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Abstract. We propose simple randomized strategies for sequential pre-
diction under imperfect monitoring, that is, when the forecaster does not
have access to the past outcomes but rather to a feedback signal. The
proposed strategies are consistent in the sense that they achieve, asymp-
totically, the best possible average reward. It was Rustichini [11] who
first proved the existence of such consistent predictors. The forecasters
presented here offer the first constructive proof of consistency. Moreover,
the proposed algorithms are computationally efficient. We also establish
upper bounds for the rates of convergence. In the case of deterministic
feedback, these rates are optimal up to logarithmic terms.

1 Introduction

Sequential prediction of arbitrary (or “individual”) sequences has received a lot
of attention in learning theory, game theory, and information theory; see [3]
for an extensive review. In this paper we focus on the problem of prediction
of sequences taking values in a finite alphabet when the forecaster has limited
information about the past outcomes of the sequence.

The randomized prediction problem is described as follows. Consider a se-
quential decision problem where a forecaster has to predict the environment’s
action. At each round, the forecaster chooses an action i ∈ {1, . . . , N}, and
the environment chooses an action j ∈ {1, . . . , M} (which we also call an “out-
come”). The forecaster’s reward r(i, j) is the value of a reward function r :
{1, . . . , N} × {1, . . . , M} → [0, 1]. Now suppose that, at the t-th round, the
forecaster chooses a probability distribution pt = (p1,t, . . . , pN,t) over the set
of actions, and plays action i with probability pi,t. We denote the forecaster’s
action at time t by It. If the environment chooses action Jt ∈ {1, . . . , M}, the
reward of the forecaster is r(It, Jt). The prediction problem is defined as follows:



Randomized prediction with perfect monitoring

Parameters: number N of actions, cardinality M of outcome space, reward
function r, number n of game rounds.

For each round t = 1, 2, . . . , n,

(1) the environment chooses the next outcome Jt;
(2) the forecaster chooses pt and determines the random action It, dis-

tributed according to pt;
(3) the environment reveals Jt;
(4) the forecaster receives a reward r(It, yt).

The goal of the forecaster is to minimize the average regret

max
i=1,...,N

1

n

n∑

t=1

r(i, Jt) −
1

n

n∑

t=1

r(It, Jt),

that is, the realized difference between the cumulative reward of the best strat-
egy i ∈ {1, . . . , N}, in hindsight, and the reward of the forecaster. Denoting

by r(p, j) =
∑N

i=1 pir(i, j) the linear extension of the reward function r, the
Hoeffding-Azuma inequality for sums of bounded martingale differences (see [8],
[1]), implies that for any δ ∈ (0, 1), with probability at least 1 − δ,

1

n

n∑

t=1

r(It, Jt) ≥
1

n

n∑

t=1

r(pt, Jt) −
√

1

2n
ln

1

δ
,

so it suffices to study the average expected reward (1/n)
∑n

t=1 r(pt, Jt). Han-
nan [7] and Blackwell [2] were the first to show the existence of a forecaster
whose regret is o(1) for all possible behaviors of the opponent. Here we mention
one of the simplest, yet quite powerful forecasting strategies, the exponentially

weighted average forecaster. This forecaster selects, at time t, an action It ac-
cording to the probabilities

pi,t =
exp

(
η
∑t−1

s=1 r(i, Js)
)

∑N
k=1 exp

(
η
∑t−1

s=1 r(k, Js)
) i = 1, . . . , N,

where η > 0 is a parameter of the forecaster. One of the basic well-known results
in the theory of prediction of individual sequences states that the regret of the
exponentially weighted average forecaster is bounded as

max
i=1,...,N

1

n

n∑

t=1

r(i, Jt) −
1

n

n∑

t=1

r(pt, Jt) ≤
lnN

nη
+

η

8
. (1)

With the choice η =
√

8 lnN/n the upper bound becomes
√

lnN/(2n). Different
versions of this result have been proved by several authors; see [3] for a review.



In this paper we are concerned with problems in which the forecaster does
not have access to the outcomes Jt. The information available to the forecaster at
each round is called the feedback. These feedbacks may depend on the outcomes
Jt only or on the action–outcome pairs (It, Jt) and may be deterministic or
drawn at random. In the simplest case when the feedback is deterministic, the
information available to the forecaster is st = h(It, Jt), given by a fixed (and
known) deterministic feedback function h : {1, . . . , N} × {1, . . . , M} → S where
S is the finite set of signals. In the most general case, the feedback is governed
by a random feedback function of the form H : {1, . . . , N}×{1, . . . , M} → P(S)
where P(S) is the set of probability distributions over the signals. The received
feedback st is then drawn at random according to the probability distribution
H(It, Jt) by using an external independent randomization.

