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Far from equilibrium steady states of1D-S
hrödinger-Poisson systems with quantum wells IV. Bonnaillie-Noël∗, F. Nier†, Y. PatelAbstra
tWe des
ribe the asymptoti
 of the steady states of the out-of equilibrium S
hrödinger-Poisson system, in the regime of quantum wells in a semi
lassi
al island. After establishinguniform estimates on the nonlinearity, we show that the nonlinear steady states lie asymptoti-
ally in a �nite-dimensional subspa
e of fun
tions and that the involved spe
tral quantities areredu
ed to a �nite number of so-
alled asymptoti
 resonant energies. The asymptoti
 �nitedimensional nonlinear system is written in a general setting with only a partial information onits 
oe�
ients. After this �rst part, a 
omplete derivation of the asymptoti
 nonlinear systemwill be done for some spe
i�
 
ases in a forth
oming arti
le [BNP2℄.MSC (2000): 34L25; 34L30; 34L40; 65L10; 65Z05; 81Q20; 82D37.Keywords: S
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tion1.1 MotivationThis analysis is motivated by the study of quantum ele
troni
 transport in semi
ondu
tor het-erostru
tures, like resonant tunneling diodes. It is modelled on the basis of a mean �eld Hartreetype des
ription of the ele
trostati
 intera
tion of parti
les, known as the S
hrödinger-Poissonsystem. The modelling of resonant tunneling diodes in
ludes the following 
hara
teristi
 features:1. Steady ele
troni
 
urrents are observed. This 
an be a
hieved only within the modelling ofout-of-equilibrium quantum systems.2. The I−V 
urves of su
h devi
es present negative di�erential resistan
e. We are in a far fromequilibrium regime, for whi
h the linear response theory is questionnable.3. A very ri
h nonlinear phenomenology 
an be observed in su
h devi
es, with hysteresis phe-nomena (see [JLPS℄, [PrSj℄) and even steadily os
illating 
urrents (see [KKetal℄).4. The general wisdom about these systems says that the nonlinear e�e
ts are governed by littlenumber of resonant states.This arti
le is a part of a larger program, namely the understanding of the nonlinear dynam-i
s of these out-of-equilibrium quantum systems. One issue is to prove rigorously that a simpleS
hrödinger-Poisson system in a far from equilibrium regime, that is when the steady states show astrong anisotropy in the momentum variable at the quantum s
ale, 
an lead to multiple solutions tothe nonlinear stationary problem with non trivial bifur
ation diagrams. A �rst 
he
k was providedby Jona-Lasinio, Presilla and Sjöstrand in [JLPS℄, [PrSj℄. A se
ond issue whi
h goes de�nitelyfurther than those previous works is the explanation of the produ
tion of 
omplex bifur
ation di-agrams in terms of the geometry of the potential, whi
h requires an a

urate analysis of tunnele�e
ts.The present work was a
hieved on the basis of former works by the se
ond author and of theph-D thesis of the third author. This analysis lead the three authors to the introdu
tion of someredu
ed model whi
h happens to be very e�
ient in the numeri
al simulation of realisti
 devi
es(see [BNP℄). Only the �rst part of the mathemati
al analysis is provided here and 
omplementswill be presented in a forth
oming arti
le [BNP2℄.2



The points 1) and 2) above are now well understood. A presentation 
an be done within aLandauer-Büttiker approa
h [BuLa℄, [Lan℄, [ChVi℄ and [BDM℄ whi
h involves the s
attering states.This modelling allows a strong anisotropy of the o

upation number with respe
t to the momentumand it de�nitely di�ers from all the approa
h where the density matrix looks like a fun
tion of theHamiltonian [BKNR1℄, [BKNR2℄. This latter modelling (and probably the entropy maximizingapproa
h of [DMR℄ as well) better suits the situation of little variations from the thermodynami
alequilibrium, ends with 
orre
ted drift-di�usion models and 
annot produ
e multiple solutions dueto monotoni
ity properties. It should be noted that all these modelling 
onsider the reservoirs as�xed obje
ts whi
h only provide some kind of inhomogeneous boundary 
onditions, in 
omparisonwith the theoreti
al analysis of non equilibrium steady states widely studied within the frameworkof the von Neumann algebrai
 approa
h of statisti
al physi
s and whi
h 
on
erns the evolution ofthe full system, small system plus reservoirs (see for example [JaPi℄).For our model, a 
omplete general fun
tional framework whi
h 
at
hes the proper nonlinear steadystates and provides a well de�ned nonlinear dynami
s was provided in [Ni3℄, after using a phase-spa
e approa
h with some spe
i�
 tools of the time dependent approa
h in s
attering theory.Besides the building of a proper fun
tional framework, those models be
ame even more inter-esting after the arti
les of Jona-Lasinio, Presilla and Sjöstrand [JLPS℄, [PrSj℄ where 
onvin
ingheuristi
 arguments and 
al
ulations on those simple nonlinear systems were provided as an expla-nation for observed hysteresis phenomena, in agreement with point 3). Then the question arosewhether a 
omplete explanation from an asymptoti
 analysis on the S
hrödinger-Poisson systemor whether new nonlinear phenomena 
ould be predi
ted in some more 
omplex geometri
 settinglike a multiple wells problem. For instan
e, no real explanation is provided in [JLPS℄, [PrSj℄ forthe presen
e or the absen
e of hysteresis phenomena a

ording to the geometry of the barrier po-tentials. Our redu
ed model (see [NiPa℄, [BNP℄ and forth
oming arti
le [BNP2℄) provides su
h anexplanation, with additional results.Finally point 4) provides the relevant asymptoti
. Resonant states are e�e
tive when the imag-inary part of resonan
es are small. Su
h a behavior 
an be a
hieved when the potential barrier arehigh or large and it is well formulated within a semi
lassi
al asymptoti
 (small parameter h → 0,imaginary part of resonan
es of order O(e−c/h)). Nevertheless a full semi
lassi
al asymptoti
 with
O(1) large wells would lead to a large number of resonant states within a �xed energy interval.Point 4) 
an be ful�lled by 
onsidering quantum wells in a semi
lassi
al island. The introdu
tionof the small parameter h > 0 as a res
aled Fermi-length as well as a full justi�
ation of this asymp-toti
 regime within the presentation of realisti
 devi
es has been done in [BNP℄.From a mathemati
al point of view, this problem presents two spe
i�
 di�
ulties.

• A non usual multiple wells problem has to be 
onsidered: it is not exa
tly a semi
lassi
alproblem and it is nonlinear.
• The introdu
tion of resonan
es requires the implementation of a 
omplex deformation andthe study of non self-adjoint operators.Fortunately, the one-dimensional framework provides some simpli�
ations or a

urate estimateswhi
h allow a 
omplete analysis. First a uniform 
ontrol on the nonlinear potential with the helpof some monotony prin
iples 
an be obtained in W 1,∞. Hen
e the nonlinear potential 
an berepla
ed by an h-dependent potential, with uniform bounds in W 1,∞. Some standard argumentsof the semi
lassi
al analysis for resonan
es (see [HeSj1℄), for multiple wells (see [HeSj2℄, [HeSj3℄),or for the Breit-Wigner formula (see [GeMa℄) have to be adapted. Again the weak regularity ispartly 
ompensated by the fa
t that we work on a 1D problem. This arti
le is almost self-
ontainedin the sense that the proofs whi
h are exa
tly the same as in the usual semi
lassi
al setting were3



not reprodu
ed. Pre
ise referen
es are given for these te
hni
al parts. Nevertheless some detailshave to be 
he
ked in order to ensure that these te
hniques 
an be adapted with the quantum wellsand the limited regularity of the nonlinear semi
lassi
al potential. The 1D S
hrödinger-Poissonsystem studied here admits natural a priori regularity estimates, uniform with respe
t to the smallparameter h → 0. This leads asymptoti
ally to a perfe
t splitting of the quantum and 
lassi
als
ales.1.2 Quantum frameworkIn the whole study, the framework is the following: h > 0 denotes the semi
lassi
al parameterobtained in realisti
 
ases as a res
aled Fermi length (see [BNP℄) and I := [a, b] is a given 
ompa
tinterval of the real line. Let P h
B the S
hrödinger operator on the real line:
P h

B := −h2 d
2

dx2
+ B, B ≡ BI + B∞, (1.1)where

BI(x) := −B
x− a

b− a
1[a,b](x), B∞(x) := −B · 1[b,+∞)(x), (1.2)and B is a non negative 
onstant. The potential B simply des
ribes the applied bias. The referen
eHamiltonian is the self-adjoint realization in the Hilbert spa
e L2(R) of P h

B:
D(Hh

B) = H2(R), ∀u ∈ D(Hh
B), Hh

Bu := P h
Bu. (1.3)Sin
e several self-adjoint (or non self-adjoint) 
losure of the same di�erential operator will be
onsidered, the notation P refers to the di�erential operators a
ting on C∞

0 , while H will be usedfor its realization as an unbounded operator on L2.We restri
t our analysis in this work to operators in the form
P h[V ] := P h

B + V, V ∈ L∞(I), (1.4)and denote by Hh[V ] the self-adjoint realization in L2(R) of P h[V ]:
D(Hh[V ]) = H2(R), ∀u ∈ D(Hh[V ]), Hh[V ]u := P h[V ]u, (1.5)after identifying V ∈ L∞(I) with V (x)1I(x) ∈ L∞(R).Of parti
ular interest is the 
ase where the potential V = V h depends on the small parameter

h and des
ribes quantum wells in an island with 
li�s. It splits into
V h := V0 + V h

NL, V0 := Ṽ0 −Wh, Ṽ0, V
h
NL ∈W 1,∞(I). (1.6)The fun
tion Ṽ0, whi
h models the island potential, 
an be any non negative Lips
hitz fun
tionindependent of h. Pra
ti
ally it is simply a 
onstant potential on I, Ṽ0(x) = V0 1I(x) with V0 ∈ R+.The fun
tion Wh, whi
h des
ribed the quantum wells, is de�ned by

Wh(x) :=

N
∑

i=1

wi

(

x− ci
h

)

. (1.7)In this de�nition of Wh, the positions (ci)
N
i=1 are N given points in (a, b) and wi are non negative

L∞-fun
tions supported in the interval [−κ, κ], with κ > 0 �xed. We denote by Uh the supportof the fun
tion Wh and U := ∪N
i=1 {ci} the region where the quantum wells 
on
entrate, and set

c0 := a, cN+1 := b (see Figure 1). 4
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Λ∗Figure 1: Total potential B + V h −Wh.Assumption 1 Suppose that
Λ0 := inf

x∈I
Ṽ0(x) + B(x) > 0 , (1.8)and �x the parameters Λ∗ and Λ∗ so that 0 < Λ∗ < Λ∗ < Λ0.We will fo
us on the energy range λ ∈ [Λ∗,Λ

∗].Finally the fun
tion V h
NL des
ribes the mean �eld nonlinear potential whi
h takes into a

ountthe repulsive ele
trostati
 intera
tion. It will be given as a solution to the Poisson equation on

I = [a, b] and will satisfy
∀h > 0, V h

NL ∈W 1,∞(I), V h
NL ≥ 0. (1.9)Su
h Hamiltonians are used in the modelling of quantum ele
troni
 transport in mesos
opi
stru
tures like resonant tunelling diodes (RTD) or super-latti
es. The nonlinear steady states 
anbe studied within a Landauer-Büttiker approa
h: see [BuLa℄, [Lan℄, [ChVi℄ and [BDM℄ or [Ni3℄ forpossible fun
tional frameworks 
on
erned with the extension to the nonlinear analysis in
ludingthe nonlinear dynami
s. This approa
h involves the s
attering wave fun
tions and requires theanalysis of the 
ontinuous spe
trum of Hh[V ]. Sin
e for any potential V ∈ L∞(I), Hh[V ] is a
ompa
tly supported L∞-perturbation of the referen
e Hamiltonian Hh

B or the Hamiltonian withstep potential −h2∆+B∞, the limiting absorption prin
iple holds. By standard arguments ([Ya2℄,[Pat℄) one even gets the absen
e of imbedded eigenvalues
∀h > 0, σess(Hh[V ]) = σa
(Hh[V ]) = [−B;∞), (1.10)and the s
attering states of Hh[V ] are indeed well de�ned for any V ∈ L∞(I).Remark 1 Under the non ne
essary additional assumption
∀i ∈ {1, . . . , N} , Ṽ0(ci) + inf σ (−∆ − wi) > 0 , (1.11)one 
an even 
he
k like in Theorem 3.4 or Theorem 3.6 that there is no eigenvalue at all for h > 0small enough (and V h

NL ≥ 0) ;
σ(Hh[V ]) = σac(H

h[V ]) = [−B,+∞) .5



We fo
us on the energies λ ∈ [Λ∗,Λ
∗].We 
onsider the in
oming s
attering states ψh

−(k, ·) of the Hamiltonian Hh[V ] parameterized bythe wave ve
tor k (we omit to write the dependen
e with respe
t to the potential for s
atteringstates). They provide a diagonalization ofHh[V ] over the 
ontinuous spe
trum (see formula (1.19)).Pre
isely, introdu
e �rst the dispersion relation asso
iated with the referen
e Hamiltonian Hh
BDe�nition 1.1 Set for k ∈ R∗

λk :=

∣

∣

∣

∣

k2 if k > 0,
k2 −B if k < 0.

