the Dirihlet operator Hh

ω has an eigenvalue onverging to λas h goes to 0.3.4 Spetrum in the multiple wells aseA way of studying the spetral properties of the multiple wells Dirihlet problem onsists in de-oupling it into N one-well problems. Following [Hel℄ or [HeSj3℄, a good hoie of open sets is thefollowing: �x λ ∈ [Λ∗,Λ
∗], and if d̃h (resp. d̃0) denotes the Agmon distane at the energy λ for thepotential Ṽh (resp. Ṽ0), we de�ne

S1 := min
j 6=k

d̃h(cj , ck) (= S1(h)) (3.18)and for a �xed small enough η > 0,
Ωi := I \

⋃

k 6=i

{x ∈ I, d̃0(x, ck) ≤ η}, i = 1, . . . , N . (3.19)The h-dependane of S1 realled between the parentheses of (3.18) is omitted in the sequel.Note that these open sets are not disjoint and Ωi ontains only the well ci. The use of thedistane d̃0 makes sure that they do not depend on h although the h-dependene would be wellontrolled.We �rst eliminate the non resonant wells before giving a result similar to Theorem 3.4.Proposition 3.5 Let λ be an asymptoti resonant energy and suppose that the well ci is not λ-resonant. Then there exists a positive onstant c suh that for any eigenvalue λh ∈ (λ − c, λ+ c),one has
∀x ∈ (ci − c, ci + c), |φh(x)| ≤ e−

c
h , h→ 0where φh is an L2-normalized eigenfuntion of Hh

I for the eigenvalue λh.In plain words, eigenfuntions for eigenvalues onverging to λ are exponentially small in thenon λ-resonant wells.Proof: Sine λ is not a resonant energy for the well ci, we an hoose the open set ω ontainingthe only well ci and the ompat energy interval Λ ∋ λ suh that for h > 0 su�iently small,the Dirihlet operator Hh
ω has no spetrum in Λ (see Remark 6). For a smooth ut-o� funtion θsupported in ω and equal to 1 on a δ-neighborhood of ci (δ > 0 small), one has

P hθφh = λhθφh + [P h, θ]φh. (3.20)The residual term satis�es by Proposition 3.3 the deay estimate
‖[P h, θ]φh‖L2(I) ≤ Cδe

−
cδ
h , cδ > 0, h→ 0.Note that the vetor θφh is not zero. 18



Apply again Proposition C.1 in a ompat interval stritly ontained in Λ and a > 0 notdepending on h > 0. If we denote by F the spetral subspae for Hh
ω assoiated to this ompatinterval, it follows

~d(span{θφh}, F ) ≤
1

‖θφh‖

Cδe
−

cδ
h

a
. (3.21)Sine F is null by hoie of Λ, it follows by properties of the distane ~d that the l.h.s. of (3.21)is greater than 1. This provides an L2-estimate of θφh. The H2 regularity of a solution to (3.20)provides the pointwise estimate in (ci−δ, ci+δ) . Finally hoose the onstant c > 0 small enough. �The analogous to Theorem 3.4 writesTheorem 3.6 Reall that Hh

ω denotes the Dirihlet realization of P h to the open set ω. Then, for
h > 0 su�iently small :i) After ordering, every eigenvalue of Hh

I in (Λ∗,Λ
∗) onverges as h → 0 and the limit belongs tothe set E0 (see (1.32)).ii) For every λ ∈ (Λ∗,Λ

∗) ∩ E0 and any small enough ε > 0, the operators Hh
I has exatly mλeigenvalue(s) in [λ− ε, λ+ ε] as soon as h < hε.Call them λh

i (i ∈ Jλ).iii) Fix suh a λ. Let (Ωi)i∈Jλ
the subdomains of I de�ned in (3.19). Call (ψh

i )i∈Jλ
normalizedeigenvetors assoiated to the unique eigenvalue of Hh

Ωi
onverging to λ. There exists a unitarymatrix (ph

i,j)1≤i,j≤mλ
suh that in L2(I)

∀i ∈ Jλ, φh
i −

∑

j∈Jλ

ph
i,jψ

h
j = Õ

(

e−
S1
h

)

,with S1 de�ned aording to (3.18).Proof: It su�es to follow the proof in [Hel, pp. 34-35℄, while Proposition 3.5 guarantees thatthe non resonant wells are negligible in the deay estimates (see also [Pat, p. 148℄ for details). �3.5 Resolvent estimatesLet us brie�y reall the deay results of the kernel of the resolvents. Fix η > 0 (η small) and for apoint p ∈ (a, b), let χp denote a smooth ut-o� funtion supported in the set {|x− p| ≤ η}.Like in [HeSj3, p. 143℄ (see also [DiSj℄ or [Pat, p. 135℄ for this spei� ase), the ombinationof the Agmon estimate (see Appendix A) with the spetral theorem provides in the one well-ase(N = 1) the following estimates
∀z /∈ σ(Hh

I ),
∥

∥χx(Hh
I − z)−1χy

∥

∥ ≤ Cη
e

−d̃h(x,y)+Cη

h

min(rh, 1)
, (3.22)where rh = dist(z, σ(Hh

I )), and d̃h is the Agmon distane for the potential Ṽh at the energy
λ := Re(z).A straightforward adaptation of the analysis of the multiple wells Dirihlet problem arried outin [HeSj2℄, [HeSj3, p. 147℄ or [Pat, p. 151℄ provides the same estimate for N > 1.Proposition 3.7 For h in (0, h0), h0 small enough, onsider zh ∈ C \ σ(Hh

I ) suh that thereexists λ0 ∈ [Λ∗,Λ
∗] with zh → λ0 as h → 0 and set λh = Re(zh) and rh = dist(zh, σ(Hh

I )). If19



rh ≥ e−S1/2h with S1 := mink 6=l d̃h(ck, cl), then the kernel of the resolvent (Hh
I − zh)−1 satis�es

∣

∣(Hh
I − zh)−1[x, y]

∣

∣ =
Õ
(

e−
d̃h(x,y)

h

)

min(rh, 1)
,with uniform onstants with respet to x, y ∈ I and where d̃h is the Agmon distane for the potential

Ṽh at the energy λh := Re(zh).Proof: Let θ be a C∞ even funtion supported in a neigborhood [−3η, 3η] and equal to 1 on
[−η, η] where η and Ωi are linked by relation (3.19). We de�ne

θi(x) := θ(x − ci), χi(x) = 1 −
∑

j 6=i

θj(x), ∀i = 1, . . . , N. (3.23)Let χ̃i C
∞ funtions with support in Ωi de�ned in (3.19) suh that

N
∑

i=1

χ̃i = 1.We de�ne
Ti(z) := (Hh

Ωi
− z)−1 and R0 :=

N
∑

i=1

χiTi(z)χ̃i.Then we have
(Hh

I − z)R0 =

N
∑

i=1

χiχ̃i +

N
∑

i=1

[P h, χi]Ti(z)χ̃i

= 1 +

N
∑

i=1

[P h, χi]Ti(z)χ̃i

= 1 −

N
∑

i=1

∑

k 6=i

[P h, θk]Ti(z)χ̃i,sine χiχ̃i = χ̃i and using (3.23). We have to study the onvergene of the serie ∑n≥0R0ε
n with

ε =
∑N

i=1

∑

k 6=i[P
h, θk]Ti(z)χ̃i. We notie that χ̃i[P

h, θk] is equal to 0 as soon k 6= i and if k = i,this term is [P h, θk]. Then,
R0ε

n =

N
∑

i0=1

N
∑

i1 6=i0

. . .