A motivating example for such a prediction problem arises naturally in multi-
access channels that are prevalent in both wired and wireless networks. In such
networks, the communication medium is shared between multiple decision mak-
ers. It is often technically difficult to synchronize between the decision mak-
ers. Channel sharing protocols such as ALOHA and several variants of spread
spectrum allow multiple agents to use the same channel (or channels that may
interfere with each other) simultaneously. More specifically, consider a wireless
system where multiple agents can choose in which channel to transmit data at
any given time. The quality of each channel may be different and interference
from other users using this channel (or other “close” channels) may affect the
base-station reception. The transmitting agent may choose which channel to use
and how much power to spend on every transmission. The agent has a tradeoff
between the amount of power wasted on a transmission and the cost of having
its message only partially received. The transmitting agent does not receive im-
mediate feedback on how much data were received in the base station (even if
feedback is received, it often happens on a much higher layer of the communi-
cation protocol). Instead, the transmitting agent can monitor the transmissions
of the other agents. However, since the transmitting agent is physically far from
the base-station and the other agents, the information about the channels chosen
by other agents and the amount of power they used is imperfect. This naturally
abstracts to an online learning problem with imperfect monitoring.

To make notation uniform throughout the paper, we identify a deterministic
feedback function h : {1, . . . , N} × {1, . . . , M} → S with the random feedback
function H : {1, . . . , N} × {1, . . . , M} → P(S) which, to each pair (i, j), as-
signs δh(i,j) where δs is the probability distribution over the set of signals S
concentrated on the single element s ∈ S.

We will see that the prediction problem becomes significantly simpler in the
special case when the feedback distribution depends only on the outcome, that
is, when for all i = 1, . . . , N , H(i, ·) is constant. In other words, H depends on
the outcome Jt but not on the forecaster’s action It. To simplify notation in this
case, we write H(Jt) = H(It, Jt) for the feedback at time t (h(Jt) = h(It, Jt) in
case of deterministic feedback).



The sequential prediction problem under imperfect monitoring is formalized
in Figure 1.

Randomized prediction under imperfect monitoring

Parameters: number Nof actions, number M of outcomes, reward function r,
random feedback function H , number n of rounds.

For each round t = 1, 2 . . . , n,

1. the environment chooses the next outcome Jt ∈ {1, . . . , M} without revealing
it;

2. the forecaster chooses a probability distribution pt over the set of N actions
and draws an action It ∈ {1, . . . , N} according to this distribution;

3. the forecaster receives reward r(It, Jt) and each action i gets reward r(i, Jt),
where none of these values is revealed to the forecaster;

4. a feedback st drawn at random according to H(It, Jt) is revealed to the fore-
caster.

Fig. 1. The game of randomized prediction under imperfect monitoring

Next we describe a reasonable goal for the forecaster and define the appro-
priate notion of consistency. To this end, we introduce some notation. If p =
(p1, . . . , pN ) and q = (q1, . . . , qM ) are probability distributions over {1, . . . , N}
and {1, . . . , M}, respectively, then, with a slight abuse of notation, we write

r(p, q) =

N∑

i=1

M∑

j=1

piqjr(i, j)

for the linear extension of the reward function r. We also extend linearly the
random feedback function in its second argument: for a probability distribution
q = (q1, . . . , qM ) over {1, . . . , M}, define the vector in R|S|

H(i, q) =

M∑

j=1

qjH(i, j) , i = 1, . . . , N.

Denote by F the convex set of all the N -vectors H(·, q) = (H(1, q), . . . , H(N, q))
of probability distributions obtained this way when q varies. (F ⊂ R|S|N is the
set of feasible distributions over the signals). In the case where the feedback
only depends on the outcome, all components of this vector are equal and we
denote their common value by H(q). We note that in the general case, the set F
is the convex hull of the M vectors H(·, j). Therefore, performing a Euclidean
projection on F can be done efficiently using quadratic programming.



To each probability distribution p over {1, . . . , N} and probability distribu-
tion ∆ ∈ F , we may assign the quantity

ρ(p, ∆) = min
q:H(·,q)=∆

r(p, q) .

Note that ρ ∈ [0, 1], and ρ is concave in p and convex in ∆.
To define the goal of the forecaster, let qn denote the empirical distribution of

the outcomes J1, . . . , Jn up to round n. This distribution may be unknown to the
forecaster since the forecaster observes the signals rather than the outcomes. The
best the forecaster can hope for is an average reward close to maxp ρ(p, H(·, qn)).
Indeed, even if H(·, qn) was known beforehand, the maximal expected reward
for the forecaster would be maxp ρ(p, H(·, qn)), simply because without any
additional information the forecaster cannot hope to do better than against the
worst element which is equivalent to q as far as the signals are concerned.

