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Biquantization of Lie bialgebras

CHRISTIAN KASSEL AND VLADIMIR TURAEV

Institut de Recherche Mathématique Avancée, Université Louis Pasteur - C.N.R.S.,
7 rue René Descartes, 67084 Strasbourg, France

ABSTRACT. For any finite-dimensional Lie bialgebra g, we construct a bialgebra A, (g)
over the ring Clul[[v]], which quantizes simultaneously the universal enveloping bialge-
bra U(g), the bialgebra dual to U(g*), and the symmetric bialgebra S(g). Following [Tur89],
we call Ay, (g) a biquantization of S(g). We show that the bialgebra A, ,(g*) quantizing
U(g*), U(g)*, and S(g*) is essentially dual to the bialgebra obtained from A, ,(g) by ez-
changing u and v. Thus, Ay ,(g) contains all information about the quantization of g. Our
construction extends Etingof and Kazhdan’s one-variable quantization of U(g) [EK96].

MATHEMATICS SUBJECT CLASSIFICATION (1991): 17B37, 17B99, 16W30, 53C15, 81R50
Key WORDs: Quantization, Lie bialgebra, Hopf algebra, Poisson algebra

RESUME. Etant donné une bigébre de Lie g de dimension finie, nous construisons une
Clu][[v]]-bigébre A, ,(8) qui quantifie simultanément la bigébre enveloppante U(g), la bi-
gébre duale de U(g*) et la bigebre symétrique S(g). Suivant [Tur89], nous appelons A, (g)
une biquantification de S(g). Nous montrons que la bigébre A, ,(g*) qui quantifie U(g*),
U(g)* et S(g*) est en dualité avec la bigébre obtenue a partir de A, .,(g) en échangeant
u et v. La bigébre A, ,(g) contient ainsi toutes les informations sur la quantification

de g. Notre construction généralise la quantification en une variable de U(g) par Etingof
et Kazhdan [EK96].

MoTs-CLES : Quantification, bigébre de Lie, algébre de Hopf, algebre de Poisson



Introduction

The notion of a Lie bialgebra was introduced by Drinfeld [Dri82], [Dri87] in the framework
of his algebraic formalism for the quantum inverse scattering method. A Lie bialgebra is a
Lie algebra g provided with a Lie cobracket g — g ® g which is related to the Lie bracket
by a certain compatibility condition. The notion of a Lie bialgebra is self-dual: if g is a
finite-dimensional Lie bialgebra over a field, then the dual g* is also a Lie bialgebra.

Drinfeld raised the question of quantizing Lie bialgebras (see loc. cit. and [Dri92]).
For any Lie bialgebra g, its universal enveloping algebra U(g) is a co-Poisson bialgebra.
The quantization problem for g consists in finding a (topological) bialgebra structure on
the module of formal power series U(g)[[h]] which induces the given bialgebra structure
and Poisson cobracket on U(g) = U(g)[[h]]/(h). This problem is solved in the theory of
quantum groups for certain semisimple g. Recently, P. Etingof and D. Kazhdan [EK96]
quantized an arbitrary Lie bialgebra g over a field C of characteristic zero. Their construc-
tion is based on a delicate analysis of Drinfeld associators.

Besides U(g), there are other Poisson and co-Poisson bialgebras associated with a Lie
bialgebra g. One can consider, for instance, the (appropriately defined) Poisson bialgebra
U(g)* dual to U(g), as well as similar bialgebras U(g*), U(g*)* associated with g*. Note
also that the symmetric algebra S(g) = €D,,~, S™(g) is a bialgebra with Poisson bracket
and cobracket extending the Lie bracket and cobracket in g. The Etingof-Kazhdan theory
provides us with quantizations of U(g) and U(g*) in the category of topological bialgebras.
It is essentially clear that, taking the dual bialgebras, we obtain quantizations of U(g)*
and U(g*)*. The bialgebras S(g) and S(g*) stay apart and need to be considered separately.
At this point, the relationship between all these bialgebras and their quantizations looks
a little messy and needs clarification.

The aim of our paper is to sort out and unify these quantizations. We shall show that
there is a bialgebra A(g) quantizing simultaneously U(g), U(g*)*, and S(g). Moreover, the
bialgebra A(g*) quantizing U(g*), U(g)*, S(g*) is essentially dual to EA(g). Thus, we can
view A(g) as a “master” bialgebra containing all information about the quantization of g.

To formalize our results, we appeal to the notion of biquantization introduced in
[Tur89], [Tur91]. It was inspired by a topological study of skein classes of links in the
cylinder over a surface. The idea consists in introducing two independent quantization
variables, u and v, responsible for the quantization of multiplication and comultiplication,
respectively. Let us illustrate this idea with the following construction. Let A be a bialgebra
over the ring of formal power series Cllu,v||]. Assume that A is topologically free as a
C[[u, v]]-module, commutative modulo u, and cocommutative modulo v. It is clear that
A/uA is a commutative bialgebra with Poisson bracket

{pu(@). pu(8)} = pu

where a,b € A and p, : A — A/uA is the projection. The morphism p, is a quantization
of the Poisson bialgebra A/uA. Similarly, the comultiplication A in A induces on A/vA
the structure of a cocommutative bialgebra with Poisson cobracket

Aa) — AOp(a))’

(%

ab;ba))

6(po(a)) = (.2p0) (
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where a € A and p, : A — A/vA is the projection. The morphism p, : A — A/vA
is a quantization of the co-Poisson bialgebra A/vA. By similar formulas, the quotient
A/(u,v) = A/(uA 4+ vA) acquires both a Poisson bracket and a Poisson cobracket, and
becomes a bi-Poisson bialgebra. The projections of A/uA and A/vA onto A/(u,v) quantize
the comultiplication and the multiplication in A/(u,v), respectively. We sum up these
observations in the following commutative diagram of projections

A ——  AJuA

| | (0.1)

A/vA —— A/(u,v)

called a biquantization square. This square involves four bialgebras and four bialgebra
morphisms quantizing either the multiplication or the comultiplication in their targets.
The bialgebra A appears as the summit of the square, quantizing three other bialgebras.
We say that A is a biquantization of the bi-Poisson bialgebra A/(u,v). The notion of
a biquantization allows us to combine four quantizations of three bialgebras in a single
bialgebra. Note that instead of the ring C[[u, v]] one can use subrings containing u and v.
In this paper, as a ground ring for biquantization, we use the ring C[u][[v]] consisting of
the formal power series in v with coefficients in the ring of polynomials C[u].

Our main result is that, for any finite-dimensional Lie bialgebra g over a field C of char-
acteristic zero, the bi-Poisson bialgebra S(g) admits a biquantization. More precisely, we
construct a topological C[ul[[v]]-bialgebra A, ,(g) biquantizing S(g). Specifically, A, ,(g)
is free as a topological C[u|[[v]]-module, is commutative modulo v and cocommutative
modulo v, and A, ,(g)/(u,v) = S(g) as bi-Poisson bialgebras. This gives us a biquantiza-
tion square (0.1) with A = A, ,(g).

Our second result computes the left-bottom corner A/vA of the biquantization square
(0.1), where A = A, ,(g). Consider the Clu|-algebra V,,(g) defined in the same way as the
universal enveloping algebra U(g), except that the identity xy — yx = [z, y] is replaced by
xy — yxr = ulz,y|, where z,y € g. We view V,,(g) as a parametrized version of U(g); note
that V,(g)/(u — 1) = U(g). Similarly to U(g), we provide V,,(g) with the structure of a
co-Poisson bialgebra. We prove that A, ,(g)/vA,.(g) = Viu(g) as co-Poisson bialgebras.
According to the remarks above, the projection A, ,(g) — Au.v(8)/vAu(8) = Vu(g) is
a quantization of V,(g). This is a refined version of the Etingof-Kazhdan quantization
of U(g). Indeed, quotienting both A, ,(g) and V,(g) by u — 1, we obtain the Etingof-
Kazhdan quantization of U(g) (cf. Remark 8.4).

Our third result concerns the right-top corner A/uA of the biquantization square
for A = A, ,(g). Namely, we prove that A/uA is isomorphic to a topological dual of
Vu(g*) consisting of C[v]-linear maps V,(g*) — C[[v]] continuous with respect to the v-
adic topology in C][v]] and a suitable topology in V,,(g*). This dual is a Poisson bialgebra
over C[[v]]. Tt is isomorphic to the Poisson bialgebra E,(g) of functions on the Poisson-Lie
group associated with g*®cC|[[v]], cf. [Tur91, Sections 11-12]. (As an algebra, F,(g) =
S(g)[[v]].) According to the remarks above, the projection A, ,(g) — Au.(8)/uA . (g) =
E,(g) is a quantization of E,(g).

To sum up, the C|u][[v]]-bialgebra A, ,(g) quantizes S(g), V. (g), and the topological
dual E,(g) of V,(g*).



We can apply the same constructions to the dual Lie bialgebra g*. It is convenient to
exchange u and v, i.e., to consider the C[v][[u]]-bialgebra A, ., (g*) obtained from A, ,(g*)
via an appropriate tensoring with Clv][[u]]. As above, A, ,(g*) quantizes S(g*), V,(g*),
and the topological dual E,(g*) of V,,(g). Observe that the three lower level corners of the
biquantization square for A, ,(g*) are dual to the lower level corners of the biquantization
square for A, ,(g). We prove that the bialgebras A, ,(g) and A, ,(g*) are essentially dual
to each other.

Our definition of A, ,(g) is obtained by an elaboration of Etingof and Kazhdan’s
quantization of U(g) and can be regarded as an extension of their work. The definition
goes in two steps. First we replace the variable h by the product uv, which allows us to
introduce two variables into the game. In particular, the universal R-matrix R constructed
in [EK96] gives rise to a two-variable universal R-matrix R, ,. Then we separate the
variables u, v in an expression for R, , by collecting all powers of w (resp. v) in the first
(resp. second) tensor factor. The algebra A, ,(g) is generated by the first tensor factors
appearing in such an expression.

The plan of the paper is as follows. In Section 1 we recall the notions of Poisson,
co-Poisson, and bi-Poisson bialgebras, as well as the definitions of quantizations and bi-
quantizations. In Section 2 we formulate the main results of the paper (Theorems 2.3, 2.6,
2.9, and 2.11). In Section 3 we recall a construction due to Drinfeld producing certain
linear maps out of a bialgebra comultiplication. We use these maps to show that every
bialgebra over C|[u]] has a canonical subalgebra that is commutative modulo u. In Sec-
tion 4 we collect several useful facts concerning Cl[u, v]]-modules. In Section 5 we recall
the basic facts concerning Etingof and Kazhdan’s quantization Uy (g) of a Lie bialgebra g.
In Section 6 we define A, ,(g) and show that it is a topologically free module. The proof
that A, ,(g) is an algebra is also given in Section 6; it uses Lemma 6.10 whose proof is
postponed to Section 7. In Section 7 we introduce a completion gu,v(g) of A,(g) and
define a bialgebra structure on A, ,(g). Section 8 is devoted to the proofs of Theorems 2.3
and 2.6, and the first part of Theorem 2.9. In Section 9 we investigate the two-variable
universal R-matrix R, , and construct a nondegenerate bialgebra pairing between A, ,(g)
and a certain bialgebra A°°P. In Section 10, using the pairing of Section 9, we relate
S(g)[[v]] to the topological dual of V,,(g*), which allows us to complete the proof of Theo-
rem 2.9. Section 11 complements Etingof and Kazhdan’s work [EK96]: in Theorem 11.1 we
compare their constructions of quantization for a Lie bialgebra and its dual. In Section 12
we use the results of Section 11 to show that A®” = A, ,(g*) and prove Theorem 2.11. In
the appendix we describe explicitly the biquantization of a trivial Lie bialgebra.

We fix once and for all a field C of characteristic zero.



1. Poisson bialgebras and their quantizations

We introduce the basic notions used throughout the paper. All objects will be considered
over a field C of characteristic zero. Given a commutative C-algebra x, we recall that
a k-bialgebra is an associative, unital x-algebra A equipped with morphisms of algebras
A:A— A®.A, the comultiplication, and € : A — &, the counit, such that

(A@ldA)A = (ldA®A)A and (€®idA)A = (idA®€)A = idy,

where id 4 denotes the identity map of A. We shall also consider topological bialgebras. A
topological bialgebra A is defined in terms of a two-sided ideal I C A. The definition is the
same as for a k-bialgebra, except that the comultiplication takes values in the completed
tensor product
AB, A=lim (A/I” D A/I”) .
%
The topological bialgebra A is equipped with the I-adic topology, namely the linear topol-

ogy for which the powers of I form a fundamental system of neighbourhoods of 0 (see
[Bou61, Chap. 3)).

1.1. PoissoN BIALGEBRAS. A Poisson bracket on a commutative algebra B over the
field C is a Lie bracket { , } : B x B — B satisfying the Leibniz rule, i.e., such that for all
a,b,c € B we have

{ab, ¢} = a{b, c} + b{a,c}. (1.1)
A Poisson bracket on B defines a Poisson bracket on B ® B by

{a®@ad,b@b'}=ab® {d,V}+ {a,b} @V (1.2)

where a, a’, b, V' € B.
A Poisson bialgebra is a commutative C-bialgebra B equipped with a Poisson bracket
such that the comultiplication A : B — B®B preserves the Poisson bracket:

A({a,b}) = {A(a), A(b)} (1.3)

for all a,b € B.

The following well-known construction yields examples of Poisson bialgebras. Let
A be a bialgebra over the ring Clu| of polynomials in a variable u. Assume that A is
commutative modulo u in the sense that ab—ba € uA for all a,b € A. If the multiplication

by u is injective on A, then the quotient bialgebra A/uA is a Poisson bialgebra with Poisson
bracket defined for all a, b € A by

ab—ba)) (1.4)

{p(@), p(6)} = p(

u

where p: A — A/uA is the projection.



The inverse of this construction is called quantization. More precisely, a quantization
of a Poisson C-bialgebra B is a C[u]-bialgebra A which is isomorphic as a C[u]-module to
the module B[u] of polynomials in u with coefficients in B, is commutative modulo u, and
such that A/uA is isomorphic to B as a Poisson bialgebra. The latter condition implies
that Equality (1.4) holds for all a,b € A, where p: A — A/uA = B is the projection and
{, } is the Poisson bracket in B.

One can similarly define quantization over the ring C[[u]] of formal power series. To
shorten, we call C[[u]]-bialgebra a topological C[[u]]-algebra A where the topology is the
u-adic topology, i.e., is defined by the ideal uA. In this case,

ABcfu) A = li£ﬂ<A/UnA Qc[[ull/ (um) A/U"A>. (1.5)

n

A quantization over C[[u]] of a Poisson C-bialgebra B is a (topological) Cl[[u]]-bialgebra A
which is isomorphic as a Cl[u|]-module to the module B[[u]] of formal power series with
coefficients in B, is commutative modulo u, and such that A/uA = B as Poisson bialgebras.

1.2. Co-PoissoN BIALGEBRAS. It is straightforward to dualize the definitions of Sec-
tion 1.1. A Poisson cobracket on a cocommutative C-coalgebra B is a Lie cobracket
0 : B — B ® B satisfying the Leibniz rule, i.e., such that

(id® A)d = (d ®id + (0 ®id)(id ® 0)) A, (1.6)

where A : B — B®B is the comultiplication of B and o is the permutation a®b — b®a
in B®B. Recall the notation A°? = ¢ A for the opposite comultiplication.
A co-Poisson bialgebra is a cocommutative C-bialgebra B equipped with a Poisson
cobracket § such that
d(ab) = §(a)A(b) + A(a)d(b) (1.7)

for all a,b € B.