(1.12)This dispersion relation (1.12) gives, for the wave ve
tor k, the energy λk of the in
oming planewave represented by ψh
−(k, ·). Again, we are mostly interested in the k's su
h that λk ∈ [Λ∗,Λ

∗].By de�nition, the in
oming generalized eigenfun
tion ψh
−(k, ·) de�ned for k ∈ R solves thedi�erential equation:

P hψh
−(k, ·) = λkψ

h
−(k, ·), (1.13)with the normalization (of in
oming plane waves)for k > 0 ψ−(k, x) =







ei kx
h + rk e

−i kx
h for x < a

tk e
i
(λk+B)1/2x

h for x > b ,
(1.14)for k < 0 ψ−(k, x) =







tk e
−i

(λk)1/2x

h for x < a

ei kx
h + rk e

−i kx
h for x > b .

(1.15)The square root z1/2 is 
hosen with the rami�
ation along the half-line iR− in order to ensure that
e−i(λk)1/2x de
ays exponentially as x→ −∞ when λk ∈ (−B, 0) .These 
oe�
ients determine the s
attering matrix (rk, tk) for positive energies λk > 0. They arelinked for λk > 0 by the relation

|rk|
2 +

√

λk

λk +B
|tk|

2 = 1, λk > 0 . (1.16)Sin
e the wave ve
tor k is a log-derivative, this normalization of the wave fun
tions 
an be writtenin terms of boundary 
onditions at x = a and x = b, in this spe
i�
 one-dimensional 
ase �ttingwith realisti
 problems:
[

h∂x + iλ
1/2
k

]

|x=a
u = 2ikei ka

h ,

[

h∂x − i(λk +B)1/2
]

|x=b
u = 0, for k > 0 (1.17)and [

h∂x + iλ
1/2
k

]

|x=a
u = 0,

[

h∂x − i(λk +B)1/2
]

|x=b
u = 2ikei kb

h , for k < 0 . (1.18)Thus the problem over the real line is redu
ed to a boundary problem on I with boundary 
onditionsdepending on the spe
tral parameter (1.17)-(1.18). These boundary 
onditions are exa
t transpar-ent boundary 
onditions. This setting makes rather easy the 
omplex deformation argument usedin the analysis of resonan
es (see [BaCo℄, [HeSj1℄ or [HiSi℄ for a more general introdu
tion). Here
onsidering a 
omplex λk around any positive value is easily implemented be
ause the 
oe�
ientson the boundary 
onditions at x = a and x = b depend holomorphi
ally on λk (or k).We end this se
tion with three elementary properties :6



1. With this normalization, it appears that for any non negative 
ontinuous fun
tion θ on
[Λ∗,Λ

∗], the operator 1Iθ(H
h[V ])1I is an integral operator. Moreover the kernel is given by

1Iθ(H
h[V ])1I [x, y] =

∫

k

θ(λk)ψh
−(k, x)ψh

−(k, y)
dk

2πh
, (x, y) ∈ I × I. (1.19)2. Note that be
ause of the regularity of ψh

−, it follows by Mer
er's theorem (see [Si, Thm 3.5℄)that this operator is tra
e-
lass, with a tra
e equal to the diagonal integral.3. Note also that be
ause the solutions to the ODE (1.13) in the interval I is a 2-dimensionallinear subspa
e, say Sλk
⊂ H2(a, b), 
onditions (1.17)-(1.18) form an a�ne system in Sλk

.Resonan
es around positive energies 
orrespond to the ex
eptional 
omplex values of λk = zfor whi
h the 
ontinuous linear fun
tionals de�ning this system are proportional.1.3 S
hrödinger-Poisson systemHere we are interested in the study of the stationary 
ase. We �rst �x the pro�le of the in
omingbeam of ele
trons over the stru
ture between a and b.Notation 1 Fix a 
ontinuous non negative fun
tion k 7→ g(k) su
h that g(k) = 0 if λk /∈ (Λ∗,Λ
∗),see (1.12).A beam of ele
trons 
orresponds to a superposition of s
attering states with density g. Theele
troni
 density is then des
ribed by the measure dng[V ] de�ned by

dng[V ](x) :=

∫

R

g(k)|ψh
−(k, x)|2

dk

2πh
. (1.20)It is 
onvenient to introdu
e the fun
tion g(Kh

−) of the asymptoti
 momentum operator de�ned(see [DeGe℄, [Ni3℄ for a more general presentation) a

ording to:
g(Kh

−)[x, y] =

∫

R

g(k)ψh
−(k, x)ψh

−(k, y)
dk

2πh
.Its lo
alized version 1Ig(K

h
−)1I has the integral kernel

1Ig(K
h
−)1I [x, y] =

∫

R

g(k)1I(x)ψ
h
−(k, x)ψh

−(k, y)1I(y)
dk

2πh
. (1.21)The operator g(Kh

−) is a density matrix and the density ful�lls the weak formulation
∀ϕ ∈ C0(I),

∫

I

ϕ(x)dng [V ](x) = Tr [1Ig(K
h
−)1Iϕ]. (1.22)Note that in the parti
ular 
ase where g(k) is a fun
tion of the energy, i.e. g(k) ≡ θ(λk), g(Kh

−) isa fun
tion of the Hamiltonian
g(Kh

−) = θ(Hh) . (1.23)Fun
tions of the Hamiltonian 
an be viewed as equilibrium states (and even thermodynami
alequilibrium states when θ is de
reasing). For su
h states, the 
urrent through the devi
e is null.Hen
e out-of-equilibrium steady states with a non vanishing 
urrent have to be des
ribed witha fun
tion g(k) whi
h is not a fun
tion of the energy. In order to make this situation 
lear, weassume the next possibly extendible assumption (see [BNP℄ for an easy generalization towardsmore realisti
 problems). 7



Assumption 2 Fix a non negative fun
tion θ ∈ C0
c ((Λ∗,Λ

∗)) and assume that
g(k) = 1k>0 · θ(λk). In parti
ular, 0 ≤ g(k) ≤ θ(λk). (1.24)The S
hrödinger-Poisson system is an Hartree model whi
h in
ludes the self-
onsistent ele
tro-stati
 potential within the devi
e (a ≤ x ≤ b). Hen
e the nonlinear potential V h

NL is a solutionto
{

Hh[V h] = Hh
B + Ṽ0 −Wh + V h

NL,

−∆V h
NL = dng[V

h], V h
NL = (a) = V h

NL(b) = 0.
(1.25)Note that the assumption g ≥ 0 yields dng[V

h] ≥ 0 and V h
NL ≥ 0.It is known, (see [BDM℄, [Ni3℄) , that the system (1.25) admits solutions, for �xed h > 0. Further-more with the absen
e of negative eigenvalues provided by the 
ondition (1.11), it is easily 
he
kedthat the solutions to (1.25) are the only steady states of the nonlinear dynami
s studied in [Ni3℄.Yet, uniform estimates with respe
t to h are not given in [Ni3℄. We are now interested in thestru
ture of the set of asymptoti
 solutions as h → 0. A �rst step 
onsists in getting a prioriestimates on the semi-linear problem. This is performed in Se
tion 2. Sin
e for a given h > 0 thedensity dng[V

h] is a bounded positive measure, we introdu
e the following spa
es:De�nition 1.2 Call (Mb(I), ‖ · ‖b) the Bana
h spa
e of bounded 
omplex measures on [a, b] andlet
BV 2

0 (I) :=
{

V ∈ C0(I) |V ′′ ∈ Mb(I), V (a) = 0 = V (b)
}

, (1.26)normed by ‖V ‖ := ‖V ‖∞ + ‖V ′′‖b.With this norm , BV 2
0 (I) is a Bana
h spa
e 
ontinuously embedded in W 1,∞(I) and 
ompa
tlyembedded in the Hölder spa
es C0,α(I) for α ∈ (0, 1).1.4 ResultsTheorem 1.3 Consider problem (1.25). Then for h > 0 su�
iently small:i) The family of potentials (V h

NL)h>0 is uniformly bounded in L∞(I).ii) The family of measures (dng[V
h])h>0 is bounded in Mb(I) and the family (V h

NL)h>0 is boundedin BV 2
0 (I).iii) Consequently, the family of potentials (V h

NL)h>0 is bounded in W 1,∞(I) and relatively 
ompa
tin the Hölder spa
e C0,α(I) for any α ∈ (0, 1).We then try to identify the weak∗ possible limits dn0
g of the measure dng[V

h]. Owing to theboundedness stated in Theorem 1.3 ii), we shall make the next simplifying assumption whi
h makessense after possibly extra
ting a subsequen
e (hn)n∈N.Assumption 3 The 
onvergen
e
dng[V

h]
h→0
⇀ dn0

gholds for the weak topology of Mb(I) = C0(I)′.The following notations for the total potential
Vh := V h + B = Ṽ0 + V h

NL −Wh + B, (1.27)and for the total potential with �lled wells
Ṽh := Vh +Wh = Ṽ0 + V h

NL + B, (1.28)8



are 
onvenient. The solution to
− ∆V = dn0

g , V (a) = V (b) = 0 (1.29)is denoted V 0
NL and we set

Ṽ0 := Ṽ0 + V 0
NL + B . (1.30)Theorem 1.3 has the next 
onsequen
e.Corollary 1.4 Make the Assumption 3. Then the �lled potential Ṽh is uniformly bounded in

W 1,∞(I) and 
onverges in C0,α(I) to Ṽ0 as h→ 0 for any α < 1. Moreover if the se
ond derivative
∂2

xṼ0 is a bounded measure, the weak 
onvergen
e
∂2

xṼ
h h→0
⇀ ∂2

xṼ
0 = ∂2

xṼ0 − dn0
galso holds in Mb(I).Remark 2 Note that the solution of the asymptoti
 Poisson equation does not depend on thepossible mass of dn0

g 
on
entrated on x = a or x = b. Indeed the asymptoti
 potential V 0
NL forgetsany boundary layer and the boundary value problem (1.29) is equivalently written with the restri
tedmeasure dn0

g

∣

∣

(a,b)
.The idea leading to an a

urate des
ription of the the asymptoti
 density dn0

g is the following:suppose in a �rst step that the wells are �lled, that is Wh = 0 and Vh = Ṽh. In the 
lassi
alpi
ture, the in
oming parti
les of energy λk ≤ Λ∗ are re�e
ted by the 
li�s, so one expe
ts that
dn0

g ≡ 0 in (a, b). Now, the introdu
tion of the wells Wh generates trapped quantum statestransformed into resonant states after the intera
tion with the 
ontinuous spe
trum. The tunnele�e
t allows these states to be o

upied in a stationary setting. Besides, the quantum wells with an
O(h)-diameter produ
e two interesting e�e
ts. Firstly the density will asymptoti
ally 
on
entratelike delta-fun
tions in positions around the ci's. Se
ondly the resonant energies atta
hed to one wellare separated by O(1) gaps (see Remark 3 below). With a �nite number of wells, this asymptoti
implements the general wisdom that the nonlinear system is essentially governed by �nite numberof resonant states of the system (point 4 of our introdu
tion). The relevan
y of this asymptoti
,with quantum wells in a semi
lassi
al island, has been 
arefully 
he
ked in [BNP℄ with numeri
aldata �tting with realisti
 situations.To state our results we need the notion of asymptoti
 resonant energy.Notation 2 Denote, for i = 1, . . . , N , by σi the set of the eigenvalues of the Hamiltonian −∆−wion the real line

σi :=
{

ei
k

}

k∈Ki
⊂ (−∞, 0), Ki ⊂ N, i = 1, . . . , N. (1.31)De�nition 1.5 We will say that λ ∈ R is an asymptoti
 resonant energy for the potential Vh ifand only if

λ ∈ E0 :=

N
⋃

i=1

Ei, Ei := σi + Ṽ0(ci). (1.32)Moreover, we de�ne the multipli
ity mλ of the asymptoti
 resonant energy λ as
mλ := #Jλ, where Jλ := {i ∈ {1, . . . , N} s.t. λ ∈ Ei} . (1.33)Finally, for i = 1, . . . , N, we will say that the well ci is resonant at the energy λ (or λ-resonant) ifand only if i ∈ Jλ. 9



Remark 3 The set σi + Ṽ0(ci) is nothing but the set of the eigenvalues of the Hamiltonian Ĥ1
i :=

−∆−wi + Ṽ0(ci) on R, whi
h is unitarily equivalent to the Hamiltonian Ĥh
i := −h2∆−wi(·/h)+

Ṽ0(ci).Theorem 1.6 Make the Assumptions 1 and 3 and �x a non negative fun
tion θ ∈ C0
c ((Λ∗,Λ

∗))and assume the 
onvergen
e of Ṽh stated in Corollary 1.4. Let dng[V
h] be the density de�neda

ording to (1.20) and Assumption 2 or by taking g(k) = θ(λk). Then the weak limit dn0

g satis�es
dn0

g

∣

∣

(a,b)
=
∑

λ∈E0

∑

i∈Jλ

tλi θ(λ) δx=ci , (1.34)with the following spe
i�
ations:i) In the 
ase of a fun
tion of the Hamiltonian, that is g(k) = θ(λk), all the tλi 's are equal to 1 forevery λ ∈ E0 and i ∈ Jλ.ii) If g(k) = 1k>0 · θ(λk), then for every λ ∈ E0 and i ∈ Jλ, t
λ
i lie in the interval [0, 1].Finally, the asymptoti
 nonlinear potential V 0

NL whi
h solves (1.29) is an a�ne fun
tion on ea
hinterval [ci, ci+1], i = 0, . . . , N .Note that the sum is a �nite sum, sin
e the set E0 ∩ supp θ is �nite. Observe immediately thatpoint ii) follows from i) be
ause if one denotes
θλ(k) := θ(λk) (1.35)one has 0 ≤ dng[V

h] ≤ dnθλ
[V h], and ii) is obtained by Theorem 1.3 and Poisson's equation (1.25).Moreover, the nonlinearity asymptoti
ally lies in a �nite dimensional subspa
e A of C0(I) :