Based on this argument, the (per-round) regret Rn is defined as the aver-
aged difference between the obtained cumulative reward and the target quantity
described above, that is,

Rn = max
p

ρ(p, H(·, qn)) − 1

n

n∑

t=1

r(It, Jt) .

Rustichini [11] proves the existence of a forecasting strategy whose per-round
regret is guaranteed to satisfy lim supn→∞ Rn ≤ 0 with probability one, for
all possible imperfect monitoring problems. However, Rustichini’s proof is not
constructive and it seems unlikely that his proof method can give rise to com-
putationally efficient prediction algorithms.

Several partial solutions had been proposed so far. Piccolboni and Schin-
delhauer [10] and Cesa-Bianchi, Lugosi, and Stoltz [4] study the case when
maxp ρ(p, H(·, qn)) = maxi=1,...,N r(i, qn) = maxi=1,...,N (1/n)

∑n
t=1 r(i, Jt). In

this case strategies with a vanishing per-round regret are called Hannan con-

sistent. This case turns out to be considerably simpler than the general case
and computationally tractable explicit algorithms have been derived. Also, it
is shown in [4] that in this case it is possible to construct strategies whose re-
gret decreases as Op(n

−1/3). The general case was considered by Mannor and
Shimkin [9] who construct an algorithm with vanishing regret in the case when
the feedback depends only on the outcome.

In this paper we construct simple and computationally efficient strategies
whose regret vanishes with probability one. In Section 2 we consider the sim-
plest special case when the actions of the forecaster do not influence the feedback
which is, moreover, deterministic. This case is basically as easy as the full in-
formation case and we obtain a regret bound of the order of n−1/2 (with high
probability). In Section 3 we study random feedback but still with the restriction
that it is only determined by the outcome. Here we are able to obtain a regret
of the order of n−1/4

√
log n. The most general case is dealt with in Section 4.

The forecaster introduced there has a regret of the order of n−1/5
√

log n. Fi-
nally, in Section 5 we show that this may be improved to n−1/3 in the case of
deterministic feedback, which is known to be optimal (see [4]).



2 Deterministic feedback only depends on outcome

We start with the simplest case when the feedback signal is deterministic and it
does not depend on the action It of the forecaster. In other words, after making
the prediction at time t, the forecaster observes h(Jt).

In this case, we group the outcomes according to the deterministic feedback
they are associated to. Each signal s is uniquely associated to a group of out-
comes. This situation is very similar to the case of full monitoring except that
rewards are measured by ρ and not by r. This does not pose a problem since r
is lower bounded by ρ in the sense that for all p and j,

r(p, j) ≥ ρ(p, δh(j)) .

We introduce a forecaster that resembles the gradient-based strategies described,
for example, in Cesa-Bianchi and Lugosi [3, Section 2.5]. The forecaster uses any
sub-gradient of ρ(·, δh(Jt)) at time t. (Recall that if f is a concave function defined

over a convex subset of Rd, any vector b(x) ∈ Rd is a sub-gradient of f at x if
f(y) − f(x) ≤ b(x) · (y − x) for all y in the domain of f . Sub-gradients always
exist in the interior of the domain of a concave function. Here, in view of the
exponentially weighted update rules, we only evaluate them in the interior of the
simplex.) The forecaster requires a tuning parameter η > 0. The i-th component
of pt is

pi,t =
eη
∑ t−1

s=1(r̃(ps,δh(Js)))
i

∑N
j=1 e

η
∑ t−1

s=1(r̃(ps,δh(Js)))
j

,

where
(
r̃(ps, δh(Js))

)
i

is the i-th component of any sub-gradient r̃(ps, δh(Js)) ∈
∇ρ(ps, δh(Js)) of the concave function f(·) = ρ(·, δh(Js)).

The computation of a sub-gradient is trivial whenever ρ(ps, δh(Js)) is dif-
ferentiable because it is then locally linear and the gradient equals the column
of the reward matrix corresponding to the outcome ys for which r(ps, ys) =
ρ(ps, δh(Js)). Note that ρ(·, δh(Js)) is differentiable exactly at those points at
which it is locally linear. Since it is concave, the Lebesgue measure of the set
where it is non-differentiable equals zero. To avoid such values, one may add a
small random perturbation to pt or just calculate a sub-gradient using the sim-
plex method. Note that the components of the sub-gradients are always bounded
by a constant that depends on the game parameters. This is the case since
ρ(·, δh(Js)) is concave and continuous on a compact set and is therefore Lips-
chitz leading to a bounded sub-gradient. Let K denote a constant such that
sup

p
maxj ‖r̃(p, δh(j))‖∞ ≤ K. This constant depends on the specific parame-

ters of the game. The regret is bounded as follows. Note that the following bound
(and the considered forecaster) coincide with those of (1) in case of perfect mon-
itoring. (In that case, ρ(·, δh(j)) = r(·, j), the subgradients are given by r, and
therefore, are bounded between 0 and 1.)

