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EULER'S FORMULAE FOR ζ(2n) AND CAUCHY VARIABLES

come    

The coefficients A

n , n ≥ 0 and A

n , n ≥ 0 are well known to be A

n = A 2n and A

(2) n = A 2n+1 , respectively the Euler or secant numbers, and the tangent numbers (more information about A 2n and A 2n+1 can be found in [START_REF] Pitman | Infinitely divisible laws associated with hyperbolic functions[END_REF]).

On the other hand, consider both the zeta function

ζ(s) = ∞ j=1 1 j s (ℜs > 1)
and the L function associated with the quadratic character χ 4 :

L χ4 (s) = ∞ j=0
(-1) j (2j + 1) s (ℜs > 0) .

The following formulae are very classical (see for example [START_REF] Serre | Cours d'arithmétique[END_REF]) :

L χ4 (2n + 1) = 1 2 π 2 2n+1 A (1) n Γ(2n + 1) , (1) 1 
- 1 2 2n+2 ζ(2n + 2) = 1 2 π 2 2n+2 A (2) n Γ(2n + 2) . (2) 
1.2. In this note, we show that formulae (1) and ( 2) may be obtained simply by computing the moments E (Λ 1 ) 2n and E (Λ 2 ) 2n , where

Λ 1 = log (|C 1 |) and Λ 2 = log (|C 1 C 2 |),
with C 1 and C 2 two independent standard Cauchy variables.

• On one hand these moments can be computed explicitly in terms of L χ4 and ζ respectively, thanks to explicit formulae for the densities of Λ 1 and Λ 2 . • On the other hand, these moments may be obtained via the representation

|C 1 | law = e π 2 Ĉ1 , (3) 
where Ĉ1 is a random variable whose distribution is characterized by

E e iλ Ĉ1 = 1 cosh λ (λ ∈ R) Date: 11 janvier 2006.
or

E e θ Ĉ1 = 1 cos θ |θ| < π 2 . (4) 
More precisions about Ĉ1 or even the Levy process ( Ĉt , t ≥ 0) can be found in [START_REF] Pitman | Infinitely divisible laws associated with hyperbolic functions[END_REF].

1.3. In the next two parts, the moments of Λ 1 and Λ 2 are calculated according to the method explained above. Then we give a probabilistic interpretation of equality (3), which is a key step in our demonstration.

Finally, section 5 presents a generalization of these computations, using the same method, applied to the ratio of two stable variables.

1.4. The most popular ways to prove (1) and (2) make use of Fourier inversion and Parseval's theorem, or of non trivial expansions of functions such as cotan (see for example [START_REF] Serre | Cours d'arithmétique[END_REF]).

The method we present is elementary, except for the equality (3), for which we give a analytic proof in 3.2, and a probabilistic one in section 4.

The even moments of Λ 1 and Λ 2

As is well known, the density of C 1 is

δ 1 (x) = 1 π(1 + x 2 )
.

It is not difficult to show that δ 2 , the density of C 1 C 2 , is δ 2 (x) = 2 log |x| π 2 (x 2 -1)
.

From the knowledge of δ 1 and δ 2 we deduce the following result.

Proposition 1. The even moments of Λ 1 and Λ 2 are given by

E (Λ 1 ) 2n = 4 π Γ(2n + 1)L χ4 (2n + 1), (5) 
E (Λ 2 ) 2n = 8 π 2 Γ(2n + 2) 1 - 1 2 2n+2 ζ(2n + 2). ( 6 
)
Proof. The LHS of (5) equals

2 π ∞ 0 (log x) 2n dx 1 + x 2 = 4 π ∞ 1 (log x) 2n dx 1 + x 2 .
Then, making the change of variables x = e u , followed by the series expansion

1 1+e -2u = ∞ k=0 (-1) k e -2ku
, we obtain formula [START_REF] Pitman | Infinitely divisible laws associated with hyperbolic functions[END_REF]. The proof of formula (6) relies on the same argument, starting from the expression of δ 2 .

Obtention of formulae (1) and (2)

3.1. Let us assume formula (3), and define a variable Ĉ2 such that

e π 2 Ĉ2 law = |C 1 C 2 |. We note that Ĉ1 law = 2 π log |C 1 | law = 2 π Λ 1 and likewise Ĉ2 law = 2 π Λ 2 .
Then the even moments of Ĉ1 and Ĉ2 are given by

E ( Ĉt ) 2n = A (t) n (t = 1, 2)
so that, from the relations between Ĉt and Λ t , we get

E (Λ t ) 2n = π 2 2n A (t) n (t = 1, 2). (7) 
Putting together formulae ( 7)-(8) on one hand, and formula (9) on the other hand, we obtain the desired results (1) and (2).

3.2.