A :=
{

V ∈ C0(I) s.t. V|∂I = 0 and V|[ci,ci+1] is a�ne, i = 0, . . . , N
}

. (1.36)In this �nite dimensional spa
e, the asymptoti
 nonlinear system 
an be written either with the
oordinate system = (V (ci))i=1,...,N ∈ RN or with the more 
onvenient one (−V ′(ci + 0)+V ′(ci −
0))i=1,...,N proportionnal to the 
olle
tion of total 
harges in the wells.Theorem 1.6-i) gives a mean to 
ompute the potential V 0

NL in the parti
ular 
ase where g is afun
tion of the Hamiltonian. In the anisotropi
 
ase ii) the determination of the tλi 's relies on adis
ussion on the Agmon distan
e between the wells. A forth
oming paper [BNP2℄ will be dedi-
ated to the analysis of these 
oe�
ients.In order to prove the results, we adopt the following strategy: as the problem is a semi-linearproblem, we get a priori estimates for the nonlinear potential (Se
tion 2), and then redu
e theanalysis to the linear analysis of the Hamiltonian Hh[V h] with uniform estimates on the potential
(V h)h>0. Useful results on the Diri
hlet problem in the interval I with a

urate estimates of theresolvent kernel are reviewed in Se
tion 3. The analysis of resonan
es starts in Se
tion 4 andSe
tion 5 and ends in Se
tion 6 with a version of the Breit-Wigner formula for the lo
al density ofstates.2 A priori EstimatesWe �rst prove some estimates for self-adjoint realizations of P h on Ω = R or Ω an open sub-intervalof I.Consider the di�erential operator P h de�ned by (1.4), for any B ≥ 0 with (1.6)-(1.9), and let P̃ hbe de�ned by

P̃ h[V h] := P h[V h] +Wh ≡ −h2 d
2

dx2
+ Ṽh .10



Remark 4 The ˜ symbol re
urrently refers to the situation where the wells are �lled. A

ording toour general 
onvention the letter P refers to the di�erential operator while H refers to some 
losedrealization as an unbounded operator.Proposition 2.1 Fix a non negative smooth fun
tion θ̂ ∈ C∞
0 (R), and 
all Hh

Ω (resp. H̃h
Ω) the self-adjoint realization on L2(Ω) of P h (resp. P̃ h) with domain H1

0 (Ω) ∩H2(Ω). Then, for any given
ompa
t subset K ⊂ R, and h > 0, the operators 1K θ̂(H
h
Ω)1K and 1K θ̂(H̃

h
Ω)1K are tra
e-
lass.Moreover the estimateTr [1K θ̂(H

h
Ω)1K ] − Tr [1K θ̂(H̃

h
Ω)1K ] ≤ CK

(

1 +
∥

∥

∥Ṽh
∥

∥

∥

L∞

)holds with a 
onstant CK independent of h ∈ (0, h0).Proof: In dimension 1 and for any �xed h > 0, these operators are tra
e 
lass (see [Si℄). Forthe 
omparison, we use the Dynkin-Hel�er-Sjöstrand formula (see [Dav℄, [HeSj4℄, [Ni1℄):
θ̂(Hh

Ω) =
1

2iπ

∫

C

∂
˜̂
θ

∂z̄
(z)(z −Hh

Ω)−1dz ∧ dz̄, (2.1)where ˜̂
θ is a 
ompa
tly supported almost-analyti
 extension of θ̂. Apply then the se
ond resolventformula for z /∈ R and write with P̃ h − P h = Wh:

1K(z −Hh
Ω)−1

1K − 1K(z − H̃h
Ω)−1

1K = −1K(z −Hh
Ω)−1Wh(z − H̃h

Ω)−1
1K . (2.2)Introdu
e then a smooth 
ut-o� fun
tion χ, equal to 1 on a �xed neighborhood of Uh if Ω 6= R,and take χ ≡ 1 if Ω = R. Write the r.h.s of eq. (2.2)

[1K(z −Hh
Ω)−1χ][Wh(i+ h2∆)−1][(i+ h2∆)χ(z − H̃h

Ω)−1
1K ], (2.3)where −∆ denotes the free Lapla
ian on R. By the spe
tral theorem, the �rst fa
tor of (2.3) is abounded operator with norm O(|Im(z)|−1) uniformly w.r.t. h > 0. Sin
e the operator [Wh(i +

h2∆)−1] is unitarily equivalent to Wh=1(i+ ∆)−1, it is tra
e 
lass uniformly with respe
t to h, z.Indeed the latter writes f(x)g(−i∇) whose symbol is L1 (see [ReSi3, Thm XI. 20, p. 47℄).For the last fa
tor, the de
omposition
(i+ h2∆)χ(z − H̃h

Ω)−1 = (i+ h2∆)χ(i+ h2∆Ω)−1
[

1 + (i− z + Ṽh)(z − H̃h
Ω)−1

]

,leads to
∥

∥

∥(i+ h2∆)χ(z − H̃h
Ω)−1

∥

∥

∥ ≤ CK
〈z〉

|Im(z)|

(

1 +
∥

∥

∥Ṽh
∥

∥

∥

L∞

)

.

�Proposition 2.1 says that the quantum wells 
an be forgotten for a uniform global estimate ofthe density of states. Thanks to a monotony prin
iple shown in [Ni2℄, one 
an prove the followingresult:Proposition 2.2 Consider the S
hrödinger-Poisson system (1.20)-(1.25). Then the family ofpotentials (V h
NL)h>0 is uniformly bounded in L∞.11



Proof: For a given fun
tion F, we will denote by Fλ the fun
tion k 7→ F (λk) (see (1.12) for thede�nition of λk). By assumption on the shape of the in
oming beam of ele
trons, one has:
0 ≤ g(k) ≤ θλ(k), (2.4)so we will �rst study the density of parti
les 
orresponding to the equilibrium state des
ribed by

θλ, that is the measure dnθλ
[V h]. The proof 
onsists in 
ontrolling the total mass of the measuresby similar quantities relative to other Hamiltonians. In dimension 1, the regularity provided bythe Poisson equation with bounded measure as a right-hand side allows the integration by parts

1

2

∫ b

a

(

dV h
NL

dx

)2

dx =

∫ b

a

V h
NLdng[V

h](x) ≤

∫ b

a

V h
NLdnθλ

[V h](x) . (2.5)Now, 
hose a non negative smooth 
ompa
tly supported fun
tion θ̂ ∈ C∞
0 (R) de
reasing over

(−B,Λ∗) and with support in
luded in (−∞,Λ∗) su
h that
0 ≤ θ ≤ θ̂. (2.6)We then get by positivity of V h

NL and the expression of the measure in (1.20)
1

2

∫ b

a

(

dV h
NL

dx

)2

dx ≤

∫ b

a

V h
NLdnθλ

[V h](x) ≤

∫ b

a

V h
NLdnθ̂λ

[V h](x). (2.7)Set then
V h

2 := V h − V h
NL ≡ Ṽ0 −Wh, (2.8)and 
onsider now the Hamiltonian Hh

2 := Hh
B + V h

2 . Apply then the monotony prin
iple (seeAppendix B) with H1 = Hh
2 = Hh

B +V h
2 and H2 = Hh

B + V h: the last term of (2.7) is bounded by
∫ b

a

V h
NLdnθ̂λ

[V h](x) ≤

∫ b

a

V h
NLdnθ̂λ

[V h
2 ](x)

≤ ‖V h
NL‖L∞(I)

∫ b

a

dnθ̂λ
[V h

2 ](x). (2.9)Applying Proposition 2.1 gives, 
oming ba
k to (2.8)
∫ b

a

dnθ̂λ
[Ṽ0 −Wh](x) ≤ C +

∫ b

a

dnθ̂λ
[Ṽ0](x) , (2.10)the 
onstant C being independent of h sin
e the potential Ṽ0 does not depend on h. Finally,we need an upper bound for the density of parti
les in the island I in the 
ase of the potential

Ṽ0 + B. For this, we redu
e the problem to the 
ase of the 
onstant potential on I and equal to
Λ∗. Apply again the monotony prin
iple with H1 = Hh

B − B + Λ∗ and H2 = Hh
B + Ṽ0. Sin
e

H2 −H1 = Ṽ0 +B −Λ∗ =: δV is larger than Λ0 −Λ∗ > 0 a

ording to (1.8), one has uniformly on
I

δV (x) > inf
I

(Ṽ0 + B) − Λ∗ ≥ Λ0 − Λ∗ =: α > 0, and δV (x) ≤ ‖Ṽ0‖L∞ . (2.11)By writing dn∗
θ̂λ

for the measure dnθ̂λ
[Λ∗ − BI ], the inequality

α

∫ b

a

dnθ̂λ
[Ṽ0] ≤

∫ b

a

δV · dnθ̂λ
[Ṽ0] ≤

∫ b

a

δV · dn∗
θ̂λ

≤ ‖Ṽ0‖L∞

∫ b

a

dn∗
θ̂λ
,12



implies
0 ≤

∫ b

a

dnθ̂λ
[Ṽ0] ≤

‖Ṽ0‖L∞

α

∫ b

a

dn∗
θ̂λ
. (2.12)Sin
e ∫ b

a dn
∗
θ̂
is a 
onstant not depending on h (see Appendix D for expli
it formulas), we get,
ombining (2.7), (2.10) and (2.12)

1

2
‖V h

NL‖
2
H1

0
≤

(

C +
‖Ṽ0‖L∞

α

∫ b

a

dn∗
θ̂

)

‖V h
NL‖L∞ . (2.13)We 
on
lude with the standard imbedding of H1

0 in L∞. �Theorem 1.3 gathers the results of Proposition 2.2 with the next result.Proposition 2.3 The family of measures (dng[V
h])h is uniformly bounded in Mb(I). It followsthat the family of potentials (V h

NL) is bounded in BV 2
0 (I). In parti
ular it is a relatively 
ompa
tfamily in every Hölder spa
e C0,α(I), α ∈ (0, 1).Proof: By de�nition of dnθλ

and simple 
omparison, one gets
∫

I

dng[V
h] ≤

∫

I

dnθλ
[V h] = Tr [1Iθ(H

h)1I ] ≤ Tr [1I θ̂(H
h)1I ].Apply again Proposition 2.1, sin
e now the family of potentials is uniformly bounded in L∞. Againthe uniform boundedness of the right-hand side with respe
t to h > 0 
omes from (2.9), (2.10),(2.12) and Appendix D. �3 Results on the Diri
hlet ProblemFrom now, we systemati
ally make Assumption 3 and redu
e the analysis to a linearanalysis of Hh[V h].For the 
ontribution of the resonan
es in the evaluation of spe
tral quantities, the idea 
on-sists in 
onsidering the non-self adjoint boundary value problem with 
omplex 
oe�
ients in theboundary 
onditions (1.17)(1.18) as a perturbartion of the homogeneous Diri
hlet problem.3.1 Some notationsIn order to measure the error, we shall use several standard tools:1) The h-dependent Hs-norms:

‖u‖2
s,h :=

∑

k≤s

‖hk∂k
xu‖

2
L2(I), (u ∈ Hs(I)) (3.1)will be used mainly with s = 0, 1, 2.2) The Agmon distan
e is de�ned for any potential V ∈ L∞(I) a

ording toDe�nition 3.1 For an energy λ ∈ R and a potential V, we de�ne the Agmon distan
e by :

∀x, y ∈ I, d(x, y;V, λ) =

∣

∣

∣

∣

∫ y

x

√

(V (t) − λ)+ dt

∣

∣

∣

∣

. (3.2)13



For our estimates, we should take V = Vh. Yet, it is equivalent to work with the distan
e relativeto the potential Ṽh sin
e the support of Wh is in
luded in a �nite union of intervals with diameter
2κh.Moreover owing to the lower bound

∀λ ∈ [Λ∗,Λ
∗], ∀x ∈ I, inf

h>0, x∈I
Ṽh(x) − λ ≥ Λ0 − Λ∗ =: δ > 0, (3.3)all the Agmon distan
es (depending on Ṽh) are uniformly equivalent to the usual Eu
lidean dis-tan
e.3) Finally in the analysis of the tunnel e�e
t, it is usual to introdu
e the estimates within the nextsetting.De�nition 3.2 For an h-dependent ve
tor f(h) in a normed spa
e E with norm ‖ ‖E and apositive real valued fun
tion g(h), we write

f(h) = Õ (g(h)) , (as h→ 0) (3.4)if there exists η0 > 0 su
h that
∀η ∈ (0, η0), ∃Cη > 0, ∀h ∈ (0, h0), ‖f(h)‖E ≤ Cηe

η
h g(h) .3.2 De
ay estimateLike in Proposition 2.1, Ω denotes an open interval in I and Hh

Ω the self-adjoint Diri
hlet realiza-tion of P h[V h] with domain H1
0 (Ω) ∩H2(Ω).We shall use the following result about the de
ay of the eigenfun
tions of Hh

Ω.Proposition 3.3 Suppose that UΩ := {c1, . . . , cN} ∩ Ω is not empty. For every h > 0 su�-
iently small, let λh ∈ (Λ∗,Λ
∗) be an eigenvalue of Hh

Ω and φh an L2-normalized 
orrespondingeigenfun
tion:
(Hh

Ω − λh)φh = 0.Then, the estimate
∀x ∈ Ω,

∣

∣

∣

∣

dj

dxj
φh(x)

∣

∣

∣

∣

≤ Ch−2j−1e−
d̃h(x,UΩ)

h , j ∈ {0, 1} ,holds with C > 0 uniform w.r.t h ∈ (0, h0) if d̃h stands for the Agmon distan
e for the potential
Ṽh at the energy λh.Remark 5 Note that 
ontrary to the general use, we do not introdu
e at this level the Õ but ana

urate estimate made possible in this simple one-dimensional 
ase. This a

urate estimate willbe 
ombined in the proof of Theorem 3.4 with the uniform Lips
hitz estimate on Ṽh (see espe
ially(3.11), (3.12), (3.13)). This provides a 
omplete splitting between the semi
lassi
al and quantums
ale in spite of a limited regularity assumption.Proof: Set Ω = [α, β]. 1) Let us begin with the estimate of φh(x).Apply the Agmon identity of Appendix A with P = P h, z = λh, u1 = u2 = φh and ϕ(x) =
d̃h(x, UΩ) where φh is an eigenfun
tion of Hh

