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We propose simple randomized strategies for sequential prediction under imperfect monitoring, that is, when the
forecaster does not have access to the past outcomes but rather to a feedback signal. The proposed strategies
are consistent in the sense that they achieve, asymptotically, the best possible average reward. It was Rustichini
[25] who first proved the existence of such consistent predictors. The forecasters presented here offer the first
constructive proof of consistency. Moreover, the proposed algorithms are computationally efficient. We also
establish upper bounds for the rates of convergence. In the case of deterministic feedback, these rates are optimal
up to logarithmic terms.
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1. Introduction In sequential prediction problems a decision maker (or forecaster) tries to predict
the outcome of a certain unknown process at each (discrete) time instance and takes an action accord-
ingly. Depending on the outcome of the predicted event and the action taken, the decision maker receives
a reward. Very often, probabilistic modeling of the underlying process is difficult. For such situations
the prediction problem can be formalized as a repeated game between the decision maker and the envi-
ronment. This formulation goes back to the 1950’s when Hannan [16] and Blackwell [6] showed that the
decision maker has a randomized strategy that guarantees, regardless of the outcome sequence, an average
asymptotic reward as high as the maximal reward one could get by knowing the empirical distribution
of the outcome sequence in advance. Such strategies are called Hannan consistent. To prove this result,
Hannan and Blackwell assumed that the decision maker has full access to the past outcomes. This case
has been termed as full information of perfect monitoring. However, in many important applications, the
decision maker has limited information about the past elements of the sequence to be predicted. Various
models of limited feedback have been considered in the literature. Perhaps the best known of them is
the so-called multi-armed bandit problem in which the forecaster is only informed of its own reward but
not the actual outcome; see Baños [4], Megiddo [22], Foster and Vohra [14], Auer, Cesa-Bianchi, Freund,
and Schapire [1], Hart and Mas Colell [17, 18]. For example, it is shown in [1] that Hannan consistency is
achievable in this case as well. For a general introduction and survey of the sequential prediction problem
we refer to Cesa-Bianchi and Lugosi [10].

In this paper we consider a general model in which the information available to the forecaster is a
general given (possibly randomized) function of the outcome and the decision of the forecaster. It is
well understood under what conditions Hannan consistency is achievable in this setup, see Piccolboni
and Schindelhauer [24] and Cesa-Bianchi, Lugosi, and Stoltz [11]. Roughly speaking, this is possible
whenever, after suitable transformations of the problem, the reward matrix can be expressed as a linear
function of the (expected) feedback matrix. However, this condition is not always satisfied and then
the natural question is what the best achievable performance for the decision maker is. This question
was answered by Rustichini [25] who characterized the maximal achievable average reward that can be
guaranteed asymptotically for all possible outcome sequences (in an almost sure sense).

However, Rustichini’s proof of achievability is not constructive. It uses abstract approachability theo-
rems due to Mertens, Sorin, and Zamir [23] and it seems unlikely that his proof method can give rise to

1

http://www.econ.upf.es/~lugosi
mailto:lugosi@upf.es
http://www.econ.upf.es/~lugosi
http://www.ece.mcgill.ca/~smanno1/
mailto:shie.mannor@mcgill.ca
http://www.ece.mcgill.ca/~smanno1/
http://www.dma.ens.fr/~stoltz
mailto:gilles.stoltz@ens.fr
http://www.dma.ens.fr/~stoltz


2 Lugosi, Mannor, and Stoltz: Strategies for prediction under imperfect monitoring
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

computationally efficient prediction algorithms, as noted in the conclusion of [25]. The goal of this pa-
per is to develop computationally efficient forecasters in the general prediction problem under imperfect
monitoring that achieve the best possible asymptotic performance.

We introduce several forecasting strategies that exploit some specific properties of the problem at
hand. We separate four cases, according to whether the feedback only depends on the outcome or both
on the outcome and the forecaster’s action and whether the feedback is deterministic or not. We design
different prediction algorithms for all four cases.

As a by-product, we also obtain finite-horizon performance bounds with explicit guaranteed rates of
convergence in terms of the number n of rounds the prediction game is played. In the case of deterministic
feedback these rates are optimal up to logarithmic factors. In the random-feedback case we do not know
if it is possible to construct forecasters with a significantly smaller regret.

A motivating example for such a prediction problem arises naturally in multi-access channels that are
prevalent in both wired and wireless networks. In such networks, the communication medium is shared
between multiple decision makers. It is often technically difficult to synchronize between the decision
makers. Channel sharing protocols, and, in particular, several variants of spread spectrum, allow multiple
agents to use the same channel (or channels that may interfere with each other) simultaneously. More
specifically, consider a wireless system where multiple agents can choose in which channel to transmit
data at any given time. The quality of each channel may be different and interference from other users
using this channel (or other “close” channels) may affect the base-station reception. The transmitting
agent may choose which channel to use and how much power to spend on every transmission. The agent
has a tradeoff between the amount of power wasted on transmission and the cost of having its message
only partially received. The transmitting agent may not receive immediate feedback on how much data
were received in the base station (even if feedback is received, it often happens on a much higher layer
of the communication protocol). Instead, the transmitting agent can monitor the transmissions of the
other agents. However, since the transmitting agent is physically far from the base-station and the other
agents, the information about the channels chosen by other agents and the amount of power they used is
imperfect. This naturally abstracts to an online learning problem with imperfect monitoring.

The paper is structured as follows. In the next section we formalize the prediction problem we inves-
tigate, introduce the target quantity, that is, the best achievable reward, and the notion of regret. In
Section 3 we describe some analytical properties of a key function ρ, defined in Section 2. This function
represents the worst possible average reward for a given vector of observations and is needed in our anal-
ysis. In Section 4 we consider the simplest special case when the actions of the forecaster do not influence
the feedback, which is, moreover, deterministic. This case is basically as easy as the full information case
and we obtain a regret bound of the order of n−1/2 (with high probability) where n is the number of
rounds of the prediction game. In Section 5 we study random feedback but still with the restriction that
it is only determined by the outcome. Here we are able to obtain a regret of the order of n−1/4

√
log n.

The most general case is dealt with in Section 6. The forecaster introduced there has a regret of the
order of n−1/5

√
log n. Finally, in Section 7 we show that this may be improved to O(n−1/3) in the case

of deterministic feedback, which is known to be optimal (see [11]).

2. Problem setup, notation The randomized prediction problem is described as follows. Consider
a sequential decision problem in which a forecaster has to predict an outcome that may be thought of as
an action taken by the environment.