N
∑

in−1 6=in

χi0Ti0 [P
h, θi1 ]Ti1 [P

h, θi2 ]Ti2 , . . . , [P
h, θin ]Tin χ̃in .Sine the funtion θk is loalized in a neighborhood of the well ck, we an write for s = 0, 1, . . . , N−

1
[P h, θis ]Tis(z)[P

h, θis+1 ] = [P h, θis ]χisTis(z)χis+1 [P
h, θis+1 ].This last relation allows to use results on the one-well problem (3.22), then

∥

∥χisTis(z)χis+1

∥

∥ ≤ Cη
e−

d̃h(x,y)−Cη

h

min(rh, 1)
.20



This leads to the following estimate
‖χx0R0ε

nχy0‖ ≤ Cn+1
η

e−
ϕn(x0,y0)−nCη

h

min(rh, 1)n+1
,where ϕn(x0, y0) = mini0,...,in d(y0, cin) + d(cin , cin−1) + . . . + d(ci1 , ci0) + d(ci0 , x0). In fat, thefuntion ϕn is the length of the the shortest way from y to x going through n di�erent wells. Wean bound from below ϕn by

ϕn(x0, y0) ≥ d(x0, y0) + nS1.Then the serie is onvergent under the assumption rh ≥ e−S1/2h and we an write
χx0(H

h
I − z)−1χy0 =

∑

n≥0

χx0R0ε
nχy0 .Appendix E provides the pointwise estimates. �Corollary 3.8 If rh ≥ C−1hC for some C > 0, then

∣

∣(z −Hh
I )−1[x, y]

∣

∣ = Õ
(

e−d̃h(x,y)
)

.Another onsequene is the improved pointwise estimate for the eigenfuntions of the Dirihletproblem ([HeSj3, p.138℄ or [Pat, p. 153℄):Proposition 3.9 For every h > 0 su�iently small, let λh ∈ (Λ∗,Λ
∗) and φh an L2-normalizedorresponding eigenfuntion of Hh

Ω. Suppose that λh → λ0 ∈ E0 ∩ (Λ∗,Λ
∗). Then the estimates

∀x ∈ Ω,

∣

∣

∣

∣

dj

dxj
φh(x)

∣

∣

∣

∣

= Õ

(

e−
d̃0(x,U0)

h

)

, j ∈ {0, 1},hold when d̃0 stands for the Agmon distane for the potential Ṽ0 at the energy λ0 and U0 =
∪i∈Jλ0

{ci} for the set of λ0-resonant wells.Remark 7 Here the Õ-writing of the estimates allows to replae the h-dependent quantities, Ṽh,
d̃h and λh by their asymptoti values Ṽ0, d̃0 and λ0.4 Complex deformation4.1 A redued Stone's formulaThe results of Theorem 1.6 are derived from a good information about the asymptoti loal densityof states assoiated with funtions of the Hamiltonian. Aording to Stone's formula and thelimiting absorption priniple, a possible method is the omputing of a quite preise expression ofthe resolvent, sine for λ ∈ [Λ∗,Λ

∗] ⊂ σa(Hh) (Hh = Hh[V h]):
1

2iπ
1I

[

(Hh − (λ+ i0))−1 − (Hh − (λ− i0))−1
]

1I = 1I
∂E

∂λ
(λ)1I , (4.1)and of its meromorphi extension through the spetral half-line (0,∞) ⊂ [−B,∞), in order to takeinto aount the ontribution of resonant states.We will fous on this meromorphi extension from the upper-half plane while the orresponding21



results for the extension from the lower-half plane are easily arried over after hanging i into −i.Resolvent. Fix z ∈ C, Im(z) > 0 and onsider the problem with unknown u ∈ H2(R) :
(P h − z)u = f, f ∈ L2(I), z ∈ C, Im(z) > 0, Re(z) ∈ (Λ∗,Λ

∗). (4.2)Again beause the potential is onstant on both sides of the interval I, the problem with unknown
u ∈ H2(R):

(P h − z)u = f, f ∈ L2(I) ,an be expliitly solved outside I, and the ondition u ∈ L2 eliminates exponentially growingmodes. It is easy to hek that this ondition is exatly given by (1.17)-(1.18) when Im(z) > 0.Preisely, we an write the next statement.Proposition 4.1 Let z ∈ C, Im(z) > 0, Re(z) ∈ (Λ∗,Λ
∗). Consider the linear funtionals Ta(z),

Tb(z) on H2(I) given by :
Ta(z)u :=

[

h∂x + iz1/2
]

|x=a
u, Tb(z)u :=

[

h∂x − i(z +B)1/2
]

|x=b
u,and the losed unbounded operator Hh

z de�ned by
D(Hh

z ) :=
{

u ∈ H2(I) s.t. Ta(z)u = Tb(z)u = 0
}

,

∀u ∈ D(Hh
z ), Hh

z u := P hu.Then the restrition on I of the solution to equation (4.2) is (Hh
z − z)−1f . In other words :

1I(H
h − z)−1

1I = (Hh
z − z)−1, Im(z) > 0, Re(z) ∈ (Λ∗,Λ

∗).Remark 8 1. We will hek that for suh z′s, operator Hh
z −z is invertible (see Proposition 4.2and Proposition 5.2 below).2. Note that sine the solutions on I of the homogeneous equation assoiated with (4.2) make alinear 2-dimensional subspae of H2(I), the injetivity of operator (Hh

z − z) is equivalent tothe independene of the funtionals Ta(z), Tb(z).3. By replaing i by −i in the de�nitions of the funtionals Ta(z) and Tb(z), one obtains theorresponding boundary onditions for Im(z) < 0.4.2 ResonanesIn our one-dimensional situation, it is quite simple to detet the resonanes as poles of the satteringmatrix. Aording to the end of Subsetion 4.1, one statesProposition 4.2 Let z a omplex number suh that Re(z) > 0. Then z is a resonane of theoperator P if and only if Hh
z − z is not injetive.Indeed, the non-injetivity of Hh

z − z is equivalent to the fat that the linear funtionals areproportional, so the normalization given in (1.14)-(1.15) is not performable.Remark 9 The anti-resonanes are de�ned similarly after onsidering the meromorphi exten-sion from the lower half-plane {Im(z) < 0} while hanging i into −i in the transparent boundaryonditions (see Remark 8). 22