Proposition 1. For all η > 0, for all strategies of the environment, for all

δ > 0, the above strategy of the forecaster ensures that, with probability at least



1 − δ,

Rn ≤ lnN

ηn
+

K2η

2
+

√
1

2n
ln

1

δ
.

In particular, choosing η ∼
√

(lnN)/n yields Rn = O(n−1/2
√

ln(N/δ)).

Proof. Note that since the feedback is deterministic, H(qn) takes the simple
form H(qn) = 1

n

∑n
t=1 δh(Jt). Now, for any p,

nρ(p, H(qn)) −
n∑

t=1

r(pt, Jt)

≤ nρ(p, H(qn)) −
n∑

t=1

ρ(pt, δh(Jt)) (by the lower bound on r in terms of ρ)

≤
n∑

t=1

(
ρ(p, δh(Jt)) − ρ(pt, δh(Jt))

)
(by convexity of ρ in the second argument)

≤
n∑

t=1

r̃(pt, δh(Jt)) · (p − pt) (by concavity of ρ in the first argument)

≤ lnN

η
+

nK2η

2
(by (1), after proper rescaling),

where at the last step we used the fact that the forecaster is just the exponen-
tially weighted average predictor based on the rewards (r̃(ps, δh(Js)))i and that
all these reward vectors have components between −K and K. The proof is con-
cluded by the Hoeffding-Azuma inequality, which ensures that, with probability
at least 1 − δ,

n∑

t=1

r(It, Jt) ≥
n∑

t=1

r(pt, Jt) −
√

n

2
ln

1

δ
. (2)

3 Random feedback only depends on outcome

Next we consider the case when the feedback does not depend on the forecaster’s
actions, but, at time t, the signal st is drawn at random according to the distri-
bution H(Jt). In this case the forecaster does not have a direct access to

H(qn) =
1

n

n∑

t=1

H(Jt)

anymore, but only observes the realizations st drawn at random according to
H(Jt). In order to overcome this problem, we group together several consecutive
time rounds (m of them) and estimate the probability distributions according
to which the signals have been drawn.

To this end, denote by Π the Euclidean projection onto F (since the feedback
depends only on the outcome we may now view the set F of feasible distributions



Parameters: Integer m ≥ 1, real number η > 0.
Initialization: w0 = (1, . . . , 1).

For each round t = 1, 2, . . .

1. If bm + 1 ≤ t < (b + 1)m for some integer b, choose the distribution pt = pb

given by

pk,t = pb
k =

wb
k∑N

j=1
wb

j

and draw an action It from {1, . . . , N} according to it;
2. if t = (b + 1)m for some integer b, perform the update

wb+1

k = wb
k eη (r̃(p

b,∆̂b))
k for each k = 1, . . . , N ,

where for all ∆, r̃(·, ∆) is a sub-gradient of ρ(·,∆) and ∆̂b is defined in (3).

Fig. 2. The forecaster for random feedback depending only on outcome.

over the signals as a subset of P(S), the latter being identified with a subset ofR|S| in a natural way). Let m, 1 ≤ m ≤ n, be a parameter of the algorithm. For
b = 0, 1, . . ., we denote

∆̂b = Π


 1

m

(b+1)m∑

t=bm+1

δst


 . (3)

For the sake of the analysis, we also introduce

∆b =
1

m

(b+1)m∑

t=bm+1

H(Jt) .

The proposed strategy is described in Figure 2. Observe that the practical im-
plementation of the forecaster only requires the computation of (sub)gradients
and of ℓ2 projections, which can be done in polytime. The next theorem bounds
the regret of the strategy which is of the order of n−1/4

√
log n. The price we pay

for having to estimate the distribution is thus a deteriorated rate of convergence
(from the O(n−1/2) obtained in the case of deterministic feedback). We do not
know whether this rate can be improved significantly as we do not know of any
nontrivial lower bound in this case.