At each round, t = 1, 2, . . . , n, the forecaster chooses an action i ∈ {1, . . . , N} and the environment
chooses an action j ∈ {1, . . . , M} (which we also call an “outcome”). The forecaster’s reward r(i, j) is the
value of a reward function r : {1, . . . , N}× {1, . . . , M} → [0, 1]. Now suppose that, at the t-th round, the
forecaster chooses a probability distribution pt = (p1,t, . . . , pN,t) over the set of actions, and plays action
i with probability pi,t. We denote the forecaster’s (random) action at time t by It. If the environment
chooses action Jt ∈ {1, . . . , M}, then the reward of the forecaster is r(It, Jt). The prediction problem is
defined as follows:
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Randomized prediction with perfect monitoring

Parameters: number N of actions, cardinality M of outcome space, reward function r, number n
of game rounds.

For each round t = 1, 2, . . . , n,

(1) the environment chooses the next outcome Jt;

(2) the forecaster chooses pt and determines the random action It, distributed according to pt;

(3) the environment reveals Jt;

(4) the forecaster receives a reward r(It, Jt).

The goal of the forecaster is to minimize the average regret and to enforce that

lim sup
n→∞

(
max

i=1,...,N

1

n

n∑

t=1

r(i, Jt) −
1

n

n∑

t=1

r(It, Jt)

)
≤ 0 a.s.,

that is, the per-round realized differences between the cumulative reward of the best fixed strategy
i ∈ {1, . . . , N}, in hindsight, and the reward of the forecaster, are asymptotically non positive. Denoting

by r(p, j) =
∑N

i=1 pir(i, j) the linear extension of the reward function r, the Hoeffding-Azuma inequality
for sums of bounded martingale differences (see [19], [3]), implies that for any δ ∈ (0, 1), with probability
at least 1 − δ,

1

n

n∑

t=1

r(It, Jt) ≥
1

n

n∑

t=1

r(pt, Jt) −
√

1

2n
ln

1

δ
,

so it suffices to study the average expected reward (1/n)
∑n

t=1 r(pt, Jt). Hannan [16] and Blackwell [6]
were the first to show the existence of a forecaster whose regret is o(1) for all possible behaviors of
the opponent. Here we mention a simple yet powerful forecasting strategy known as the exponentially
weighted average forecaster. This forecaster selects, at time t, an action It according to the probabilities

pi,t =
exp

(
η
∑t−1

s=1 r(i, Js)
)

∑N
k=1 exp

(
η
∑t−1

s=1 r(k, Js)
) , i = 1, . . . , N,

where η > 0 is a parameter of the forecaster. One of the basic well-known results in the theory of
prediction of individual sequences states that the regret of the exponentially weighted average forecaster
is bounded as

max
i=1,...,N

1

n

n∑

t=1

r(i, Jt) −
1

n

n∑

t=1

r(pt, Jt) ≤
lnN

nη
+

η

8
. (1)

With the choice η =
√

8 lnN/n the upper bound becomes
√

lnN/(2n). Different versions of this re-
sult have been proved by Littlestone and Warmuth [20], Vovk [26, 27], Cesa-Bianchi, Freund, Haussler,
Helmbold, Schapire, and Warmuth [8], Cesa-Bianchi [7], see also Cesa-Bianchi and Lugosi [9].

In this paper we are concerned with problems in which the forecaster does not have access neither
to the outcomes Jt nor to the rewards r(i, Jt). The information available to the forecaster at each
round is called the feedback. These feedbacks may depend on the outcomes Jt only or on the action–
outcome pairs (It, Jt) and may be deterministic or drawn at random. In the simplest case when the
feedback is deterministic, the information available to the forecaster is st = h(It, Jt), given by a fixed
(and known) deterministic feedback function h : {1, . . . , N} × {1, . . . , M} → S where S is the finite set
of signals. In the most general case, the feedback is governed by a random feedback function of the form
H : {1, . . . , N} × {1, . . . , M} → P(S) where P(S) is the set of probability distributions over the signals.
The received feedback st is then drawn at random according to the probability distribution H(It, Jt) by
using an external independent randomization.

To make notation uniform throughout the paper, we identify a deterministic feedback function h :
{1, . . . , N} × {1, . . . , M} → S with the random feedback function H : {1, . . . , N} × {1, . . . , M} → P(S)
which, to each pair (i, j), assigns δh(i,j) where δs is the probability distribution concentrated on the single
element s ∈ S.

The sequential prediction problem under imperfect monitoring is formalized in Figure 1.
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Randomized prediction under imperfect monitoring

Parameters: number N of actions, number M of outcomes, reward function r, random feedback
function H , number n of rounds.

For each round t = 1, 2 . . . , n,

(i) the environment chooses the next outcome Jt ∈ {1, . . . , M} without revealing it;

(ii) the forecaster chooses a probability distribution pt over the set of N actions and draws an
action It ∈ {1, . . . , N} according to this distribution;

(iii) the forecaster receives reward r(It, Jt) and each action i gets reward r(i, Jt), but none of
these values is revealed to the forecaster;

(iv) a feedback st drawn at random according to H(It, Jt) is revealed to the forecaster.

Figure 1: The game of randomized prediction under imperfect monitoring

In many interesting situations the feedback the forecaster receives is independent of the forecaster’s
action and only depends on the outcome, that is, for all j = 1, . . . , M , H(·, j) is constant. In other words,
H depends on the outcome Jt but not on the forecaster’s action It. We will see that the prediction
problem becomes significantly simpler in this special case. To simplify notation in this case, we write
H(Jt) = H(It, Jt) for the feedback at time t (h(Jt) = h(It, Jt) in case of deterministic feedback). This
setting includes the full-information case (when the outcomes Jt are revealed) but also the case of noisy
observations (when a random variable with distribution depending only on Jt is observed), see Weissman
and Merhav [28], Weissman, Merhav, and Somekh-Baruch [29].

Next we describe a reasonable goal for the forecaster and define the appropriate notion of consistency.
To this end, we introduce some notation. If p = (p1, . . . , pN ) and q = (q1, . . . , qM ) are probability
distributions over {1, . . . , N} and {1, . . . , M}, respectively, then, with a slight abuse of notation, we write

r(p, q) =

N∑

i=1

M∑

j=1

piqjr(i, j)

for the linear extension of the reward function r. We also extend linearly the random feedback function
in its second argument: for a probability distribution q = (q1, . . . , qM ) over {1, . . . , M}, define the vector
in P(S)

H(i, q) =

M∑

j=1

qjH(i, j) , i = 1, . . . , N.