We obtain co-Poisson bialgebras by dualizing the constructions of Section 1.1. Here
again we have the choice between the ring C[v] of polynomials and the ring CJ[[v]] of
formal power series in a variable v. In the context of co-Poisson bialgebras, it will be more
relevant to work with formal power series. So let A be a bialgebra over C[[v]] in the sense
of Section 1.1. Assume that A is cocommutative modulo v, i.e., for all a € A we have
A(a) — A°P(a) € UA@)C[[,U]]A, where A denotes the comultiplication and A°P the opposite
comultiplication of A. If v acts injectively on A @)C[[v” A, then the quotient bialgebra A/vA
is a co-Poisson bialgebra with cobracket

_ Aop
3(p(a)) = (peop) (2= 2) (1.
for a € A, where p: A — A/vA is the projection.

A coquantization of a co-Poisson C-bialgebra B is a Cl[v]]-bialgebra A which is iso-
morphic to B[[v]] as a C[[v]]-module, is cocommutative modulo v, and such that A/vA is
isomorphic to B as a co-Poisson bialgebra. This implies that Formula (1.8) holds for any
a € A, where p: A — A/vA = B is the projection and § is the Poisson cobracket in B.
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1.3. B1-PoissoN BIALGEBRAS. Following [Tur89, 91|, we combine the definitions given
above and define the concepts of bi-Poisson bialgebras and their biquantizations. A bi-
Poisson bialgebra is a commutative and cocommutative bialgebra B equipped with Poisson
bracket { , } and Poisson cobracket § turning B into a Poisson and co-Poisson bialgebra,
and satisfying the additional condition:

d({a,b}) = {6(a), A(b)} + {A(a),6(b)} (1.9)

for all a,b € B.

In order to introduce biquantization, we use two variables u and v and the ring Clu][[v]]
which consists of formal power series in v whose coefficients are polynomials in u. The
following definitions can easily be adapted to the rings C|u, v|, C[[u, v]], and C[v]|[[u]].

By a C[u][[v]]-bialgebra A we mean a topological Clu][[v]]-algebra A, where the topol-
ogy is defined by the ideal v A, so that the comultiplication takes values in

A@c A = liLn(A/v”A Qc[u][[o]]/(v™) A/v”A) ) (1.10)

n

Let A be a Clu|[[v]]-bialgebra that is commutative modulo u and cocommutative modulo v.
If w and v act injectively on A, then the quotient bialgebra A/(uA + vA) is a bi-Poisson
bialgebra over C with Poisson bracket given by (1.4) and Poisson cobracket given by (1.8),
where p: A — A/(uA 4+ vA) is the projection. Inverting this construction, we obtain the
following notion of biquantization.

1.4. DEFINITION.— A biquantization of a bi-Poisson C-bialgebra B is a Clu][[v]]-bi-
algebra A which is isomorphic to Blu][[v]] as a Clu][[v]]-module, is commutative modulo u
and cocommutative modulo v, and such that A/(uA + vA) = B as bi-Poisson bialgebras.

Any biquantization A gives rise to a “biquantization square” as follows. Observe that
A/vA is a cocommutative co-Poisson bialgebra over C[u] and that A/uA is a commutative
Poisson bialgebra over Cl[[v]]. We form the commutative square

Pu

A — A/uA
pul l ” (1.11)

du
A/lvA —— B
where py, Pv, qu, ¢» are the natural projections. The morphisms p,, and ¢, are quantizations

whereas p, and ¢, are coquantizations. The projection p : A — B can therefore be factored
in two ways as a composition of a quantization and a coquantization: p = ¢,Py = qupo.

2. Statement of the main results

Any Lie bialgebra g gives rise to a bi-Poisson bialgebra S(g). In this section, after re-
calling the necessary facts on Lie bialgebras, we state our main theorems concerning a
biquantization of S(g).



2.1. Lie BIALGEBRAS (cf. [Dri82]). A Lie cobracket on a vector space g over C is a linear
map J : g — g ® g such that

0d=-6 and (idd+7+73)(6®id)=0 (2.1)

where o (resp. 7) is the automorphism of g® g (resp. of gR g®g) given by o(z®Qy) =y
(resp. T(zR@Y®2) = y®2z®ux). It is clear that the transpose map §* : g* @g* C (g®g)* — g*
is a Lie bracket in the dual space g* = Homc¢(g, C).

A Lie bialgebra is a vector space over C equipped with a Lie bracket [, |: g® g — g
and a Lie cobracket § : g — g ® g such that
6([z,y]) = z0(y) — yé(x) (22)

for all x,y € g. Here g acts on g ® g by the adjoint action (z, 2, 2’ € g):
2(2@2)=[1,2]®2 +2® [x,2].

Let g be a Lie bialgebra with Lie bracket [, | and Lie cobracket §. It is easy to check
that, if we replace [, | by —[, | without changing the Lie cobracket, then we obtain a new
Lie bialgebra, which we denote g°P. If we leave the Lie bracket in g unaltered and replace
0 by —0d, then we obtain another Lie bialgebra denoted g®°P. The opposite —idg of the
identity map of g is an isomorphism of Lie bialgebras g°? — g®P and g — (g°P)“°P.

When the Lie bialgebra g is finite-dimensional, then the dual vector space g* with
the transpose bracket and cobracket is also a Lie bialgebra. Clearly, (g*)°P = (g®P)* and

(g7)P = (g°°)"-

2.2. A BI1-PoISSON BIALGEBRA ASSOCIATED TO g (cf. [Tur89, 91]). For any vector
space g, the symmetric algebra S(g) = €,,~, S™(g) has a structure of bialgebra with
comultiplication A determined by A(z) =z ® 1+ 1@z forallz € g = S'(g). If g is a
Lie algebra with Lie bracket [, |, then S(g) is a Poisson bialgebra with Poisson bracket
determined by

{z,y} = [z, 9] (2.3)

for all z,y € g. If g is a Lie coalgebra, then S(g) is a co-Poisson bialgebra with the unique
Poisson cobracket such that its restriction to S*(g) = g is the Lie cobracket of g. If, further-
more, g is a Lie bialgebra, then S(g) is a bi-Poisson bialgebra ([Tur91, Theorem 16.2.4)).

We now state our first main theorem.

2.3. THEOREM.— Gliven a finite-dimensional Lie bialgebra g, there exists a biquantization

Ay(g) for S(g).

The construction of A, ,(g) will be given in Section 6. It is an extension of Etingof and
Kazhdan’s quantization of U(g), as constructed in [EK96]. As in loc. cit., our definition
of A, ,(g) is based on the choice of a Drinfeld associator. We nevertheless believe that it
is unique up to isomorphism. We shall not discuss this point in this paper.

The fundamental feature of our construction is that the bialgebras in the lower left
and the upper right corners in the biquantization square (1.11) when A = A, ,(g) are
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closely related to the universal enveloping bialgebra U(g) of g and to the dual of U(g*).
We shall give precise statements in the remaining part of this section. We begin with a
short discussion of U(g) and its parametrized version V,(g).

2.4. THE BIALGEBRA V,(g). Let g be a Lie algebra over C. Consider the C|u]-algebra
T'(g)[u] of polynomials with coefficients in the tensor algebra T'(g) = ,,~, §°". Let V,,(g)
be the quotient of T'(g)[u] by the two-sided ideal generated by the elements

TRy —yQx—ulx,y,

where x,y € g. The composition of the natural linear maps g = T (g) C T(g) C T'(g)[u] —
V. (g) is an embedding whose image generates V,,(g) as a C[u]-algebra. The algebra V,,(g)
is a bialgebra with comultiplication A determined by

Alz)=z®1+1®z (2.4)

for all # € g. Clearly, Vi,(9)/(u — 1)Vu(g) = U(g) and Vi (g)/uVu(g) = S(g).

In this paper, we will use the fact that V;,(g) embeds in the polynomial algebra U(g)|u].
The algebra U(g)[u] is equipped with a C[u]-bialgebra structure whose comultiplication A
is also given by (2.4). Let i : V,,(g) — U(g)[u] be the morphism of Clu|-bialgebras defined
by i(x) = uz for all z € g C V,,(g). Using the Poincaré-Birkhoff-Witt theorem (cf. [Dix74,
Chap. 2]), we see that V,(g) is a free Clu]-module and that i is injective. To describe
its image, recall the standard filtration U%(g) = C C U'(g) C U%(g) C --- of U(g): the
subspace U™(g) is the image of @), ¢®* under the projection T'(g) — U(g). Then

i(Viu(g)) = {Z amu™ € U(g)[u] | am € U™(g) for all m > o}.

m>0

We also have U™(g)/U™~1(g) = S™(g) for all m,n > 0. From now on, we identify V,,(g)
with i(V,(g)) and S(g) with the graded algebra €, -, U™(g)/U™ *(g). Under these
identifications, the natural projection ¢, : V,,(g) — S(g) sends any element Y -, anu™ €
Vu(g) to o, <o @m € S(g), where a,, € S™(g) is the class of a,,, € U™(g) modulo U™ 1(g).
These observations lead to the following easy fact.

2.5. LEMMA.— The Clu|-bialgebra V,,(g) is a quantization of the Poisson bialgebra S(g).

Suppose now that g is a Lie bialgebra with Lie cobracket ¢. It was shown in [Tur91,
Theorem 7.4] that ¢ induces a co-Poisson bialgebra structure on V,,(g) with Poisson co-
bracket §,, determined for all x € g by

5U(um) = u25($) € ugug C Vu(g) ®C[u] Vu(g) (25)

The projection ¢, : V,(g) — S(g) preserves the co-Poisson structure; in other words, V,(g)
is a quantization of S(g) in the category of co-Poisson bialgebras.

2.6. THEOREM.— For the bialgebra A, ,(g) of Theorem 2.3, there is an isomorphism of
co-Poisson Clu|-bialgebras

Au,v (g)/vAum(g) = Vu(g)

Theorem 2.6 will be proved in Section 8.



2.7. THE BIALGEBRA E,(g). Let g be a finite-dimensional Lie coalgebra with Lie co-
bracket §. By Section 2.2 the cobracket § induces a co-Poisson bialgebra structure on S(g).

Turaev ([Tur89, Sections 4-5] and [Tur91, Sections 11-12]) constructed a (topological)
C|[[v]]-bialgebra FE,(g) which may be viewed as the bialgebra of functions on the simply-
connected Lie group associated to the dual Lie algebra g*. As an algebra, E,(g) is the
algebra of formal power series with coefficients in S(g):

Ey(g) = S(g)[[v]]-

To define the comultiplication in F,(g), consider the Campbell-Hausdorff series

w(X,Y) =log(eXe¥) =X 4+Y + % (X, Y]+ 1—12 (X, (X, Y]+ [X, YY) +---  (26)

where X,Y € g*. Let us multiply all Lie brackets of length n by v™. This yields the
modified Campbell-Hausdorff series

1 v v?
po(X,Y) = —log(e™ e'™) = X+V + o [X, V]+ 15 (X, X Y]+ [[X V] Y]) 400 (27)
The comultiplication A’ in E,(g) is given by a — aou,,, which makes sense when we identify
elements of E,(g) with C[[v]]-valued polynomial functions on g*. For z € g C E,(g) we
have

2
Alz)=21+1Qxz+ g(5(m) + U—Z(ng;’@)x;”—l—m;"@w;azgl)—I—---, (2.8)
2 12 -
where (id ® 6)0(z) = >, = ® z} @ ;. For details, see loc. cit.
Let g, : E,(g) — S(g) be the algebra morphism sending an element of E,(g) to its
class modulo vE,(g). Formula (2.8) implies that the induced map FE,(g)/vE,(g) — S(g)

is an isomorphism of co-Poisson bialgebras. This leads to the following.

2.8. LEMMA.— The CJ[v]]-bialgebra E,(g) is a coquantization of the co-Poisson bialge-
bra S(g).

If the Lie coalgebra g has a Lie bracket [ ,] turning it into a Lie bialgebra, then
E,(g) carries a structure of a Poisson bialgebra whose Poisson bracket { , } is uniquely
determined by the condition

{21, 20} = [£1,22] mod (@ S”(g)) [v]). (2.9)
n>2
for all x1,x5 € g (cf. [Tur91, Theorem 11.4 and Remark 11.7]).

2.9. THEOREM.— For the bialgebra A, .(g) of Theorem 2.3, there is an isomorphism of
Poisson Cl[v]]-bialgebras

Auw(9)/uAun(8) = Eu(g).

Theorem 2.9 will be proved in two steps: in Section 8.2 we prove that A, ,(g)/uA, »(g) =
S(g)[[v]] as an algebra; in Section 10.7 we determine its coalgebra structure.
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2.10. DuALiTY. By Theorem 2.3 we have a biquantization square

Auo(g) s Ay(g) /A (g)
Po l l o (2.10a)
A (0)/vAu(g) —s S(g).

Replacing g by the Lie bialgebra g’ = (g*)°°P (see Section 2.1 for the notation) and ex-
changing u and v, we obtain the biquantization square

Aya(g) s Apuld)/vAsu(g)
b | | o (2.100)
Ayu(8) Judoulg) —s S(g').

We prove that these squares are in duality as follows.
Let K be a commutative C-algebra together with two subalgebras K; and K>. Given
a Ki-module A and a Ke-module B, a C-bilinear map (, ) : A x B — K will be called a
pairing if
()\1&, )\Qb) = )\1)\2 (a, b)
forall \y € K1 C K, \y € Ko C K, a € A, and b € B. We say that the pairing ( , ) is
nondegenerate if both annihilators

{a€Al(a,b)=0 forallbe B} and {b€ B|(a,b)=0 forallac A}
vanish. The pairing A x B — K induces a pairing (, ) : (A®gk, A) x (BRgk,B) — K by
(a®ad’,bb') = (a,b) (a’,b)

for all a,a’ € A and b,b' € B. Suppose, in addition, that A and B are bialgebras over K;
and Ko, respectively. The pairing (, ) : A x B — K is a bialgebra pairing if

(a: bb/) = (A(a)v b®b/),
(ad’,b) = (a®a’, A(D)),
(a,1) = £(a), (2.11)

(1,0) = £(b)
for all a,a’ € A and b,b’ € B, where A denotes the comultiplication and ¢ the counit.

2.11. THEOREM.— Let g be a finite-dimensional Lie bialgebra and g’ = (g*)°P. Then
there 1s a nondegenerate bialgebra pairing

Ayw(g) X Ay u(g’) = Cllu,v]],
which induces the standard bialgebra pairing
S(g) x S(¢') = Auw(9)/(u,v) X Ayu(g')/(u,v) — C,

uniquely determined by (z,y) = (x,y) for allz € g andy € g’ = g*, where (, ) : gxg* — C
18 the evaluation pairing.

Theorem 2.11 will be proved in Section 12. Note that, quotienting by u (resp. v), we
obtain nondegenerate bialgebra pairings

Ey(g) x Vyu(g') = Cl[v]] and Vi(g) x Eyu(g") — C[[u]].

11



3. The maps

Let A be a C[[u]]-bialgebra in the sense of Section 1.1. In [Dri87, Section 7] Drinfeld used
a general procedure to construct a C[[u]]-subalgebra A’ of A. In Drinfeld’s terms, if A is a
quantized universal enveloping algebra, then A’ is a quantized formal series Hopf algebra.
The subalgebra A’ is defined using a family of linear maps (6™ : A — A®™),>(, whose
definition will be recalled below.

In this section, we prove that A’ is commutative modulo u. To this end, we establish
some properties of the maps 6.