Theorem 1. For all integers m ≥ 1, for all η > 0, and for all δ > 0, the

regret against any strategy of the environment is bounded, with probability at

least 1 − (n/m + 1)δ, by

Rn ≤ 2
√

2L
1√
m

√
ln

2

δ
+

m lnN

nη
+

K2η

2
+

m

n
+

√
1

2n
ln

1

δ
,



where K, L are constants which depend only on the parameters of the game. The

choices m = ⌈√n⌉ and η ∼
√

(m lnN)/n imply Rn = O(n−1/4
√

ln(nN/δ)) with

probability of at least 1 − δ.

Proof. We start by grouping time rounds m by m. For simplicity, we assume
that n = (B + 1)m for some integer B (this accounts for the m/n term in the
bound). For all p,

n ρ(p, H(qn)) −
n∑

t=1

r(pt, Jt) ≤
B∑

b=0


m ρ

(
p, ∆b

)
− m r


pb,

1

m

(b+1)m∑

t=bm+1

δJt






≤ m
B∑

b=0

(
ρ
(
p, ∆b

)
− ρ

(
pb, ∆b

))
,

where we used the definition of the algorithm, convexity of ρ in its second argu-
ment, and finally, the definition of ρ as a minimum. We proceed by estimating
∆b by ∆̂b. By a version of the Hoeffding-Azuma inequality in Hilbert spaces
proved by Chen and White [5, Lemma 3.2], and since the ℓ2 projection can only
help, for all b, with probability at least 1 − δ,

www∆b − ∆̂b
www

2
≤

√
2 ln 2

δ

m
.

By Proposition 2, ρ is uniformly Lipschitz in its second argument (with constant
L), and therefore we may further bound as follows. With probability 1−(B+1)δ,

m

B∑

b=0

(
ρ
(
p, ∆b

)
− ρ

(
pb, ∆b

))
≤ m

B∑

b=0

(
ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

))
+ 2 L(B + 1)

√
2m ln

2

δ
.

The term containing (B + 1)
√

m = n/
√

m is the first term in the upper bound.
The remaining part is bounded by using the same slope inequality argument as
in the previous section (recall that r̃ denotes a sub-gradient),

m
B∑

b=0

(
ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

))
≤ m

B∑

b=0

r̃
(
pb, ∆̂b

)
·
(
p − pb

)

≤ m

(
lnN

η
+

(B + 1)K2η

2

)
=

m lnN

η
+

nK2η

2

where we used Theorem 1 and the boundedness of the function r̃ between −K
and K. The proof is concluded by the Hoeffding-Azuma inequality which, as
in (2), gives the final term in the bound. The union bound indicates that the
obtained bound holds with probability at least 1 − (B + 2)δ ≥ 1 − (n/m + 1)δ.



4 Random feedback depends on action–outcome pair

We now turn to the most general case, where the feedback is random and de-
pends on the action–outcome pairs (It, Jt). The key is, again, to exhibit efficient
estimators of the (unobserved) H(·, qn).

Denote by Π the projection, in the Euclidian distance, onto F (where F ,
as a subset of (P(S))N , is identified with a subset of R|S|N ). For b = 0, 1, . . .,
denote

∆̂b = Π


 1

m

(b+1)m∑

t=bm+1

[
ĥi,t

]

i=1,...,N


 (4)

where the distribution H(i, Jt) of the random signal st received by action i at
round t is estimated by

ĥi,t =
δst

pi,t
1It=i .

We prove that the ĥi,t are conditionally unbiased estimators. Denote by Et

the conditional expectation with respect to the information available to the
forecaster at the beginning of round t. This conditioning fixes the values of pt

and Jt. Thus,Et

[
ĥi,t

]
=

1

pi,t
Et [δst

1It=i] =
1

pi,t
Et [H(It, Jt)1It=i] =

1

pi,t
H(i, Jt)pi,t = H(i, Jt) .

For the sake of the analysis, introduce

∆b =
1

m

(b+1)m∑

t=bm+1

H(·, Jt) .

The proposed forecasting strategy is sketched in Figure 3. Here again, the practi-
cal implementation of the forecaster only requires the computation of (sub)gradients
and of ℓ2 projections, which can be done efficiently. The next theorem states that
the regret in this most general case is at most of the order of n−1/5

√
log n. Again,

we don’t know whether this bound can be improved significantly.

Theorem 2. For all integers m ≥ 1, for all η > 0, γ ∈ (0, 1), and δ > 0,
the regret against any strategy of the environment is bounded, with probability at

least 1 − (n/m + 1)δ, as

Rn ≤ L N

√
2 |S|
γm

ln
2N |S|

δ
+ L

N3/2
√
|S|

3γm
ln

2N |S|
δ

+
m lnN

nη
+

K2η

2
+ γ +

m

n
+

√
1

2n
ln

1

δ
,

where L and K are constants which depend on the parameters of the game.