Ω with eigenvalue λh. Sin
e Vh − λh − ϕ′2 = −Wh,the inequalities ϕ = O(h) in Uh and ‖φh‖L2 = 1 imply
e±

ϕ
h = O(1) in Uh and ∫

(Vh − λh − ϕ′2) |vh|2 = O(1).14



From the Agmon identity, we dedu
e an estimate for vh = eϕ/hφh :
∣

∣

∣

∣

‖h
dvh

dx

∥

∥

∥

∥

L2

= O(1).Sin
e vh(α) = vh(β) = 0, it follows
∥

∥vh
∥

∥

L2 +

∥

∥

∥

∥

dvh

dx

∥

∥

∥

∥

L2

= O

(

1

h

)

.This implies
‖vh‖L∞ = O

(

1

h

)

,and then
∀x ∈ Ω, |φh(x)| ≤

C

h
e−d̃h(x,UΩ).2) For the estimate of dφh/dx, we use the equation







−h2d
2φh

dx2
+ Vhφh = λhφh,

φh(α) = φh(β) = 0.As φh ∈ C1([α, β]), there exists c ∈ (α, β) su
h that dφh

dx (c) = 0. The fun
tion g de�ned by
g = eϕ/h dφh/dx satis�es







h2g′ = hϕ′e
ϕ
h
dφh

dx
+ h2e

ϕ
h
d2φh

dx2
,

h2g(c) = 0.Using the equation satis�es by φh, we dedu
e
h2g′ = hϕ′

(

e
ϕ
h φh

)′

− |ϕ′|2 e
ϕ
h φh + (Vh − λh) e

ϕ
h φh

= hϕ′ dv
h

dx
− |ϕ′|2vh + (Vh − λh)vh.Then ‖h2g′‖L2 = O(1/h). Cau
hy-S
hwarz inequality gives the L∞-estimate for g : |g(x)| ≤ C/h3for any x ∈ [α, β] and also of dφh/dx :

∀x ∈ Ω = [α, β],

∣

∣

∣

∣

dφh

dx
(x)

∣

∣

∣

∣

≤
C

h3
e−d̃h(x,UΩ).

�Remark. When the potential is regular, a better estimate like
∀x ∈ Ω,

∣

∣φh(x)
∣

∣ ≤ Ch−
1
2 e−d̃h(x,UΩ)/h,holds and even a 
omplete WKB expansion is possible. Here the low regularity and the 
on
en-tration of the quantum wells prevent from su
h an a

urate result.15



3.3 Spe
trum for one single wellFrom the spe
tral viewpoint, we are interested in lo
alizing the eigenvalues of Hh
Ω in the limit

h→ 0. The �rst result 
on
erns the problem with one well.Theorem 3.4 Let Ω be a sub-interval of (a, b) 
ontaining exa
tly one well ci, i ∈ {1, . . . , N}.Then :i) Every eigenvalue of Hh
Ω in (Λ∗,Λ

∗) 
onverges, and the limit belongs to the set Ei (see (1.32)).ii) For every λ0 ∈ (Λ∗,Λ
∗) ∩ Ei and any �xed small enough ε > 0, the Diri
hlet Hamiltonian Hh

Ωhas exa
tly one eigenvalue in [λ0 − ε, λ0 + ε] for h ∈ (0, hε).Proof: Call {λh
1 , . . . , λ

h
r} the eigenvalues of Hh

Ω in the interval [Λ∗,Λ
∗], and φh

1 , . . . , φ
h
r anorthonormal system of 
orresponding eigenfun
tions. Be
ause of Proposition 2.1, sin
e the rank ofthe spe
tral proje
tions are given by tra
es of fun
tions of Hh

Ω one has:
r = O(1), h→ 0(take for θ a smooth version of the fun
tion 1[ε,Λ0], ε > 0 small). The idea is to use the ellipti
ityof the problem, and the s
aling of the wells in order to repla
e the potential Ṽh near a well by a
onstant one. Let Ĥh the Hamiltonian with domain H2(R) given by:

∀u ∈ D(Ĥh), Ĥhu := P̂ hu, P̂ h := −h2 d
2

dx2
+ Ṽh(ci) · 1− wi

(

x− ci
h

)

. (3.5)This Hamiltonian is unitarily equivalent to −∆ + Ṽh(ci) − wi(· − ci), whose eigenvalues is the set
Eh

i := Ei + αh
i , αh

i = Ṽh(ci) − Ṽ0(ci) → 0, h→ 0. (3.6)Sin
e ‖Ṽh − Ṽ0‖C0 → 0 when h → 0, for any λ0 ∈ [Λ∗,Λ
∗] ∩ Ei there exists ε0 > 0 su
h that

Ĥh has exa
tly one eigenvalue in (λ0 − ε0, λ0 + ε0). To analyze the spe
trum of Hh in the wholeset [Λ∗,Λ
∗], we then 
hoose, for ea
h λ0, two numbers ε+0 > 0, ε−0 > 0 su
h that the intervals

(λ0 − ε−0 , λ0 + ε+0 ) are disjoint and their union 
overs a 
ompa
t neighborhood of [Λ∗,Λ
∗] and su
hthat Ĥh has no eigenvalues in ea
h annulus {ε0 < |λ− λ0| < 2 min{ε+0 , ε

−
0 }}.

Λ∗ Λ∗

λ0
-�

ε0
-�

ε0

-�

ε−0
-�

ε+0
-�

δ
-�

δ

-�

2 min(ε+0 , ε
−
0 )

-�

2 min(ε+0 , ε
−
0 )

-� -�

-� -�Let now η > 0, and χ a smooth 
ut-o� fun
tion supported in Ω su
h that χ = 1 if d(x, ∂Ω) ≥ 2ηand χ = 0 if d(x, ∂Ω) ≤ η. Owing to the exponential de
ay of the φh
j 's stated in Proposition 3.3,the estimate

〈

χφh
j , χφ

h
k

〉

L2(Ω)
= δjk + O

(

e−
co
h

)

, j, k ∈ {1, . . . , r}, (3.7)for some c0 > 0 independent on h > 0 and η > 0.For any j ∈ {1, . . . , r}, the fun
tion χφh
j belongs to the domain of Ĥh with the identity

P̂ hχφh
j = λh

j χφ
h
j + [P h, χ]φh

j + (Ṽh(ci) − Ṽh(x))χφh
j . (3.8)16



Owing to the exponential de
ay of φh
j , the 
ommutator term satis�es:

‖[P h, χ]φh
j ‖L2(Ω) = O

(

h−1e−
d̃h(ci,∂Ω)−2η

h

)

, (3.9)where d̃h is the Agmon distan
e for Ṽh at the energy λh
i . Be
ause the potential Ṽh is greater than

Λ0 and λh
i ≤ Λ∗ < Λ0, the r.h.s in (3.9) is of order O(e−c′/h) with c′ independent of the potentialand the energy.For the last term of the r.h.s. of (3.8), just write for ε > 0

[Ṽh(ci) − Ṽh(x)]χφh
j = 1|x−ci|≤ε · [Ṽ

h(ci) − Ṽh(x)]χφh
j

+ 1|x−ci|>ε · [Ṽ
h(ci) − Ṽh(x)]χφh

j . (3.10)Sin
e the family of potentials (Ṽh)h>0 is W 1,∞(I)-bounded, the �rst term is treated by writing
∥

∥

∥1|x−ci|≤ε · [Ṽ
h(ci) − Ṽh(x)]χφh

j

∥

∥

∥

L2(Ω)
≤ ε sup ‖Ṽh‖W 1,∞‖χφh

j ‖L2(Ω) = O(ε), (3.11)and again by the a

urate de
ay estimates of Proposition 3.3, the se
ond term is estimated by
∥

∥

∥1|x−ci|>ε · (Ṽ
h(ci) − Ṽh(x))χφh

j

∥

∥

∥

L2(Ω)
= O

(

e−
c′0ε

h

)

. (3.12)We then 
hoose
ε := hα, α ∈ (0, 1), (3.13)and we obtain by 
ombining (3.12), (3.11), (3.9), (3.8)

∀j = 1, . . . , r, P̂ hχφh
j = λh

jχφ
h
j + O(hα) in L2(Ω) . (3.14)Now, �x δ > 0 su
h that Ĥh has no eigenvalue in {ε+0 < λ−λ0 < ε+0 +δ}∪{−ε−0 −δ < λ−λ0 < −ε+0 }and apply Proposition C.1 (see Appendix C) to A = Ĥh, [λ−, λ

+] = [λ0 − ε−0 , λ0 + ε+0 ], N = r,
a = δ > 0, µj = λh

j , ψj = χφh
j , from whi
h we 
on
lude

~d
(span {χφh

1 , . . . , χφ
h
r},1[λ0−ε−

0 ,λ0+ε+
0 ](Ĥ

h)
)

≤

(

r

1 + o(1)

)1/2
ε

a
= O(hα). (3.15)This last estimate for
es Hh to have at most one eigenvalue in [λ0 − ε−0 , λ0 + ε+0 ], r ≤ 1, when

h > 0 is small enough.We �nish by proving i) and ii). For this, let φ̂h
0 be a normalized eigenve
tor for the eigenvalue

λ0 of the Hamiltonian Ĥh = −h2d2/dx2+ Ṽ0(ci)−wi((·−ci)/h), unitarily equivalent to −d2/dx2+

Ṽ0(ci)−wi Then φ̂h
0 is an eigenve
tor of Ĥh for the eigenvalue λ0+αh

i (see (3.6)). Estimates similarto (3.9), (3.11), (3.12) lead to
P hφ̂h

0 = (λ0 + αh
i )χ̂̂φh

0 + O(hα) in L2(Ω) . (3.16)Apply again Proposition C.1 in a small interval 
entered around λ0 +αh
i in the following way: sin
e

Ĥh has at most one eigenvalue in [λ0 − ε−0 , λ0 + ε+0 ], it is easy to 
hoose a 
onvenient parameter ain Proposition C.1 (Appendix C) by a simple argument of 
ounting: set Lj := [jhα/2, (j+ 1)hα/2[,and Kj := −Lj ∪ Lj . If {λ0 + αh
i } + K1 
ontains the eigenvalue, one de�nes Ih = [λ0 + αh

i −
2hα/2, λ0 + αh

i + 2hα/2], else Ih = [λ0 + αh
i − hα/2, λ0 + αh

i + hα/2]. This furnishes an interval Ih17



of diameter O(hα/2) around λ0 + αh
i and a real a = a(h) > 0 of order hα/2 leading again withProposition C.1 to

~d
(span (χφ̂h

0 ),1Ih
(Hh

Ω)
)

= O(hα/2) . (3.17)This yields r = 1 and the 
onvergen
e of the eigenvalue to λ0. �Remark 6 It follows that the well ci is λ-resonant if and only if there exists a domain Ω 
ontaining
ci su
h that for any open set ω ⊂ Ω the Diri
hlet operator Hh

ω has an eigenvalue 
onverging to λas h goes to 0.3.4 Spe
trum in the multiple wells 
aseA way of studying the spe
tral properties of the multiple wells Diri
hlet problem 
onsists in de-
oupling it into N one-well problems. Following [Hel℄ or [HeSj3℄, a good 
hoi
e of open sets is thefollowing: �x λ ∈ [Λ∗,Λ
∗], and if d̃h (resp. d̃0) denotes the Agmon distan
e at the energy λ for thepotential Ṽh (resp. Ṽ0), we de�ne

S1 := min
j 6=k

d̃h(cj , ck) (= S1(h)) (3.18)and for a �xed small enough η > 0,
Ωi := I \

⋃

k 6=i

{x ∈ I, d̃0(x, ck) ≤ η}, i = 1, . . . , N . (3.19)The h-dependan
e of S1 re
alled between the parentheses of (3.18) is omitted in the sequel.Note that these open sets are not disjoint and Ωi 
ontains only the well ci. The use of thedistan
e d̃0 makes sure that they do not depend on h although the h-dependen
e would be well
ontrolled.We �rst eliminate the non resonant wells before giving a result similar to Theorem 3.4.Proposition 3.5 Let λ be an asymptoti
 resonant energy and suppose that the well ci is not λ-resonant. Then there exists a positive 
onstant c su
h that for any eigenvalue λh ∈ (λ − c, λ+ c),one has
∀x ∈ (ci − c, ci + c), |φh(x)| ≤ e−

c
h , h→ 0where φh is an L2-normalized eigenfun
tion of Hh

I for the eigenvalue λh.In plain words, eigenfun
tions for eigenvalues 
onverging to λ are exponentially small in thenon λ-resonant wells.Proof: Sin
e λ is not a resonant energy for the well ci, we 
an 
hoose the open set ω 
ontainingthe only well ci and the 
ompa
t energy interval Λ ∋ λ su
h that for h > 0 su�
iently small,the Diri
hlet operator Hh
ω has no spe
trum in Λ (see Remark 6). For a smooth 
ut-o� fun
tion θsupported in ω and equal to 1 on a δ-neighborhood of ci (δ > 0 small), one has

P hθφh = λhθφh + [P h, θ]φh. (3.20)The residual term satis�es by Proposition 3.3 the de
ay estimate
‖[P h, θ]φh‖L2(I) ≤ Cδe