Denote by F the convex set of all N -vectors H(·, q) = (H(1, q), . . . , H(N, q)) of probability distributions
obtained this way when q varies. (F ⊂ P(S)N is the set of feasible distributions over the signals). In
the case when the feedback only depends on the outcome, all components of this vector are equal and we
denote their common value by H(q). We note that in the general case, the set F is the convex hull of
the M vectors H(·, j). Therefore, performing a Euclidean projection on F can be done efficiently using
quadratic programming.

To each probability distribution p over {1, . . . , N} and probability distribution ∆ ∈ F , we may assign
the quantity

ρ(p, ∆) = min
q:H(·,q)=∆

r(p, q) .

Note that ρ ∈ [0, 1], and ρ is concave in p and convex in ∆.

To define the goal of the forecaster, let qn denote the empirical distribution of the outcomes J1, . . . , Jn

up to round n. This distribution may be unknown to the forecaster since the forecaster observes the
signals rather than the outcomes. The best the forecaster can hope for is an average reward close
to maxp ρ(p, H(·, qn)). Indeed, even if H(·, qn) was known beforehand, the maximal expected reward
for the forecaster would be maxp ρ(p, H(·, qn)), simply because without any additional information the
forecaster cannot hope to do better than against the worst element which is equivalent to q as far as the
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signals are concerned. This is illustrated by the minmax equalities

min
q

max
p

r(p, q) = max
p

min
q

r(p, q) = max
p

min
∆∈F

ρ(p, ∆) = min
∆∈F

max
p

ρ(p, ∆) .

Based on this argument, the (per-round) regret Rn is defined as the average difference between the
obtained cumulative reward and the target quantity described above, that is,

Rn = max
p

ρ(p, H(·, qn)) − 1

n

n∑

t=1

r(It, Jt) .

Rustichini [25] proves the existence of a forecasting strategy whose per-round regret is guaranteed to
satisfy lim supn→∞ Rn ≤ 0 with probability one, for all possible imperfect monitoring problems.

Rustichini’s proof is not constructive but in several special cases constructive and computationally
efficient prediction algorithms have been proposed. Among the partial solutions proposed so far, we
mention Piccolboni and Schindelhauer [24] and Cesa-Bianchi, Lugosi, and Stoltz [11] who study the case
when

max
p

ρ(p, H(·, qn)) = max
i=1,...,N

r(i, qn) = max
i=1,...,N

1

n

n∑

t=1

r(i, Jt) .

In this case strategies with a vanishing per-round regret are called Hannan consistent. In such cases the
feedback is sufficiently rich so that one may achieve the same asymptotic reward as in the full information
case, although the rate of convergence may be slower. This case turns out to be considerably simpler to
handle than the general problem and computationally tractable explicit algorithms have been derived.
Also, it is shown in [11] that in this case it is possible to construct strategies whose regret decreases
as OP(n−1/3) and that this rate of convergence cannot be improved in general. (Note that Hannan
consistency is achievable, for example, in the adversarial multi-armed bandit problem, see Remark B.1 in
the Appendix.) Mannor and Shimkin [21] construct an approachability-based algorithm with vanishing
regret for the special case where the feedback depends only on the outcome. In addition, Mannor and
Shimkin discuss the more general case of feedback that depends on both the action and the outcome and
provide an algorithm that attains a relaxed goal comparing to the one attained in this work.

The following example demonstrates the way the game is played.

Example 2.1 Consider the simple game where N = 2, M = 3, S = {a, b}, and the reward and feedback
functions are as follows. The reward function is described by the matrix

[
1 0 0
1
2

1
2

1
2

]

To identify the possible distributions of the feedback we need to specify some elements of P(S). We
describe such a member of P(S) by the probability of observing a. The feedback function is parameterized
by some ε > 0 and is then given by [

1 1 − ε 0
1 1 − ε 0

]
.

In words, outcome 1 leads to a deterministic feedback of a, outcome 3 leads to a deterministic feedback
of b, and outcome 2 leads to a feedback of a with probability 1 − ε and b with probability ε. Note that
the feedback depends only on the outcome and not on the action taken. We recall that ∆, as a member
of P(S), is identified with the probability of observing the feedback a and it follows that F is the interval
[0, 1]. We now compute the function ρ. Letting p denote the probability of selecting the first action (i.e.,
p = (p, 1 − p)), we have

ρ(p, ∆) = min
q : q1+(1−ε)q2=∆

(
p q1 + (1 − p)

q1 + q2 + q3

2

)
= min

q : εq1−(1−ε)q3=∆−(1−ε)
p q1 +

1 − p

2

=
1 − p

2
+

{
0 for ∆ ≤ 1 − ε,

p ∆−(1−ε)
ε for 1 − ε ≤ ∆ ≤ 1.

Optimizing over p, we obtain

max
p

ρ(p, ∆) =





1

2
for ∆ ≤ 1 − ε/2,

∆−(1−ε)
ε for 1 − ε/2 ≤ ∆ ≤ 1.



6 Lugosi, Mannor, and Stoltz: Strategies for prediction under imperfect monitoring
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

The intuition here is that for ∆ = 1 there is certainty that the outcome is 1 so that an action of p = 1 is
optimal. For ∆ ≤ 1 − ε the forecaster does not know if the outcome was consistently 2 or some mixture
of outcomes 1 and 3. By playing the second action, the forecaster can guarantee a reward of 1/2. The
function ∆ 7→ maxp ρ(p, ∆) is depicted in Figure 2.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

∆

m
ax

p ρ
(p

,∆
)

ε/2

Figure 2: The function ∆ 7→ maxp ρ(p, ∆) for Example 2.1.

In this paper we construct simple and computationally efficient strategies whose regret vanishes with
probability one. The main idea behind the forecasters we introduce in the next sections is based on
the gradient-based strategies described, for example, in Cesa-Bianchi and Lugosi [10, Section 2.5]. Our
forecasters use sub-gradients of concave functions. In the next section we briefly recall some basic facts
on the existence, computation, and boundedness of these sub-gradients.

3. Some analytical properties of ρ For a concave function f defined over a convex subset of Rd,
a vector b(x) ∈ Rd is a sub-gradient of f at x if f(y)− f(x) ≤ b(x) · (y−x) for all y in the domain of f .
We denote by ∂f(x) the set of sub-gradients of f at x which is also known as the sub-differential. Sub-
gradients always exist, that is, ∂f(x) is non-empty in the interior of the domain of a concave function.

In this paper, we are interested in sub-gradients of concave functions of the form f(·) = ρ(·, ∆̂t), where

∆̂t is an observed or estimated feedback at round t. (For instance, in Section 4, ∆̂t = δh(Jt) is observed,
in the other sections, it will be estimated.) In view of the exponentially weighted update rules that are
used below, we only evaluate these functions in the interior of the definition domain (the simplex). Thus,
the existence of sub-gradients is ensured throughout.