To finish completely our proof, it now remains to show formula [START_REF] Lebedev | Special functions and their applications[END_REF], that is, starting with C 1 , to show that

E e iλ 2 π log |C1| = 1 cosh λ (λ ∈ R). (8) 
The LHS of ( 8) is

E |C 1 | 2iλ π
. To compute this quantity we use the fact that

C 1 law = N/N ′ ,
where N and N ′ are two standard independent Gaussian variables. We shall also use the fact that N 2 law = 2γ 1/2 where γ a is a gamma(a) variable. Thus, we have

E |C 1 | 2iλ π = E γ 1/2 iλ π 2 = Γ 1 2 + i λ π 2 Γ( 1 2 ) 2 = 1 cosh(λ) (λ ∈ R).
For a proof of this last identity see [START_REF] Lebedev | Special functions and their applications[END_REF], Problem 1 p. 14.

Understanding the relation (3) in terms of planar Brownian motion

Since our derivation of the study of the identity (8) is rather analytical, it seems of interest to provide a more probabilistic proof of it.

• x y • R t θ t 1 Z t 4.1. Consider Z t = X t + iY t a C-valued Brownian motion, starting from 1 + i0. Denote R t = |Z t | = (X 2 t + Y 2 t ) 1/2
, and (θ t , t ≥ 0) a continuous determination of the argument of (Z u , u ≤ t) around 0, with θ 0 = 0.

Recall that there exist two independent one-dimensional Brownian motions (β u , u ≥ 0) and (γ u , u ≥ 0) such that log R t = β Ht , and θ t = γ Ht .

(9)

Next, we consider T = inf {t :

X t = 0} = inf t : |θ t | = π 2 .
4.2. Now, from (9) we obtain, on the one hand,

H T = inf u : |γ u | = π 2 def = T γ, * π/2
, and, on the other hand, it is well known that Y T is distributed as C 1 ; therefore, using (9), we

obtain log |C 1 | law = β T γ, * π/2 , so that 2 π log |C 1 | law = β T γ, * 1 .
Consequently, thanks to the independence of β and γ, we obtain

E e iλ 2 π log |C1| = E e iλβ T γ, * 1 = E e -λ 2 2 T γ, * 1 = 1 cosh λ ,
as is well known.

4.3.

More details and applications to the asymptotic study of jumps of the Cauchy process are provided in [START_REF] Pitman | Level crossings of the Cauchy process[END_REF].

In a similar vein, the reader will find some closely related computations by P. Levy [START_REF] Lévy | Random functions : general theory with special references to Laplacian random functions[END_REF] who, for the same purpose as ours, uses Fourier inversion of the characteristic functions 1/ cosh λ, λ sinh λ and 1/(cosh λ) 2 .

Appendix : a slight generalization

The formulae. Let X µ = Tµ T ′ µ , with T µ and T ′ µ two independent, unilateral, stable variables with exponent µ :

E e -λTµ = e -λ µ .
Although, except for µ = 1/2, the density of T µ does not admit a simple expression, we know from Lamperti [START_REF] Lamperti | An occupation time theorem for a class of stochastic processes[END_REF] (see also Chaumont-Yor [START_REF] Chaumont | Exercices in probability[END_REF] 

As in the previous sections, we calculate E (log X µ µ ) 2n in two different ways.

• If we define the sequence (a 

E (log(X µ ) µ ) 2n = π 2n a (µ) n . (12) 
• We rewrite (11) as P ((X µ ) µ ∈ dy) = dy 

k 2n+1 = π 2n+1 µ 2Γ(2n + 1) a (µ) n . (14) 
Comments about (14).

• Formula (14

) with µ = 1/2 gives L χ4 (2n + 1) = π 2n+1 4Γ(2n+1) a (1/2) n
, which is coherent with formula (1).

• Formula (2) about ζ can also be generalized via the random variable X µ . We consider now the product of two independent variables X µ and Xµ . We then need to introduce the Taylor expansion of sin πs µ sin( πs µ ) 2 and the density of (X µ ) µ ( Xµ ) µ , which is

P (X µ ) µ ( Xµ ) µ ∈ dy = dy (2πµ) 2 -log y -2iπµ y -e -2iπµ + -log y + 2iπµ y -e 2iπµ + 2 log y y -1 .
The straightforward calculations for E (log((X µ ) µ ( Xµ ) µ )) 2n are left to the reader.

• Formula (14) looks like the famous formula 

where E 2n is the 2n th Euler polynomial. Formula (14) (with µ replaced by 2µ) and (15) together give an explicit expression (for all µ ∈ R and n ∈ N) for k≥1 sin(kµπ)

k 2n+1 . ( 16 
)
The derivative of (16) with respect to µ gives an explicit expression for k≥1 cos(kµπ) k 2n .

For µ = 0, we get the expression for ζ(2n). To summarize, we have found two ways to prove formula (2) : the one which uses the product of two Cauchy variables, and a second one which uses the one parameter family (X µ ) generalizing the Cauchy variable.

P

  exercise 4.21) that E [(X µ ) s ] ((X µ ) µ ∈ dy) =sin(πµ) πµ dy y 2 + 2y cos(πµ) + 1 .

n

  , n ≥ 0) via the Taylor series sin πs µ sin( ! (πs) 2n then, from (10),

2iπµ 1 y+e(- 1 )(- 1 )

 111 -iπµ -1 y+e iπµ . With the usual series expansion we get E (log(X µ ) µ ) 2n = 2Γ(2n + 1) πµ k≥1 k+1 sin(kµπ) k+1 sin(kµπ)