The choices m = ⌈n3/5⌉, η ∼
√

(m lnN)/n, and γ ∼ n−1/5 ensure that, with

probability at least 1 − δ, Rn = O
(
n−1/5N

√
ln Nn

δ + n−2/5N3/2 ln Nn
δ

)



Parameters: Integer m ≥ 1, real numbers η, γ > 0.
Initialization: w0 = (1, . . . , 1).

For each round t = 1, 2, . . .

1. if bm+ 1 ≤ t < (b+ 1)m for some integer b, choose the distribution pt = pb =
(1 − γ)p̃b + γu, where p̃

b is defined component-wise as

p̃b
k =

wb
k∑N

j=1
wb

j

and u denotes the uniform distribution, u = (1/N, . . . , 1/N);
2. draw an action It from {1, . . . , N} according to it;
3. if t = (b + 1)m for some integer b, perform the update

wb+1

k = wb
k eη (r̃(p

b,∆̂b))
k for each k = 1, . . . , N ,

where for all ∆ ∈ F , r̃(·, ∆) is a sub-gradient of ρ(·, ∆) and ∆̂b is defined in
(4).

Fig. 3. The forecaster for random feedback depending on action–outcome pair.

Proof. The proof is similar to the one of Theorem 1. A difference is that we
bound the accuracy of the estimation of the ∆b via a martingale analog of
Bernstein’s inequality due to Freedman [6] rather than the Hoeffding-Azuma
inequality. Also, the mixing with the uniform distribution of Step 1 needs to be
handled.

We start by grouping time rounds m by m. Assume, for simplicity, that
n = (B +1)m for some integer B (this accounts for the m/n term in the bound).
As before, we get that, for all p,

n ρ(p, H(·, qn)) −
n∑

t=1

r(pt, Jt) ≤ m

B∑

b=0

(
ρ
(
p, ∆b

)
− ρ

(
pb, ∆b

))
(5)

and proceed by estimating ∆b by ∆̂b. Freedman’s inequality [6] (see, also, [4,
Lemma A.1]) implies that for all b = 0, 1, . . . , B, i = 1, . . . , N , s ∈ S, and δ > 0,

∣∣∣∣∣∣
∆b

i (s) −
1

m

(b+1)m∑

t=bm+1

ĥi,t(s)

∣∣∣∣∣∣
≤
√

2
N

γm
ln

2

δ
+

1

3

N

γm
ln

2

δ

where ĥi,t(s) is the probability mass put on s by ĥi,t and ∆b
i(s) is the i-th

component of ∆b. This is because the sums of the conditional variances are
bounded as

(b+1)m∑

t=bm+1

Vart

(1It=i,st=s

pi,t

)
≤

(b+1)m∑

t=bm+1

1

pi,t
≤ mN

γ
.



Summing (since the ℓ2 projection can only help), the union bound shows that
for all b, with probability at least 1 − δ,

www∆b − ∆̂b
www

2
≤ d

def
=
√

N |S|
(√

2
N

γm
ln

2N |S|
δ

+
1

3

N

γm
ln

2N |S|
δ

)
.

By using uniform Lipschitzness of ρ in its second argument (with constant L;
see Proposition 2), we may further bound (5) with probability 1 − (B + 1)δ by

m

B∑

b=0

(
ρ
(
p, ∆b

)
− ρ

(
pb, ∆b

))
≤ m

B∑

b=0

(
ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

)
+ L d

)

= m

B∑

b=0

(
ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

))
+ m(B + 1)L d .

The terms m(B + 1)L d = nL d are the first two terms in the upper bound of
the theorem. The remaining part is bounded by using the same slope inequality
argument as in the previous section (recall that r̃ denotes a sub-gradient bounded
between −K and K):

m

B∑

b=0

(
ρ
(
p, ∆̂b

)
− ρ

(
pb, ∆̂b

))
≤ m

B∑

b=0

r̃
(
pb, ∆̂b

)
·
(
p − pb

)
.

Finally, we deal with the mixing with the uniform distribution:

m
B∑

b=0

r̃
(
pb, ∆̂b

)
·
(
p − pb

)
≤ (1 − γ)m

B∑

b=0

r̃
(
pb, ∆̂b

)
·
(
p − p̃

b
)

+ γm(B + 1)

(since, by definition, pb = (1 − γ)p̃b + γu)

≤ (1 − γ)m

(
lnN

η
+

(B + 1)K2η

2

)
+ γm(B + 1)

(by (1))

≤ m lnN

η
+

nK2η

2
+ γn .

The proof is concluded by the Hoeffding-Azuma inequality which, as in (2), gives
the final term in the bound. The union bound indicates that the obtained bound
hold with probability at least 1 − (B + 2)δ ≥ 1 − (n/m + 1)δ.