In the general case, sub-gradients may be computed efficiently by the simplex method. In the case of
Section 4, that is, when one faces deterministic feedback not depending on the actions of the forecaster,
computation of a sub-gradient is even simpler. At round t, it is trivial whenever p 7→ ρ(p, δh(Jt)) is
differentiable at the considered point pt because it is differentiable exactly at those points at which it is
locally linear, and thus the gradient equals the column of the reward matrix corresponding to the outcome
yt for which r(pt, yt) = ρ(pt, δh(Jt)). Since ρ(·, δh(Jt)) is concave, the Lebesgue measure of the set where
it is non-differentiable equals zero. To avoid such values, one may resort to the simplex method only at
these points or add a small random perturbation to pt at each round.

Note that the components of the sub-gradients are always bounded by a constant that depends on
the game parameters. This is the case since the ρ(·, ∆̂t) are concave and continuous on a compact set
and are therefore Lipschitz, leading to a bounded sub-gradient. In the sequel, we denote by K the value
supp sup∆ supb∈∂ρ(p,∆) ‖b‖∞ where ∂ρ(p, ∆) denotes the sub-gradient at p of the concave function ρ(·, ∆)
with ∆ fixed. This constant depends on the specific parameters of the game. Since the parameters of
the game are supposed to be known to the forecaster, in principle, the forecaster can compute the value
of K. In any case, the value of K can be bounded by the supremum norm of the payoff function as the
following lemma asserts.

Lemma 3.1 The constant K satisfies K ≤ 1.
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Proof. Fix ∆ and consider Z∆ = {q : H(·, q) = ∆}. Define ϕ : (p, q) ∈ Rn × Z 7→ ϕ(p, q) ∈ R as
the linear extension-restriction of r to Rn × Z, that is ϕ(p, q) =

∑
i,j piqjr(i, j). Further, let Z∆

0 (p) =
{q : ϕ(p, q) = minq∈Z∆ ϕ(p, q)}. It follows that under our notation, for any probability distribution p,
one has ρ(p, ∆) = minq∈Z∆ ϕ(p, q). Now, from Danskin’s theorem (see, e.g., Bertsekas [5]) we have that
the sub-differential satisfies

∂ρ(p, ∆) = conv

(
∂ϕ(p, z)

∂p
: z ∈ Z∆

0 (p)

)

where conv(A) denotes the convex hull of a set A. Since r(i, j) ∈ [0, 1], it follows that ‖∂ρ(p, z)/∂p‖∞ ≤ 1
for all z ∈ Z. Since the convex hull does not increase the infinity norm, the result follows. �

Remark 3.1 The constant K for the game described in Example 2.1 is 1/2. However, the gradient of
the function maxp ρ(p, ∆) as a function ∆ is 1/ε. This happens because the p that attains the maximum
changes rapidly in the interval [1 − ε/2, 1]. We further note that K may be much smaller than 1. Since
our regret bounds below depend on K linearly, having a tighter bound on K can lead to considerable
convergence rate speedup; see Remark 4.1.

4. Deterministic feedback only depending on outcome We start with the simplest case when
the feedback signal is deterministic and does not depend on the action It of the forecaster. In other words,
after making the prediction at time t, the forecaster observes h(Jt). This simplifying assumption may be
naturally satisfied in applications in which the forecaster’s decisions do not effect the environment.

In this case, we group the outcomes according to the deterministic feedback they are associated to.
Each signal s is uniquely associated to a group of outcomes. This situation is very similar to the case of
full monitoring except that rewards are measured by ρ and not by r. This does not pose a problem since
r is lower bounded by ρ in the sense that for all p and j,

r(p, j) ≥ ρ(p, δh(j)) .

As mentioned in the previous section, we introduce a forecaster based on the sub-gradients of ρ(·, δh(Jt)),
t = 1, 2, . . .. The forecaster requires a tuning parameter η > 0. The i-th component of pt is

pi,t =
eη
∑ t−1

s=1(r̃(ps,δh(Js)))
i

∑N
j=1 e

η
∑ t−1

s=1(r̃(ps,δh(Js)))
j

,

where
(
r̃(ps, δh(Js))

)
i

is the i-th component of any sub-gradient r̃(ps, δh(Js)) ∈ ∂ρ(ps, δh(Js)) of the
concave function ρ(·, δh(Js)).

The regret is bounded as follows. Note that the following bound and the considered forecaster coincide
with those of (1) in case of perfect monitoring. (In that case, ρ(·, δh(j)) = r(·, j), the sub-gradients are
given by r.)

Proposition 4.1 For all η > 0, for all strategies of the environment, for all δ > 0, the above strategy of
the forecaster ensures that, with probability at least 1 − δ,

Rn ≤ lnN

ηn
+

K2η

2
+

√
1

2n
ln

1

δ

where K is a bound on the sub-gradients. In particular, choosing η ∼
√

(lnN)/n yields Rn =

O(n−1/2
√

ln(N/δ)).

Remark 4.1 The optimal choice of η in the upper bound is K
√

(ln N)/n, which depends on the param-
eters K and n. While the bound K ≤ 1 is available, this bound might be loose. Sometimes the forecaster
does not necessarily know in advance the number of prediction rounds and/or the value of K may be
difficult to compute. In such cases one may estimate on-line both the number of time rounds and K,
using the techniques of Auer, Cesa-Bianchi, and Gentile [2] and Cesa-Bianchi, Mansour, and Stoltz [12]
as follows. Writing

Kt = max
s≤t−1

‖r̃(ps, δh(Js))‖∞ ,
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and introducing a round-dependent choice of the tuning parameter η = ηt = CKt

√
(ln N)/t for a properly

chosen constant C, one may prove a regret bound that is a constant multiple of Kn

√
(lnN/δ)/n (that hold

with probability at least 1 − δ). Since the proof of this is a straightforward combination of the techniques
of the above-mentioned papers and our proof, the details are omitted.