3.1. DEFINITION OF §™. Starting from a bialgebra A over a commutative ring x with
comultiplication A and counit e, we define for each n > 0 a morphism of algebras A" :
A — A®™ as follows: A =¢: A — K, A =idy : A — A, the map A? : A — A®? is the
comultiplication A and, for n > 3,

A" = (A@idS" ) AT,

Let us embed A®" into A®("+1) by tensoring on the right by the unit 1 € A. We thus
get a direct system of algebras

A— A®% 4% ...

whose limit we denote by A®>. In this way, each A®" is naturally embedded in A®>.

Let I be a finite subset of the set of positive integers N’ = {1,2,3,...}. If n = |I|
is the cardinality of I, we define an algebra morphism j; : A" — A®>® as follows. If
I ={i,...,in} with iy < ... < iy, then jr(a1®---®a,) = bj@Rby® - - -, where b; = 1 if
i ¢ Iandb, =ap,forp=1,...,n. If I =10, then j; : k — A®> is the k-linear map
sending the unit of & to the unit of A%,

Suppose we have a k-linear map f : A — A®™ for some n > 0. For any set I C N’
of cardinality n, we define a linear map f; : A — A®> by f; =jro f. If [ ={1,...,n},
then fris equal to f composed with the standard embedding of A®™ in A®>°. This shows
that knowing the linear map f : A — A®" is equivalent to knowing the family of maps
fr+ A — A®> indexed by the subsets I of N’ of cardinality n. In particular, from each
A™ : A — A®" we obtain the family of linear maps (A;) indexed by the sets I C N’ of
cardinality n and defined by Ay = (A™);: A — A®®>,

After these preliminaries, we define the maps 6" : A — A®" for n > 0 by the following
relation in terms of finite sets I C N':

or=>Y_ (-)I=17TA, (3.1)
JCI
By the inclusion-exclusion principle, we have the equivalent relation
Ar=> 4. (3.2)
JcI
It follows immediately from (3.1) that

51(1):{1 if I =0,

0 otherwise.
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3.2. LEMMA.— Let a,b € A and K be a finite subset of N'. Then
S (ab) = Z d7(a)ds(b). (3.4)

Moreover, if K # 0, then
Sk(ab—ba)= > (d1(a)d;(b) — 6,(b)6;(a)). (3.5)

I,JCK
TUJ=K,INJ#}

PROOF.— In order to prove (3.4), we first observe that by (3.2),

> dxr(ab) = Ag(ab) = A (a)Ak(b) = > d1(a)ds(b). (3.6)

K'CK I1,JCK

We rewrite (3.6) as follows:

> dxr(ab) = > > S1(a)ss(b) |- (3.7)

K'CK K'CK I,JCK'
IUJ=K'

Let us prove (3.4) by induction on the cardinality of K. If K = (), then dx = jy o€,
which is a morphism of algebras. Suppose now that (3.4) holds for all sets of cardinality
< |K|, in particular for all proper subsets K’ of K. Thus, the right-hand side of (3.7)

equals
Z 5K/(ab)—|— Z 5]((1)(5J(b)

K/CK I,JCK
K/'4K IUJ=K

We get the desired formula by substracting the summands corresponding to the proper
subsets K’ of K from both sides of (3.7).

Formula (3.5) follows from (3.4) and the fact that 6;(a) and §;(b) commute when
InJ=40.

3.3. REMARK.— Note that, if I and J C N’ are disjoint finite sets, then
(61 ®dy)0 A=druy. (3.8)

Eric Miiller observed (private communication) that 6™ : A — A®™ can also be defined as
0" = (idg —&)®" o A",

3.4. DEFINITION OF A’. Let A be a bialgebra over C[[u]] in the sense of Section 1.1. Using

the comultiplication A : A — A®g A, we define C[[u]]-linear maps 6" : A — AB™ ag
in Section 3.1. Observe that Formulas (3.1)—(3.5) hold in this setting as well. Following
Drinfeld [Dri87, Section 7], we introduce the submodule A’ of A by

A= {a €A | 6"(a) € u"A®" foralln > o} . (3.9)

It follows from (3.3) and (3.4) that A’ is a subalgebra of A.
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3.5. PROPOSITION.— If the multiplication by u is injective on A®n for allm > 1, then the
algebra A’ is commutative modulo u, i.e., ab —ba € uA’ for all a, b e A’.

PROOF.— Let us first observe that there exists a; € A such that a = ua; + ¢(a)l. This
follows from the fact that idy = Al = 6! + 6% = 6 +e1 and §'(a) € uA. Similarly, there
exists by € A such that b = ub; +¢(b)1. Hence, ab — ba = uc, where ¢ = u(a1b; —byay). It
suffices to show that ¢ € A’. To this end, it is enough to check that dx (c) is divisible by u!*!
for any nonempty finite subset K of N’. Since the multiplication by w is injective on A®I%!,
it is enough to check that g (ab — ba) is divisible by u/I*1. We apply Formula (3.5). Let
I and J be subsets of K such that JUJ = K and INJ # (). Then |I|+|J| > |K|+1. Since
67(a) is divisible by ul!l and 6 (b) is divisible by u!’l, it follows from (3.5) that dx (ab— ba)
is divisible by u!/I*1/I| hence by w/KI+1. O
3.6. REMARK.— If A is topologically free, i.e., isomorphic to V[[u]] as a C[[u]]-module for

some vector space V, then so is A’. A similar, but more complicated statement will be
proved in Lemma 7.2.

3.7. ExaMPLE.— Consider a Lie algebra g and its universal enveloping bialgebra U(g).
Let U(g)[[u]] be the C[[u]]-bialgebra consisting of the formal power series over U(g), with
comultiplication A given by (2.4). Using the notation of Section E2.4, we introduce a

subalgebra V,, (g) of U(g)[[u]] by
Vule) = { Y anw™ € U(g)[[u]] | ay € U™(g) for allm > 0}. (3.10)

m>0

Clearly, Vi, (g) C Vi, (g). Let I,, be the two-sided ideal of V,,(g) generated by uV,(g) and by
ug C uU'(g) C Vi, (g); it is the kernel of the morphism of algebras

Vau(g) 2 S(g) — S(a)/ (6D S™(9)) = C,

n>1
cf. Section 2.4. It is easy to check that V,(g) is the I,-adic completion of V,(g).
3.8. PROPOSITION.— If A = U(g)[[u]], then A’ = V,(g).

PrROOF.— Let a = >~ amu™ be a formal power series with coefficients in U(g). For
n > 1, the condition §™(a) € u"U(g)®"[[u]] implies that 6™ (a,_1) = 0. We claim that

Ker(6" : U(g) — U(g)®™) = U""(g) (3.11)

for all n > 1. Tt follows from this claim that a,_; € U""(g), hence, a € V,(g).

Equality (3.11) is probably well known, but we give a proof for the sake of complete-
ness. The standard symmetrization map 7 : S(g) — U(g) is known to be an isomorphism
of coalgebras (cf. [Dix74, Chap. 2]). Hence, n®"§" = §"n, where 6" stands for the corre-
sponding maps both on S(g) and U(g). Moreover, n~'(U"(g)) = @}, S*(g). Therefore,
Equality (3.11) is equivalent to

Ker(é" :S(g) — S(g)®") = 6_9 Sk(g).
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If (z;); is a totally ordered basis of g, we get a basis of S(g) by taking all words
w = x;, ... w;, such that z;, <-.-<ux; . We call subword of a word w any word obtained
from w by deleting some letters. With this convention, the comultiplication A of S(g) is
given on a basis element w by A(w) = > w1 ®ws, where the sum is over all subwords wy,
wo of w such that w = wyws. Iterating A, we get for alln > 1

A"(w) = Z W1 - '®wn7

where the sum is over all subwords wy, ..., w, of w such that w = w; ...w,. This, together
with (3.1) or (3.2), implies that

SM(w) =) wi® - @wp, (3.12)

where the sum is now over all nonempty subwords wq, ..., w, of w such that w = wy ... w,.
This shows that, if w is of length < n, then the right-hand side of (3.12) is empty and
0" (w) = 0. Therefore,

6_9 S¥(g)  Ker(6™).
k=0

To prove the opposite inclusion, it is enough to check that the restriction of §™ to the
subspace @x>n S¥(g) is injective. This is a consequence of the following observation: if w
is a basis element of length > n and p is the multiplication in S(g), then (3.12) implies
that ud™(w) = ||w|| w, where |Jw|] > 0 is the number of summands on the right-hand side
of (3.12). O

4. Topologically free C[[u,v]]-modules

In this section, we establish a few technical results on modules over the ring C[[u,v]] of
formal power series in two commuting variables u and v with coefficients in C. They are
modelled on similar results for modules over the ring CJ[[h]] of formal power series in h.

4.1. MODULES OVER C]J[h]]. We recall a few facts about C|[h]]-modules (see, e. g., [Kas95,
Sections XVI.2-3]). A C[[h]]-module M is called topologically free if it is isomorphic to a
module V[[h]] consisting of all formal power series with coefficients in the vector space V.
A CJ[h]]-module M is topologically free if and only if there is no nonzero element m € M
such that hm = 0 and the natural map M — lim M /h™M is an isomorphism. We define

a topological tensor product @y for C[[h]]-modules M and N by

M @cmm N = @(M/h"M Dci(n])/(hn) N/h"N)-

n

For all vector spaces V, W, we have V[[h]] @cpny WIk]] = (VRcW)[[h]].
Let us extend these considerations to C[[u, v]]-modules.
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4.2. Basic DEFINITIONS. Let M be a Cl[u, v]]-module. We say that M is u-torsion-free
(resp. v-torsion-free) if there is no nonzero element m € M such that um = 0 (resp. such
that vm = 0).

We say that M is admissible if any element divisible by both u and v in M is divisible
by wv in M. In other words, M is admissible if, for any m € M such that there exists
mq, mg € M with m = um, = vmsy, there exists my € M such that m = uvmy.

Observe that, if M is admissible and u-torsion-free, then any element of M divisible
by u™ and by v is divisible by u"v, where n > 0.

We denote by M, ) the (u,v)-adic completion of M: it is the projective limit of
the projective system (M /(u,v)"M)p>1, where (u,v)M = ulM + vM. The projections
M — M/(u,v)™M induce a natural C[[u, v]]-linear map i : M — ]\/4\(1“)). The kernel of i is
the intersection of the submodules ((u, v)"M),>1. We say that the module M is separated
(resp. complete) if the map i : M — Z/\/T(u,v) is injective (resp. surjective).

Given a vector space V over C, consider the vector space V[[u, v]] consisting of formal
power series » . Tmy u"v", where the coefficients @y, (m,n > 0) are elements of V.
The standard multiplication of formal power series endows V[[u, v]] with a C|[[u, v]]-module
structure. A C|[[u, v]]-module M isomorphic to a module of the form V[u, v]] will be called
topologically free.

It is easy to check that a topologically free C[[u, v]]-module is u-torsion-free, v-torsion-
free, admissible, separated, and complete. We now prove the converse.

4.3. LEMMA.— Any u-torsion-free, v-torsion-free, admissible, separated, complete C|[u, v]]-
module M is topologically free.

PrROOF.— Let V' be a vector subspace of M supplementary to the submodule (u,v)M.
We claim that for all n > 0 we have the direct sum decomposition of vector spaces

(u,v)"M = (u,v)" "M @ @ uF vtV (4.1)

k,£>0
k+4=n

From (4.1) we derive
M=(uv)"""Mae @ vV

k,£>0
k+b<n
Consequently,
M/(u,0)" "M = @ MoV = V[, ]/ (u, 0)" 'V [[u, o]].
k,£>0
k+e<n

Using the hypotheses, we get the following chain of C[[u, v]]-linear isomorphisms:
M = M(u,v) = V[[U, v”(u,v) = VHU, U]]

It remains to check (4.1). We shall prove it by induction on n. If n = 0, the iden-
tity (4.1) holds by definition of V. If n > 0, let us first show that

(u, v)"M = (u,v)" "' M + Z ukotV. (4.2)

k,£>0
k+4=n
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Indeed, any element of (u,v)"M is of the form um’ + vm”, where m’,m” € (u,v)" "1 M.
By the induction hypothesis, m’ and m/ belong to
(u,v)"M + Z uFvtV,

k,£>0
k4+l=n—1

This implies (4.2).
Suppose now that we have elements m € (u,v)" "' M and zg, 1, ...,7, € V such that

m + Z uFo™ e, =0. (4.3)
k=0

We have to show that m = 29 = y = --- = z, = 0. The element m € (u,v)" ™M
is of the form m = u"™'mg + vm”, where my € M and m” € (u,v)"M. The ele-
ment u"zo + u"imy = u"(xo + umg) is divisible by u™. It follows from (4.3) that it
is also divisible by v. Since M is admissible and u-torsion-free, there exists m; € M
such that u™(z¢ + umg) = u"vm;. Hence, o + umg — vm; = 0. Now, z¢g € V and
umg—vmy € (u,v)M belong to supplementary subspaces. Therefore, zy = umg—vm; =0

and m = u""'mg + vm” = vm/, where m' = u"m; +m” € (u,v)"M. Now, (4.3)
becomes U(m’ + ZZ;OI ukv”*“kaznfk) = 0. Since M is v-torsion-free, we get m’ +
Z;é uFv™1=Fg, . = 0. By the induction hypothesis, m’ = z; = --- = z, = 0.
O

4.4. ToroLOGICAL TENSOR Propuct. Given Cl[u,v]]-modules M and N, we define
their topological tensor product over C[[u, v]] by

M ®C[[u,v]] N = lan (M/(U, v)nM®C[[u,v]]/(u,v)”N/(uv U)nN> .

For example, M ®C[[u,v]] Cllu,v]] = J/\j(u,v)‘

4.5. LEMMA.— (a) If M = V[[u,v]] and N = W][u,v]] are topologically free C[u,v]]-
modules, then M QA@CHU’U” N s topologically free:

M Bcfu.o N = (VOcW)([u,v]].

(b) If i : M" — M and j : N' — N are injective C[[u, v]|]-maps of topologically free
modules, then so is the map i®j : M’ @C[[u,v]] N' — M@C[[U’U” N.

PROOF.— (a) Proceed as in the proof of [Kas95, Proposition XVI.3.2].

(b) Since i®j = (id®j)(i®id), it is enough to prove Part (b) when N = N’ or M = M’.
We give a proof for N = N’.

Let V, V' W be vector spaces such that M = V[[u,v]], M' = V'[[u,v]], and N =
W{[u,v]]. Take a basis (fm)m of W. By Part (a), any element Y of M @y, N can be
uniquely written as Y = ) X,,® fn, where X,, € M. Set j,,(Y) = X,,,. This defines
for all m a C[[u, v]]-linear map j,, : M®C[[u,v]] N — M. Using the same basis of W, we
define a linear map j,, : M’ ®C[[u,v]] N — M’ similarly. Clearly, j,, o (i®id) = i o j;, for
all m. Now, take Y/’ € M’ ®C[[u,v]} N such that (i®id)(Y’) = 0. By the previous equality,
we have i(j;,(Y')) = 0 for all m. The map i being injective, we get j/ (Y') = 0 for all m.
Therefore, Y/ =% j (Y")®f, = 0 and i®id is injective. O
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4.6. FRoM ONE VARIABLE TO TWO VARIABLES. One of the crucial steps in our construc-
tions will be to transform a module N over Cl[h]] into a module N over C[[u,v]]. This is
done as follows.