4.3 Analysis of the resolventReall that sine we are interested in getting the spetral density inside the island I, Proposition 4.1allows to work with Hh
z − z in plae of Hh − z. Moreover, beause Theorem 3.6 ensures that theset E0 of asymptoti resonant energies is disrete, we will make the following redution:Assumption 4 Suppose that the set [Λ∗,Λ

∗] ontains exatly one asymptoti resonant energy
λ0 ∈ (Λ∗,Λ

∗) . Reall that mλ0 denotes its multipliity aording to (1.33) and that (λh
j )1≤j≤mλ0are the ordered eigenvalues of Hh

I lying in [Λ∗,Λ
∗] (and onverging to λ0).Introdue

Ωh := {z ∈ C s.t. Re(z) ∈ Kh, Im(z) ∈ [−4h, 4h]} , (4.3)with Kh := [λ0 − αh, λ0 + αh] , (4.4)and αh := 4 max
{

h, |λ0 − λh
j |, j = 1, . . . ,mλ0

}

. (4.5)The parameter z is assumed to satisfy
z ∈ Ωh .Proposition 3.9 indiates that from the spetral viewpoint, around a resonant energy the nonresonant wells do not matter. We adapt to this remark the �lled well Hamiltonians

H̃h
I = Hh

I +Wh and H̃h
z = Hh

z +Wh . (4.6)Set then for given λ ∈ (Λ∗,Λ
∗)

Wh
λ :=

∑

i∈Jλ

wi

(

· − ci
h

)

, Uh
λ := suppWh

λ . (4.7)De�ne then
H̃h

I (λ) := Hh
I +Wh

λ and H̃h
z (λ) := Hh

z +Wh
λ , (4.8)the operators assoiated to respetively the Dirihlet and transparent problems with the λ-resonantwells �lled. The parameter λ remains �xed as h→ 0 and those de�nitions lead to

H̃h
• (λ) = Hh

•when λ 6= λ0 and
H̃h

• (λ0) = Hh
• +Wh

λ0
.In partiular, H̃h

I (λ0) has no eigenvalue in [Λ∗,Λ
∗].An aurate analysis of the resolvent (Hh

z − z)−1 starts with essentially two steps :1. Eliminate the non resonant wells : we show that H̃h
z (λ0) − z is invertible for all z ∈ Ωh.2. Chek that for z far from λ0, Hh

z − z = H̃h
z (λ) − z, λ 6= λ0, is invertible .Hene the notation H̃h

z (λ) is onvenient for a ompat formulation of di�erent results.Proposition 4.3 Make the Assumption 4 and �x any λ ∈ [Λ∗,Λ
∗].i) For any z ∈ Ωh if λ = λ0 (resp. z ∈ [Λ∗,Λ

∗]× [−4h, 4h] and dist(z, λ0) > αh/2 or |Im(z)| ≥ 2hif λ 6= λ0), the operator H̃h
z (λ) − z is invertible. The kernel of the resolvent is estimated by

∣

∣

∣(H̃h
z (λ) − z)−1[x, y]

∣

∣

∣ = Õ
(

e−
d̃(x,y)

h

)

,23



where d̃ stands for the Agmon distane for the potential Ṽh at the energy Re(z). Moreover theonstants an be hosen uniform with respet to x, y ∈ I and z.ii) For any funtion ϕ ∈ C0
c ((a, b)), (H̃h

z (λ)−z)−1ϕ belongs to the spae L1 of trae-lass operatorsfor z ∈ Ωh if λ = λ0 (resp. z ∈ [Λ∗,Λ
∗] × [−4h, 4h] and dist(z, λ0) > αh/2 or |Im(z)| ≥ 2h if

λ 6= λ0), with the estimate
∥

∥

∥
(H̃h

z (λ) − z)−1ϕ
∥

∥

∥

L1
≤ Cϕh

−2 .Remark 10 In partiular, applying i) with λ = λ0, gives, sine Hh
z (λ) = Hh

z and using Prop. 4.2that P h has no resonane in the set
{

z ∈ Ωh, |Im(z)| > 2h or dist(z, λ0) ≥
αh

2

}

.Proof: The �rst statement will be proved in three steps a) b) and ) where the last two onesare very similar.
i)-a) We start with the strongly ellipti problem: suppose that λ = λ0, z ∈ Ωh and Jλ0 =
{1, . . . , N}, that is H̃h

z (λ0) = H̃h
z (every well is �lled). We use the Agmon identity of Appendix Awhere ϕ is a C1(I)-funtion satisfying the eional ondition:

inf
h>0,x∈I

Ṽh(x) − Re(z) − ϕ′2(x) ≥ m > 0 ,and we take the real part of both sides. Sine z ∈ Ωh is possibly omplex, there are boundary termsin the Agmon estimates (see Appendix A) but their oe�ients are O(h3). For z ∈ Ωh and withthe ondition Λ0 − Λ∗ > 0 aording Assumption 1, the oerivity of the variational formulationwith the transparent onditions (see Proposition 4.1) is easily heked when h > 0 is small enough:Taking ϕ ≡ 0 provides the existene of the resolvent and uniform bounds.Taking ϕ with the above eional ondition provide the weighted estimate
∀f ∈ L2(I),

∥

∥

∥e
ϕ
h (H̃h

z − z)−1f
∥

∥

∥

1,h
≤ C

∥

∥

∥e
ϕ
h f
∥

∥

∥

L2
.The ase ϕ ≡ (1 − η)d̃(·, y) for �xed y ∈ (a, b) (whih satis�es the eional ondition) implies i) inthis spei� ase. The pointwise estimate of the Shwartz kernel of the resolvent is obtained afterAppendix E

i)-b) In the weaker ase, λ = λ0, z ∈ Ωh, Jλ0 6= {1, . . . , N}, the problem is neither self-adjoint norstrongly ellipti. Only the wells in Uh
λ0

= suppWh
λ0

aording to (4.7) are �lled and the other nonresonant wells are left. We use an approximation argument with the latter estimate. Set
Sz

0 := d̃(Uh \ Uh
λ0
, ∂I) (4.9)where d̃ is the Agmon distane for the potential Ṽh and the energy Re(z). Introdue, for η > 0small, the ut-o� funtions χ, ψ̃ suh that 0 ≤ χ, ψ̃ ≤ 1, χ ≡ 1 in the set {x ∈ I, d̃(x, Uh \ Uh

λ0
) ≤

Sz
0 − η}, ψ̃ ≡ 1 in the set {d̃(x, Ũh \ Uh

λ0
) ≤ (Sz

0 − η)/2}, χ ≡ 0 in {d̃(x, Uh \ Uh
λ0

) ≥ Sz
0 − η/2

}and ψ̃ ≡ 0 in the set {d̃(x, Ũh
λ \ Uh

λ0
) ≥ (Sz

0 + η)/2}.Choose
R(λ0) := (H̃h

z − z)−1(1 − ψ̃) + χ(H̃h
I (λ0) − z)−1ψ̃. (4.10)as an approximate right inverse for H̃h

z (λ0)− z: Atually H̃h
z (λ0) is replaed by the orrespondingDirihlet Hamiltonian around the remaining non λ0-resonant wells. Note that R(λ0) is well de�nedsine for z ∈ Ωh, z is uniformly far away from the spetrum of H̃h