Proof. Note that since the feedback is deterministic, H(qn) takes the simple form H(qn) =
1
n

∑n
t=1 δh(Jt). Now, for any p,

nρ(p, H(qn)) −
n∑

t=1

r(pt, Jt)

≤ nρ(p, H(qn)) −
n∑

t=1

ρ(pt, δh(Jt)) (by the lower bound on r in terms of ρ)

≤
n∑

t=1

(
ρ(p, δh(Jt)) − ρ(pt, δh(Jt))

)
(by convexity of ρ in the second argument)

≤
n∑

t=1

r̃(pt, δh(Jt)) · (p − pt) (by concavity of ρ in the first argument)

≤ lnN

η
+

nK2η

2
(by (1), after proper rescaling),

where at the last step we used the fact that the forecaster is just the exponentially weighted average
predictor based on the rewards (r̃(ps, δh(Js)))i and that all these reward vectors have components be-
tween −K and K. The proof is concluded by the Hoeffding-Azuma inequality, which ensures that, with
probability at least 1 − δ,

n∑

t=1

r(It, Jt) ≥
n∑

t=1

r(pt, Jt) −
√

n

2
ln

1

δ
. (2)

�

5. Random feedback depending only on the outcome Next we consider the case when the
feedback does not depend on the forecaster’s actions, but, at time t, the signal st is drawn at random
according to the distribution H(Jt). In this case the forecaster does not have a direct access to

H(qn) =
1

n

n∑

t=1

H(Jt)

anymore, but only observes the realizations st drawn at random according to H(Jt). In order to overcome
this problem, we group together several consecutive time rounds (say, m of them) and estimate the
probability distributions according to which the signals have been drawn.

To this end, denote by Π the Euclidean projection onto F (since the feedback depends only on the
outcome we may now view the set F of feasible distributions over the signals as a subset of P(S), the
latter being identified with a subset of R|S| in a natural way). Let m, 1 ≤ m ≤ n, be a parameter of the
algorithm. For b = 0, 1, . . ., we denote

∆̂b = Π



 1

m

(b+1)m∑

t=bm+1

δst



 . (3)

For the sake of the analysis, we also introduce

∆b =
1

m

(b+1)m∑

t=bm+1

H(Jt) .

The proposed strategy is described in Figure 3. Observe that the practical implementation of the fore-
caster only requires the computation of (sub)gradients and of ℓ2 projections, which can be done in poly-
nomial time. The next theorem bounds the regret of the strategy which is of the order of n−1/4

√
log n.

The price we pay for having to estimate the distribution is thus a deteriorated rate of convergence (from
the O(n−1/2) obtained in the case of deterministic feedback). We do not know whether this rate can be
improved significantly as we do not know of any nontrivial lower bound in this case.
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Parameters: Integer m ≥ 1, real number η > 0.
Initialization: w0 = (1, . . . , 1).

For each round t = 1, 2, . . .

(i) If bm + 1 ≤ t < (b + 1)m for some integer b, choose the distribution pt = pb given by

pk,t = pb
k =

wb
k∑N

j=1 wb
j

and draw an action It from {1, . . . , N} according to it;

(ii) if t = (b + 1)m for some integer b, perform the update

wb+1
k = wb

k eη (r̃(pb,∆̂b))
k for each k = 1, . . . , N ,

where for all ∆, r̃(·, ∆) is a sub-gradient of ρ(·, ∆) and ∆̂b is defined in (3).

Figure 3: The forecaster for random feedback depending only on the outcome.

Theorem 5.1 For all integers m ≥ 1, for all η > 0, and for all δ > 0, the regret for any strategy of the
environment is bounded, with probability at least 1 − (n/m + 1)δ, by

Rn ≤ 2
√

2L
1√
m

√
ln

2

δ
+

m lnN

nη
+

K2η

2
+

m

n
+

√
1

2n
ln

1

δ
,

where K ≤ 1 and L are constants that depend only on the parameters of the game. The choices m = ⌈√n⌉
and η ∼

√
(m lnN)/n imply Rn = O(n−1/4

√
ln(nN/δ)) with probability of at least 1 − δ.

Here again, K and L may, in principle, be computed or bounded (see Lemma 3.1 and Remark A.1) by
the forecaster who can then choose the value of η to optimize the upper bound for the regret. Observe
that while one always have K ≤ 1, the value of L (i.e., the Lipschitz constant of ρ in its second argument)
can be arbitrarily large, see Example 2.1. Otherwise one may choose a time-dependent value for η as
explained in Remark 4.1.

Proof. We start by grouping time rounds m by m. For simplicity, we assume that n = (B + 1)m
for some integer B (this accounts for the m/n term in the bound). For all p,

n ρ(p, H(qn)) −
n∑

t=1

r(pt, Jt) = n ρ(p, H(qn)) −
B∑

b=0

m r


pb,

1

m

(b+1)m∑

t=bm+1

δJt




≤
B∑

b=0


m ρ

(
p, ∆b

)
− m r


pb,

1

m

(b+1)m∑

t=bm+1

δJt






≤ m

B∑

b=0

(
ρ
(
p, ∆b

)
− ρ

(
pb, ∆b

))
,

where we used the definition of the algorithm, convexity of ρ in its second argument, and finally, the
definition of ρ as a minimum. We proceed by estimating ∆b by ∆̂b. By a version of the Hoeffding-Azuma
inequality for sums of Hilbert space-valued martingale differences proved by Chen and White [13, Lemma
3.2], and since the ℓ2 projection can only help, for all b, with probability at least 1 − δ,

www∆b − ∆̂b
www

2
≤

√
2 ln 2

δ

m
.

By Proposition A.1, ρ is uniformly Lipschitz in its second argument (with constant L), and therefore we
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may further bound as follows. With probability 1 − (B + 1)δ,

m

B∑

b=0

(
ρ
(
p, ∆b

)
− ρ

(
pb, ∆b

))
≤ m

B∑

b=0


ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

)
+ 2 L

√
2 ln 2

δ

m




= m
B∑

b=0

(
ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

))
+ 2 L(B + 1)

√
2m ln

2

δ
.

The term containing (B + 1)
√

m = n/
√

m is the first term in the upper bound. The remaining part is
bounded by using the same slope inequality argument as in the previous section (recall that r̃ denotes a
sub-gradient),

m
B∑

b=0

(
ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

))
≤ m

B∑

b=0

r̃
(
pb, ∆̂b

)
·
(
p − pb

)

≤ m

(
lnN

η
+

(B + 1)K2η

2

)
=

m lnN

η
+

nK2η

2

where we used Theorem 1 and the boundedness of the function r̃ between −K and K. The proof is
concluded by the Hoeffding-Azuma inequality which, as in (2), gives the final term in the bound. The
union bound indicates that the obtained bound holds with probability at least 1−(B+2)δ ≥ 1−(n/m+1)δ.
�

6. Random feedback depending on action–outcome pair We now turn to the general case,
where the feedback is random and depends on the action–outcome pairs (It, Jt). The key is, again, to
exhibit efficient estimators of the (unobserved) H(·, qn).