Let ¢ : C[[h]] — C]J[u,v]] be the algebra morphism sending h to the product uw.
Observe that ¢ factors through the subalgebras Clu|[[v]] and C|v][[u]]. The morphism ¢
sends the ideal (h™) into the ideal (u,v)?". Given a C[[h]]-module N, we consider the
projective system of C[[u, v]]-modules

N/(K™) @ciin))/(amy Cllu, v]]/ (u, v)*"

where n =1,2,3,... and set
N = tim (N/ (") @iy ey Cllws o]/ (,0)"). (4.4)

n

Clearly, for any = € N, there is defined a corresponding element x € N.

4.7. LEMMA.— (a) If N = V[[h]] for some vector space V over C, then N = V[[u,v]].
(b) If N and N’ are topologically free C[[h]]-modules, then

—~

(N&cmN')™ 2 N&cjfum V-

(c) Leti: N' — N be an injective map of topologically free C[[h]]-modules. Then the
induced C[[u,v]]-map 7 : N' — N is also injective.

PrROOF.— (a) We have the following chain of Cl[u, v]]-linear isomorphisms

N =1lim V([R]]/(R™)@cmy/am) Cllu, v]1/ (u, v)*"
- lin VacC|[h]l/(h™")@cmy/nny Cllu, v]]/(u,v)*"
i Voo Clfusof} (w0
~ tm Vo) ()"

= V[, v]].

The first isomorphism follows from the definition of N , the second and the fourth ones
from the finite-dimensionality of C[[h]]/(h") and of C[[u,v]]/(u,v)*™.
(b) This is an easy exercise which follows from Part (a) and the properties of the topo-
logical tensor products over C[[h]] and C|[u, v]] stated in Section 4.1 and in Lemma 4.5 (a).
(c) We assume that N = V[[h]] and N’ = V’[[h]] for some vector spaces V and V".
Let (ex)r be a basis of V/ and (f;); a basis of V. The CJ[[h]]-linear map i : N’ — N is
determined by i(ex) = 3y, ; xi’e f; h*, where (xi’z)j7k7g is a family of scalars such that

for each couple (k,¥) the set of j with xi’e # 0 is finite. Any element X € N’ is of the
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form X =Y, o,., aF e, k™, where (af)y,, is a family of scalars such that for each n > 0

the set of k with a® # 0 is finite. We have

; — E J k ¢ 1pl4+n _ § : z : j k¢ p
Z(X) - xk’gan f] h — xk7£an f_] h .
£n>0;j,k P20 \ £p 2013k
n=p

The coefficient of f;h? in i(X) is

j .k _ i _k
E L 0Op = E L 0O¥p—e-
4,k

L,n>0;k >
L+n=p 0<t<p

This allows us to reformulate the injectivity of i as follows: the equations on a family of
scalars (af)y. >0

Z 33?;740/;4 =0 (4.5)
2,k

0<£<p
holding for all j and p > 0 imply that a* = 0 for all £ and n > 0.

By Part (a) we have N = V[[u,v]] and N/ = V'[[u,v]]. On the basis (eg); the
map 7 is defined by 7(ex) = ZéZO;j xi’g fi utvt. Any element Y € N’ is of the form Y =
> mn>0: k ko ek um ™ where (85 )i o is a family of scalars such that for each m,n > 0
the set of k with 8%, # 0 is finite. We have

~ gk trm, 0 |k
)= 3wl Bna et =30 Y B S |

£,m,n>0; 35,k ,q>0 £,m,n>0;35,k
ym,n=Y5 7, p.q= ey Thm—g

Note that the sum in the brackets is finite. Suppose that 2(Y) = 0. For all p,q > 0 and

all 7 we have
ik i gk
Z xi}gﬁmn = Z wiy[ﬁp—ﬁ,q—é =0.

£,m,n>0;k L.k
L+m=p,l+n=q 0<¢<min(p,q)

Fixing ¢ > p > 0 and setting of = ﬁfb’qﬂﬂrn, we get (4.5) for all j. This implies that

be’quJrn =ak =0 forall k,n,p,q. If p>qg>0, weset af = §7q+n’n and we conclude

likewise. Therefore, Y = 0. O

We define a Cl[u, v]]-bialgebra as a topological Cl[u,v]]-bialgebra A with respect to
the ideal (u,v) = uA + vA. As a consequence of Lemma 4.7, we have the following.

4.8. COROLLARY.— If A is a C[[h]]-bialgebra that is topologically free as a C[[h]]-module,
then A is a C[[u,v]]-bialgebra that is topologically free as a Cl[u, v]]-module.

PROOF.— The C|[u, v]]-module A is topologically free by Lemma 4.7 (a). It is a C[[u, v]-
bialgebra as a consequence of Lemma 4.7 (b). O
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5. On Etingof and Kazhdan’s quantization of a Lie bialgebra

In this section, we recall the results from Etingof and Kazhdan’s work [EK96] needed in
the sequel.

5.1. THE Co-Po1ssoN BIALGEBRA U(g). Let g be a Lie bialgebra with Lie cobracket 4.
Consider the universal enveloping algebra U(g) of g with standard cocommutative comul-
tiplication given by (2.4). By [Dri87], the bialgebra U(g) has a unique co-Poisson bialgebra
structure with a Poisson cobracket whose restriction to g C U(g) is the Lie cobracket §.
Recall from Section 1.2 that a coquantization A of U(g) is a C][h]]-bialgebra A such that
A2 U(g)[[h]] as a CJ[h]]-module and A/hA = U(g) as co-Poisson bialgebras.

In [EK96] Etingof and Kazhdan constructed a coquantization Uy (g) of U(g) in this
sense. To this end, they first constructed a coquantization Uy (d) of U(?), where 0 is the
double of g. We recall the definition of 0.

5.2. DOUBLE OF A LIE BIALGEBRA. Let g = g, be a finite-dimensional Lie bialgebra
over C with Lie bracket [, | and cobracket 6. Let g_ = (g5)* = (g%.)°? be the dual Lie
bialgebra modified as in Section 2.1.

Consider the direct sum 0 = g, @ g_. Drinfeld [Dri82, 87] showed that there is a
unique structure of Lie bialgebra on 9, which he called the double of g, such that

(a) the inclusions of g4 and g into ? are morphisms of Lie bialgebras and

(b) the Lie bracket [z,y] for € g4 and y € g_ is given by

[z,y] = (y®1) 6(z) + z - 9, (5.1)

where z -y € g_ C 0 is defined by (z-y)(2') = —y([z,2']) for 2’ € g,
The Lie cobracket on 9 (hence on g4 ) is given by

d
(X)=[Xol+leX, =) ([X, 2] @y + 2 ® X, yi]> (5.2)

1=1

for X € 0. Herer = Zle T; ®y; is the canonical element of g4 ®g_ C 020, where (z;)L,
. . ) d . .
is a basis of g4 and (y;)¢_, is the dual basis of g_.

5.3. THE BIALGEBRA U,0. By [EK96, Section 3] there exists a C[[h]]-bialgebra Uy (9) with
the following features:

(i) As a CJ[h|]-algebra, Up(d) = U(d)[[R]], i-e., the multiplication is the standard
formal power series product.

(ii) There exists an invertible element J, € (Ud ® U0)|[[h]] with constant term 1®1
such that the comultiplication Ay of Up(9) is given for all a € U(d) by

Ap(a) = J; P Aa) Jp, (5.3)

where A is the standard comultiplication in U(d). The first terms of the formal power
series Jj, are given by

Jp =11 + gr mod h? (5.4)
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where 7 € @0 was defined in Section 5.2. From (5.2-5.4) it follows that for z €  C U (?)
we have

Ap(z) — AP(z) = hé(x) mod h?, (5.5)

where A}P is the opposite comultiplication and ¢ is the Lie cobracket (5.2).
(iii) If we set t = r + ro; = Zle (z; ® yi + y; ® ;), then the element

Ry = (J; Yo exp(h ) Jh € (U2 @ Ud)[[R]] = Up(d) ®cyn Un(d) (5.6)

defines a quasitriangular structure on Uy (?). This means that AP (a) = R,Ay(a)R; " for
all a € Up,(9) and that

(Ah@)id)(Rh) = (Rh)13(Rh)23 and (id@Ah)(Rh) = (Rh)lg(Rh)lg. (5.7)

Formula (5.4) implies
Ry, = 191 + hR), (5.8)

®ciny Un(0) such that R}, = r mod h.
(i) 1t is clear that U (0 ) is a coquantization of the co-Poisson bialge-

where R, € U ()
From (i) and
bra U(9).

5.4. THE BIALGEBRAS Up(g+). In [EK96, Section 4] Etingof and Kazhdan constructed a
C|[[h]]-bialgebra Uy (g+) (with h-adic topology) with the following properties:

(i) As a C[[h]]-module, Up(g+) is isomorphic to U(g+)|[[R]]-

(ii) Up(g+) is a CJ[h]]-subbialgebra of Ux(d). The map pp : Up(g+) C Up(d) =
U(®)[[h]] — U(®) = U®)[[R]]/RU(d)[[h]] induces a bialgebra isomorphism

Un(g+)/hUn(g+) = U(g+) C U(0).

(iii) The element R}, € U, (2)®cynUn(?) of (5.8) belongs to Up(g+)&cynUn(g-). So
does the universal R-matrix Rjy,.

(iv) The coalgebra structure on Up(g+) induces an algebra structure on the dual
module Uj(g+) = Homgy)(Un(g+), C[[R]]). By (iii) we can define linear maps p4 :
U (a5) — Un(g=) by

p+(f) = (dof)(Rn) and p (g9) = (g®id)(Rp) (5.9)

forall f € Uy (g—) and g € Uji(g+). In [EK96, Propositions 4.8 and 4.10] it was shown that
p+ is an injective antimorphism of algebras and p_ is an injective morphism of algebras.

The construction of Up(d) and Up(g+) depends on a Drinfeld associator, see Sec-
tions 11.2-11.4. Nevertheless, it was shown in [EK97] (and in Section 10 of the revised

version of [EK96]) that the assignment (g+,0,g9-) — (Uh(g+) — Up(d) « Uh(g,)) is

functorial when the Drinfeld associator is fixed.

5.5. THE LINEAR FORrRMS f,. Choose a CJ[h]]-linear isomorphism a_ : Ux(g-) —
U(g-)[[h]] such that a_(1) = 1 and a— = id modulo h. Choose also a C-linear pro-
jection m_ : U(g_) — U'(g_) = C@g_ that is the identity on U'(g_). For any x € g, we
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define a C-linear form (x, —) : U!(g_) — C extending the evaluation map (x,—) : g_ — C
and such that (z,1) = 0.
Given z € g we define a CJ[h]]-linear form f, : Uy(g—) — CJ[R]] by

fob) = (z,m_a_(b)) = D (z,m—(by)) B, (5.10)

n>0

where b € Up(g-—) and the elements b, € U(g_) are defined by a_(b) = >, bph™. It
follows from the definition that f,(1) = 0. -

Applying the map py of (5.9) to f, € U;(g—), we get an element p4(fy) € Up(g4+)-
Fix a basis (x1,...,24) of g+. Given a d-tuple j = (41, ..., jq) of nonnegative integers, we

set [j| = j1+---+Jjq and z; = it .a:i'ld € U(gy). Note that (z;); is a basis of U(g).

5.6. LEMMA.— (a) For any d-tuple j = (j1,...,jq) of nonnegative integers, there exists
an element t; € Up(g+) such that

pi(fo )7 oo pi(foy)ie = bl t; and pu(ty) =z,

where pp, : Up(g+) — Un(g+)/hUn(g+) = U(g4) is the canonical projection.
(b) For any a € Up(gy), there is a unique family of scalars )\;n) € C indexed by a

nonnegative integer n and a finite sequence J= (J1s---+7a) of nonﬁegative integers such

that
a=3 (X Ay)

n20 |j|<e(n)
where ¢(n) is an integer depending on a and n.

(c) If a € Im py, then c¢(n) = n, that is, )\S-n) = 0 whenever n < |j|, where )\g-n) are
the scalars above. - -

PROOF.— (a) For any = € gy, we have p,(f,) = ht, for some t, € Uy(gs) such that
pr(tz) = x. This follows from (5.8) (cf. [EK96, Lemma 4.6]). We set t; = tI! ... tJd.

(b) The proof of Proposition E4.5 of [EK96] implies that any a € Up(gs) can be
expanded as above. Let us check that such an expression is unique. If

3 ( 3 Ag.”)tl-) W =0, (5.11)

n>0 jiljl<e(n)

then Z|i|§c(0) )\é-o)a:i = 0 by application of the projection pj,. Since the elements (.’L’l-)l-
form a basis of U(g4), we conclude that )\5-0) = 0 for all j. We may then divide the left-
hand side of (5.11) by h and start again. This implies the vanishing of )\;1) = ( for all j,

and so on.
(c) Clearly, U(g—) = U(g—)*[[h]] where U(g—)* = Homc(U(g-),C). We provide
Ui (g—) with the multiplication induced by the comultiplication of Up(g—). We claim
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that the family of linear forms (fJ¢...fJ1); € Uj(g—) is linearly independent and that
the C[[h]]-module it spans is dense in U; (g ) for the I;-adic topology, where I} is the
two-sided ideal of U} (g_) generated by h and f;, (k = 1,...,d). It suffices to prove
that the images 67 ...07. € U(g_)* of fi¢... fI under the algebra morphism U (g—) —
Ur(g-)/hU;(g—) = U(g—)* are linearly independent and that their linear span is dense
in U(g—)* for the I}-adic topology, where [} is the two-sided ideal of U(g_)* generated
by 0, (k=1,...,d). Now, by definition of f;,, we have 0, = (x;, 7—(—)). This implies

that, for all 4,5 = 1,...,d, we have
9%(1) =0 and 6% (yj) = 51'_7', (5.12)

where (y1,...,yq) is the dual basis of the basis (x1,...,24). We compute the values of the
linear form @J¢ ...67% on the basis (yha )k ka0 of Ulgo):

(03 ..02) (Wt .. .of) = (029 - @020 (A (g yl)).

A simple computation, using (5.12) and the definition of A (cf. the proof of Proposition 3.8),
shows that

(092 ... 00 ) (yht .. ytt) =

0 if ky 4 -+ kg < ji+-+ Ja,
{ 1 d<J1 Jd (5.13)

Ojrier - Ojgkg k1 +--+ka=ji1+- -+ ja.
The claim about the linear forms 672 ...03 € U(g_)* follows immediately from (5.13).

Part (a) of this lemma and the claim established above imply that the CI[h]]-linear
span of the set (p1(fz,)"* ... p+(fs,)’?); is dense in Imp, for the h-adic topology. It is
enough to prove (c) for an element a in this span. By Part (a), a =}, 5 ; ) hlal t; with
Pj € CJ[[h]]. By Part (b), the element a can be written uniquely as a = Zn_zo,j )\g-") h™t;.
Hence, for any j, the formal power series ano )\;n)h" is divisible by h'ﬂ, W};iCh_ implies

the vanishing of )\S-n) for n < [j]. O

6. The algebra 4, = A, ,(g+)

We first define a two-variable version U, ,(g+) of Etingof and Kazhdan’s quantization.
Then we construct the algebra Ay = A, ,(g+) appearing in Theorem 2.3. We use the
notation g+, 0 defined in Section 5.

6.1. THE BIALGEBRAS U, ,(?) AND U, ,(g+). Applying the construction of Section 4.6 to
the CJ[[h]]-bialgebras Uy (d) and Up(g+), we obtain C|[u, v]]-modules

Uu’v(a): h(a) and Uu,v(gi):Uh(gi). (6.1)

As a consequence of Lemma 4.5, Lemma 4.7, Corollary 4.8, and of the results summarized
in Sections 5.3 and 5.4, we get the following proposition.
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6.2. PROPOSITION.— (a) The Cl[u, v]]-modules U, ,(d) and U, ,(g+) are topologically free.