I (λ0).A straightforward omputation using H̃h
z (λ0)χ = H̃h

I (λ0)χ and χψ̃ = ψ̃ gives
(H̃h

z (λ0) − z)R(λ0) = 1 − ε, ε := ε0 + ε1, (4.11)24



where
ε0 := W̃h

λ (H̃h
z − z)−1(1 − ψ̃), ε1 := −[P h, χ](H̃h

I (λ0) − z)−1ψ̃. (4.12)With the estimate about (H̃h
z −z)

−1 and the ontrol of the resolvent (H̃h
I (λ0)−z)

−1 of the DirihletHamiltonian provided by Proposition 3.7 with the uniform lower bound dist(z, σ(Hh
I (λ0))) ≥ c > 0,one dedues the inequality

‖ε0‖ + ‖ε1‖ ≤ Cηe
−Sz

0+cη

2h , (4.13)in the operator norm.The relation
(H̃h

z (λ0) − z)R(λ0) = 1 − ε, ‖ε‖ ≤ Cηe
−Sz

0+cη

2h (4.14)ensures the injetivity of (H̃h
z (λ0)− z) and provides a right inverse after using the Neumann seriesfor (1 − ε)−1 .Similarly, setting

L(λ0) := (1 − ψ̃)(H̃h
z − z)−1 + ψ̃(H̃h

I (λ0) − z)−1, (4.15)leads to
L(λ0)(H̃

h
z (λ0) − z) = 1 + ε′, ‖ε′‖ ≤ Cηe

−Sz
0+cη

2h , (4.16)and provides a left inverse for H̃h
z (λ0) − z .The estimate of the kernel of the resolvent is now obtained after onsidering the �rst terms in theexpansion series de�ning the inverse

χx · R(λ0)

∞
∑

k=0

εk · χy.The estimate for k = 0 is lear aording to the estimates of the kernels (part a) and Proposition 3.7)appearing in the de�nition of R(λ0). For k ≥ 1, note �rst, sine ψ̃[P h, χ] = 0 and (1 − ψ̃)W̃h
λ = 0that by omputing the terms orresponding to k = 1, k = 2 and then by indution, the generalterm splits for any k ≥ 1 into two terms, namely

χxR(λ)εkχy = χx(H̃h
z − z)−1





k
∏

j=1

ε[j]



χy + χx(H̃h
I (λ0) − z)−1





k
∏

j=1

ε[j+1]



χy , (4.17)where [ℓ] stands for the lass of ℓ modulo 2. Eah term involves k + 1 resolvents, whih indues aprefator (Cηe
cη
2h )k+1 in the estimate

∀k ≥ 1, ‖χx ·R(λ)εk · χy‖ ≤ (Cηe
cη
2h )k+1e−

ϕk(x,y)

h ,with
ϕk(x, y) = min{Lk(x, y), Lk(y, x)}, Lk(x, y) = d̃(x, ∂I) + (k − 1)

Sz
0

2
+ d̃(y, Ũh

λ ) .We onlude, sine ϕk(x, y) ≥ d̃(x, y) + (k − 2)Sz
0 , that the serie is onvergent (the onvergene isuniform w.r.t z ∈ Ωh). Again the pointwise estimate is provided by Appendix E.

i)-) To �nish the proof of i), it remains the ase λ 6= λ0, dist(z, λ0) ≥ αh/2 or |Im(z)| ≥ 2h. Thestrategy is essentially the same as in i)-b): we replae Hh
z = H̃h

z (λ) by H̃h
z far away from the wellsand by H̃h

I (λ) = Hh
I around non λ-resonant wells, whih are all the wells. Consider this time

Sz
0 := d(Uh, ∂I) , with Uh = suppWh25



and χ, ψ suh that 0 ≤ χ, ψ ≤ 1, χ ≡ 1 in the set {x ∈ I, d̃(x, Uh) ≤ Sz
0 − η}, ψ ≡ 1 in the set

{d̃(x, Uh) ≤ (Sz
0 − η)/2} and ψ ≡ 0 in the set {d̃(x, Uh) ≥ (Sz

0 + η)/2}. Choose as an approximateright inverse (well de�ned for z ∈ Ωh suh that |Im(z)| > h or dist(z,Λ0) ≥ αh/2)
R = (H̃h

z − z)−1(1 − ψ) + χ(Hh
I − z)−1ψ,and as an approximate left inverse

L = (1 − ψ)(H̃h
z − z)−1 + ψ(H̃h

I − z)−1 .One obtains again a norm-onvergent series thanks to resolvent estimates and the pointwise esti-mates of the kernel are derived from Appendix E.
ii) We start again like for i) by the ase where λ = λ0, Jλ0 = {1, . . . , N}. For Hh

0 being theDirihlet h-Laplaian on I, write, sine (Hh
0 + i)ϕ = (H̃h

z + i− z − Ṽh)ϕ:
ϕ(H̃h

z − z)−1 = (Hh
0 + i)−1ϕ[1 + (z + i− Ṽh)](H̃h

z − z)−1

+(Hh
0 + i)−1[P h, ϕ](H̃h

z − z)−1. (4.18)One sees that the �rst term of the r.h.s of (4.18) is trae-lass with the announed estimates beause
(Hh

0 + i)−1 is trae-lass whereas the seond fator is uniformly bounded. For the last term, useagain that (Hh
0 + i)−1 is trae-lass and the fat that we obtained estimates for (H̃h

z − z)−1 in the
H1,h-norm. The result follows by taking the adjoint. In the ase λ = λ0, z ∈ Ωh and mλ0 < N ,use the series R(λ0)

∑∞
k=0 ε

k to see that
(H̃h

z (λ0) − z)−1 =
[

(H̃h
z − z)−1(1 − ψ̃) + χ(H̃h

I (λ0) − z)−1ψ̃
]

[

1 + O(e−
c
h )
]

, (4.19)and notie that the �rst fator is trae-lass. Finally, one has something similar for λ 6= λ0 andsuitable z
(Hh

z − z)−1 =
[

(H̃h
z − z)−1(1 − ψ̃) + χ(Hh

I − z)−1ψ̃
]

[

1 + O(e−
c
h )
]

. (4.20)
�5 Loalizing resonanesThe formalism of Grushin's Problem provides a onvenient way to treat simultaneously the questionof the invertibility of the operator(Hh

z −z) raised in the latter setion, and (through a perturbativeformulation) to loalize the resonanes of P h. We refer the reader to the appendix of [HeSj1℄or to [SjZw℄ for a general presentation of this tehnique. Fix the referene energy to the value
λ0 ∈ (Λ∗,Λ

∗) and work in the set Ωh de�ned in (4.3). Denote by λh
1 , . . . , λ

h
n the eigenvalues of

Hh
I onverging to λ0 (they lie in Kh), and φh

1 , . . . , φ
h
mλ0

a orresponding orthonormal system ofeigenvetors. Start by writing the Grushin's problem for the Dirihlet realization Hh
I :

{

(Hh
I − z)u+R−

0 u
− = v,

R+
0 u = v+,

(5.1)with
(u, u−) ∈ D(Hh

I ) × C
mλ0 , (v, v+) ∈ L2(I) × C

mλ0 ,

R−
0 : C

mλ0 −→ L2(I), u− :=







u−1...
u−mλ0






7→ R−

0 u
− :=

mλ0
∑

j=1

u−j φ
h
j , (5.2)26



and
R+

0 : L2(I) −→ C
mλ0 , u 7→ R+

0 u :=







〈u, φh
1 〉L2...