Denote by Π the projection, in the Euclidian distance, onto F (where F , as a subset of (P(S))N , is
identified with a subset of R|S|N ). For b = 0, 1, . . ., denote

∆̂b = Π



 1

m

(b+1)m∑

t=bm+1

[
ĥi,t

]

i=1,...,N



 (4)

where the distribution H(i, Jt) of the random signal st received by action i at round t is estimated by

ĥi,t =
δst

pi,t
1It=i .

We prove that the ĥi,t are conditionally unbiased estimators. Denote by Et the conditional expectation
with respect to the information available to the forecaster at the beginning of round t. This conditioning
fixes the values of pt and Jt. Thus,Et

[
ĥi,t

]
=

1

pi,t
Et [δst

1It=i] =
1

pi,t
Et [H(It, Jt)1It=i] =

1

pi,t
H(i, Jt)pi,t = H(i, Jt) .

For the sake of the analysis, introduce

∆b =
1

m

(b+1)m∑

t=bm+1

H(·, Jt) .

The proposed forecasting strategy is described in Figure 4. Here again, the practical implementation of
the forecaster only requires the computation of (sub)gradients and of ℓ2 projections, which can be done
efficiently. The next theorem states that the regret in this most general case is at most of the order of
n−1/5

√
log n. Again, we do not know whether this bound can be improved significantly.

Theorem 6.1 For all integers m ≥ 1, for all η > 0, γ ∈ (0, 1), and δ > 0, the regret for any strategy of
the environment is bounded, with probability at least 1 − (n/m + 1)δ, as

Rn ≤ L N

√
2 |S|
γm

ln
2N |S|

δ
+ L

N3/2
√
|S|

3γm
ln

2N |S|
δ

+
m lnN

nη
+

K2η

2
+ γ +

m

n
+

√
1

2n
ln

1

δ
,
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Parameters: Integer m ≥ 1, real numbers η, γ > 0.
Initialization: w0 = (1, . . . , 1).

For each round t = 1, 2, . . .

(i) if bm+1 ≤ t < (b+1)m for some integer b, choose the distribution pt = pb = (1−γ)p̃b +γu,

where p̃
b is defined component-wise as

p̃b
k =

wb
k∑N

j=1 wb
j

and u denotes the uniform distribution, u = (1/N, . . . , 1/N);

(ii) draw an action It from {1, . . . , N} according to it;

(iii) if t = (b + 1)m for some integer b, perform the update

wb+1
k = wb

k eη (r̃(pb,∆̂b))
k for each k = 1, . . . , N ,

where for all ∆ ∈ F , r̃(·, ∆) is a sub-gradient of ρ(·, ∆) and ∆̂b is defined in (4).

Figure 4: The forecaster for random feedback depending on action–outcome pair.

where L and K are constants that depend on the parameters of the game. The choices m =
⌈n3/5⌉, η ∼

√
(m ln N)/n, and γ ∼ n−1/5 ensure that, with probability at least 1 − δ, Rn =

O
(
n−1/5N

√
ln Nn

δ + n−2/5N3/2 ln Nn
δ

)
.

Proof. The proof is similar to the one of Theorem 5.1. A difference is that we bound the accuracy
of the estimation of the ∆b via a martingale analog of Bernstein’s inequality due to Freedman [15] rather
than the Hoeffding-Azuma inequality. Also, the mixing with the uniform distribution of Step 1 needs to
be handled.

We start by grouping time rounds m by m. Assume, for simplicity, that n = (B +1)m for some integer
B (this accounts for the m/n term in the bound). As before, we get that, for all p,

n ρ(p, H(·, qn)) −
n∑

t=1

r(pt, Jt) ≤ m

B∑

b=0

(
ρ
(
p, ∆b

)
− ρ

(
pb, ∆b

))
(5)

and proceed by estimating ∆b by ∆̂b. Freedman’s inequality [15] (see, also, [11, Lemma A.1]) implies
that for all b = 0, 1, . . . , B, i = 1, . . . , N , s ∈ S, and δ > 0,

∣∣∣∣∣∣
∆b

i (s) −
1

m

(b+1)m∑

t=bm+1

ĥi,t(s)

∣∣∣∣∣∣
≤
√

2
N

γm
ln

2

δ
+

1

3

N

γm
ln

2

δ

where ĥi,t(s) is the probability mass put on s by ĥi,t and ∆b
i(s) is the i-th component of ∆b. This is

because the sums of the conditional variances are bounded as

(b+1)m∑

t=bm+1

Vart

(1It=i,st=s

pi,t

)
≤

(b+1)m∑

t=bm+1

1

pi,t
≤ mN

γ
.

Summing (since the ℓ2 projection can only help), the union bound shows that for all b, with probability
at least 1 − δ,

www∆b − ∆̂b
www

2
≤ d

def
=
√

N |S|
(√

2
N

γm
ln

2N |S|
δ

+
1

3

N

γm
ln

2N |S|
δ

)
.

By using uniform Lipschitzness of ρ in its second argument (with constant L; see Proposition A.1), we
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may further bound (5) with probability 1 − (B + 1)δ by

m
B∑

b=0

(
ρ
(
p, ∆b

)
− ρ

(
pb, ∆b

))
≤ m

B∑

b=0

(
ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

)
+ L d

)

= m
B∑

b=0

(
ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

))
+ m(B + 1)L d .

The terms m(B +1)L d = nL d are the first two terms in the upper bound of the theorem. The remaining
part is bounded by using the same slope inequality argument as in the previous section (recall that r̃
denotes a sub-gradient bounded between −K and K):

m

B∑

b=0

(
ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

))
≤ m

B∑

b=0

r̃
(
pb, ∆̂b

)
·
(
p − pb

)
.

Finally, we deal with the mixing with the uniform distribution:

m

B∑

b=0

r̃
(
pb, ∆̂b

)
·
(
p − pb

)
≤ (1 − γ)m

B∑

b=0

r̃
(
pb, ∆̂b

)
·
(
p − p̃

b
)

+ γm(B + 1)

(since, by definition, pb = (1 − γ)p̃b + γu)

≤ (1 − γ)m

(
lnN

η
+

(B + 1)K2η

2

)
+ γm(B + 1)

(by (1))

≤ m lnN

η
+

nK2η

2
+ γn .