(b) Uy.»(0) has a bialgebra structure whose underlying algebra is the algebra U (9)[[u, v]]
of formal power series with coefficients in U (D).

(c) Uyw(g+) has a bialgebra structure such that the C[[u, v]|-linear map Uy »(g+) —
Uu.v(0) induced by Up(g+) C Up(d) is an embedding of bialgebras.

(d) There are canonical isomorphisms of bialgebras

Uuw(0)/ (1, 0)Uu0(0) = UQQ)  and  Uy,o(g+)/(w,0)Uuv(g+) = U(g4)-

By Proposition 6.2 (¢) we may view U, ,(g+) as a subset (in fact, a subbialgebra)
of Uy,»(0). We denote the comultiplication in U, ,(0) and in U, ,(g+) by Ay,. To
Etingof and Kazhdan’s universal R-matrix Ry € Ux(0) ®cyny Un(?) corresponds an el-
ement Ry, € Uy v(0) @c(iu.o) Uu,v(d). By Section 5.4 (iii) and Lemma 4.5 (b), we have
Ryv € Uyv(gs) QBCHU-,'U]] Uu.v(g—). The following is a consequence of (5.7) and (5.8).

6.3. LEMMA.— (a) We have
(Au,v®id)(Ru,v) — (Ru,v)13(Ru,v)23 and (1d®Au,v)(Ruv) — (Ru,v)13(Ru,v)12-

(b) There is a unique R' € Uy o(9+) @c(pu,o Un,o(8=) such that Ry, = 181 + uvR'.
The image of R’ under the projection

Us,o(9+) @ciiu)) Uno(8=) = (Uuw(9+) Ociiu,o Uuw(-))/(w,v) = U(gs) ®c U(g-)

is the element r = Zle x;®y; defined in Section 5.2.

Following 5.4, consider the dual spaces Uy ,(g+) = Homgpu,v])(Uu,v(9+), Cllu, v]]),
and define Cl[[u, v]]-linear maps py : U ,(g-) — Uuo(g+) and p_ : Uy (94) — Uuw(g-)
by

p+(f) = (1d@f)(Ru) and p (g9) = (9®id)(Ru,v) (6.2)

for f € U; ,(9-) and g € U;; ,(g4+). The dual space Uy ,(g+) carries a C[[u,v]]-algebra
structure. The map p; is an antimorphism of algebras and p_ is a morphism of algebras.
This follows by a standard argument from Lemma 6.3 (b) (cf. [EK96, Proposition 4.8]).

6.4. THE LINEAR FORMS f,. In Section 5.5 we constructed a C[[h]]-linear form f, :
U (g—) — CJ[h]] for all z € g. The construction depends on the choice of an isomorphism
a_ :U(g_) — U(g_)[[h]] and a projection m_ : U(g_) — U'(g_). By extension of scalars,
we obtain a C[[u, v]]-linear form f, : Uuw(g—) — Cllu,v]]. We have fx(1) =0.

Let us apply p+ : Uy (g=) — Un(g+) to fs. The following is a consequence of
Lemma 6.3 (b). /

6.5. LEMMA.— The element po(fz) € Uyno(g) is divisible by uv.
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6.6. DEFINITION OF A,. Let (z1,...,24) be the basis of g fixed in Section 5.5. The set
(u'i| x;), where j = (j1,...,jq) runs over all finite sequences of nonnegative integers, is a
basis of the free C[u]-module V, (g,) introduced in Section 2.4. In view of Lemma 6.5, we
can define a Clul-linear map 9 : V,(g+) — Uyo(g+) by ¥4(1) =1 and

Uy (W) = o7 p (Fo) o (faa) P, (6.3)
where j = (j1,...,Ja) is a d-tuple of nonnegative integers with |j| > 1. This map extends
uniquely to a Clu][[v]]-linear map, still denoted ¢, from V,,(g4)[[v]] to Uy »(g+) by

Yy (Z wn””) =y (wa 0",

n>0 n>0

where wq, w1, wa, ... € V,(g+). We define the Clu|[[v]]-module A} by

Ay = (Vu(g)[v]]) C Uupo(g+)- (6.4)

The remaining part of Section 6 is concerned with the study of A,. The relevant
results are stated in Theorem 6.9.

We choose a C[[h]]-linear isomorphism « : Up(g+) — U(g+)[[h]] such that oy (1) =1
and a4 = id modulo h. Such an isomorphism exists by Section 5.4 (ii). Extending the
scalars, we get a C[[u,v]]-linear isomorphism ay : U, ,(g+) — U(g+)[[u,v]] such that
a4 = id modulo wv. Let us consider the composed map

Po  Uuo(8+) =5 U (8+)[u, 0] — Ul(g+)|[u]);

where the second map is the projection v — 0. We equip U (g4 )[[u]] with the power series
multiplication and the comultiplication (2.4).

6.7. LEMMA.— The map p, : Uy »(9+) — U(g+)|[[u]] is a morphism of bialgebras.

PROOF.— The multiplication and the comultiplication of Uy (g4 ) transfer, via the C[[h]]-
linear isomorphism o : Up(g+) — U(gy)[[R]], to a multiplication u; and a comultiplica-
tion Ay, on U(g4)[[h]]. Expanding up, and Ay, into formal power series, we obtain

pn = pto + hpt + h2pe +--- and Ap = Ag+hA +h2As+ -, (6.5)

where pu; : U(gy)®? — U(gy) and A; : U(gy) — U(gy)®? are linear maps for all i =
0,1,... Since Un(g+)/hUr(g+) = U(gy) as bialgebras, we see that py and Ay are the
standard multiplication and comultiplication of U(g.).

The multiplication and the comultiplication of U, ,(g+) give rise, via oy, to a multi-
plication j,, and a comultiplication A, , on EU (g )[[u, v]] of the form

Psv = Ho + uvpy + u?v?uy + -+ and Ayp =0+ uvAy + u?vP Ao + - -, (6.6)
where the maps u; and A; are the same as in (6.5). It follows that p, is a morphism of

bialgebras, where U (g4 )[[u]] is equipped with o and Ag. O
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The following result is an elaboration of Lemma 5.6 (a).

6.8. LEMMA.— (a) For any d-tuple j = (j1,...,ja), the element Wy (ul?! z;) defined
by (6.3) belongs to u? U, ,(g4) and

po (v (ula)) = ulila; € U(gy)([u]].
(b) We have py(Ay) = Viu(g+) and py oty = Vu(g4)[[v]] — Vu(g) is the projection

sending v to 0.

PROOF.— (a) By multiplicativity of p,, it suffices to prove that v*1p+(fm) belongs to
u Uy (g+) and that p, (v_1p+(]7m)) = ux for any = € g. The first assertion follows from
Lemma 6.5. B

Let us compute p,(v—'p4(fz)). Recall the isomorphism a—_ : Uy(g—) — U(g-)[[A]]
from Section 5.5 and the isomorphism a4 : Up(g+) — U(gy4)[[R]] defined above. Let
X; € Un(gy) be defined by X; = a7'(z;) and V; € Un(g-) by ¥; = aZ'(y;), where
(21,...,24) is the fixed basis of g4 and (y1,...,yq) is the dual basis. By (5.10),

fo(Yi) = (@, moa(Ya)) = (2,7 (1)) = (2, ¥s)- (6.7)
It follows from (5.8) that
d

R, =1®1+hY XY +h’Z, (6.8)

i=1
where Z € Uy (94) @cyay Un(9-). By extension of scalars from C[[h]] to C[[u,v]], we get

d ~ ~ ~

Ry»=1®1 + uvz X,QY; +u?v?Z, (6.9)

i=1

where X; € Un,w(84), Y; € Uuw(g-), and A= Unv(g+) @’C[[u,v]] Uuv(g—). Moreover, using
the definition of p, and Formula (6.7), we have

po(Xi) =i, and  fo(Yi) = (2, v1). (6.10)
Applying id®f, to R, and using (6.9) and (6.10), we obtain
pi(fo) = (1A f2) (Ruw)
= fu(1) +uv zd: Xifo(V3) + u20?(id® £, ) (2)
i=1
d

—ww ) (z,y;) X; + u*® (1@ f,)(Z).

=1
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Therefore,
d
1}mh=:2me+uWMM()

This implies, in view of (6.10),

d d
pv(v P+ fac = Z x yz p'v = Z T yz ;i = ux.

(b) It follows from Part (a) and the definition of A, . O

6.9. THEOREM.— (a) The map ¥+ : Vi (g+)[[v]] — A+ is an isomorphism of Clu|[[v]]-
modules.

(b) Ay is a subalgebra of Uy ,(g+)-

(c) The algebra A is independent of the choices made in Section 5.5.

PROOF.— (a) The map v, is surjective by definition of A,. Let us check that it is
injective. Let w =) - wpv™ € V(g4 )[[v]] with wo, wi, wa,... € Vi(g4). Assume that
w # 0. Take the minimal N > 0 such that wy # 0 and define w’ by w = vNw'. By
Lemma 6.8, we have p, (¢4 (w')) = wn # 0, hence ¢4 (w’) # 0. As A, C U, ,(g+) has no
v-torsion, we see that 1, (w) = vV, (w') # 0.

(b) Let us check that v (ultlz;) Wi (ullz;) € Ay for all d-tuples i = (iy,...,iq) and
Jj = (ji,+--,Ja). Since py : Uf(g-) — Un(g+) is an antimorphism of algebras, the product

p+(fr1)i1 v p+(f$d)idp+(fx1)jl e 'p+(f$d)jd
belongs to the image of p;. Therefore, by Lemma 5.6 (b—c), it can be expanded as

palFa ) oo pi(Fe) o () i (fagVr = D0 (20 Mte)

n>0 |k|<n

where A,gn) € C. By Lemma 5.6 (a),

P+ (f:z:1)i1 ce 'p+(fmd)idp+(fw1)jl' . ':0+(fmd)jd = Z )\(En)p+(fx1)kl ce P+ (fxd)kdhnimk

n>0; k. |k|<n

—

By extension of scalars from C[[h]] to C[[u,v]], we have p(fs,) = p+(fa,). Therefore,
P+ (fm)il' . 'p+(ﬂd)idp+(.ﬂ1)jl' . ':0+(fwd)jd = Z )‘(En)p%- (ﬁm)kl . .p+(ﬂd)kdun7|ﬁ|vn7|ﬁ|.

n>0;k,|k|<n

Using (6.3), we obtain
My e v (e = 37 A @By u K

n>0; k, |k|<n

:Z( Z )\(") n=lkl . (ultz ))

n>0 ki |k|<n
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Thus, v/ (ulilz; i) Y (u 3l ;) is a formal power series in v whose coefficients belong to
the Clu]-linear span of the elements v, (u/lz;,). Hence, ltHIl gy (ulda;) (ulz;) e Ay
Applying Lemma 6.10 below |i| + |j| times, we obtain 9 (ulilx;) ¢+(u|i|xj) €A,

(c) The definition of A, in Section 6.6 was based on the choice of a C[[h]]-linear
isomorphism o : Up(g_) — U(g_)[[h]] such that « (1) =1 and o = id modulo h, of a
C-linear projection 7 : U(g_) — Ul(g_) that restricts to the identity on U!(g_), and of
a basis (x1,...,24) of g+. We have to check that A, is independent of these choices as a
subset of U, ,(g+)-

(i) Suppose that we take another C[[h]]-linear isomorphism o’ : Ux(g_) — U(g—-)|[[h]]
such that o/ (1) = 1 and o’ = id modulo h. This gives us a new linear form f, :

Un(g—) — CJ[h]] and, by extension of scalars, a new linear form f. : U, w(g-) = Cl[u, ]|
for all x € g;. Lemma 6.5 also holds for f.. By Part (b) it is enough to check that

v o (f) belongs to Ay.
Since o’ = a_ modulo h, we have f, = f, modulo h. By the proof of Lemma 5.6 (c),

we see that
fo=fot > A (Z " fn g;), (6.11)

n>1 l

where )\S-n) € C are indexed by a nonnegative integer n and a d-tuple j = (ji,...,ja) of
nonnegative integers. Applying P+, we get

P8 = prl0) - S (S el 1)

n>1

By extension of scalars, we have

pr(F) = palF) + 3w (30 N pi(Fa V' (B,

n>1 7

Using (6.3), we obtain

v pr(f) = v py(fa) + > urn! (Z )\én) pr(fa) - -P+(J?md)jd>
J

n>1
= gy (uz)+ 3 ot ( ST GE Iy u\xj)>_
k>1 gilil<k -

This shows that v=! py (f;’c) is a formal power series in v whose coefficients belong to the
Clu]-linear span of the elements v (u!?lz j)- Hence, v Loi(fl) e Ay

(ii) Suppose now that we take another projection ' : U(g_) — U'(g_) whose re-
striction to U!(g_) is the identity. We denote by f. the new linear form U, (g_) — CJ[[A]]
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obtained by using 7’ . By extension of scalars, we obtain a new linear form f; tUpw(g-) —
Cl[u,v]] for z € g4.
Since 7. — 7 =0 on U'(g_), it follows from the proof of Lemma 5.6 (c) that

fo=tot D0 N g (DA ), (6.12)

l71>2 n2>1 J

where /\Sn) € C are scalars. Note the difference with (6.11): in (6.12) there are extra terms

of degree 0 in h. Nevertheless, the same arguments as in Part (i) allow us to conclude.
(iii) Since x + f, is linear, it follows that A, is independent of the basis in g..
O

6.10. LEMMA.— We have Ay NoU, ,(g+) = vA4.

Lemma 6.10 will be proved in Section 7.7.

7. Bialgebra structure on A,

In this section we establish that A, has a C[u][[v]]-bialgebra structure. We begin with a
C|[u, v]]-subalgebra Ay of U, ,(g+) in which A} sits as a dense subalgebra.

7.1. THE ALGEBRA 2+. Using the comultiplication A, , of U, (g+) and proceeding as

in Section 3.1, we obtain C|[u, v]]-linear maps 0™ : U, »(g4+) — Uu’v(g+)@n for all n > 1.
Formulas (3.1)—(3.5) hold in this setting. We define a C[[u, v]]-submodule A of U, ,(g+)
by

A, = {a € Upo(gs) | 6™(a) € u"Uyo(gs)®" for all n > 1}. (7.1)

It follows from (3.3) and (3.4) that A, is a subalgebra of Unw(94)-
7.2. LEMMA.— A, is a topologically free C[[u, v]]-module.

PrROOF.— By Lemma 4.3 it is enough to check that fTJr is a u-torsion-free, v-torsion-free,
admissible, separated, and complete C[[u, v]]-module.

We use the fact that 121\4_ is a submodule of the topologically free module U, ,(g+ ).
Since the latter is separated, u-torsion-free, and v-torsion-free, so is any of its submodules.
We are left with checking admissibility and completeness.