−
cδ
h , cδ > 0, h→ 0.Note that the ve
tor θφh is not zero. 18



Apply again Proposition C.1 in a 
ompa
t interval stri
tly 
ontained in Λ and a > 0 notdepending on h > 0. If we denote by F the spe
tral subspa
e for Hh
ω asso
iated to this 
ompa
tinterval, it follows

~d(span{θφh}, F ) ≤
1

‖θφh‖

Cδe
−

cδ
h

a
. (3.21)Sin
e F is null by 
hoi
e of Λ, it follows by properties of the distan
e ~d that the l.h.s. of (3.21)is greater than 1. This provides an L2-estimate of θφh. The H2 regularity of a solution to (3.20)provides the pointwise estimate in (ci−δ, ci+δ) . Finally 
hoose the 
onstant c > 0 small enough. �The analogous to Theorem 3.4 writesTheorem 3.6 Re
all that Hh

ω denotes the Diri
hlet realization of P h to the open set ω. Then, for
h > 0 su�
iently small :i) After ordering, every eigenvalue of Hh

I in (Λ∗,Λ
∗) 
onverges as h → 0 and the limit belongs tothe set E0 (see (1.32)).ii) For every λ ∈ (Λ∗,Λ

∗) ∩ E0 and any small enough ε > 0, the operators Hh
I has exa
tly mλeigenvalue(s) in [λ− ε, λ+ ε] as soon as h < hε.Call them λh

i (i ∈ Jλ).iii) Fix su
h a λ. Let (Ωi)i∈Jλ
the subdomains of I de�ned in (3.19). Call (ψh

i )i∈Jλ
normalizedeigenve
tors asso
iated to the unique eigenvalue of Hh

Ωi

onverging to λ. There exists a unitarymatrix (ph

i,j)1≤i,j≤mλ
su
h that in L2(I)

∀i ∈ Jλ, φh
i −

∑

j∈Jλ

ph
i,jψ

h
j = Õ

(

e−
S1
h

)

,with S1 de�ned a

ording to (3.18).Proof: It su�
es to follow the proof in [Hel, pp. 34-35℄, while Proposition 3.5 guarantees thatthe non resonant wells are negligible in the de
ay estimates (see also [Pat, p. 148℄ for details). �3.5 Resolvent estimatesLet us brie�y re
all the de
ay results of the kernel of the resolvents. Fix η > 0 (η small) and for apoint p ∈ (a, b), let χp denote a smooth 
ut-o� fun
tion supported in the set {|x− p| ≤ η}.Like in [HeSj3, p. 143℄ (see also [DiSj℄ or [Pat, p. 135℄ for this spe
i�
 
ase), the 
ombinationof the Agmon estimate (see Appendix A) with the spe
tral theorem provides in the one well-
ase(N = 1) the following estimates
∀z /∈ σ(Hh

I ),
∥

∥χx(Hh
I − z)−1χy

∥

∥ ≤ Cη
e

−d̃h(x,y)+Cη

h

min(rh, 1)
, (3.22)where rh = dist(z, σ(Hh

I )), and d̃h is the Agmon distan
e for the potential Ṽh at the energy
λ := Re(z).A straightforward adaptation of the analysis of the multiple wells Diri
hlet problem 
arried outin [HeSj2℄, [HeSj3, p. 147℄ or [Pat, p. 151℄ provides the same estimate for N > 1.Proposition 3.7 For h in (0, h0), h0 small enough, 
onsider zh ∈ C \ σ(Hh

I ) su
h that thereexists λ0 ∈ [Λ∗,Λ
∗] with zh → λ0 as h → 0 and set λh = Re(zh) and rh = dist(zh, σ(Hh

I )). If19



rh ≥ e−S1/2h with S1 := mink 6=l d̃h(ck, cl), then the kernel of the resolvent (Hh
I − zh)−1 satis�es

∣

∣(Hh
I − zh)−1[x, y]

∣

∣ =
Õ
(

e−
d̃h(x,y)

h

)

min(rh, 1)
,with uniform 
onstants with respe
t to x, y ∈ I and where d̃h is the Agmon distan
e for the potential

Ṽh at the energy λh := Re(zh).Proof: Let θ be a C∞ even fun
tion supported in a neigborhood [−3η, 3η] and equal to 1 on
[−η, η] where η and Ωi are linked by relation (3.19). We de�ne

θi(x) := θ(x − ci), χi(x) = 1 −
∑

j 6=i

θj(x), ∀i = 1, . . . , N. (3.23)Let χ̃i C
∞ fun
tions with support in Ωi de�ned in (3.19) su
h that

N
∑

i=1

χ̃i = 1.We de�ne
Ti(z) := (Hh

Ωi
− z)−1 and R0 :=

N
∑

i=1

χiTi(z)χ̃i.Then we have
(Hh

I − z)R0 =

N
∑

i=1

χiχ̃i +

N
∑

i=1

[P h, χi]Ti(z)χ̃i

= 1 +

N
∑

i=1

[P h, χi]Ti(z)χ̃i

= 1 −

N
∑

i=1

∑

k 6=i

[P h, θk]Ti(z)χ̃i,sin
e χiχ̃i = χ̃i and using (3.23). We have to study the 
onvergen
e of the serie ∑n≥0R0ε
n with

ε =
∑N

i=1

∑

k 6=i[P
h, θk]Ti(z)χ̃i. We noti
e that χ̃i[P

h, θk] is equal to 0 as soon k 6= i and if k = i,this term is [P h, θk]. Then,
R0ε

n =

N
∑

i0=1

N
∑

i1 6=i0

. . .

N
∑

in−1 6=in

χi0Ti0 [P
h, θi1 ]Ti1 [P

h, θi2 ]Ti2 , . . . , [P
h, θin ]Tin χ̃in .Sin
e the fun
tion θk is lo
alized in a neighborhood of the well ck, we 
an write for s = 0, 1, . . . , N−

1
[P h, θis ]Tis(z)[P

h, θis+1 ] = [P h, θis ]χisTis(z)χis+1 [P
h, θis+1 ].This last relation allows to use results on the one-well problem (3.22), then

∥

∥χisTis(z)χis+1

∥

∥ ≤ Cη
e−

d̃h(x,y)−Cη

h

min(rh, 1)
.20



This leads to the following estimate
‖χx0R0ε

nχy0‖ ≤ Cn+1
η

e−
ϕn(x0,y0)−nCη

h

min(rh, 1)n+1
,where ϕn(x0, y0) = mini0,...,in d(y0, cin) + d(cin , cin−1) + . . . + d(ci1 , ci0) + d(ci0 , x0). In fa
t, thefun
tion ϕn is the length of the the shortest way from y to x going through n di�erent wells. We
an bound from below ϕn by

ϕn(x0, y0) ≥ d(x0, y0) + nS1.Then the serie is 
onvergent under the assumption rh ≥ e−S1/2h and we 
an write
χx0(H

h
I − z)−1χy0 =

∑

n≥0

χx0R0ε
nχy0 .Appendix E provides the pointwise estimates. �Corollary 3.8 If rh ≥ C−1hC for some C > 0, then

∣

∣(z −Hh
I )−1[x, y]

∣

∣ = Õ
(

e−d̃h(x,y)
)

.Another 
onsequen
e is the improved pointwise estimate for the eigenfun
tions of the Diri
hletproblem ([HeSj3, p.138℄ or [Pat, p. 153℄):Proposition 3.9 For every h > 0 su�
iently small, let λh ∈ (Λ∗,Λ
∗) and φh an L2-normalized
orresponding eigenfun
tion of Hh

Ω. Suppose that λh → λ0 ∈ E0 ∩ (Λ∗,Λ
∗). Then the estimates

∀x ∈ Ω,

∣

∣

∣

∣

dj

dxj
φh(x)

∣

∣

∣

∣

= Õ

(

e−
d̃0(x,U0)

h

)

, j ∈ {0, 1},hold when d̃0 stands for the Agmon distan
e for the potential Ṽ0 at the energy λ0 and U0 =
∪i∈Jλ0

{ci} for the set of λ0-resonant wells.Remark 7 Here the Õ-writing of the estimates allows to repla
e the h-dependent quantities, Ṽh,
d̃h and λh by their asymptoti
 values Ṽ0, d̃0 and λ0.4 Complex deformation4.1 A redu
ed Stone's formulaThe results of Theorem 1.6 are derived from a good information about the asymptoti
 lo
al densityof states asso
iated with fun
tions of the Hamiltonian. A

ording to Stone's formula and thelimiting absorption prin
iple, a possible method is the 
omputing of a quite pre
ise expression ofthe resolvent, sin
e for λ ∈ [Λ∗,Λ

∗] ⊂ σa
(Hh) (Hh = Hh[V h]):
1

2iπ
1I

[

(Hh − (λ+ i0))−1 − (Hh − (λ− i0))−1
]

1I = 1I
∂E

∂λ
(λ)1I , (4.1)and of its meromorphi
 extension through the spe
tral half-line (0,∞) ⊂ [−B,∞), in order to takeinto a

ount the 
ontribution of resonant states.We will fo
us on this meromorphi
 extension from the upper-half plane while the 
orresponding21



results for the extension from the lower-half plane are easily 
arried over after 
hanging i into −i.Resolvent. Fix z ∈ C, Im(z) > 0 and 
onsider the problem with unknown u ∈ H2(R) :
(P h − z)u = f, f ∈ L2(I), z ∈ C, Im(z) > 0, Re(z) ∈ (Λ∗,Λ

∗). (4.2)Again be
ause the potential is 
onstant on both sides of the interval I, the problem with unknown
u ∈ H2(R):

(P h − z)u = f, f ∈ L2(I) ,
an be expli
itly solved outside I, and the 
ondition u ∈ L2 eliminates exponentially growingmodes. It is easy to 
he
k that this 
ondition is exa
tly given by (1.17)-(1.18) when Im(z) > 0.Pre
isely, we 
an write the next statement.Proposition 4.1 Let z ∈ C, Im(z) > 0, Re(z) ∈ (Λ∗,Λ
∗). Consider the linear fun
tionals Ta(z),

Tb(z) on H2(I) given by :
Ta(z)u :=

[

h∂x + iz1/2
]

|x=a
u, Tb(z)u :=

[

h∂x − i(z +B)1/2
]

|x=b
u,and the 
losed unbounded operator Hh

z de�ned by
D(Hh

z ) :=
{

u ∈ H2(I) s.t. Ta(z)u = Tb(z)u = 0
}

,

∀u ∈ D(Hh
z ), Hh

z u := P hu.Then the restri
tion on I of the solution to equation (4.2) is (Hh
z − z)−1f . In other words :

1I(H
h − z)−1

1I = (Hh
z − z)−1, Im(z) > 0, Re(z) ∈ (Λ∗,Λ

∗).Remark 8 1. We will 
he
k that for su
h z′s, operator Hh
z −z is invertible (see Proposition 4.2and Proposition 5.2 below).2. Note that sin
e the solutions on I of the homogeneous equation asso
iated with (4.2) make alinear 2-dimensional subspa
e of H2(I), the inje
tivity of operator (Hh

z − z) is equivalent tothe independen
e of the fun
tionals Ta(z), Tb(z).3. By repla
ing i by −i in the de�nitions of the fun
tionals Ta(z) and Tb(z), one obtains the
orresponding boundary 
onditions for Im(z) < 0.4.2 Resonan
esIn our one-dimensional situation, it is quite simple to dete
t the resonan
es as poles of the s
atteringmatrix. A

ording to the end of Subse
tion 4.1, one statesProposition 4.2 Let z a 
omplex number su
h that Re(z) > 0. Then z is a resonan
e of theoperator P if and only if Hh
z − z is not inje
tive.Indeed, the non-inje
tivity of Hh

z − z is equivalent to the fa
t that the linear fun
tionals areproportional, so the normalization given in (1.14)-(1.15) is not performable.Remark 9 The anti-resonan
es are de�ned similarly after 
onsidering the meromorphi
 exten-sion from the lower half-plane {Im(z) < 0} while 
hanging i into −i in the transparent boundary
onditions (see Remark 8). 22



4.3 Analysis of the resolventRe
all that sin
e we are interested in getting the spe
tral density inside the island I, Proposition 4.1allows to work with Hh
z − z in pla
e of Hh − z. Moreover, be
ause Theorem 3.6 ensures that theset E0 of asymptoti
 resonant energies is dis
rete, we will make the following redu
tion:Assumption 4 Suppose that the set [Λ∗,Λ

∗] 
ontains exa
tly one asymptoti
 resonant energy
λ0 ∈ (Λ∗,Λ

∗) . Re
all that mλ0 denotes its multipli
ity a

ording to (1.33) and that (λh
j )1≤j≤mλ0are the ordered eigenvalues of Hh

I lying in [Λ∗,Λ
∗] (and 
onverging to λ0).Introdu
e

Ωh := {z ∈ C s.t. Re(z) ∈ Kh, Im(z) ∈ [−4h, 4h]} , (4.3)with Kh := [λ0 − αh, λ0 + αh] , (4.4)and αh := 4 max
{

h, |λ0 − λh
j |, j = 1, . . . ,mλ0

}

. (4.5)The parameter z is assumed to satisfy
z ∈ Ωh .Proposition 3.9 indi
ates that from the spe
tral viewpoint, around a resonant energy the nonresonant wells do not matter. We adapt to this remark the �lled well Hamiltonians

H̃h
I = Hh

I +Wh and H̃h
z = Hh

z +Wh . (4.6)Set then for given λ ∈ (Λ∗,Λ
∗)

Wh
λ :=

∑

i∈Jλ

wi

(

· − ci
h

)

, Uh
λ := suppWh

λ . (4.7)De�ne then
H̃h

I (λ) := Hh
I +Wh

λ and H̃h
z (λ) := Hh

z +Wh
λ , (4.8)the operators asso
iated to respe
tively the Diri
hlet and transparent problems with the λ-resonantwells �lled. The parameter λ remains �xed as h→ 0 and those de�nitions lead to