5 Deterministic feedback depends on action–outcome

pair

In this last section we explain how in the case of deterministic feedback the fore-
caster of the previous section can be modified so that the order of magnitude of



the per-round regret improves to n−1/3. This relies on the linearity of ρ in its
second argument. In the case of random feedback, ρ may not be linear which re-
quired grouping rounds of size m. If the feedback is deterministic, such grouping
is not needed and the n−1/3 rate is obtained as a trade-off between an explo-
ration term (γ) and the cost payed for estimating the feedbacks (

√
1/(γn)). This

rate of convergence has been shown to be optimal in [4] even in the Hannan con-
sistent case. The key property is summarized in the next technical lemma whose
proof is omitted for the lack of space.

Lemma 1. For every fixed p, the function ρ(p, ·) is linear on F .

Next we describe the modified forecaster. Denote by H the vector space
generated by F ⊂ R|S|N and Π the linear operator which projects any element
of R|S|N onto H. Since the ρ(p, ·) are linear on F , we may extend them linearly
to H (and with a slight abuse of notation we write ρ for the extension). As a
consequence, the functions ρ(p, Π(·)) are linear defined on R|S|N and coincide
with the original definition on F . We denote by r̃ a sub-gradient (i.e., for all
∆ ∈ R|S|N , r̃(·, ∆) is a sub-gradient of ρ(·, Π(∆))).

The sub-gradients are evaluated at the following points. (Recall that since
the feedback is deterministic, st = h(It, Jt).) For t = 1, 2, . . ., let

ĥt =
[
ĥi,t

]

i=1,...,N
=

[
δst

pi,t
1It=i

]

i=1,...,N

. (6)

The ĥi,t estimate the feedbacks H(i, Jt) = δh(i,Jt) received by action i at round

t. They are still conditionally unbiased estimators of the h(i, Jt), and so is ĥt for
H(·, Jt). The proposed forecaster is defined in Figure 4 and the regret bound is
established in Theorem 3.

Theorem 3. There exists a constant C only depending on r and h such that for

all δ > 0, γ ∈ (0, 1), and η > 0, the regret against any strategy of the environment

is bounded, with probability at least 1 − δ, as

Rn ≤ 2NC

√
2

nγ
ln

2

δ
+

NC

3γn
ln

2

δ
+

lnN

ηn
+

ηK2

2
+ γ +

√
1

2n
ln

2

δ
.

The choice γ ∼ n−1/3N2/3 and η ∼
√

(ln N)/n ensures that, with probability at

least 1 − δ, Rn = O
(
n−1/3N2/3

√
ln(1/δ)

)
.

Proof. The proof is similar to the one of Theorem 2, except that we do not have
to consider the grouping steps and that we do not apply the Hoeffding-Azuma
inequality to the estimated feedbacks but to the estimated rewards. By the bound
on r in terms of ρ and convexity (linearity) of ρ in its second argument,

n ρ(p, H(·, qn)) −
n∑

t=1

r(pt, Jt) ≤
n∑

t=1

(ρ (p, H(·, Jt)) − ρ (pt, H(·, Jt))) .



Parameters: Real numbers η, γ > 0.
Initialization: w1 = (1, . . . , 1).

For each round t = 1, 2, . . .

1. choose the distribution pt = (1−γ)p̃t+γu, where p̃t is defined component-wise
as

p̃k,t =
wk,t∑N

j=1
wj,t

and u denotes the uniform distribution, u = (1/N, . . . , 1/N); then draw an
action It from {1, . . . , N} according to pt;

2. perform the update

wk,t+1 = wk,t eη (r̃(pt,ĥt))
k for each k = 1, . . . , N ,

where Π is the projection operator defined after the statement of Lemma 1,
for all ∆ ∈ R|S|N , r̃(·, ∆) is a sub-gradient of ρ(·, Π(∆)), and ĥt is defined in
(6).

Fig. 4. The forecaster for deterministic feedback depending on action–outcome
pair.

Next we estimate

ρ (p, H(·, Jt)) − ρ (pt, H(·, Jt)) by ρ
(
p, Π

(
ĥt

))
− ρ

(
pt, Π

(
ĥt

))
.