Admissibility: Let a,ai,a2 € Ay be such that a = uway = vas. Since U, ,(g4) is
topologically free, hence admissible, there exists ag € U, ,(g+) such that a = uvag. We
shall prove that ag € A, i.., that 8" (ap) € u"Uy.(g+)®™. Since u(vag — a1) = 0 and

Uuv(g+) has no u-torsion, we have a; = vag. Therefore, v0"(ag) € u”Uu,v(g+)@”. In
other words, v6™(ag) is divisible both by v and by u™ in U, ,(g+)®"™, which is topologically
free. By an observation in Section 4.2, v6™(ag) = u"vZ for some Z € U, ,(g+)®™. Since

Uuw (g+)§” has no v-torsion, 6" (ap) = u"Z.
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Completeness: Let (ay,)n>0 be a sequence of elements of A\+ such that for all n > 0 the
image of any1 in Ay /(u,v)""! maps onto the image of a, in A, /(u,v)". Since Uuw(g4)
is complete, it contains an element a such that a — a,, € (u,v)"U,, »(g+) for all n > 0. We
shall show that a € g_i_, i.e., that dP(a) is divisible by uP for all p > 1. For any n > p,

~ ~

0% (a) — 6 (an) € (u,0)"Vuw(g+)®" and  07(an) € uPUuo(g+)"",
which implies that 07(a) € upUu,v(gH_)@p + (u, v)"Uuyv(gjL)@p. Consequently, 6P(a) is
divisible by u in lim Uy, (g+)%?/(u, v)" = Uu(g4)%"- O

Consider the morphism p,, : Uy (g+) — U(g+)[[u]] of Lemma 6.7. Recall from (3.10)
the algebra

Vulgs) = {>" amu™ | ap €U (gs) for allm > 0} € U(g)][u]].

m>0

7.3. LEMMA.— (a) The morphism p, sends 121\+ into 17“(94_).
(b) We have Ker(p, : Ay — Vi(g4)) = Ay NoUy(g4) =v AL

PrROOF.— (a) By (3.1) and (6.6) the map 0™ for U, ,(g+) is of the form
0" = 6y + wvdy,

where 4§ is obtained by (3.1) from the standard comultiplication A of U(g4)[[u]]. Hence,
pE"§" = 68 p,. Therefore, Part (a) follows from the definitions and Proposition 3.8.

(b) Let a € A, andbeU, »(g+) be such that a = vb. We have to check that b € A+
For any n > 1, the element §"(a) = vd™(b) is divisible both by v and by u" in Uu,v(g+)®”.

Since the latter is topologically free, there exists Z € quv(g+)@” such that v6™(b) = u"vZ.
Hence, 0™(b) = v Z, which shows that b € A,. O

7.4. LEMMA.— We have Ay C E+,
PROOF.— Let us first prove that ¢ (uz) = v='p(f.) belongs to A, forallz € g.. Given
n > 1, we have to check that 6"(v=1p,(f,)) is divisible by u™. Formula (A, ,®id)(R) =
Ri3R93 for R = R,,, implies
(A7 L®id)(R) = Ript1Ropt1 Roctn1 Rnma1
Therefore,
(6"®id)(R) = (Rip+1 — D)(Romi1 — 1) (Rp—1ng1 — D(Rpny1 — 1)

Since R = 1®1 + uvR’, we have

(5n®1d)(R) = u"v" ,l,n+lRl2,n+1 e R/ -1 n—l—an n4+1-
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It follows that

5" (py(fr)) = 0" ((ld®fx)( )
= (0"®f.)(R)
(1d®fx)((5"®1d)(R))

= Unvn(id®fx)( ,1,n+1R,2,n+1 o 'R;z—1,n+1R;1,n+1) € unUu,v(ng)@n-

Hence, for n > 1,

~

5”(1)_1p+(f;)) =u"v"" 1(1d®fx)( n+1R2 nt+l"" Ry n+1Rn nt1) € UnUu,v(9+)®n

Since A, is a subalgebra of Un.o(gy), ¥ (ul z;) € A, for any d-tuple j. Since Al
is topologically free (hence complete) by Lemma 7.2, the map

Yy Vulg+)[[v]] = Uupw(g+)

takes its values in A,. We conclude with Formula (6.4). O

7.5. LEMMA.— The Clu][[v]]-linear map 1 : (g+)[[ ] = Uu.v(9+) extends to a Cllu, v]]-
linear map ¥ : KA/u(ng)[[v]] — Uyu(9+). The map ¢+ is injective, its image is ng:

e (Valg)[lol]) = Ay,
and py o P : Vi (a4)[[v] — Vilas) is the projection sending v to 0.
PROOF.— Any element of V(g4 ) is of the form w = > m>0 @mu™, where

Ay, = Z uj(m)a:z

Jilil<m

and I/l(-m) € C. By Lemma 6.8 (a), the element v (a,, u™) belongs to u™U, ,(g+).

Since Uy, ,(g+) is topologically free over Cl[u,v]], the series >, - ¥4 (ay, u™) converges
in U, (g+), so that we can define -

= Z Yy (am u™)

By Lemma 7.4 and E(7.1), for each m > 0, 6" (¢4 (an, u™)) is divisible by u” for all n > 1.
It follows that 6™ (¢4 (w)) is also divisible by u™ for all n > 1. Therefore, 1, (w) € A;. Now
any element of V;,(g+)[[v]] is of the form > -, w,v™, where w, € V,(g+) for all n > 0.

Clearly, >, ¥ (wy)v™ converges in A. We set (ano wnv”) =Y >0 U (wp)v™.
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Lemma 6.8 (b) implies that p, o 7,&_,_ is the identity on V., (g+). Proceeding as in the
proof of Theorem 6.9 (a), we see that by is injective on Vala)[lv ]]

It remains to prove that the image of 1/1_|_ is A+ For a € A+, set wy = py(a) €
V., (g+), cf. Lemma 7.3 (a). Viewing wg as a constant formal power series in Vi (g:)[[v ]]
we consider the element a — 7,b+(w0) € A+, it clearly sits in the kernel of p,,, which is UA+
by Lemma 7.3 (b). Therefore, there exists a; € A such that a— 1t (wg) = va;. Similarly,
there exists wy € V,(g4) and as € A, such that a; — ¢4 (w1) = vas. Repeating this
construction and using the separatedness of A+, we obtain an element w =Y -, w,v" €

Viu(g2)[[v]] such that a = ¢, (w). O

7.6. COROLLARY.— We have

A_|_ N UA\+ = UA_|_ and A_|_ N UA\_|_ = UA+.

PROOF.— By Theorem 6.9 (a) and Lemma 7.5, it is enough to check that

Va(g)[[W]] N oV (g4)[[v]] = oVa(g4) [[v]]

and
V(g0 [[0]] N uVe (g [[o]] = uVa (g [[V]]-

The former is clear; the latter is a consequence of Vy(g+) NuV,(g4) = uV, (g ), which is
easy to check. |

7.7. PROOF OF LEMMA 6.10. It is a consequence of Lemmas 7.3 (b) and 7.4, and the first
inclusion of Corollary 7.6. O

We can now show that A, has a bialgebra structure. (For the definition of ®C[u][[v]]
and ®C[[u,v]]v see Sections 1.3 and 4.4.)

7.8. PROPOSITION.— (a) We have the inclusions
Ay Bcpup) At C Ay Bcpu At C Uuw(a+) Bcuv)] Unw(gs)-
(b) If A, denotes the comultiplication of U, ,(g+), then
Auw(A+) C At Bcpuey A+

and
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PrROOF.— (a) The inclusion 21; QA@C[[%UH g_i_ C Uunw(g+) @C[[u’v]] Uu.v(gy) follows from
Proposition 6.2 (a), Lemma 7.2, and Lemma 4.5 (b).

Let us consider the first inclusion. By Theorem 6.9 (a) and Lemma 7.5, it is enough
to prove that the natural map

Va(g:) )] Ecpuon Vel 0] = Vala) [0]] Bcipun Vala4)[[0]] (7.2)

induced by the inclusion V,(g4)[[v]] € Va(g4)[[v]] is injective. By definition of BCul[[v]]»
we see that

V(g0 l[v]] Octuon Valgn)[[vl] = (Valg+) Octu Vala+)) [[v] = Vala+ @ g4)([v]]-

On the other hand,

~

V(g o)) Scipuay Vala) o)) = lim (Pala) [o1)/ (0, 0)" @0 un Valg) [/ (w,0)")
i (V@) 01/ 0)" @ tua/tuny Vala o]/, v)")
= lim (Va(e:+)@cp <g+>)[ }/(u,0)"
—tim Vige @ g ol 0)"
— m T (ar ® 9] (00"
= ‘;(g+ @ g4)[[v]]-

The last equality holds because V,(g+ @ g4 )[[v]] is a topologically free C[[u, v]]-module.
The injectivity of (7.2) follows.

(b) In order to prove that the image of A1 under A, ,, lies in the subalgebra A @c[u} [o]] A+
it is enough to show that A, , (¢+ (u:v)) belongs to this subalgebra for all x € g .

Let us consider the linear form f, € U;(g_) of Section 5.5. Since p; : Uj(g-) —
Ui (g+) is a morphism of coalgebras (see [EK96, Proposition 4.8]), we have Ay (p4(fz)) €
Im p4 @cypy Im p.

It follows from Lemma 5.6 that for any element a € Uy (g+) ®cyny Un (g4 ), there exists

(n ) € C indexed by a nonnegative integer n and two d-tuples j and k

a:Z( 3 (n)t®tk>hn,

n20  |j|+|k[<c(n)

a unique farmly v,
such that

where c(n) is an integer depending on a and n. If, in addition, a € Im p; @C[[h]] Impy,

then c¢(n) = n, i.e. 1/]( k) = 0 whenever n < |j| + |k|. Applying this to a = Ap(p4(fz)), we
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(n ) k€ C as above such that

n(p+(f2)) Z( ST v et )h”

n>0 |l|+|k|<n

- Z 3(7;:) p—l—(fm)jl"'p+(fmd)jd®p+(fx1)kl "'p-l—(flld)kd hn7|l'|f\ﬁ|’

n>0,j.k
3]+ |k<n

obtain a famlly v;

where j = (j1,...,ja) and k = (k1, ..., kq). Extending the scalars from CI[h]] to C[[u, v]]
and using (6.3), we obtain

Auo(p+(F) = D R o (Fe Voo pe (o) @ i (Fo ) i (Fiog) M (w) 21
n>0; 3 k
|71 +IE[<n
= > ) (e ) @ (ultly) un =12 1E

n>0;j.k, |j|+|kl<n

n>0 \jk;|jl+|kl<n

Therefore, v A, (14 (uz)) = Ay, (p+(]§;)) is a formal power series in v whose coeffi-
cients belong to the Clu]-linear span of the elements 1 (ulllz;) ® 4 (uklzy). Hence,
v Ayy (Y4 (uz)) belongs to Ay @c[u][[v” A+.A

The element A, , (¢+ (ux)) € Uuw(9+) @c(ju,0] Uu,w(84) can be expanded as

u v ¢+ ux Z a; K z;,

where (a;); is a basis of the topologically free Cl[u, v]]-module U, ,(g+) and z; € Uy, »(g+)-
Since

> ai®vzi = v Auo (V4 (u2)) € Uio(9+) Bcppua Ax

we have vz; € A for all i. By Lemma 7.3 (b) it follows that z; € A, for all i. Now taking
a basis (b;); of the topologically free C[[u, v]]-module A, we can write

Ay (P (uz)) = Z 2;®bj,
J

where z; € Uyo(g+). Since D, vzi®b; = vAy, (¢4 (uz)) € A, BC[u] A, we have

vz} € 121\+, hence 2 € 24_ for all j. Therefore,

~

Ay (4 (ux)) € A, B [u0)] At -
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The desired inclusion A, , (¢+ (ux)) €A, @C[u][[v” A, follows from
A2 no(A5?) = v (). (7.3)
In view of Theorem 6.9 (a) and Lemma 7.5, Equality (7.3) is equivalent to

Va(@) [ no (V) [0%) = o(Vale) []1%2)),

which is proved by using the identifications of the proof of Part (a). We have thus estab-
lished that Ay (A1) C Ay Bcpu)(o) As-

We now check that A, , (21;) C A\Jr ®C[[u,v]] 21\4_. By Lemma 7.5 any element of 121\+
is of the form {b\+(a), where a € V,(g1)[[v]]. For any N > 0, there exists b € V, (g )[[v]]
such that a —b =} -4 a,v™ with a,, € @, UP(g4)uP. Now, Do (b) = by (b) € Ay,
and ¥ (a —b) € uNU, »(g+) by Lemma 6.8 (a). Therefore,

Ay ({/;+ (@) = Auo(¢4 (b)) mod u™, (7.4)

It follows from the considerations above that

Auo(1h1(0) € Ay Bcpu)) A+ C Ay Bcjju,ey) A+

The latter Cl[[u, v]]-module being topologically free, Formula (7.4) for all N > 0 implies

~

Ayo(thy(a)) € Ay BC([u,0]] A+

7.9. COROLLARY.— The algebras A, and A, are subbialgebras of Unv(g+)-

7.10. REMARK.— The bialgebra A, has the following alternative definition. Define the
Clu][[v]]-bialgebra

Uy w(9+) = lim Un(g+) @cyiayy/ () Clul([v]l/ (™),

n

where C[u][[v]] is a CJ[[h]]-module by the morphism ¢ of Section 4.6. One can check that
U,,.»(9+) embeds as a subbialgebra into the bialgebra U, , (g4 ) of Section 6.1, that the map
a4 of Section 6.6 sends the Clu][[v]]-module U, ,(g4) isomorphically onto U (g4 )[u][[v]],
and that the bialgebra morphism p, of Lemma 6.7 maps U, ,(g+) onto the bialgebra
U(g+)[u] of polynomials with coefficients in U(g).

Adapting the proofs of Sections 6-7, one can prove that Ay is in U, ,(g+) and that

A, = {a eU, . (g;) | 6™(a) € u"U, ,(g4)"" for all n > 1}.
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8. Proofs of Theorems 2.3, 2.6, and 2.9 (I)

Let A, ,(g+) = A4 be the bialgebra constructed in Sections 6-7. We first prove Theo-
rem 2.6 and then determine A, /uA, as an algebra (Part I of Theorem 2.9). The proof of
Theorem 2.3 follows.

8.1. PROOF OF THEOREM 2.6.— It follows from Lemma 6.7, Lemma 6.8 (b), Theorem 6.9,
and Corollary 7.9 applied to g4 = g that the morphism of bialgebras p, : U, ,(g4+) —
U(g+)[[u]] restricts to a surjective morphism of bialgebras p, : Ay — V,,(g+) whose kernel
is vA. Therefore, the induced map A4 /vA; — V,(g+) is an isomorphism of bialgebras.
It remains to check that this isomorphism preserves the cobracket.

The bialgebra structure on A, induces on V,, (g4 ) a Poisson cobracket ¢” given by (1.8),
where p = p,. We have to check that ¢’ coincides with the Poisson cobracket d,, of V,,(g+)
defined by (2.5). Since the algebra V(g ) is generated by the elements uz with x € g4,
it suffices to show that ¢’ (uz) = 0, (ux) for all z € g4.

We identify the module U, ,(g+) with U(g+)[[u,v]] via the isomorphism a; of Sec-
tion 6.6. Let a € a.'(uz) C U,w(g4). We have p,(a) = uz. Viewing U, ,(g+) as a
subbialgebra of U, ,(9), we see by (5.3)-(5.4) that the comultiplication A, , of Uy, ,(g+)
satisfies

Ay p(a) = Ala) +uv [Aa), g] mod u?v? U, ,, (D)§2,
where A is the standard comultiplication (2.4) on U, ,(9) = U(9)[[u, v]]. Therefore,

Au,v(a) - Aﬁ?v(a) — u[Aa) T —T21

. S ] mod UQUU%@(D)@Q.

