
EULER’S FORMULAE FOR ζ(2n) AND CAUCHY VARIABLES

P. BOURGADE, T. FUJITA, AND M. YOR

Abstract. Euler’s formulae for ζ(2n) are recovered from the computation
in two different manners of the even moments of log(|C1C2|), for C1 and C2

two independent standard Cauchy variables.
The method employed is generalized first to Lχ4 and then to other trigono-
metric series.

1. Introduction

1.1. Consider the series developments, for t = 1 and 2,

1

(cos(θ))
t =

∞
∑

n=0

A
(t)
n

(2n)!
θ2n

(

|θ| <
π

2

)

.

The coefficients
(

A
(1)
n , n ≥ 0

)

and
(

A
(2)
n , n ≥ 0

)

are well known to be A
(1)
n = A2n and A

(2)
n =

A2n+1, respectively the Euler or secant numbers, and the tangent numbers (more information
about A2n and A2n+1 can be found in [5]).

On the other hand, consider both the zeta function

ζ(s) =
∞
∑

j=1

1

js
(ℜs > 1)

and the L function associated with the quadratic character χ4 :

Lχ4(s) =

∞
∑

j=0

(−1)j

(2j + 1)s
(ℜs > 0) .

The following formulae are very classical (see for example [7]) :

Lχ4(2n + 1) =
1

2

(π

2

)2n+1 A
(1)
n

Γ(2n + 1)
, (1)

(

1 −
1

22n+2

)

ζ(2n + 2) =
1

2

(π

2

)2n+2 A
(2)
n

Γ(2n + 2)
. (2)

1.2. In this note, we show that formulae (1) and (2) may be obtained simply by computing the
moments E

(

(Λ1)
2n

)

and E
(

(Λ2)
2n

)

, where Λ1 = log (|C1|) and Λ2 = log (|C1C2|), with C1 and
C2 two independent standard Cauchy variables.

• On one hand these moments can be computed explicitly in terms of Lχ4 and ζ respec-
tively, thanks to explicit formulae for the densities of Λ1 and Λ2.

• On the other hand, these moments may be obtained via the representation

|C1|
law
= e

π
2 Ĉ1 , (3)

where Ĉ1 is a random variable whose distribution is characterized by

E

(

eiλĈ1

)

=
1

coshλ
(λ ∈ R)
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or

E

(

eθĈ1

)

=
1

cos θ

(

|θ| <
π

2

)

. (4)

More precisions about Ĉ1 or even the Levy process (Ĉt, t ≥ 0) can be found in [5].

1.3. In the next two parts, the moments of Λ1 and Λ2 are calculated according to the method
explained above. Then we give a probabilistic interpretation of equality (3), which is a key step
in our demonstration.

Finally, section 5 presents a generalization of these computations, using the same method, applied
to the ratio of two stable variables.

1.4. The most popular ways to prove (1) and (2) make use of Fourier inversion and Parseval’s
theorem, or of non trivial expansions of functions such as cotan (see for example [7]).

The method we present is elementary, except for the equality (3), for which we give a analytic
proof in 3.2, and a probabilistic one in section 4.

2. The even moments of Λ1 and Λ2

As is well known, the density of C1 is

δ1(x) =
1

π(1 + x2)
.

It is not difficult to show that δ2, the density of C1C2, is

δ2(x) =
2 log |x|

π2(x2 − 1)
.

From the knowledge of δ1 and δ2 we deduce the following result.

Proposition 1. The even moments of Λ1 and Λ2 are given by

E
[

(Λ1)
2n

]

=
4

π
Γ(2n + 1)Lχ4(2n + 1), (5)

E
[

(Λ2)
2n

]

=
8

π2
Γ(2n + 2)

(

1 −
1

22n+2

)

ζ(2n + 2). (6)

Proof. The LHS of (5) equals

2

π

∫ ∞

0

(log x)2ndx

1 + x2
=

4

π

∫ ∞

1

(log x)2ndx

1 + x2
.

Then, making the change of variables x = eu, followed by the series expansion 1
1+e−2u =

∑∞
k=0(−1)ke−2ku, we obtain formula (5).

The proof of formula (6) relies on the same argument, starting from the expression of δ2. �

3. Obtention of formulae (1) and (2)

3.1. Let us assume formula (3), and define a variable Ĉ2 such that

e
π
2 Ĉ2

law
= |C1C2|.

We note that

Ĉ1
law
=

2

π
log |C1|

law
=

2

π
Λ1

and likewise

Ĉ2
law
=

2

π
Λ2.
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Then the even moments of Ĉ1 and Ĉ2 are given by

E

[

(Ĉt)
2n

]

= A(t)
n (t = 1, 2)

so that, from the relations between Ĉt and Λt, we get

E
[

(Λt)
2n

]

=
(π

2

)2n

A(t)
n (t = 1, 2). (7)

Putting together formulae (7)-(8) on one hand, and formula (9) on the other hand, we obtain
the desired results (1) and (2).

3.2. To finish completely our proof, it now remains to show formula (3), that is, starting with
C1, to show that

E

[

eiλ 2
π log |C1|

]

=
1

coshλ
(λ ∈ R). (8)

The LHS of (8) is E

[

|C1|
2iλ
π

]

. To compute this quantity we use the fact that C1
law
= N/N ′,

where N and N ′ are two standard independent Gaussian variables. We shall also use the fact

that N2 law
= 2γ1/2 where γa is a gamma(a) variable. Thus, we have

E

[

|C1|
2iλ
π

]

=
∣

∣

∣
E

[

(

γ1/2

)
iλ
π

]∣

∣

∣

2

=

∣

∣Γ
(

1
2 + iλ

π

)∣

∣

2

(

Γ(1
2 )

)2 =
1

cosh(λ)
(λ ∈ R).