The proof is concluded by the Hoeffding-Azuma inequality which, as in (2), gives the final term in the
bound. The union bound indicates that the obtained bound holds with probability at least 1−(B+2)δ ≥
1 − (n/m + 1)δ. �

7. Deterministic feedback depends on action–outcome pair In this last section we explain
how in the case of deterministic feedback the forecaster of the previous section can be modified so that
the order of magnitude of the per-round regret improves to n−1/3. This relies on the linearity of ρ in
its second argument. In the case of random feedback, ρ may not be linear and it is because of this fact
that we needed to group rounds of size m. If the feedback is deterministic, such grouping is not needed
and the rate n−1/3 is obtained as a trade-off between an exploration term (γ) and the cost payed for
estimating the feedbacks (

√
1/(γn)). This rate of convergence has been shown to be optimal in [11] even

in the Hannan-consistent case. The key property is summarized in the next technical lemma, whose proof
is postponed to the appendix.

Lemma 7.1 For every fixed p, the function ρ(p, ·) is linear on F .

Remark 7.1 The fact that the forecaster does not need to group rounds in the case of deterministic feed-
back has an interesting consequence. It is easy to see from the proofs of Proposition 4.1 and Theorem 7.1,
through the linearity property stated above, that the results presented there are still valid when the payoff
function r may change with time (even, when the environment can set it). The definition of the regret is
then generalized as

Rn = max
p

min
zn
1 :H(·,zn)=H(·,qn)

1

n

n∑

t=1

rt(p, zt) −
1

n

n∑

t=1

rt(It, Jt) ,

where zn is the empirical distribution of the sequence of outcomes zn
1 = (z1, . . . , zn), and the same bounds

hold. This may model some more complex situations, including Markov decision processes. Note that
choosing time-varying reward functions was not possible with the forecasters of [24, 11], since these relied
on a crucial structural assumption on the relation between r and h.

Next we describe the modified forecaster. Denote by H the vector space generated by F ⊂ R|S|N and
Π the linear operator which projects any element of R|S|N onto H. Since the ρ(p, ·) are linear on F , we
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Parameters: Real numbers η, γ > 0.
Initialization: w1 = (1, . . . , 1).

For each round t = 1, 2, . . .

(i) choose the distribution pt = (1 − γ)p̃t + γu, where p̃t is defined component-wise as

p̃k,t =
wk,t∑N
j=1 wj,t

and u denotes the uniform distribution, u = (1/N, . . . , 1/N); then draw an action It from
{1, . . . , N} according to pt;

(ii) perform the update

wk,t+1 = wk,t eη (r̃(pt,ĥt))
k for each k = 1, . . . , N ,

where Π is the projection operator defined after the statement of Lemma 7.1, for all ∆ ∈R|S|N , r̃(·, ∆) is a sub-gradient of ρ(·, Π(∆)), and ĥt is defined in (6).

Figure 5: The forecaster for deterministic feedback depending on action–outcome pair.

may extend them linearly to H (and with a slight abuse of notation we write ρ for the extension). As a
consequence, the functions ρ(p, Π(·)) defined on R|S|N are linear and coincide with the original definition
on F . We denote by r̃ a sub-gradient (i.e., for all ∆ ∈ R|S|N , r̃(·, ∆) is a sub-gradient of ρ(·, Π(∆))).

The sub-gradients are evaluated at the following points. (Recall that since the feedback is deterministic,
st = h(It, Jt).) For t = 1, 2, . . ., let

ĥt =
[
ĥi,t

]

i=1,...,N
=

[
δst

pi,t
1It=i

]

i=1,...,N

. (6)

The ĥi,t estimate the feedbacks H(i, Jt) = δh(i,Jt) received by action i at round t. They are still condi-

tionally unbiased estimators of the h(i, Jt), and so is ĥt for H(·, Jt). The proposed forecaster is defined
in Figure 5 and the regret bound is established in Theorem 7.1.

Theorem 7.1 There exists a constant C only depending on r and h such that for all δ > 0, γ ∈ (0, 1),
and η > 0, the regret for any strategy of the environment is bounded, with probability at least 1 − δ, as

Rn ≤ 2NC

√
2

nγ
ln

2

δ
+

NC

3γn
ln

2

δ
+

lnN

ηn
+

ηK2

2
+ γ +

√
1

2n
ln

2

δ
.

The choice γ ∼ n−1/3N2/3 and η ∼
√

(lnN)/n ensures that, with probability at least 1 − δ, Rn =

O
(
n−1/3N2/3

√
ln(1/δ)

)
.

Here again, as in Remark 4.1, we note that the optimization of the upper bound (in both γ and η)
requires the knowledge of N , C, K, and n. The first three parameters only depend on the game and are
known or may be calculated beforehand (the proof indicates an explicit expression for C). If n and/or
K are unknown, their tuning may be dealt with by taking time-dependent γt and ηt.

Proof. The proof is similar to the one of Theorem 6.1, except that we do not have to consider the
grouping steps and that we do not apply the Hoeffding-Azuma inequality to the estimated feedbacks but
to the estimated rewards. By the bound on r in terms of ρ and convexity (linearity) of ρ in its second
argument,

n ρ(p, H(·, qn)) −
n∑

t=1

r(pt, Jt) ≤
n∑

t=1

(ρ (p, H(·, Jt)) − ρ (pt, H(·, Jt))) .

Next we estimate

ρ (p, H(·, Jt)) − ρ (pt, H(·, Jt)) by ρ
(
p, Π

(
ĥt

))
− ρ

(
pt, Π

(
ĥt

))
.
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By Freedman’s inequality (see, again, [11, Lemma A.1]), since ĥt is a conditionally unbiased estimator of
H(·, Jt) and all functions at hand are linear in their second argument, we get that, with probability at
least 1 − δ/2,

n∑

t=1

(ρ (p, H(·, Jt)) − ρ (pt, H(·, Jt)))

=

n∑

t=1

(ρ (p, Π(H(·, Jt))) − ρ (pt, Π(H(·, Jt))))

≤
n∑

t=1

(
ρ
(
p, Π

(
ĥt

))
− ρ

(
pt, Π

(
ĥt

)))
+ 2NC

√
2
n

γ
ln

2

δ
+

NC

3γ
ln

2

δ

where, denoting by ei(δh(i,j)) the column vector whose i-th component is δh(i,j) and all other components
equal 0,

C = max
i,j

max
p

ρ
(
p, Π

[
ei(δh(i,j))

])
< +∞ .

(A more precise look at the definition of C shows that it is less than the maximal ℓ1 norm of the
barycentric coordinates of the points Π[ei(δh(i,j))] with respect to the h(·, j).) This is because for all t,
the conditional variances are bounded as follows. For all p′,Et

[
ρ
(
p′, Π

(
ĥt

))2
]

=

N∑

i=1

pi,t ρ
(
p′, Π

[
ei(δh(i,j)/pi,t)

])2

=

N∑

i=1

1

pi,t
ρ
(
p′, Π

[
ei(δh(i,j)/pi,t)

])2 ≤
N∑

i=1

C2

pi,t
≤ C2N2

γ
.