It follows that

Ayw ASP (a
(Y(UI) — (pv®pv)< ) ( )U s ( ))
= u[A(ur), 5]
=2 [z®] + 1@z, — 2]

1
=u? ([2@1 + 1@z, 7] — 5 [2®1 + 1@z, r + 721])
= u? [z®1 + 10z, r] = u?(x) = 6y (uz).
The vanishing of [z®1 + 1®z, r 4 r91] is due to the invariance of the 2-tensor r + r9;. The
identity 6(x) = [zx®1 4+ 1@z, r] follows from (5.2). O

8.2. PROOF OF THEOREM 2.9. PART I.— We prove here that A, /uAd; = S(g4)[[v]]
as a C[[v]]- algebra. We first observe that the algebra A JuAy is commutative. Indeed,

Ay JuA, C A+ /uA+ by the second equality of Corollary 7.6. By Proposition 3.4, the
quotient algebra A+ / uA.,. is commutative; hence, so is A4 /uA.

36



Consider the C[ul[[v]]-linear isomorphism vy : V,,(g+)[[v]] = A4+ of Theorem 6.9 (a).
It induces a C[[v]]-linear isomorphism

Uy 2 S]] = V(g [l /uVu(g)[[v] — Ay /udy.

By definition,
U (2. .:1;2‘1) = 12l p+(ﬁ;1)j1 ...p+(ﬁd)jd modulo u Ay (8.1)

for all d-tuples j = (j1,...,74). (Recall that (z1,...,24) is a fixed basis of g;.) Since
AL /uAL is commutative, U is an algebra morphism. O

8.3. PROOF OF THEOREM 2.3.— By Theorem 6.9 (a), the Clu|[[v]]-module A, is isomor-
phic to Vi, (g+)[[v]], hence to S(g4)[u|[[v]] (see Section 2.4 and Lemma 2.5). As a conse-
quence of Theorem 2.6 and Section 8.2, the bialgebra A is commutative modulo u and co-
commutative modulo v. It follows from Theorem 2.6 and Lemma 2.5 that A, /(u,v) = S(g)
as bi-Poisson bialgebras. O

8.4. REMARK.— Since A is a Clu][[v]]-module, we may set u = 1. We claim that the
quotient bialgebra A, /(u — 1) is isomorphic to Etingof and Kazhdan’s bialgebra U, (g )
of Section 5.4 (with h replaced by v). Indeed, the bialgebra inclusion A, C Uy, ,(g+) of
Remark 7.10 induces a bialgebra morphism & : Ay /(u —1) — U, ,(9+)/(u — 1) = Uy, (g4)-
It remains to show that £ is an isomorphism. The isomorphism 1 of Theorem 6.9 (a)
induces a C[[v]]-linear isomorphism ¢, : U(g+)[[v]] = Vu(g+)[[v]/(u—1) = A4 /(u—1). It
now suffices to check that the composite map £o1) . is an isomorphism. By Sections 5.5, 6.4,
and 6.6 the map & o, sends x; = 23* ...z € U(gy)[[v] to v ' po (fur )t .. i (fry)

for all d-tuples (ji, ..., jq). In view of Lemma 5.6 (a) it follows that o1, is an isomorphism
modulo v; hence, it is an isomorphism of topologically free C[[v]]-modules.

9. A nondegenerate bialgebra pairing

In this section, we construct a pairing between A, and a Clv][[u]]-bialgebra A , using the
element Ry, € Uyv(9+) @C[[u,v]] Uu,o(g-) introduced in Section 6. We start by defining
A_, then we prove an important property of R, ,. We resume the notation of Sections 5-8.

9.1. THE BIALGEBRAS A_ AND A_. They are defined by analogy with A, and A\_|_. Let
us begin with the definition of A_. Consider the C[[h]]-linear isomorphism oy : Up(g+) —
U(g4+)[[Rh]] of Section 6.6. We have ay (1) = 1 and a4y = id modulo h. Choose a C-linear
projection 7, : U(gy) — U'(gy) = C@ g, that is the identity on U'(gy ). Forany y € g
we define a C-linear form (—,y) : Ul(gy) — C extending the evaluation map (—,y) :
g+ — C and such that (1,y) = 0. We obtain a C|[h]]-linear form g, : Un(g+) — CJ[h]] by

gy(a) = <7T+a+(a)7 y> = Z <7T+(an)7 y) hna (91)

n>0
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where a € Uy (g+) and the elements a,, € U(gy) are defined by ay(a) =), -, anh™. We
have g, (1) = 0. B

By extension of scalars, we obtain a C[[u,v]]-linear form g, : Uy, (g+) — Cllu,v]]
such that g,(1) = 0. We apply the map p_ : Uy ,(g+) — Uun(g-) of (6.2) to g,. By
Lemma 6.5 adapted to this situation, p_(gy) € Uy.»(g—) is divisible by uwv.

Let V,(g—) be the CJv]-bialgebra introduced in Section 2.4, where we have now re-
placed u by v. Let (y1,...,yq) be the basis of g_ dual to the fixed basis (z1,...,24) of g4.
The family (v!&l Yk ), where k runs over all d-tuples of nonnegative integers, is a C[v]-basis
of V,,(g—). We define a C[v|-linear map ¢_ : V,(g—) — Uy»(g—) by ¥»_(1) =1 and

Vo (v y) =« p_ (G )L po ()™, (9.2)

where k = (ki,...,kq) is a d-tuple with |k| > 1. This map extends uniquely to a C[v]|[[u]]-
linear map, still denoted ¢_, from V,,(g_)[[u]] to U, (g—) by

o (5 wna) = X ot

n>0 n>0

where wg, wy, wa, ... € V,(g—). We then define the C[v][[u]]-module A_ by

A= (Volg-)[[ul]) C Uu.v(g-). (9.3)

Recall the isomorphism a_ : Up(g—) = U(g—)[[h]] of Section 5.5. It induces a C[[u, v]]-
linear isomorphism a_ : U, ,(g-) = U(g-)[[u, v]] such that a_ = id modulo uv. Consider
the composed map

Pu : Uuw(g-) — U(g-)[[u, v]] — U(g-)[[v]];

where the second map is the projection u — 0. The map p, is a morphism of bialge-
bras when we equip U(g_)[[v]] with the power series multiplication and the comultiplica-
tion (2.4). Moreover, p, sends A_ onto V,(g—) and p, o 9— : V,,(g-)[[u]] = Vu(g-) is the
projection sending u to 0. This is proved as in Section 6. R

By analogy with Section 7.1, we define a Cl[u, v]]-subalgebra A_ of U, ,(g—) by

A= {a €Uun(g=) | "(a) € v"Uu,v(g_)@" for all n > 1}. (9.4)

It is clear that the results of Sections 6-8 apply to A_ and 121\_, namely we have the
following properties.

(i) The map ¢_ : V,,(g—)[[u]] — A_ is an isomorphism of C[v][[u]]-modules. It extends
to an isomorphism of C[[u, v]]-modules ¥_ : V,(g_)[[u]] — A_.

(ii) A_ C A_ are subalgebras of U w(g-).

(iii) A_ is independent of the choices of the isomorphism a : Up(g+) — U(g+)[[R]],
of the projection 7, : U(gy) — U'(gy), and of the basis of g_.

(iv) A_ and A_ are topological bialgebras for the u-adic topology and the (u, v)-adic
topology, respectively.
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(v) A_ and A_ are commutative modulo v and cocommutative modulo u. There are
isomorphisms of co-Poisson bialgebras

A_JuA_ =Vy(g-), (9-5)
isomorphisms of bi-Poisson bialgebras
A_/(u,v)A- = S(g-), (9.6)
and isomorphisms of algebras
A oA = 5(g-)[[ull. (9.7)

Recall the two-variable universal R-matrix Ry, , € Uy (g4 ) @JC[[U,U]] Uu,w(g-) of Sec-
tion 6. We now give a stronger version of Lemma 6.3 (b).

9.2. LEMMA.— The element R, , — 11 belongs to the submodules

-~

U"Zl\-l-@C[[u,v]]UU,v(g—) and Uu,v(9+)®0[[u,v]]“‘4—

Of Uu,v(g—l-) ®C[[u,v]] Uu,v(g—)'

PROOF.— Recall the element R’ € Uy ,(g+) @, Uuw(g—) of Lemma 6.3 (b). It is
enough to show that

uR € A\+ ®C[[u,v]] Uu,v(g_) and vR' € Uuyv(g+) (X\)c[[u’vn A\_.

We shall prove the first inclusion. The second one has a similar proof.

Let (b;); be a basis over C[[u, v]] of the (topologically free) Cl[[u, v]]-module U, ,(g-).
We can expand R’ as R' = ), z;®b;, where z; are elements of Uy (g+). The proof of
Lemma 7.4 shows that (6"®id)(uvR’) is divisible by u" for any n > 1. Hence,

(" @id)(R) = Y 6" ())&,

n—1

is divisible by «"~". The elements b; being linearly independent, it follows that 6" (z;)
is divisible by «"~! for all n > 1 and all j. Therefore, uz; € A, for all j and uR’ €
At Ociu)) Unw(g-)- O

9.3. COROLLARY.— The element R, ,, belongs to the submodules

~

A\—I— ®C[[u,v]} Uu,v (g—) and Uuyv(g+) ®C[[U:U]] A

We consider the dual C[[u,v]]-modules Ei = Homc[[uyv]](;l;, Cl[u,v]]) and A* =
Homc[[uyv]](g_, Cl[u,v]]). In view of Corollary 9.3, Formulas (6.2) now define C[[u,v]]-
linear maps A* — Uuw(g+) and gi — Uy(g—), which we still denote by p4 and p_,
respectively. The comultiplications of g+ and of A_ induce algebra structures on gi

and A* . As in Section 6, the map p is an antimorphism of algebras and p_ is a morphism
of algebras.
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9.4. LEMMA.— We have

~

A_|_ C p+(A\*_) C A\+ and A_ C p_(;{j_) C A_.

PROOF.— Let us prove the first two inclusions. The other two inclusions have similar
proofs.

(a) We use the notation of Sections 6.4 and 6.6. We first show that, for any x € g,
the element v=' p, (f,) € A, sits in py (121\”;) Indeed, if b € A_, then 6*(b) = b— £(b)1 is
divisible by v in U, v( _). Hence, fo(b) = fo(b) — e(b)f=(1) € C[[u,v]] is divisible by v.
We then define fx c A* by

fo(b) = v ! f2(b) € Cl[u, )] (9.8)

for any b € A_. Tt follows that the restriction of ]?; to A_ equals vf;. Therefore,

v oy (f2) = pi(fa) € pa(AX).
By Section 6.6, any element a € A, is of the form

a= Z v" (Z Pj(u) vy (f2r) ---P+(J7md)jd>,

n>0

where the sums inside the brackets are finite and Pj(u) € Clu|. The formal power series

Z o™ (Z Pj(u) /;ZZ Aﬁ)

n>0

converges to an element f in the topologically free C[[u, v]]-module A* . Since J A*
Uuw(g4) is an antimorphism of algebras, we have p,(f) = a. This implies that A} C

P+ (gi)-
(b) Let us prove that p+(@i) C A,. Given f € A* | we have to check that " (p+(f))
is divisible by u™ for all n > 1. By Lemma 9.2, vR' € U, ,(g+) @c[[u,v]] A_, hence

~ ~

UnR/la,n—i-lR/Zn—i—l e R;L—].,'VL—F].R’IVL,'I’L—F]_ € Uu,v (g+)®n ®C[[u,v]] A_

This allows us to apply id®f to v" R} , 1R, 1 R,y 1Ry, 1. A computation sim-
ilar to the one in the proof of Lemma 7.4 yields

~

" (p4(f)) = u”(id@f)(v” 1 n+1R2 ntl” n—1 n+1Rn n+1) € UnUu,v(9+)®n
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9.5. LEMMA.— Fora € Ay and b € A_, the formulas

(@,b)uw = (p3 ' (@))(b) = (=" (b))(a), (9.9)
yield a well-defined bialgebra pairing Ay x A“°Y — Cl[u, v]].

Here A®? denotes the bialgebra A_ with the opposite comultiplication. The pairing
(', )u,v is in the sense of Section 2.10 with K; = Clu][[v]], K2 = C[v][[u]], and K = C[[u, v]].

PROOF.— Let us prove that the expression (p_'(b))(a) is well defined. It suffices to check
that, if g € A\j_ satisfies p_(g) = 0, then g(a) = 0. Suppose first that a = 14 (u 191 ) for
some d-tuple j. By £(6.3), vlilq = p+(f), where f = Nig .. g; € U; ,(g—).- Applying
gf to Ry, € ﬁ+ ®C[[u,vﬂ Uuv(g—), we obtain

vl g(a) = g(p+(f)) = (9©f)(Run) = f(p-(9)) = 0.
Since Cl[u,v]] is v-torsion-free, we obtain g(a) = 0. By Cl[u, v]]-linearity, g(a) = 0 for all
a € A_|_.
A similar argument proves that (p;'(a))(b) is well defined. Let us show that

(5" (@) (®) = (p=" (9)) (@)- (9.10)
By linearity, it suffices to consider the case a = ¥ (u 12l ) as above. We have v/l ¢ = p+(f)
with f € U ,(g-). Let g € p='(b) C A%. Then

M (31 (@)) (0) = F(0) = F(p-(9)) = (99F)(Ru)
= g(p+(f)) = v g(a) = v/ (b1 (1)) (a).

Hence, (9.10) holds.
That ( , )y, is a bialgebra pairing follows directly from the fact that py is an anti-
morphism of algebras and p_ is a morphism of algebras. O

9.6. REMARK.— Proceeding as in the proof of Lemma 9.5, we can show that the maps
DAY A+ and p_ : A* — A_ are injective.

9.7. INDUCED BIALGEBRA PAIRINGS. Passing to the quotient modulo u, the pairing ( , )y,
induces a bialgebra pairing

(,)o:Ar/uAdy x A JuA  — CJ[v]]. (9.11)

(The bialgebra A_/uA_ is cocommutative by (9.5), so that (A_/uA_)®°P = A_/uA_.)
Recall the isomorphism of algebras Uy : S(gy)[[v]] — A+/uA+ defined by (8.1). On the
other hand, the composition of ¢ : V,(g_) — A_ defined by (9.2) and the projection
A_ — A_/uA_ is an isomorphism of Clv]-bialgebras ¥ : V,(g_) — A_/uA_, which is
defined on the C[v]-basis (v/&l y)) of V,(g—) by

U (0l yy) = ¢ (vl yy) mod ud - =u"E p (g, )" - p (gy,)** mod A, (9.12)

where k = (ki,...,kq) and the maps g,, were introduced in Section 9.1.
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9.8. LEMMA.— If j = (j1,...,Ja) and k = (k1, ..., kq) are d-tuples of nonnegative integers,
then

0 if 7] > |kl
(W (), O (0 yp))y = < Gjvky - Gjkg drt - dabif 1] = k],
e vH-l1l C[w)] if 131 < |E|.