〈u, φh
mλ0

〉L2






. (5.3)Set F ′′ := span {φh

j }
n
j=1, F

′ := (F ′′)⊥. Then, this problem is invertible and the solution is given,with obvious notations by






















u′ = (Hh
I

′
− z)−1v′,

u′′ =

mλ0
∑

j=1

〈u, φh
j 〉φ

h
j =

mλ0
∑

j=1

v+
j φ

h
j ,

u−j = 〈v, φh
j 〉 + (z − λh

j )v+
j , j = 1, . . . ,mλ0 ,

(5.4)where Hh
I
′ denotes the restrition of Hh

I to F ′. In terms of operators
{

u = E0(z)v + E+
0 v

+,

u− = E−
0 v + E−+

0 (z)v+,
(5.5)with

E0(z)v = (H ′h
I − z)−1Πh

I v, E+
0 v

+ =

mλ0
∑

j=1

v+
j φ

h
j ,

E−
0 v =







〈v, φh
1 〉L2...

〈v, φh
mλ0

〉L2






, E−+

0 (z)v+ = diag (z − λh
j ) v+,and Πh

I is the orthogonal projetor onto F ′ :

Πh
I v :=



1 −

mλ0
∑

j=1

|φh
j 〉〈φ

h
j |



 v . (5.6)Finally, write
Hh

I (z) :=

(

Hh
I − z R−

0

R+
0 0

)

, Eh
I (z) := (Hh

I (z))−1 =

(

E0(z) E+
0

E−
0 E−+

0 (z)

)

. (5.7)Now we perturb the problem in order to obtain the resonant problem. Like in the proof ofProposition 4.3, set
S0 := d̃0(U

h
λ0
, ∂I), (5.8)where d̃0 is the Agmon distane for the potential V0 at the energy λ0. For η > 0 small, �x twosmooth ut-o� funtions χ, ψ suh that 0 ≤ χ, ψ ≤ 1, χ ≡ 1 in the set {x ∈ I, d(x, Uh

λ0
) ≤ S0 − η},

ψ ≡ 1 in the set {d(x, Uh
λ0

) ≤ (S0 − η)/2} and ψ ≡ 0 in the set {d(x, Uh
λ0

) ≥ (S0 + η)/2}. De�ne
H(z;h) :=

(

Hh
z − z χR−

0

R+
0 0

)

, z ∈ Ωh. (5.9)27



Far from the resonant wells, Hh
z looks like H̃h

z (λ0) and around the wells the Dirihlet problem(with all the wells) is a good approximation of Hh
z . This leads to set

F(z;h) :=

(

χE0ψ + (H̃h
z (λ0) − z)−1(1 − ψ) χE+

0

E−
0 ψ E−+

0

)

. (5.10)One shows that
H(z;h)F(z;h) = 1 + K(z;h)and K satis�es the estimate

K(z;h) =





Õ
(

e−
S0
2h

)

Õ
(

e−
S0
h

)

Õ
(

e−
S0
2h

)

Õ
(

e−
2S0

h

)



 . (5.11)More preise omputations with the seond order expansion of the Neumann series and using theresolvent esimates of Proposition 4.3 an be done. When all the wells are resonant, mλ0 = N ,details are given by the diret transription of [HeSj1, pp. 117-128℄. The more general ase wastreated in [Pat, pp. 178-189℄.Proposition 5.1 With the notations (4.3) and (5.8) and for z ∈ Ωh, the operator is invertible,and the inverse is given by the norm onvergent series
H(z;h)−1 = F(z;h)

∞
∑

j=0

(−1)jKj(z;h) =

(

E(z;h) E+(z;h)

E−(z;h) E−+(z;h)

)

,with
E−+(z) = E−+

0 + Õ
(

e−
2S0

h

)Moreover, it is uniformly norm-bounded holomorphi funtion of z ∈ Ωh .Within the Grushin problem approah, the inversibility of Hh
z − z is redued to the question ofinvertibility of the �nite-dimensional blok E−+(z) (see the Shur omplement formula (6.7)). Inpartiular, onsidering det(E−+(z)) leads to the next standard approximation result of resonanesby Dirihlet eigenvalues.Proposition 5.2 Take the notation (4.3) and (5.8). The operator P h has exatly mλ0 resonanes(ounted with multipliity) zh

1 , . . . , z
h
mλ0

in Ωh. They satisfy
∀j ∈ {1, . . . ,mλ0}, |zh

j − λh
j | = Õ

(

e−
2S0

h

)

.and have negative imaginary parts.6 Loal density of statesWe end the proof of Theorem 1.6 by onsidering the asymptoti behaviour of the density assoiatedwith a funtion of the energy.
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Proposition 6.1 Let θ ∈ C0
c ((Λ∗,Λ

∗)) and keep the notations (4.4) under Assumptions 1, 3 and4. The partile density dnθλ
[V h] de�ned for g(k) = θ(λk) satis�es the next weak∗ asymptoti in

Mb((a, b)): For all ϕ ∈ C0
c ((a, b)),

lim
h→0

∫ b

a

ϕ(x) dnθλ
= lim

h→0
Tr [θ(Hh)ϕ

]

= lim
h→0

Tr [(θ.1Kh
)(Hh)ϕ

]

=
∑

i∈Jλ0

θ(λ0)ϕ(ci) . (6.1)This result whih is a Breit-Wigner type formula for the density of states like in [GeMa℄ will beproved in two steps : 1) eliminating the non resonant energies; 2) speifying the ontribution ofresonant states.6.1 Eliminating the non resonant energiesWe �rst hek that the density goes to 0 in (a, b) as h goes to 0 when all the wells are �lled, thatis for H̃h and then redue the more general non resonant energy problem to this ase after usingan approximate resolvent provided by (4.19)-(4.20). We start with a simple aurate estimate.Proposition 6.2 Let ψ̃h
−(k, ·) the inoming sattering states of H̃h, suh that λk ∈ [Λ∗,Λ