For a proof of this last identity see [3], Problem 1 p. 14.

4. Understanding the relation (3) in terms of planar Brownian motion

Since our derivation of the study of the identity (8) is rather analytical, it seems of interest to
provide a more probabilistic proof of it.

• x

y

•

Rt

θt

1

Zt

4.1. Consider Zt = Xt + iYt a C−valued Brownian
motion, starting from 1 + i0. Denote Rt = |Zt| =
(X2

t + Y 2
t )1/2, and (θt, t ≥ 0) a continuous determi-

nation of the argument of (Zu, u ≤ t) around 0, with
θ0 = 0.

Recall that there exist two independent one-dimensional
Brownian motions (βu, u ≥ 0) and (γu, u ≥ 0) such that

log Rt = βHt , and θt = γHt . (9)

Next, we consider T = inf {t : Xt = 0} = inf
{

t : |θt| = π
2

}

.

4.2. Now, from (9) we obtain, on the one hand,

HT = inf
{

u : |γu| =
π

2

}

def
= T γ,∗

π/2,

and, on the other hand, it is well known that YT is distributed as C1; therefore, using (9), we

obtain log |C1|
law
= βT γ,∗

π/2
, so that

2

π
log |C1|

law
= βT γ,∗

1
.

Consequently, thanks to the independence of β and γ, we obtain

E

[

eiλ 2
π log |C1|

]

= E

[

e
iλβ

T
γ,∗
1

]

= E

[

e−
λ2

2 T γ,∗
1

]

=
1

coshλ
,

as is well known.
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4.3. More details and applications to the asymptotic study of jumps of the Cauchy process are
provided in [6].

In a similar vein, the reader will find some closely related computations by P. Levy [4] who, for
the same purpose as ours, uses Fourier inversion of the characteristic functions 1/ coshλ, λ sinhλ
and 1/(coshλ)2.

Appendix : a slight generalization

The formulae. Let Xµ =
Tµ

T ′

µ
, with Tµ and T ′

µ two independent, unilateral, stable variables

with exponent µ :

E
[

e−λTµ
]

= e−λµ

.

Although, except for µ = 1/2, the density of Tµ does not admit a simple expression, we know
from Lamperti [2] (see also Chaumont-Yor [1] exercise 4.21) that

E [(Xµ)s] =
sinπs

µ sin
(

πs
µ

) , (10)

P ((Xµ)µ ∈ dy) =
sin(πµ)

πµ

dy

y2 + 2y cos(πµ) + 1
. (11)

As in the previous sections, we calculate E
[

(log Xµ
µ )2n

]

in two different ways.

• If we define the sequence (a
(µ)
n , n ≥ 0) via the Taylor series sin πs

µ sin(πs
µ )

=
∑

n≥0
a(µ)

n

(2n)! (πs)2n

then, from (10),

E
[

(log(Xµ)µ)2n
]

= π2na(µ)
n . (12)

• We rewrite (11) as P ((Xµ)µ ∈ dy) = dy
2iπµ

(

1
y+e−iπµ − 1

y+eiπµ

)

. With the usual series

expansion we get

E
[

(log(Xµ)µ)2n
]

=
2Γ(2n + 1)

πµ

∑

k≥1

(−1)k+1 sin(kµπ)

k2n+1
. (13)

Formulae (12) and (13) give

∑

k≥1

(−1)k+1 sin(kµπ)

k2n+1
=

π2n+1µ

2Γ(2n + 1)
a(µ)

n . (14)

Comments about (14).

• Formula (14) with µ = 1/2 gives Lχ4(2n + 1) = π2n+1

4Γ(2n+1) a
(1/2)
n , which is coherent with

formula (1).
• Formula (2) about ζ can also be generalized via the random variable Xµ. We consider

now the product of two independent variables Xµ and X̃µ. We then need to introduce

the Taylor expansion of

(

sin πs

µ sin(πs
µ )

)2

and the density of (Xµ)µ(X̃µ)µ, which is

P

(

(Xµ)µ(X̃µ)µ ∈ dy
)

=
dy

(2πµ)2

(

− log y − 2iπµ

y − e−2iπµ
+

− log y + 2iπµ

y − e2iπµ
+

2 log y

y − 1

)

.

The straightforward calculations for E

[

(log((Xµ)µ(X̃µ)µ))2n
]

are left to the reader.
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• Formula (14) looks like the famous formula
∞
∑

k=0

sin((2k + 1)µπ)

(2k + 1)2n+1
=

(−1)nπ2n+1

4(2n)!
E2n(µ), (15)

where E2n is the 2nth Euler polynomial. Formula (14) (with µ replaced by 2µ) and (15)
together give an explicit expression (for all µ ∈ R and n ∈ N) for

∑

k≥1

sin(kµπ)

k2n+1
. (16)

The derivative of (16) with respect to µ gives an explicit expression for

∑

k≥1

cos(kµπ)

k2n
.

For µ = 0, we get the expression for ζ(2n). To summarize, we have found two ways
to prove formula (2) : the one which uses the product of two Cauchy variables, and a
second one which uses the one parameter family (Xµ) generalizing the Cauchy variable.
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