H̃h
• (λ) = Hh

•when λ 6= λ0 and
H̃h

• (λ0) = Hh
• +Wh

λ0
.In parti
ular, H̃h

I (λ0) has no eigenvalue in [Λ∗,Λ
∗].An a

urate analysis of the resolvent (Hh

z − z)−1 starts with essentially two steps :1. Eliminate the non resonant wells : we show that H̃h
z (λ0) − z is invertible for all z ∈ Ωh.2. Che
k that for z far from λ0, Hh

z − z = H̃h
z (λ) − z, λ 6= λ0, is invertible .Hen
e the notation H̃h

z (λ) is 
onvenient for a 
ompa
t formulation of di�erent results.Proposition 4.3 Make the Assumption 4 and �x any λ ∈ [Λ∗,Λ
∗].i) For any z ∈ Ωh if λ = λ0 (resp. z ∈ [Λ∗,Λ

∗]× [−4h, 4h] and dist(z, λ0) > αh/2 or |Im(z)| ≥ 2hif λ 6= λ0), the operator H̃h
z (λ) − z is invertible. The kernel of the resolvent is estimated by

∣

∣

∣(H̃h
z (λ) − z)−1[x, y]

∣

∣

∣ = Õ
(

e−
d̃(x,y)

h

)

,23



where d̃ stands for the Agmon distan
e for the potential Ṽh at the energy Re(z). Moreover the
onstants 
an be 
hosen uniform with respe
t to x, y ∈ I and z.ii) For any fun
tion ϕ ∈ C0
c ((a, b)), (H̃h

z (λ)−z)−1ϕ belongs to the spa
e L1 of tra
e-
lass operatorsfor z ∈ Ωh if λ = λ0 (resp. z ∈ [Λ∗,Λ
∗] × [−4h, 4h] and dist(z, λ0) > αh/2 or |Im(z)| ≥ 2h if

λ 6= λ0), with the estimate
∥

∥

∥
(H̃h

z (λ) − z)−1ϕ
∥

∥

∥

L1
≤ Cϕh

−2 .Remark 10 In parti
ular, applying i) with λ = λ0, gives, sin
e Hh
z (λ) = Hh

z and using Prop. 4.2that P h has no resonan
e in the set
{

z ∈ Ωh, |Im(z)| > 2h or dist(z, λ0) ≥
αh

2

}

.Proof: The �rst statement will be proved in three steps a) b) and 
) where the last two onesare very similar.
i)-a) We start with the strongly ellipti
 problem: suppose that λ = λ0, z ∈ Ωh and Jλ0 =
{1, . . . , N}, that is H̃h

z (λ0) = H̃h
z (every well is �lled). We use the Agmon identity of Appendix Awhere ϕ is a C1(I)-fun
tion satisfying the ei
onal 
ondition:

inf
h>0,x∈I

Ṽh(x) − Re(z) − ϕ′2(x) ≥ m > 0 ,and we take the real part of both sides. Sin
e z ∈ Ωh is possibly 
omplex, there are boundary termsin the Agmon estimates (see Appendix A) but their 
oe�
ients are O(h3). For z ∈ Ωh and withthe 
ondition Λ0 − Λ∗ > 0 a

ording Assumption 1, the 
oer
ivity of the variational formulationwith the transparent 
onditions (see Proposition 4.1) is easily 
he
ked when h > 0 is small enough:Taking ϕ ≡ 0 provides the existen
e of the resolvent and uniform bounds.Taking ϕ with the above ei
onal 
ondition provide the weighted estimate
∀f ∈ L2(I),

∥

∥

∥e
ϕ
h (H̃h

z − z)−1f
∥

∥

∥

1,h
≤ C

∥

∥

∥e
ϕ
h f
∥

∥

∥

L2
.The 
ase ϕ ≡ (1 − η)d̃(·, y) for �xed y ∈ (a, b) (whi
h satis�es the ei
onal 
ondition) implies i) inthis spe
i�
 
ase. The pointwise estimate of the S
hwartz kernel of the resolvent is obtained afterAppendix E

i)-b) In the weaker 
ase, λ = λ0, z ∈ Ωh, Jλ0 6= {1, . . . , N}, the problem is neither self-adjoint norstrongly ellipti
. Only the wells in Uh
λ0

= suppWh
λ0

a

ording to (4.7) are �lled and the other nonresonant wells are left. We use an approximation argument with the latter estimate. Set
Sz

0 := d̃(Uh \ Uh
λ0
, ∂I) (4.9)where d̃ is the Agmon distan
e for the potential Ṽh and the energy Re(z). Introdu
e, for η > 0small, the 
ut-o� fun
tions χ, ψ̃ su
h that 0 ≤ χ, ψ̃ ≤ 1, χ ≡ 1 in the set {x ∈ I, d̃(x, Uh \ Uh

λ0
) ≤

Sz
0 − η}, ψ̃ ≡ 1 in the set {d̃(x, Ũh \ Uh

λ0
) ≤ (Sz

0 − η)/2}, χ ≡ 0 in {d̃(x, Uh \ Uh
λ0

) ≥ Sz
0 − η/2

}and ψ̃ ≡ 0 in the set {d̃(x, Ũh
λ \ Uh

λ0
) ≥ (Sz

0 + η)/2}.Choose
R(λ0) := (H̃h

z − z)−1(1 − ψ̃) + χ(H̃h
I (λ0) − z)−1ψ̃. (4.10)as an approximate right inverse for H̃h

z (λ0)− z: A
tually H̃h
z (λ0) is repla
ed by the 
orrespondingDiri
hlet Hamiltonian around the remaining non λ0-resonant wells. Note that R(λ0) is well de�nedsin
e for z ∈ Ωh, z is uniformly far away from the spe
trum of H̃h

I (λ0).A straightforward 
omputation using H̃h
z (λ0)χ = H̃h

I (λ0)χ and χψ̃ = ψ̃ gives
(H̃h

z (λ0) − z)R(λ0) = 1 − ε, ε := ε0 + ε1, (4.11)24



where
ε0 := W̃h

λ (H̃h
z − z)−1(1 − ψ̃), ε1 := −[P h, χ](H̃h

I (λ0) − z)−1ψ̃. (4.12)With the estimate about (H̃h
z −z)

−1 and the 
ontrol of the resolvent (H̃h
I (λ0)−z)

−1 of the Diri
hletHamiltonian provided by Proposition 3.7 with the uniform lower bound dist(z, σ(Hh
I (λ0))) ≥ c > 0,one dedu
es the inequality

‖ε0‖ + ‖ε1‖ ≤ Cηe
−Sz

0+cη

2h , (4.13)in the operator norm.The relation
(H̃h

z (λ0) − z)R(λ0) = 1 − ε, ‖ε‖ ≤ Cηe
−Sz

0+cη

2h (4.14)ensures the inje
tivity of (H̃h
z (λ0)− z) and provides a right inverse after using the Neumann seriesfor (1 − ε)−1 .Similarly, setting

L(λ0) := (1 − ψ̃)(H̃h
z − z)−1 + ψ̃(H̃h

I (λ0) − z)−1, (4.15)leads to
L(λ0)(H̃

h
z (λ0) − z) = 1 + ε′, ‖ε′‖ ≤ Cηe

−Sz
0+cη

2h , (4.16)and provides a left inverse for H̃h
z (λ0) − z .The estimate of the kernel of the resolvent is now obtained after 
onsidering the �rst terms in theexpansion series de�ning the inverse

χx · R(λ0)

∞
∑

k=0

εk · χy.The estimate for k = 0 is 
lear a

ording to the estimates of the kernels (part a) and Proposition 3.7)appearing in the de�nition of R(λ0). For k ≥ 1, note �rst, sin
e ψ̃[P h, χ] = 0 and (1 − ψ̃)W̃h
λ = 0that by 
omputing the terms 
orresponding to k = 1, k = 2 and then by indu
tion, the generalterm splits for any k ≥ 1 into two terms, namely

χxR(λ)εkχy = χx(H̃h
z − z)−1





k
∏

j=1

ε[j]



χy + χx(H̃h
I (λ0) − z)−1





k
∏

j=1

ε[j+1]



χy , (4.17)where [ℓ] stands for the 
lass of ℓ modulo 2. Ea
h term involves k + 1 resolvents, whi
h indu
es aprefa
tor (Cηe
cη
2h )k+1 in the estimate

∀k ≥ 1, ‖χx ·R(λ)εk · χy‖ ≤ (Cηe
cη
2h )k+1e−

ϕk(x,y)

h ,with
ϕk(x, y) = min{Lk(x, y), Lk(y, x)}, Lk(x, y) = d̃(x, ∂I) + (k − 1)

Sz
0

2
+ d̃(y, Ũh

λ ) .We 
on
lude, sin
e ϕk(x, y) ≥ d̃(x, y) + (k − 2)Sz
0 , that the serie is 
onvergent (the 
onvergen
e isuniform w.r.t z ∈ Ωh). Again the pointwise estimate is provided by Appendix E.

i)-
) To �nish the proof of i), it remains the 
ase λ 6= λ0, dist(z, λ0) ≥ αh/2 or |Im(z)| ≥ 2h. Thestrategy is essentially the same as in i)-b): we repla
e Hh
z = H̃h

z (λ) by H̃h
z far away from the wellsand by H̃h

I (λ) = Hh
I around non λ-resonant wells, whi
h are all the wells. Consider this time

Sz
0 := d(Uh, ∂I) , with Uh = suppWh25



and χ, ψ su
h that 0 ≤ χ, ψ ≤ 1, χ ≡ 1 in the set {x ∈ I, d̃(x, Uh) ≤ Sz
0 − η}, ψ ≡ 1 in the set

{d̃(x, Uh) ≤ (Sz
0 − η)/2} and ψ ≡ 0 in the set {d̃(x, Uh) ≥ (Sz

0 + η)/2}. Choose as an approximateright inverse (well de�ned for z ∈ Ωh su
h that |Im(z)| > h or dist(z,Λ0) ≥ αh/2)
R = (H̃h

z − z)−1(1 − ψ) + χ(Hh
I − z)−1ψ,and as an approximate left inverse

L = (1 − ψ)(H̃h
z − z)−1 + ψ(H̃h

I − z)−1 .One obtains again a norm-
onvergent series thanks to resolvent estimates and the pointwise esti-mates of the kernel are derived from Appendix E.
ii) We start again like for i) by the 
ase where λ = λ0, Jλ0 = {1, . . . , N}. For Hh

0 being theDiri
hlet h-Lapla
ian on I, write, sin
e (Hh
0 + i)ϕ = (H̃h

z + i− z − Ṽh)ϕ:
ϕ(H̃h

z − z)−1 = (Hh
0 + i)−1ϕ[1 + (z + i− Ṽh)](H̃h

z − z)−1

+(Hh
0 + i)−1[P h, ϕ](H̃h

z − z)−1. (4.18)One sees that the �rst term of the r.h.s of (4.18) is tra
e-
lass with the announ
ed estimates be
ause
(Hh

0 + i)−1 is tra
e-
lass whereas the se
ond fa
tor is uniformly bounded. For the last term, useagain that (Hh
0 + i)−1 is tra
e-
lass and the fa
t that we obtained estimates for (H̃h

z − z)−1 in the
H1,h-norm. The result follows by taking the adjoint. In the 
ase λ = λ0, z ∈ Ωh and mλ0 < N ,use the series R(λ0)

∑∞
k=0 ε

k to see that
(H̃h

z (λ0) − z)−1 =
[

(H̃h
z − z)−1(1 − ψ̃) + χ(H̃h

I (λ0) − z)−1ψ̃
]

[

1 + O(e−
c
h )
]

, (4.19)and noti
e that the �rst fa
tor is tra
e-
lass. Finally, one has something similar for λ 6= λ0 andsuitable z
(Hh

z − z)−1 =
[

(H̃h
z − z)−1(1 − ψ̃) + χ(Hh

I − z)−1ψ̃
]

[

1 + O(e−
c
h )
]

. (4.20)
�5 Lo
alizing resonan
esThe formalism of Grushin's Problem provides a 
onvenient way to treat simultaneously the questionof the invertibility of the operator(Hh

z −z) raised in the latter se
tion, and (through a perturbativeformulation) to lo
alize the resonan
es of P h. We refer the reader to the appendix of [HeSj1℄or to [SjZw℄ for a general presentation of this te
hnique. Fix the referen
e energy to the value
λ0 ∈ (Λ∗,Λ

∗) and work in the set Ωh de�ned in (4.3). Denote by λh
1 , . . . , λ

h
n the eigenvalues of

Hh
I 
onverging to λ0 (they lie in Kh), and φh

1 , . . . , φ
h
mλ0

a 
orresponding orthonormal system ofeigenve
tors. Start by writing the Grushin's problem for the Diri
hlet realization Hh
I :

{

(Hh
I − z)u+R−

0 u
− = v,

R+
0 u = v+,

(5.1)with
(u, u−) ∈ D(Hh

I ) × C
mλ0 , (v, v+) ∈ L2(I) × C

mλ0 ,

R−
0 : C

mλ0 −→ L2(I), u− :=







u−1...
u−mλ0






7→ R−

0 u
− :=

mλ0
∑

j=1

u−j φ
h
j , (5.2)26



and
R+

0 : L2(I) −→ C
mλ0 , u 7→ R+

0 u :=







〈u, φh
1 〉L2...