∗]. Thefuntion ψ̃h
−(k, ·) is uniformly bounded with respet to x ∈ [a, b] and k. Moreover one has theuniform pointwise estimate

ψ̃h
−(k, x) = O

(

h−1/2e−
d̃h(a,x)

h

)

, k > 0,and ψ̃h
−(k, x) = O

(

h−1/2e−
d̃h(b,x)

h

)

, k < 0 ,where d̃h stands for the Agmon distane for the potential Ṽh at the energy λk .Proof: We fous on the ase k > 0 (if k < 0, just swap a and b). Start by notiing that forgiven k, the funtion Ah
k : x 7→ |ψ̃h

−(k, x)|2 satis�es
h2 d

2

dx2
Ah

k = 2|h∂xψ̃
h
−(k, ·)|2 + 2(Ṽh − λk)|ψ̃h

−(k, ·)|2 ≥ 0. (6.2)It follows that the funtion h∂xA
h
k is inreasing on I. But the sattering ondition (1.17) says thatthis funtions vanishes at x = b. So the funtion Ah

k is onvex and dereasing on I. It su�es nowto show that the family (Ah
k(a))k is uniformly bounded. But it equals
Ah

k(a) = |ψ̃h
−(k, a)|2 =

∣

∣

∣ei ka
h + rke

−i ka
h

∣

∣

∣

2

, (6.3)whih is bounded aording to (1.16).Now use the Agmon estimate of Appendix A with V = Ṽh, z = λk, u = v = ψ̃h
−(k, ·) and

ϕ = d̃h(a, x). Sine P̃ hu = zu, and V − ϕ′2 − z = 0, this leads after taking the real part to
∥

∥

∥h∂x

(

e
ϕ
h ψ̃h

−(k, ·)
)∥

∥

∥

2

L2(I)
≤ h2e

2ϕ(a)
h

∣

∣

∣Re(h∂xψ̃
h
−(k, a)ψ̃h

−(k, a))
∣

∣

∣

+h2e
2ϕ(b)

h

∣

∣

∣Re(h∂xψ̃
h
−(k, b)ψ̃h

−(k, b))
∣

∣

∣ (6.4)
≤ 2|k|Ah

k(a)1/2 = O(1) . (6.5)29



Writing
e

ϕ(x)
h ψ̃h

−(k, x) = ψ̃h
−(k, a) + h−1

∫ x

a

h∂x

(

e
ϕ(t)

h ψ̃h
−(k, t)

)

dtand Shwarz's inequality yield the result. �Corollary 6.3 Let θ ∈ C0
c ((Λ∗,Λ

∗)) and ϕ ∈ C0
c ((a, b)). The operator θ(H̃h)ϕ is trae-lass witha trae estimated by Tr[θ(H̃h)ϕ] = Õ



e
−
c dist(suppϕ, ∂I)

h



 ,where dist(x, y) = |x− y| and c is a positive onstant. The family of measures (dnθλ
[Ṽ h])h>0weakly onverges to 0 in Mb((a, b)) .Proof: The funtion ϕ an be assumed non negative. We write

∫ b

a

ϕ(x) dnθλ
[Ṽ h](x) = Tr [ϕ1/2θ(H̃h)ϕ1/2

]

=

∫ b

a

∫

R

θ(λk)
∣

∣

∣
ψ̃h
−(k, x)

∣

∣

∣

2

ϕ(x)
dk

2πh
,after using the expression of the kernel of θ(H̃h) . Proposition 6.2 ombined with the fat that theAgmon distane d̃h assoiated with Ṽ and an energy λ ∈ (Λ∗,Λ

∗) is uniformly equivalent to theEulidean distane, yields the result after integration. �Thanks to this result one easily gets rid of non resonant energies.Proposition 6.4 Consider the energy interval Kh de�ned in (4.4) and set θ̃h(λ) := (1−1Kh
(λ)) ·

θ(λ). Then in restrition to (a, b), the measure dnh
θ̃h

λ

weakly onverges to 0 as h goes to 0:
∀ϕ ∈ C0

c ((a, b)), lim
h→0

Tr (θ̃h(Hh)ϕ) = 0 .Proof: We again assume again ϕ ≥ 0 and apply Stone's formula in order to ompute the traeof ϕ1/2
1I θ̃

h(Hh)1Iϕ
1/2. By referring to Proposition 4.1 and by using suessively (4.19)-(4.20)one obtainsTr (θ̃h(Hh)ϕ) = Tr (θ̃h(H̃h)(1 − ψ̃)ϕ) + Tr (χθ̃h(Hh

I )ϕ̃) + O
(

h−2e−
c
h

)

, h→ 0. (6.6)The �rst term an be estimated by
0 ≤ Tr (θ̃h(H̃h)(1 − ψ̃)ϕ) ≤ Tr (θ(H̃h)(1 − ψ̃)ϕ) ,with a right-hand side onverging to 0 by Corollary 6.3. Meanwhile the seond term anels sine

Hh
I has no spetrum on the support of θ̃h. This �nishes the proof. �
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6.2 Contribution of resonant statesLet us �rst go bak to the Grushin problem introdued in Setion 5. Aording to Proposition 5.1,and estimates (5.11) we have
H(z;h)−1 :=

(

E(z) E+(z)
E−(z) E−+(z)

)

= F(z;h)

(

1 + ε(z) ε+(z)
ε−(z) 1 + ε−+(z)

)

,with ε•(z) = Õ(e−S0/2h) uniformly in z ∈ Ωh. This implies
[Hh

z − z]−1 = E(z) − E+(z)(E−+(z))−1E−(z) . (6.7)Coming bak to the de�nition (5.10) of Fh(z), this an be improved into
E(z) = (H̃h

z (λ0) − z)−1(1 − ψ)(1 + ε) + χE0(z)ψ(1 + ε) + χE+
0 ε

− (6.8)
E+(z) = χE+

0 + (H̃h
z (λ0) − z)−1(1 − ψ)ε+ + χE+

0 ε
−+ + χE0(z)ψε

+ (6.9)
E−(z) = E−

0 ψ + E0(z)ψε+ E−+
0 (z)ε− (6.10)

E−+(z) = E−+
0 (z) + Õ

(

e−
2S0

h

)

. (6.11)We are now ready to apply Stone's formula with a omplex deformation of the integrationontour. Before this, we write under an adapted form the polar part oming from (6.11).Lemma 6.5 Set Ω̃h := [λ0−α
h/2, λ0−α

h/2]× [−2ih, 2ih] For z in Ωh\Ω̃h, there exists a onstant
c > 0 and a matrix-valued meromorphi funtion G suh that

E−+(z)−1 = E−+
0 (z)−1 +G(z), ‖G(z)‖ = O

(

e−
c
h

)

, h→ 0 .Proof: Fix any matrix-norm on Cmλ0 and use again (6.11) to see that
E−+(z) = (1 + F (z)E−+