By Freedman’s inequality (see, again, [4, Lemma A.1]), since ĥt is a conditionally
unbiased estimator of H(·, Jt) and all functions at hand are linear in their second
argument, we get that, with probability at least 1 − δ/2,

n∑

t=1

(ρ (p, H(·, Jt)) − ρ (pt, H(·, Jt)))

=

n∑

t=1

(ρ (p, Π (H(·, Jt))) − ρ (pt, Π (H(·, Jt))))

≤
n∑

t=1

(
ρ
(
p, Π

(
ĥt

))
− ρ

(
pt, Π

(
ĥt

)))
+ 2NC

√
2
n

γ
ln

2

δ
+

NC

3γ
ln

2

δ

where, denoting by ei(δh(i,j)) the column vector whose i-th component is δh(i,j)

and all other components equal 0,

C = max
i,j

max
p

ρ
(
p, Π

[
ei(δh(i,j))

])
< +∞ .



This is because for all t, the conditional variances are bounded as follows. For
all p′,Et

[
ρ
(
p′, Π

(
ĥt

))2
]

=

N∑

i=1

pi,t ρ
(
p′, Π

[
ei(δh(i,j)/pi,t)

])2

=

N∑

i=1

1

pi,t
ρ
(
p′, Π

[
ei(δh(i,j)/pi,t)

])2 ≤
N∑

i=1

C2

pi,t
≤ C2N2

γ
.

The remaining part is bounded by using the same slope inequality argument
as in the previous sections (recall that r̃ denotes a sub-gradient in the first
argument of ρ(·, Π(·)), bounded between −K and K),

n∑

t=1

(
ρ
(
p, Π

(
ĥt

))
− ρ

(
pt, Π

(
ĥt

)))
≤

n∑

t=1

r̃
(
pt, ĥt

)
· (p − pt) .

Finally, we deal with the mixing with the uniform distribution:

n∑

t=1

r̃
(
p, ĥt

)
· (p − p) ≤ (1 − γ)

n∑

t=1

r̃
(
pt, ĥt

)
· (p − p̃t) + γn

(since by definition pt = (1 − γ)p̃t + γu)

≤ (1 − γ)

(
lnN

η
+

nηK2

2

)
+ γn (by (1)).

As before, the proof is concluded by the Hoeffding-Azuma inequality (2) and the
union bound.
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A Appendix

Proposition 2. The function (p, ∆) 7→ ρ(p, ∆) is uniformly Lipschitz in its

second argument.

Proof. We consider the general case where the signal distribution depends on
both the actions and outcomes. Accordingly, we can write ρ(p, ∆) as the solution
of the following linear program (we denote ∆ = (∆1, . . . , ∆N ) ∈ F ⊂ P(S)N ):

ρ(p, ∆) = min
q

q⊤r

s.t. Hkq = ∆k , k = 1, 2, . . . , N ,

q⊤eM = 1 ,

q ≥ 0 ,

where r = (rj)j = (
∑N

i=1 pir(i, j))j is an M -dimensional vector, eM is an M -
dimensional vector of ones, and Hk = H(k, ·) is the S ×M matrix, whose entry
(s, j) is the probability of observing signal s when action k is chosen and the
outcome is j.

The program is feasible for every ∆ ∈ F so by the duality theorem:

ρ(p, ∆) = max
y∈RNS+1

y⊤[∆1 ∆2 . . . ∆N 1] (7)

s.t. [H1
1 H2

1 . . . HN
1 1] y = r1 ,

...

[H1
M H2

M . . . HN
M 1] y = rM ,

y ≥ 0

where Hk
j = H(k, j) is the |S|-dimensional vector whose ℓ-th entry is the proba-

bility of observing signal ℓ if the action is k and the outcome is j. We first claim
that ∆ 7→ ρ(p, ∆) is Lipschitz for every fixed p. Indeed, for every fixed p the
optimization problem involves ∆ only through the objective function. We thus
have that the solution to the optimization problem is obtained at one of finitely
many values of y (the vertices of the feasible cone defined by the constraints of
program (7)). (More precisely, the obtained cone may be unbounded if there are
some unconstrained components of y. This happens when Hk

j (ℓ) = 0 for all j.
But then ∆k(ℓ) = 0 as well and we do not care about the component (k−1)N +ℓ



of y.) Since ρ(p, ·) is a maximum of finitely many linear functions we obtain that
it is Lipschitz. We now prove that the Lipschitz constant is uniform with respect
to p. Since the objective function is non-negative (∆ ≥ 0) we can replace the
equality signs with inequality signs in the constraints of program (7) while still
having the same solutions. Consider the polytope defined by:

{
y ∈ RSN+1 : y ≥ 0; [H1

m H2
m . . . HN

m 1] y ≤ 1, m = 1, 2, . . . , M
}

.

This is a cone, and the y with the maximum ℓ1 norm upper bounds the Lipschitz
constant of the ρ(p, ·), for all p. (As before, any unbounded components of y do
not matter to the optimization problem.)