〈u, φh
mλ0

〉L2






. (5.3)Set F ′′ := span {φh

j }
n
j=1, F

′ := (F ′′)⊥. Then, this problem is invertible and the solution is given,with obvious notations by






















u′ = (Hh
I

′
− z)−1v′,

u′′ =

mλ0
∑

j=1

〈u, φh
j 〉φ

h
j =

mλ0
∑

j=1

v+
j φ

h
j ,

u−j = 〈v, φh
j 〉 + (z − λh

j )v+
j , j = 1, . . . ,mλ0 ,

(5.4)where Hh
I
′ denotes the restri
tion of Hh

I to F ′. In terms of operators
{

u = E0(z)v + E+
0 v

+,

u− = E−
0 v + E−+

0 (z)v+,
(5.5)with

E0(z)v = (H ′h
I − z)−1Πh

I v, E+
0 v

+ =

mλ0
∑

j=1

v+
j φ

h
j ,

E−
0 v =







〈v, φh
1 〉L2...

〈v, φh
mλ0

〉L2






, E−+

0 (z)v+ = diag (z − λh
j ) v+,and Πh

I is the orthogonal proje
tor onto F ′ :

Πh
I v :=



1 −

mλ0
∑

j=1

|φh
j 〉〈φ

h
j |



 v . (5.6)Finally, write
Hh

I (z) :=

(

Hh
I − z R−

0

R+
0 0

)

, Eh
I (z) := (Hh

I (z))−1 =

(

E0(z) E+
0

E−
0 E−+

0 (z)

)

. (5.7)Now we perturb the problem in order to obtain the resonant problem. Like in the proof ofProposition 4.3, set
S0 := d̃0(U

h
λ0
, ∂I), (5.8)where d̃0 is the Agmon distan
e for the potential V0 at the energy λ0. For η > 0 small, �x twosmooth 
ut-o� fun
tions χ, ψ su
h that 0 ≤ χ, ψ ≤ 1, χ ≡ 1 in the set {x ∈ I, d(x, Uh

λ0
) ≤ S0 − η},

ψ ≡ 1 in the set {d(x, Uh
λ0

) ≤ (S0 − η)/2} and ψ ≡ 0 in the set {d(x, Uh
λ0

) ≥ (S0 + η)/2}. De�ne
H(z;h) :=

(

Hh
z − z χR−

0

R+
0 0

)

, z ∈ Ωh. (5.9)27



Far from the resonant wells, Hh
z looks like H̃h

z (λ0) and around the wells the Diri
hlet problem(with all the wells) is a good approximation of Hh
z . This leads to set

F(z;h) :=

(

χE0ψ + (H̃h
z (λ0) − z)−1(1 − ψ) χE+

0

E−
0 ψ E−+

0

)

. (5.10)One shows that
H(z;h)F(z;h) = 1 + K(z;h)and K satis�es the estimate

K(z;h) =





Õ
(

e−
S0
2h

)

Õ
(

e−
S0
h

)

Õ
(

e−
S0
2h

)

Õ
(

e−
2S0

h

)



 . (5.11)More pre
ise 
omputations with the se
ond order expansion of the Neumann series and using theresolvent esimates of Proposition 4.3 
an be done. When all the wells are resonant, mλ0 = N ,details are given by the dire
t trans
ription of [HeSj1, pp. 117-128℄. The more general 
ase wastreated in [Pat, pp. 178-189℄.Proposition 5.1 With the notations (4.3) and (5.8) and for z ∈ Ωh, the operator is invertible,and the inverse is given by the norm 
onvergent series
H(z;h)−1 = F(z;h)

∞
∑

j=0

(−1)jKj(z;h) =

(

E(z;h) E+(z;h)

E−(z;h) E−+(z;h)

)

,with
E−+(z) = E−+

0 + Õ
(

e−
2S0

h

)Moreover, it is uniformly norm-bounded holomorphi
 fun
tion of z ∈ Ωh .Within the Grushin problem approa
h, the inversibility of Hh
z − z is redu
ed to the question ofinvertibility of the �nite-dimensional blo
k E−+(z) (see the S
hur 
omplement formula (6.7)). Inparti
ular, 
onsidering det(E−+(z)) leads to the next standard approximation result of resonan
esby Diri
hlet eigenvalues.Proposition 5.2 Take the notation (4.3) and (5.8). The operator P h has exa
tly mλ0 resonan
es(
ounted with multipli
ity) zh

1 , . . . , z
h
mλ0

in Ωh. They satisfy
∀j ∈ {1, . . . ,mλ0}, |zh

j − λh
j | = Õ

(

e−
2S0

h

)

.and have negative imaginary parts.6 Lo
al density of statesWe end the proof of Theorem 1.6 by 
onsidering the asymptoti
 behaviour of the density asso
iatedwith a fun
tion of the energy.
28



Proposition 6.1 Let θ ∈ C0
c ((Λ∗,Λ

∗)) and keep the notations (4.4) under Assumptions 1, 3 and4. The parti
le density dnθλ
[V h] de�ned for g(k) = θ(λk) satis�es the next weak∗ asymptoti
 in

Mb((a, b)): For all ϕ ∈ C0
c ((a, b)),

lim
h→0

∫ b

a

ϕ(x) dnθλ
= lim

h→0
Tr [θ(Hh)ϕ

]

= lim
h→0

Tr [(θ.1Kh
)(Hh)ϕ

]

=
∑

i∈Jλ0

θ(λ0)ϕ(ci) . (6.1)This result whi
h is a Breit-Wigner type formula for the density of states like in [GeMa℄ will beproved in two steps : 1) eliminating the non resonant energies; 2) spe
ifying the 
ontribution ofresonant states.6.1 Eliminating the non resonant energiesWe �rst 
he
k that the density goes to 0 in (a, b) as h goes to 0 when all the wells are �lled, thatis for H̃h and then redu
e the more general non resonant energy problem to this 
ase after usingan approximate resolvent provided by (4.19)-(4.20). We start with a simple a

urate estimate.Proposition 6.2 Let ψ̃h
−(k, ·) the in
oming s
attering states of H̃h, su
h that λk ∈ [Λ∗,Λ

∗]. Thefun
tion ψ̃h
−(k, ·) is uniformly bounded with respe
t to x ∈ [a, b] and k. Moreover one has theuniform pointwise estimate

ψ̃h
−(k, x) = O

(

h−1/2e−
d̃h(a,x)

h

)

, k > 0,and ψ̃h
−(k, x) = O

(

h−1/2e−
d̃h(b,x)

h

)

, k < 0 ,where d̃h stands for the Agmon distan
e for the potential Ṽh at the energy λk .Proof: We fo
us on the 
ase k > 0 (if k < 0, just swap a and b). Start by noti
ing that forgiven k, the fun
tion Ah
k : x 7→ |ψ̃h

−(k, x)|2 satis�es
h2 d

2

dx2
Ah

k = 2|h∂xψ̃
h
−(k, ·)|2 + 2(Ṽh − λk)|ψ̃h

−(k, ·)|2 ≥ 0. (6.2)It follows that the fun
tion h∂xA
h
k is in
reasing on I. But the s
attering 
ondition (1.17) says thatthis fun
tions vanishes at x = b. So the fun
tion Ah

k is 
onvex and de
reasing on I. It su�
es nowto show that the family (Ah
k(a))k is uniformly bounded. But it equals
Ah

k(a) = |ψ̃h
−(k, a)|2 =

∣

∣

∣ei ka
h + rke

−i ka
h

∣

∣

∣

2

, (6.3)whi
h is bounded a

ording to (1.16).Now use the Agmon estimate of Appendix A with V = Ṽh, z = λk, u = v = ψ̃h
−(k, ·) and

ϕ = d̃h(a, x). Sin
e P̃ hu = zu, and V − ϕ′2 − z = 0, this leads after taking the real part to
∥

∥

∥h∂x

(

e
ϕ
h ψ̃h

−(k, ·)
)∥

∥

∥

2

L2(I)
≤ h2e

2ϕ(a)
h

∣

∣

∣Re(h∂xψ̃
h
−(k, a)ψ̃h

−(k, a))
∣

∣

∣

+h2e
2ϕ(b)

h

∣

∣

∣Re(h∂xψ̃
h
−(k, b)ψ̃h

−(k, b))
∣

∣

∣ (6.4)
≤ 2|k|Ah

k(a)1/2 = O(1) . (6.5)29



Writing
e

ϕ(x)
h ψ̃h

−(k, x) = ψ̃h
−(k, a) + h−1

∫ x

a

h∂x

(

e
ϕ(t)

h ψ̃h
−(k, t)

)

dtand S
hwarz's inequality yield the result. �Corollary 6.3 Let θ ∈ C0
c ((Λ∗,Λ

∗)) and ϕ ∈ C0
c ((a, b)). The operator θ(H̃h)ϕ is tra
e-
lass witha tra
e estimated by Tr[θ(H̃h)ϕ] = Õ



e
−
c dist(suppϕ, ∂I)

h



 ,where dist(x, y) = |x− y| and c is a positive 
onstant. The family of measures (dnθλ
[Ṽ h])h>0weakly 
onverges to 0 in Mb((a, b)) .Proof: The fun
tion ϕ 
an be assumed non negative. We write

∫ b

a

ϕ(x) dnθλ
[Ṽ h](x) = Tr [ϕ1/2θ(H̃h)ϕ1/2

]

=

∫ b

a

∫

R

θ(λk)
∣

∣

∣
ψ̃h
−(k, x)

∣

∣

∣

2

ϕ(x)
dk

2πh
,after using the expression of the kernel of θ(H̃h) . Proposition 6.2 
ombined with the fa
t that theAgmon distan
e d̃h asso
iated with Ṽ and an energy λ ∈ (Λ∗,Λ

∗) is uniformly equivalent to theEu
lidean distan
e, yields the result after integration. �Thanks to this result one easily gets rid of non resonant energies.Proposition 6.4 Consider the energy interval Kh de�ned in (4.4) and set θ̃h(λ) := (1−1Kh
(λ)) ·

θ(λ). Then in restri
tion to (a, b), the measure dnh
θ̃h

λ

weakly 
onverges to 0 as h goes to 0:
∀ϕ ∈ C0

c ((a, b)), lim
h→0

Tr (θ̃h(Hh)ϕ) = 0 .Proof: We again assume again ϕ ≥ 0 and apply Stone's formula in order to 
ompute the tra
eof ϕ1/2
1I θ̃

h(Hh)1Iϕ
1/2. By referring to Proposition 4.1 and by using su

essively (4.19)-(4.20)one obtainsTr (θ̃h(Hh)ϕ) = Tr (θ̃h(H̃h)(1 − ψ̃)ϕ) + Tr (χθ̃h(Hh

I )ϕ̃) + O
(

h−2e−
c
h

)

, h→ 0. (6.6)The �rst term 
an be estimated by
0 ≤ Tr (θ̃h(H̃h)(1 − ψ̃)ϕ) ≤ Tr (θ(H̃h)(1 − ψ̃)ϕ) ,with a right-hand side 
onverging to 0 by Corollary 6.3. Meanwhile the se
ond term 
an
els sin
e

Hh
I has no spe
trum on the support of θ̃h. This �nishes the proof. �

30



6.2 Contribution of resonant statesLet us �rst go ba
k to the Grushin problem introdu
ed in Se
tion 5. A

ording to Proposition 5.1,and estimates (5.11) we have
H(z;h)−1 :=

(

E(z) E+(z)
E−(z) E−+(z)

)

= F(z;h)

(

1 + ε(z) ε+(z)
ε−(z) 1 + ε−+(z)

)

,with ε•(z) = Õ(e−S0/2h) uniformly in z ∈ Ωh. This implies
[Hh

z − z]−1 = E(z) − E+(z)(E−+(z))−1E−(z) . (6.7)Coming ba
k to the de�nition (5.10) of Fh(z), this 
an be improved into
E(z) = (H̃h

z (λ0) − z)−1(1 − ψ)(1 + ε) + χE0(z)ψ(1 + ε) + χE+
0 ε

− (6.8)
E+(z) = χE+

0 + (H̃h
z (λ0) − z)−1(1 − ψ)ε+ + χE+

0 ε
−+ + χE0(z)ψε

+ (6.9)
E−(z) = E−

0 ψ + E0(z)ψε+ E−+
0 (z)ε− (6.10)

E−+(z) = E−+
0 (z) + Õ

(

e−
2S0

h

)

. (6.11)We are now ready to apply Stone's formula with a 
omplex deformation of the integration
ontour. Before this, we write under an adapted form the polar part 
oming from (6.11).Lemma 6.5 Set Ω̃h := [λ0−α
h/2, λ0−α

h/2]× [−2ih, 2ih] For z in Ωh\Ω̃h, there exists a 
onstant
c > 0 and a matrix-valued meromorphi
 fun
tion G su
h that

E−+(z)−1 = E−+
0 (z)−1 +G(z), ‖G(z)‖ = O

(

e−
c
h

)

, h→ 0 .Proof: Fix any matrix-norm on Cmλ0 and use again (6.11) to see that
E−+(z) = (1 + F (z)E−+

0 (z)−1)E−+
0 (z), z 6= λh

j ,

‖F (z)‖ = O
(

e−
2S
h

)

, 0 < S < S0 for z ∈ Ωh \ Ω̃h . (6.12)Be
ause of the expression of E−+
0 (z),

‖F (z)E−+
0 (z)−1‖ = O

(

e−
2S
h

)

(

min
j=1,...,mλ0

|z − λh
j |

)−1

.For z 6= zh
j , j = 1, . . . ,mλ0

E−+(z)−1 = E−+
0 (z)−1[1 + F (z)E−+

0 (z)−1]−1 (6.13)and the 
ondition z ∈ Ωh \ Ω̃h implies minj=1,...,mλ0

∣

∣z − λh
j

∣

∣ ≥ h. Therefore, the Neumann expan-sion of [1 + F (z)E−+
0 (z)−1]−1 
onverges, whi
h yields the result. �We 
an end the proof of Theorem 1.6 with theProof of Proposition 6.1: Owing to Proposition 6.4 it is enough to 
onsider the tra
e