0 (z)−1)E−+
0 (z), z 6= λh

j ,

‖F (z)‖ = O
(

e−
2S
h

)

, 0 < S < S0 for z ∈ Ωh \ Ω̃h . (6.12)Beause of the expression of E−+
0 (z),

‖F (z)E−+
0 (z)−1‖ = O

(

e−
2S
h

)

(

min
j=1,...,mλ0

|z − λh
j |

)−1

.For z 6= zh
j , j = 1, . . . ,mλ0

E−+(z)−1 = E−+
0 (z)−1[1 + F (z)E−+

0 (z)−1]−1 (6.13)and the ondition z ∈ Ωh \ Ω̃h implies minj=1,...,mλ0

∣

∣z − λh
j

∣

∣ ≥ h. Therefore, the Neumann expan-sion of [1 + F (z)E−+
0 (z)−1]−1 onverges, whih yields the result. �We an end the proof of Theorem 1.6 with theProof of Proposition 6.1: Owing to Proposition 6.4 it is enough to onsider the trae

1I(1Kh
.θ)(Hh)1Iϕ.31



Aording to Stone's formula and Proposition 4.1 one gets for non negative funtions θ ∈ C0
c ((Λ∗,Λ

∗)),and ϕ ∈ C0
c (I),

1I(1Kh
.θ)(Hh)1Iϕ =

−1

2iπ

∫

Kh+i0

θ(λ)(λ − Hh
λ )−1ϕ dλ +

1

2iπ

∫

Kh−i0

θ(λ)(λ − H ′h
λ )−1ϕ dλ ,(6.14)where (H ′h

z − z)−1 denotes the (meromorphi ontinuation from the lower-half omplex plane) ofthe trunated resolvent 1I(H
h − z)−1

1I , orresponding to the anti-resonant boundary onditions(see Remark 9).For �xed ε > 0, onsider the ontour Cε made by the segments (Λ∗ + iε,Λ∗ + iε) ∩ Ωh and
(Λ∗− iε,Λ

∗− iε)∩Ωh soured in opposite way, the �rst one by real parts inreasing (see Figure 2).This ontour in homotopi to the union of the irle γh and the ontour C′
ε (depited in the Figure 2)whih lies on the square root Riemann surfae rami�ed along R+. Part of the deformation takesplae on the seond sheet where resonanes appear as poles. Meanwhile in the lower half-plane(�rst sheet) the resolvent is given by the anti-resonant boundary onditions (see Remark 9). Theoperator orresponding to these dual transparent boundary onditions is denoted by H ′h

z and itsresolvent, [H ′h
z − z]−1, has the same properties as [Hh

z − z]−1, up to the sign of imaginary parts.Sine for any given funtion ϕ ∈ C0
c ((a, b)), the funtional θ 7→ Tr [θ(Hh)ϕ] de�nes a non negative
γh

iε

−iε

C′
ε

C′
ε

C−

C+

λ0
× γ(h)

C−

C+C′
ε C′

ε

Figure 2: Appliation of Stone's formula. Resonanes lie on the seond sheet and lose to λ0(semi-irle gray).measure while the right-hand side∑i∈Jλ0
θ(λ0)ϕ(ci) of (6.1) is also a positive funtional of θ, thefuntion θ an be replaed by a polynomial approximation on the interval [Λ∗,Λ

∗]. Use polynomialapproximations from below (resp. from above) in order to get a lower bound (resp. upper bound)of the limit in (6.1). Hene we an assume that θ is a polynomial funtion on [Λ∗,Λ
∗], whih allowsthe omplex deformation of the ontour integral.We �rst integrate the polar part. Consider �rst the integral over γh, whih involves only

(Hh
z − z)−1. Use expression (6.7) �rst. Let us note immediately that E(z) is a holomorphifuntion in a neighborhood of γh, its integral is null. Then, one an rewrite

E−(z) = E−
0 ψ + Õ

(

e−
S0
2h

)

, E+(z) = χE+
0 + Õ

(

e−
S0
2h

)

. (6.15)These estimates hold in the norm of trae-lass operators sine these operators are of �nite-rank.On the ontour γh, one has
E−+(z)−1 = E−+

0 (z)−1 +G(z), G(z) = O(1), (6.16)32



so oming bak to (6.7)
E+

0 (z −Hh
z )−1 = −E(z) + χE+

0 E
−+
0 (z)−1E−

0 ψ + O
(

e−
S0
2h

)

, h→ 0. (6.17)If now we integrate over γh, and sine θ(λh
j ) = θ(λ0) + o(1), it omes

∫

γh

θ(z)(Hh
z − z)−1ϕ

dz

2iπ
= 0 + θ(λ0)χE

+
0 E

−
0 ψϕ+ o(1)‖ϕ‖∞. (6.18)Note that E+

0 E
−
0 is nothing but the orthogonal projetor on the Dirihlet states ∑mλ0

j=1 |φh
j 〉〈φ

h
j | .Taking now the trae, and using its yliity, one has with the approximation of the Dirihlet statesby superpositions of the eigenfuntions of the one-well problem in Theorem 3.6Tr χmλ0

∑

j=1

|φh
j 〉〈φ

h
j |ψϕ



 = Trmλ0
∑

j=1

|φh
j 〉〈φ

h
j |ψϕ



 (6.19)
=

mλ0
∑

j=1

〈

φh
j , φ

h
j ψϕ

〉

L2 (6.20)
=

∑

j∈J(λ0)

ϕ(cj) + o(1)‖ϕ‖∞ . (6.21)Let us ome to the ontour C′
ε of whih the projetion on C lies in Ωh \ Ω̃h. Note that the polarpart oming from (H ′h

z − z)−1 is to be treated with the integral of the polar part oming from
(Hh

z − z)−1. Sine (with obvious notations)
E′−+(z)−1 − E−+(z)−1 = E′−+(z)−1(E−+(z) − E′−+(z))E−+(z)−1 ,Lemma 6.5 implies that the di�erene is then exponentially small beause the resonanes andanti-resonanes are at distane greater than h from C′

ε.It remains the holomorphi part over C′
ε. Beause the polar part is treated, one an omputethis integral after the inverse homotopy leading bak to Cε. But oming bak to the expansionseries (6.8) of E(z) (resp. E′(z)) with main term given by H̃h

z (resp. H̃ ′
h

z ), the appliation ofStone's formula gives that the ontribution of these terms is zero by Proposition 6.4. �A Agmon identityHere we just give the basi energy identity.Lemma A.1 Let Ω := (α, β) an open interval, V ∈ L∞(ω), z ∈ C and ϕ a Lipshitz real funtionon Ω. Denote by P the Shrödinger operator P := −h2d2/dx2 + V. Then for any u1, u2 in H2(Ω),and setting vj := eϕ/huj one has:
∫ β