The remaining part is bounded by using the same slope inequality argument as in the previous sections
(recall that r̃ denotes a sub-gradient in the first argument of ρ(·, Π(·)), bounded between −K and K),

n∑

t=1

(
ρ
(
p, Π

(
ĥt

))
− ρ

(
pt, Π

(
ĥt

)))
≤

n∑

t=1

r̃
(
pt, ĥt

)
· (p − pt) .

Finally, we deal with the mixing with the uniform distribution:

n∑

t=1

r̃
(
p, ĥt

)
· (p − p) ≤ (1 − γ)

n∑

t=1

r̃
(
pt, ĥt

)
· (p − p̃t) + γn

(since by definition pt = (1 − γ)p̃t + γu)

≤ (1 − γ)

(
lnN

η
+

nηK2

2

)
+ γn (by (1)).

As before, the proof is concluded by the Hoeffding-Azuma inequality (2) and the union bound. �
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Appendix A. Uniform Lipschitzness of ρ

Proposition A.1 The function (p, ∆) 7→ ρ(p, ∆) is uniformly Lipschitz in its second argument.
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Proof. We consider the general case where the signal distribution depends on both the actions and
outcomes. Accordingly, we can write ρ(p, ∆) as the solution of the following linear program (we denote
∆ = (∆1, . . . , ∆N ) ∈ F ⊂ P(S)N , where, as usual, we identify each ∆j with a |S|-dimensional vector):

ρ(p, ∆) = min
q∈R[S|

r(p, ·)⊤q

s.t. Hk q = ∆k , k = 1, 2, . . . , N ,
e⊤

M q = 1 ,
q ≥ 0 ,

where r(p, ·) = (r(p, j))j is an M -dimensional vector, eM is an M -dimensional vector of ones, and
Hk = H(k, ·) is the |S|×M matrix, whose entry (s, j) is the probability of observing signal s when action
k is chosen and the outcome is j.

The program is feasible for every ∆ ∈ F so by the duality theorem,

ρ(p, ∆) = max
y∈RN|S|+1

[
∆⊤

1 ∆⊤
2 . . . ∆⊤

N 1
]

y

s.t.
[
H1(·, j)⊤ H2(·, j)⊤ . . . HN (·, j)⊤ 1

]
y ≤ r(p, j) , j = 1, 2, . . . , M ,
y ≥ 0 ,

(7)

where we recall that Hk(·, j) is the |S|-dimensional vector whose s-th entry is the probability of observing
signal s if the action is k and the outcome is j.

We first claim that ∆ 7→ ρ(p, ∆) is Lipschitz for every fixed p. Indeed, for every fixed p the opti-
mization problem involves ∆ only through the objective function. We thus have that the solution to the
optimization problem is obtained at one of finitely many values of y (the vertices of the feasible cone
defined by the constraints of program (7)). (More precisely, the obtained cone may be unbounded if there
are some unconstrained components of y. This happens when there exists an s such that Hk(s, j) = 0
for all j. But then ∆k(s) = 0 as well and we do not care about the unbounded component (k − 1)N + s
of y.) Since ρ(p, ·) is a maximum of finitely many linear functions we obtain that it is Lipschitz, with
Lipschitz constant bounded by the maximal ℓ1 norm of the vertices of the feasible cone of (7).

We now prove that the Lipschitz constant is uniform with respect to p. It suffices to consider the
polytope defined by

{
y ∈ RN |S|+1 : y ≥ 0,

[
H1(·, j)⊤ H2(·, j)⊤ . . . HN (·, j)⊤ 1

]
y ≤ 1, j = 1, 2, . . . , M

}
.

This is a cone, and the vertex y with the maximum ℓ1 norm upper bounds the Lipschitz constant of
the ρ(p, ·), for all p. (As before, any unbounded components of y do not matter to the optimization
problem.) �

Remark A.1 Observe from the proof that an upper bound on the uniform Lipschitz constant can be
easily computed by solving the following linear program,

max
y∈RN|S|+1

e⊤
NS+1 y

s.t.
[
H1(·, j)⊤ H2(·, j)⊤ . . . HN (·, j)⊤ 1

]
y ≤ 1 , j = 1, 2, . . . , M ,
y ≥ 0 .

Appendix B. Proof of Lemma 7.1 It is equivalent to prove that for all fixed p, the function
q 7→ ρ(p, H(·, q)) is linear on the simplex. Actually, the proof exhibits a simpler expression for ρ.

To this end, we first group together the outcomes with same feedback and define a mapping

T : P
(
{1, . . . , M}

)
→ P

(
{1, . . . , M}

)
,

where P({1, . . . , M}) is the set of all probability distributions q on the outcomes. Formally, consider the
binary relation by j ≡ j′ if and only if h(·, j) = h(·, j′). (We use here the notation h to emphasize that
we deal with deterministic feedback.) Denote by F1, . . . , FM ′ the partition of the outcomes {1, . . . , M}
obtained so, and pick in every Fj the outcome yj with minimal reward r(p, yj) against p (ties can be
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broken arbitrarily, e.g., by choosing the outcome with lowest index). Then, for every q, the distribution
q′ = T (q) is defined as q′yj

=
∑

y∈Fj
qy, for j = 1, . . . , M ′, and q′k = 0 if k 6= yj for all j.

T is a linear projection (i.e., T ◦T = T ). It is easy to see that in the the case of deterministic feedback,
H(·, q) = H(·, q′) if and only if T (q) = T (q′). This implies that

ρ(p, H(·, q)) = min
q′ : T (q′)=T (q)

r(p, q′) = r(p, T (q)) (8)

where the last equality follows from the fact that, by choices of the yj , r(p, q′) ≥ r(p, T (q′)) for all q′,
with equality for q′ = T (q) = T 2(q). By linearity of T , q 7→ r(p, T (q)) = ρ(p, H(·, q)) is therefore linear
itself, as claimed.

Note that the equivalence of H(·, q) = H(·, q′) and T (q) = T (q′), together with (8), implies the
following sufficient condition for Hannan-consistency (for necessary and sufficient conditions, see [24, 11]).
It is more general than the distinguishing actions condition of [11].

Remark B.1 Whenever H has no two identical columns in the case of deterministic feeddback, i.e.,
h(·, j) 6= h(·, j′) for all j 6= j′, one has that for all p and q,

ρ(p, H(·, q)) = r(p, q) .

The condition is satisfied, for instance, for multi-armed bandit problems, where h = r (provided that we
identify outcomes yielding the same rewards against all decision-maker’s actions).
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