1I(1Kh
.θ)(Hh)1Iϕ.31



A

ording to Stone's formula and Proposition 4.1 one gets for non negative fun
tions θ ∈ C0
c ((Λ∗,Λ

∗)),and ϕ ∈ C0
c (I),

1I(1Kh
.θ)(Hh)1Iϕ =

−1

2iπ

∫

Kh+i0

θ(λ)(λ − Hh
λ )−1ϕ dλ +

1

2iπ

∫

Kh−i0

θ(λ)(λ − H ′h
λ )−1ϕ dλ ,(6.14)where (H ′h

z − z)−1 denotes the (meromorphi
 
ontinuation from the lower-half 
omplex plane) ofthe trun
ated resolvent 1I(H
h − z)−1

1I , 
orresponding to the anti-resonant boundary 
onditions(see Remark 9).For �xed ε > 0, 
onsider the 
ontour Cε made by the segments (Λ∗ + iε,Λ∗ + iε) ∩ Ωh and
(Λ∗− iε,Λ

∗− iε)∩Ωh s
oured in opposite way, the �rst one by real parts in
reasing (see Figure 2).This 
ontour in homotopi
 to the union of the 
ir
le γh and the 
ontour C′
ε (depi
ted in the Figure 2)whi
h lies on the square root Riemann surfa
e rami�ed along R+. Part of the deformation takespla
e on the se
ond sheet where resonan
es appear as poles. Meanwhile in the lower half-plane(�rst sheet) the resolvent is given by the anti-resonant boundary 
onditions (see Remark 9). Theoperator 
orresponding to these dual transparent boundary 
onditions is denoted by H ′h

z and itsresolvent, [H ′h
z − z]−1, has the same properties as [Hh

z − z]−1, up to the sign of imaginary parts.Sin
e for any given fun
tion ϕ ∈ C0
c ((a, b)), the fun
tional θ 7→ Tr [θ(Hh)ϕ] de�nes a non negative
γh

iε

−iε

C′
ε

C′
ε

C−

C+

λ0
× γ(h)

C−

C+C′
ε C′

ε

Figure 2: Appli
ation of Stone's formula. Resonan
es lie on the se
ond sheet and 
lose to λ0(semi-
ir
le gray).measure while the right-hand side∑i∈Jλ0
θ(λ0)ϕ(ci) of (6.1) is also a positive fun
tional of θ, thefun
tion θ 
an be repla
ed by a polynomial approximation on the interval [Λ∗,Λ

∗]. Use polynomialapproximations from below (resp. from above) in order to get a lower bound (resp. upper bound)of the limit in (6.1). Hen
e we 
an assume that θ is a polynomial fun
tion on [Λ∗,Λ
∗], whi
h allowsthe 
omplex deformation of the 
ontour integral.We �rst integrate the polar part. Consider �rst the integral over γh, whi
h involves only

(Hh
z − z)−1. Use expression (6.7) �rst. Let us note immediately that E(z) is a holomorphi
fun
tion in a neighborhood of γh, its integral is null. Then, one 
an rewrite

E−(z) = E−
0 ψ + Õ

(

e−
S0
2h

)

, E+(z) = χE+
0 + Õ

(

e−
S0
2h

)

. (6.15)These estimates hold in the norm of tra
e-
lass operators sin
e these operators are of �nite-rank.On the 
ontour γh, one has
E−+(z)−1 = E−+

0 (z)−1 +G(z), G(z) = O(1), (6.16)32



so 
oming ba
k to (6.7)
E+

0 (z −Hh
z )−1 = −E(z) + χE+

0 E
−+
0 (z)−1E−

0 ψ + O
(

e−
S0
2h

)

, h→ 0. (6.17)If now we integrate over γh, and sin
e θ(λh
j ) = θ(λ0) + o(1), it 
omes

∫

γh

θ(z)(Hh
z − z)−1ϕ

dz

2iπ
= 0 + θ(λ0)χE

+
0 E

−
0 ψϕ+ o(1)‖ϕ‖∞. (6.18)Note that E+

0 E
−
0 is nothing but the orthogonal proje
tor on the Diri
hlet states ∑mλ0

j=1 |φh
j 〉〈φ

h
j | .Taking now the tra
e, and using its 
y
li
ity, one has with the approximation of the Diri
hlet statesby superpositions of the eigenfun
tions of the one-well problem in Theorem 3.6Tr χmλ0

∑

j=1

|φh
j 〉〈φ

h
j |ψϕ



 = Trmλ0
∑

j=1

|φh
j 〉〈φ

h
j |ψϕ



 (6.19)
=

mλ0
∑

j=1

〈

φh
j , φ

h
j ψϕ

〉

L2 (6.20)
=

∑

j∈J(λ0)

ϕ(cj) + o(1)‖ϕ‖∞ . (6.21)Let us 
ome to the 
ontour C′
ε of whi
h the proje
tion on C lies in Ωh \ Ω̃h. Note that the polarpart 
oming from (H ′h

z − z)−1 is to be treated with the integral of the polar part 
oming from
(Hh

z − z)−1. Sin
e (with obvious notations)
E′−+(z)−1 − E−+(z)−1 = E′−+(z)−1(E−+(z) − E′−+(z))E−+(z)−1 ,Lemma 6.5 implies that the di�eren
e is then exponentially small be
ause the resonan
es andanti-resonan
es are at distan
e greater than h from C′

ε.It remains the holomorphi
 part over C′
ε. Be
ause the polar part is treated, one 
an 
omputethis integral after the inverse homotopy leading ba
k to Cε. But 
oming ba
k to the expansionseries (6.8) of E(z) (resp. E′(z)) with main term given by H̃h

z (resp. H̃ ′
h

z ), the appli
ation ofStone's formula gives that the 
ontribution of these terms is zero by Proposition 6.4. �A Agmon identityHere we just give the basi
 energy identity.Lemma A.1 Let Ω := (α, β) an open interval, V ∈ L∞(ω), z ∈ C and ϕ a Lips
hitz real fun
tionon Ω. Denote by P the S
hrödinger operator P := −h2d2/dx2 + V. Then for any u1, u2 in H2(Ω),and setting vj := eϕ/huj one has:
∫ β

α

e
2ϕ
h (P − z)u1ū2dx =

∫ β

α

hv′1hv
′
2dx+

∫ β

α

(V − z − ϕ′2)v1v̄2dx

+

∫ β

α

hϕ′(v′1v̄2 − v1v̄
′
2)dx

+ h2
(

e
2ϕ(α)

h u′1ū2(α) − e
2ϕ(β)

h u′1ū2(β)
)

.This identity is obtained after 
onjugation of hd/dx by eϕ/h and integration by parts.33



B Monotony Prin
ipleA little variation of [Ni2℄ provides the next result.Proposition B.1 For i = 1, 2, let Vi two non negative fun
tions in L∞(I) and Hi := Hh
B + Vi.Consider a fun
tion F ∈ S(R) whi
h is de
reasing on [−B,+∞). Write Fλ(k) = F (λk) and de�ne

dnFλ
a

ording to (1.35) and (1.20). Then the inequality

∫

I

(V2 − V1)dnF [V2] ≤

∫

I

(V2 − V1)dnF [V1]holds.This inequality is a 
onvexity inequality whi
h is a key ingredient in the analysis of thermondy-nami
al equilibria of S
hrödinger-Poisson systems (see [Ni1℄, [Ni2℄). Here the assumption Vi ≥ 0ensures σ(Hi) ⊂ [−B,+∞). The 
onvexity inequality with a 
ontinuous spe
trum has been provedin [Ni2℄, with the assumption that the potential is 0 at in�nity. Here the di�erent values 0 and
−B for x < a and x > b do not bring any additional di�
ulties in this simple one-dimensionalproblem.C Spe
tral approximationWe refer the reader to [Hel℄, [HeSj2℄ for the details. Re
all that if E and F are two given 
losedsubspa
es of a Hilbert spa
e H, with orthogonal proje
tions ΠE and ΠF , the non-symmetri
distan
e from E to F, denoted by ~d(E,F ) ∈ [0, 1] is the norm of operator (1 − ΠF )ΠE , and if
~d(E,F ) < 1, ΠF indu
es on E a 
ontinuous inje
tion on its range with bounded inverse. Moreover,if at the same time ~d(F,E) < 1, the latter distan
es are equal. In parti
ular E and F have samedimension.Proposition C.1 Let A an unbounded self-adjoint operator on H and Λ := [λ−, λ+] ⊂ R. Supposethat there exists ε > 0, N linearly independent ve
tors ψ1, . . . , ψN in the domain of A,µ1, . . . , µN ,
N 
omplex numbers in Λ su
h that Aψj = µjψj + rj , with ‖rj‖ ≤ ε. If A has no spe
trum in
{x, 0 < dist(x,Λ) ≤ a} for some a > 0, then the subspa
es E := Span(ψ1, . . . , ψN ) and F equal tothe spe
tral subspa
e 1Λ(A)H verify

~d(E,F ) ≤

(

N

ρ∗

)1/2
ε

a
,where ρ∗ is the smallest eigenvalue of the Gram matrix with entries 〈ψi, ψj〉.In parti
ular if A is known to have only dis
rete spe
trum and if the dire
ted distan
e ~d(E,F ) 
anbe proved in this way to be smaller than 1, then A has at least N eigenvalues lying in Λ.D S
attering states for the barrierProposition D.1 Let V0(x) := Λ∗ on I and Hh

0 := −h2∆ + V0 − B · 1(b,∞), and {ψh
−(k, ·)}k itss
attering states. Set Sk :=

√

(Λ∗ − λk), λk < Λ∗. Then one has as h → 0, and uniformly for
x ∈ I, for k > 0

|ψh
−(k, x)|2 =

4k2

Λ∗
e−

Sk(x−a)

h

(

1 + O
(

e−
2Sk(b−x)

h

))

,

|ψh
−(−k, x)|2 =

4k2

Λ∗ +B
e

Sk(x−b)

h

(

1 + O
(

e−
2Sk(x−a)

h

))

.34



It su�
es to solve expli
itly on I the system 
hara
terizing ψh
−(k, ·) on the expli
it basis ofsolutions to the ODE (sin
e the potential is 
onstant on I). Use the s
attering 
onditions (1.17)-(1.18) . These 
onditions are still valid when λ < 0 be
ause of the 
hoi
e of the square root indeed.Finally the 
omputation redu
es to the solving of 2 by 2 a�ne systems. We just give the �nalresult.E Pointwise estimate for the resolventThe next result shows that no Lips
hitz regularity is ne
essary in dimension 1 in order to transformweighted L2-estimates into pointwise estimates of the Green fun
tions. On
e the weighted L2-estimates are obtained from the Agmon identity of Appendix A, it su�
es to use the equationafter the regularization of the Agmon distan
e whi
h is possible be
ause the Õ estimates 
anabsorb little exponential errors.Proposition E.1 Let H = −h2∆ + V be a 
losed operator with V ∈ L∞(I), I = [a, b], D(H) ⊂

H2(I), with dual H ′ and D(H ′) ⊂ H2(I). Fix z ∈ C su
h that z 6∈ σ(H) for all h ∈ (0, h0). Weassume that there is a distan
e d ∈ C0(I × I), su
h that the resolvent estimate
‖χx(z −H)−1χy‖L(L2) ≤ CηA(h)e

−d(x,y)+η
hholds for all (x, y, h) ∈ I × I × (0, h0) as soon as η ∈ (0, η0), with η0 > 0 small enough and χpgeneri
ally denotes a 
ut-o� fun
tions supported in |x− p| = O(η). Then the pointwise estimate

|(z −H)−1[x, y]| = Õ
(

A(h)e
−d(x,y)

h

)

,holds with uniform 
onstants with respe
t to (x, y, h) ∈ I × I × (0, h0).Proof: Let y0 ∈ I be �xed. Consider a smooth fun
tion ϕ ∈ C∞(I) whi
h is an aproximation of
d(x, y0), su
h that ‖ϕ− d(., y0)‖L∞ ≤ η and f ∈ L2(I).Let u be the solution to (H − z)u = χy0f , then

e
ϕ
h (−h2∆ + V − z)e−

ϕ
h

(

e
ϕ
h u
)

= e
ϕ
h χy0f.By de�ning v = eϕ/hu, the assumption leads to the estimate

‖v‖L2 ≤ Cη A(h) e
cη
h ‖χy0f‖. (E.1)Using the relation

e
ϕ
h (−(h∂x)2 + V − z)e−

ϕ
h = −h2∂2

x + 2hϕ′∂x + hϕ′′ + V − (ϕ′)2 − z,we 
an write
[C − h2∂2

x + 2hϕ′∂x]v = e
ϕ
h χy0f + Cv + hϕ′′v − (V − (ϕ′)2 − z)v, (E.2)where C is a stri
tly positive 
onstant large enough. The regularity of ϕ implies

‖v‖H2,h ≤ Cη e
cη
h ‖χy0 f̃‖L2 .In dimension one, H2,h is 
ontinously embedded in C0([a, b]). Then the appli
ation f 7→ eϕ/h(H −

z)−1e−ϕ/hχy0f is 
ontinuous from L2([a, b]) onto C0([a, b]) with the above uniform estimate.By duality, χy0e
−ϕ/h(H ′ − z)−1e−ϕ/h is 
ontinuous from (Mb(I), ‖ · ‖b) onto L2.35



By 
hanging y0 into x0 and H into H ′, this says that the L2-norm v1 = χx0e
d(x0,y0−cη)/h(H −

z)−1δy0 has an L2(I)-norm bounded by CηA(h). A bootstrap with (E.2) leads to the uniformestimate of |v1(x)|, whi
h yields the pointwise resolvent estimate. �A
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