α

e
2ϕ
h (P − z)u1ū2dx =

∫ β

α

hv′1hv
′
2dx+

∫ β

α

(V − z − ϕ′2)v1v̄2dx

+

∫ β

α

hϕ′(v′1v̄2 − v1v̄
′
2)dx

+ h2
(

e
2ϕ(α)

h u′1ū2(α) − e
2ϕ(β)

h u′1ū2(β)
)

.This identity is obtained after onjugation of hd/dx by eϕ/h and integration by parts.33



B Monotony PrinipleA little variation of [Ni2℄ provides the next result.Proposition B.1 For i = 1, 2, let Vi two non negative funtions in L∞(I) and Hi := Hh
B + Vi.Consider a funtion F ∈ S(R) whih is dereasing on [−B,+∞). Write Fλ(k) = F (λk) and de�ne

dnFλ
aording to (1.35) and (1.20). Then the inequality

∫

I

(V2 − V1)dnF [V2] ≤

∫

I

(V2 − V1)dnF [V1]holds.This inequality is a onvexity inequality whih is a key ingredient in the analysis of thermondy-namial equilibria of Shrödinger-Poisson systems (see [Ni1℄, [Ni2℄). Here the assumption Vi ≥ 0ensures σ(Hi) ⊂ [−B,+∞). The onvexity inequality with a ontinuous spetrum has been provedin [Ni2℄, with the assumption that the potential is 0 at in�nity. Here the di�erent values 0 and
−B for x < a and x > b do not bring any additional di�ulties in this simple one-dimensionalproblem.C Spetral approximationWe refer the reader to [Hel℄, [HeSj2℄ for the details. Reall that if E and F are two given losedsubspaes of a Hilbert spae H, with orthogonal projetions ΠE and ΠF , the non-symmetridistane from E to F, denoted by ~d(E,F ) ∈ [0, 1] is the norm of operator (1 − ΠF )ΠE , and if
~d(E,F ) < 1, ΠF indues on E a ontinuous injetion on its range with bounded inverse. Moreover,if at the same time ~d(F,E) < 1, the latter distanes are equal. In partiular E and F have samedimension.Proposition C.1 Let A an unbounded self-adjoint operator on H and Λ := [λ−, λ+] ⊂ R. Supposethat there exists ε > 0, N linearly independent vetors ψ1, . . . , ψN in the domain of A,µ1, . . . , µN ,
N omplex numbers in Λ suh that Aψj = µjψj + rj , with ‖rj‖ ≤ ε. If A has no spetrum in
{x, 0 < dist(x,Λ) ≤ a} for some a > 0, then the subspaes E := Span(ψ1, . . . , ψN ) and F equal tothe spetral subspae 1Λ(A)H verify

~d(E,F ) ≤

(

N

ρ∗

)1/2
ε

a
,where ρ∗ is the smallest eigenvalue of the Gram matrix with entries 〈ψi, ψj〉.In partiular if A is known to have only disrete spetrum and if the direted distane ~d(E,F ) anbe proved in this way to be smaller than 1, then A has at least N eigenvalues lying in Λ.D Sattering states for the barrierProposition D.1 Let V0(x) := Λ∗ on I and Hh

0 := −h2∆ + V0 − B · 1(b,∞), and {ψh
−(k, ·)}k itssattering states. Set Sk :=

√

(Λ∗ − λk), λk < Λ∗. Then one has as h → 0, and uniformly for
x ∈ I, for k > 0

|ψh
−(k, x)|2 =

4k2

Λ∗
e−

Sk(x−a)

h

(

1 + O
(

e−
2Sk(b−x)

h

))

,

|ψh
−(−k, x)|2 =

4k2

Λ∗ +B
e

Sk(x−b)

h

(

1 + O
(

e−
2Sk(x−a)

h

))

.34



It su�es to solve expliitly on I the system haraterizing ψh
−(k, ·) on the expliit basis ofsolutions to the ODE (sine the potential is onstant on I). Use the sattering onditions (1.17)-(1.18) . These onditions are still valid when λ < 0 beause of the hoie of the square root indeed.Finally the omputation redues to the solving of 2 by 2 a�ne systems. We just give the �nalresult.E Pointwise estimate for the resolventThe next result shows that no Lipshitz regularity is neessary in dimension 1 in order to transformweighted L2-estimates into pointwise estimates of the Green funtions. One the weighted L2-estimates are obtained from the Agmon identity of Appendix A, it su�es to use the equationafter the regularization of the Agmon distane whih is possible beause the Õ estimates anabsorb little exponential errors.Proposition E.1 Let H = −h2∆ + V be a losed operator with V ∈ L∞(I), I = [a, b], D(H) ⊂

H2(I), with dual H ′ and D(H ′) ⊂ H2(I). Fix z ∈ C suh that z 6∈ σ(H) for all h ∈ (0, h0). Weassume that there is a distane d ∈ C0(I × I), suh that the resolvent estimate
‖χx(z −H)−1χy‖L(L2) ≤ CηA(h)e

−d(x,y)+η
hholds for all (x, y, h) ∈ I × I × (0, h0) as soon as η ∈ (0, η0), with η0 > 0 small enough and χpgenerially denotes a ut-o� funtions supported in |x− p| = O(η). Then the pointwise estimate

|(z −H)−1[x, y]| = Õ
(

A(h)e
−d(x,y)

h

)

,holds with uniform onstants with respet to (x, y, h) ∈ I × I × (0, h0).Proof: Let y0 ∈ I be �xed. Consider a smooth funtion ϕ ∈ C∞(I) whih is an aproximation of
d(x, y0), suh that ‖ϕ− d(., y0)‖L∞ ≤ η and f ∈ L2(I).Let u be the solution to (H − z)u = χy0f , then

e
ϕ
h (−h2∆ + V − z)e−

ϕ
h

(

e
ϕ
h u
)

= e
ϕ
h χy0f.By de�ning v = eϕ/hu, the assumption leads to the estimate

‖v‖L2 ≤ Cη A(h) e
cη
h ‖χy0f‖. (E.1)Using the relation

e
ϕ
h (−(h∂x)2 + V − z)e−

ϕ
h = −h2∂2

x + 2hϕ′∂x + hϕ′′ + V − (ϕ′)2 − z,we an write
[C − h2∂2

x + 2hϕ′∂x]v = e
ϕ
h χy0f + Cv + hϕ′′v − (V − (ϕ′)2 − z)v, (E.2)where C is a stritly positive onstant large enough. The regularity of ϕ implies

‖v‖H2,h ≤ Cη e
cη
h ‖χy0 f̃‖L2 .In dimension one, H2,h is ontinously embedded in C0([a, b]). Then the appliation f 7→ eϕ/h(H −

z)−1e−ϕ/hχy0f is ontinuous from L2([a, b]) onto C0([a, b]) with the above uniform estimate.By duality, χy0e
−ϕ/h(H ′ − z)−1e−ϕ/h is ontinuous from (Mb(I), ‖ · ‖b) onto L2.35



By hanging y0 into x0 and H into H ′, this says that the L2-norm v1 = χx0e
d(x0,y0−cη)/h(H −
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