PROOF.— We first claim that for any = € g4 and any d-tuple k = (k1,..., kq),

0 if |k =0,

(@, 7 (yp)) if |k| > 1. (9.13)

(\Ij+($), \IJL(’U&‘ yﬁ))v - { oIkl -1

Indeed, consider the diagram

Uinla) —— U )wol] = Cffuu]

lpu id l (z,m (=) l

Ulg)[lv]] ——  Ulg)[l]] —— Clpl|

where the unmarked vertical maps are the projections sending v to 0. The left-hand and
the right-hand squares commute by definition of p,, and by linearity, respectively. It follows
that, for any b € U, ,(g-),

ﬁc(b) mod uCl[u, v]] = (z, m_(py(h))). (9.14)

Since U (z) =v 1 p f; mod uA, and U (v!kly) = _ (v!E y;) mod vwA_, we have
+ + + k k

(U4 (2), ¥ (05 )y = 07" fo(v- (v yp)) mod uCllu, v]]
= v~ (z, m_ (pu (- (WE )
= v~ (ol r () = 0BT G ()

for all k. If |k| = 0, then v!&l y, = 1, on which (z, —) vanishes. This proves (9.13).
Formula (9.13) implies that Lemma 9.8 holds for any j and k such that [j| = 1. For
the general case, observe that
(U (), UL (0 ) )y = (U (1) W ()4, UL (0E ),
= (Vs (@)@ O ()9, AL (T (0 yy)),  (9:15)
= (U (21)® - .®\Ij+($d)®jd’ (\I,/_)®|1|(A|1| (UIE\ i)
in view of Lemma 9.6 (a), and the fact that ¥, preserves the multiplication and ¥’

preserves the comultiplication. Here A is given by (2.4). Then the formulas of Lemma 9.8
for a general j follow from (2.4), (9.15), and the formulas for j such that |j| = 1. O
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Passing to the quotients modulo v and modulo (u,v), the pairing ( , )4, induces
bialgebra pairings
(5 )u s Ap /oAy X (A /vA_)*P — C[[u]] (9.16)

and
Ay /(u,v) x A_/(u,v) — C. (9.17)

The latter can also be obtained from the pairing ( , ), of (9.11) by setting v = 0.

The isomorphism ¥, : S(gy)[[v]] — A4+ /uA; defined by (8.1) induces a canonical
isomorphism of bialgebras S(g+) = A+ /(u,v). The isomorphism ¥’ :V,(g_) - A_/uA_
defined above induces a canonical isomorphism of bialgebras S(g_) = A_/(u,v). We
denote by ( , )o the bialgebra pairing S(g+) x S(g_) — C obtained from (9.17) under
these identifications. Lemma 9.8 implies that

0 if |j] # |EJ,

9.18
Oy ky -+ Ojg kg 1t gal if [j] = |E| ( )

(x5, yk)o = {

for all d-tuples j = (j1,...,jq) and k = (k1, ..., ka)-

9.9. COROLLARY.— The pairings
(o Juw : Ap X AZP = Cl[ol], (1, )ot Ap/udy x A_JuA_ — CJ[v]],

(5 u s A /oAy x (A oA )*P — Cllu]], and (,)o:5(g+) xS(g-) = C
are nondegenerate.

ProoF.— It follows from (9.18) that ( , )o is nondegenerate. (Actually, ( , )o is the
standard pairing between S(g) and S(g_).)

We check that ( , ), is nondegenerate. Let a € Ay /uA, such that (a,—), = 0. If
a denotes the image of a under the projection Ay /uA; — S(g4), then (a,—)o = 0. It
follows from the nondegeneracy of ( , )o that @ = 0, which implies that a € vA; /uA,.
Let a; € A /uA; be such that a = va;. We now have (a1, —), = 0. A similar argument
shows that a, is divisible by v, hence a is divisible by v? in A, /uA,. Proceeding in the
same way, we see that a is divisible by any power of v, which is possible only if a = 0. A
similar argument shows that (—, ), = 0 implies b = 0.

The nondegeneracy of (, )y, and (, ), is proved in a similar fashion. O

10. Completion of the proof of Theorem 2.9

Before proceeding to prove Theorem 2.9, we establish a few facts about a topological dual
of the C[v]-bialgebra

Valo-) = {3 bwo" € U(a)lp] | by € U™(g-) for all n > 0}.

n>0
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10.1. A TorPoLOGICAL DUAL. Inside the dual V,(g_) = Homg,(Vy(g-), Cl[v]]) of V4 (g-)
there is a Cl[v]]-submodule V,?(g_) consisting of all f € V.*(g_) satisfying the following
condition: for every m > 0 there exists N > 0 such that

F(UP(g-)vP) Cv™Cl[v]] (10.1)

for all p > N. In other words, V,°(g_) consists of all C[v]-linear forms that are continuous
when we equip C[[v]] with the v-adic topology and V,(g_) with the I-adic topology, where
I is the two-sided ideal I = P, UP(g-) v C V,(g-).

10.2. LEMMA.— The Cl[v]]-module V2 (g—) is topologically free and

Vele-) (Vo Vi(e-) =vVo(eo).

PROOF.— For the first statement, it is enough to check that, if (f,),>0 is a family of
elements of V,?(g_) such that f, = f,4+1 mod v™ for all n > 0, then there exists a unique
f € VPe(g_) such that f = f,, mod v™ for all n > 0.

Indeed, since the linear forms f,, are with values in C[[v]], there exists a unique f €
V. (g—) such that f = f,, mod v™ for all n > 0. Let us show that f belongs to V,°(g_). Fix
m > 0. By definition of V,?(g_), there exists N > 0 such that f,,(UP(g_)v?) C v"™C[[v]]
for all p > N. Since f = f,,, mod v™, we have f(a) = f;,(a) mod v™ for all a € V,,(g-),
hence

f(UP(g-)vP) = fr(UP(g-)vP) =0 mod v™

for all p. Therefore, f(UP(g_)vP) C v™CJ[v]] for all p > N.
The second statement is an easy exercise left to the reader. O

We now relate V' (g—) to S(g+)[[v]]. As before, we fix a basis (z1,...,24) of g+ and
the dual basis (y1,...,ya) of g—. The family of elements z; = x]' ...z’ indexed by all d-
tuples j = (j1,. .., jq) of nonnegative integers is a C-basis of S (g+); the family of elements
(v y;.) indexed by all d-tuples k of nonnegative integers is a C[v]-basis of V,,(g_).

Suppose there exists a pairing ( , ) : S(g+)[[v]] X Vu(g=) — C][[v]] (in the sense of
Section 2.11 with K = K; = C[[v]] D K2 = C[v]) such that for all j = (j1,...,74) and
k= (ki,...,kq) we have -

0 it |j] > |k,
(2, v i) = S v by - Gjakg it dal if (] = K], (10.2)
e vE-l o[ [u]] if [j] < |kl.

The pairing ( , ) induces a C[[v]]-linear map ¢ : S(g+)[[v]] — VF(g—) defined for a €
S(g+)[[]] by ¢(a) = (a, —).

10.3. PROPOSITION.— Under Condition (10.2) the map ¢ sends S(g+)[[v]] isomorphically
onto V.2 (g-).
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PROOF.— The same argument as in the proof of Corollary 9.9 shows that the pairing ( , )
is nondegenerate. This implies the injectivity of ¢.
Let us prove that ¢ sends S(g4+)[[v]] into V,*(g—). Any element of S(g4)[[v]] is of the

form
N n
a= D, pinziv",
n>0; 7

where (f1j,n)n>0;; is a family of scalars indexed by a nonnegative integer n and a d-tuple
j of nonnegative integers, such that for all n there exists an integer N,, with p;, = 0
whenever |j| > N,. )

In order to check that ¢(a) lies in V,°(g ), we have to prove that, given m > 0, there
exists IV such that for all p > N we have

p(a)(UP(g+)v?) C o™ Cv]].

Let Ny, be any integer such that Ny, > N,, for alln =0,...,m—1. It is clear that y; , = 0
when [j| > N/, and 0 < n < m — 1. For any p > 1, the family (v yx) with [E] < pis a
basis of UP(g—) vP. Let us compute ¢(a)(vPyi) when |k| < p. Using (10.2), we get

p(a)(v”yr) = (a,v” yx)

= D My (@5 0P ) 0"

n>0; j

_ k +p—|k
= > i (g, vl gy) ool
n>0;7

= Z Pj(v),

131<|k]

where P;j(v) = (Zn>0 i v”) (2, vl i) vP~IELTE || > N7, then

D "= Y g ®”

n>0 n>m
is divisible by v™. Hence Pj(v) is divisible by v™. If [j| < N;, and |j| < [k|, then
by (10.2) (zj, v!E y,.) is divisible by v!E=ll Therefore, Pj(v) is divisible by vP713! hence
by vP~Nm+1 Tf jI < N, and [j| > |k[, then p — |k| > p — N;, + 1. Therefore, P;(v)
is divisible by v»~Nm*1. Summing up, we see that ¢(a)(UP(gy)v?) C v"™C[[v]] for all
p>m+ N}, — 1. Hence, ¢(a) € V,°(g-).

It remains to show that V2(g_) C ¢(S(g4)[[v]]). Since (v y;); is a C[v]-basis
of V,,(g-), a Clv]-linear form f € V;*(g_) is uniquely determined by the family (v;(v)); of
formal power series defined by I

vj(v) = f(vllly;) € C[[v]].
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Suppose that f € V;?(g_). Then for every m there exists N such that for all j with |j| > N
the formal power series v;(v) is divisible by v™. Consider the formal sum

where j! = ji!...jq! if j = (j1,...,jq). By the divisibility property of v;(v) obtained
above, ag is a well-defined element of S(g)[[v]]. Let us compute ¢(ag) € V,9(g-).
Given a d-tuple k = (kq,..., kq), we have

e(ao) (v yp) = (ag, vE yy)

v;(v) v;(v)
- Z _j' (%vUL'y&)JF Z _j' (wiavak)
iljl=lkl = siljl<lkl =
From (10.2) we derive
v;(v) v;(v)
> Tl = 3 dkl = )

I3 131=Ikl s lil=IEl =

where d; x = 0, &y ---0j,,k,- On the other hand, by (10.2), (xj,vm| yr) is divisible by v if
|j] < |E|. It follows that, for all £,

¢(ao) (yro™) = vi(v) + v Cl[e]] = f(ysv'™) + v C[]].

Therefore, f = ¢(ag)+vf1, where f; is a linear form on V,,(g_) such that v f; belongs to the
subspace V,2(g_). By Lemma 10.2, this implies that f; € V,?(g_). Starting all over again,
we get an element fo € V.°(g_) and an element a; € S(g4)[[v]] such that fi1 = p(a1)+vfo.
Hence, f = ¢(ag + vai) + v? fo. Proceeding in this way, we see that for all n. > 0

Vo(g-) = e(S(a)[[v]]) + 0"V, (g-)-

Together with the topological freeness of V2(g_) proved in Lemma 10.2, this implies that
Vo(g_) sits inside the image of ¢. O

Recall the nondegenerate bialgebra pairing (9.11)
(,)v:Ar/uAy x A JuA  — Cl[v]]

and the bialgebra isomorphism W/ : V,(g_) — A_/uA_ of Section 9.7. They give rise to
a Cl[v]]-linear morphism of algebras ¢ : Ay /uA; — V(g_) defined for a € A /uA, and
be Vi(g-) by

p(a)(b) = (a, U_(b))o- (10.3)
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10.4. COROLLARY.— V,2(g_) is a subalgebra of V) (g—) and ¢ : Ay JuAy — V) (g_) is an
injective morphism of algebras whose image is V.2 (g_).

PrROOF.— By Lemma 9.8 the pairing

(= =) = (U (=), UL(=))w : S(g4)[[v]] x Vo (g-) — C[[v]]

satisfies Condition (10.2). By Proposition 10.3 the map ¢ o ¥, is injective with im-
age V2(g—). Since p o ¥, is an algebra morphism, its image V(g_) is necessarily a
subalgebra of V,*(g_). One concludes by recalling that U, : S(g;)[[v]] — A4 /uA, is an
algebra isomorphism. 0

Consider the Poisson C[[v]]-bialgebra E, (g4 ) of Section 2.8. As an algebra, E,(g+) =
S(g4)[[v]]. By (2.8) its comultiplication A’ fulfills the following condition: for all z € g4 C

Ev(g+),

A(z) =201+ 10z + » | Xp*, (10.4)
k>1
where Xy, € @, ;11 SP(9+)®5%(g+) for all k > 1. The Poisson bracket { , } of Ey(g+)

is uniquely determined by Condition (2.9).
In [Tur91, Section 12] a bialgebra pairing ( , ), : Ey(g+) X Vi(g—) — CJ[[v]] was
constructed such that
(z,vy), = (2,y) € C (10.5)

for all x € g+ C S(g+)[[v]] = Ev(9+) and vy € vg_ C V,(g—), where (,): gy xg_ — C
is the evaluation pairing. The pairing (, ), has the following properties.

10.5. LEMMA.— Let Xq,..., X,, € g+ and Y1,...,Y, €g . If m > n, then

(X1 X, 0" Yy -+ Y,), = 0. (10.6)
If m = n, then
(X1 X, 0" Y7 -+ V)0 = Z (Xo(1), Y1) (Xo(m), Ym), (10.7)
where o runs over all permutations of {1,...,n}.
If m < n, then
(X1 X, 0" Y7 - YY) C o™ ™ Clv]]. (10.8)

PrROOF.— (i) We prove (10.6) and (10.7) by induction on n, using (2.11) and (10.5). The
case m = n = 1 follows from (10.5). If m > n = 1, then by (2.4) and (2.11)

(X1 Xp,oV), = (X10Xs - X, A(wYY))) = (X100 X5 - - X, 0Y1®1 4+ 1007,
= (X1, 011), (X2 -+ Xom, 1), + (X0, 1), (Xo -+ - X, 0Y2 )5, = 0,

v
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Suppose we have proved (10.6) and (10.7) for 1,...,n — 1. By (2.4),

A(le T Yn) =1®Y1---Y, + Z Z Ya(l) a(p)®YU(p+1) Ya(n) +Y--- Yn®]-7

p=1 o

where o runs over all (p,n — p)-shuffles, i.e., all permutations of {1,...,n} such that

o(l)<---<o(p)and o(p+1) < --- < o(n). Therefore,

(X1---Xm,vnY1--'Yn):, = (X1®X2---Xm,A(v”Y1---Yn));
= (X1,1);(X2---Xm,Y1---Yn)'

v

D (X 0P Yoy Vo)t (X Xy 0" P Yooy Yo(m) )i

p=1 o
+ (X, 0" Y- Y, (Xo - X, 1))

v

where o runs over the same set of permutations as above. The first and last terms vanish
by (2.11). If m > n, the middle sum is zero by the induction hypothesis on (10.6). If
m = n, by (10.6), the only nonzero term is for p = 1, so that

(X1 X, 0" Y1 -+ V), = Z(XM)YU(D) (X X, 0" Vo) Yo(n) s

v
g

where o runs over all permutations of {1,...,n} such that o(2) < --- < o(n). Therefore,
(Xpwo X, 0" Y1+ Yy, = Z(XlaUYi);) Xz Xy 0" 1YY V)l
i=1

where the hat on Y; means that it is omitted from the product. We conclude with (10.5)
and the induction hypothesis on (10.7).

We also prove (10.8) by induction on n. If n = 1, then necessarily m = 0 and the
claim follows from (2.11). For the inductive step, observe that (10.4) implies that, for
Xla"'va €9+,

A/( Z Xk®X// k"
k>0
where X; @ X} € D, j—pm SP(9+)@5%(g+). By (2.11), we obtain

(X1 X, 0" Y1 V), = (A(Xy - X)), 0V 100" Y, - V),

v

=) (X o), (X 0" T Yo YY),

v
k>0

By (10.6) the only case where (X}, vY7), may be nonzero is when Xj, € S'(g.), therefore
when X}/ € Sk*m=1(g, ). If k+m—1 <n—1, we use (10.7) and the induction hypothesis

n (10.8). Thus, (X}, v 'Ys---Y,)! is divisible by v»~™7%. If k +m — 1 > n — 1, then
(X, v 1Yy -+ Y,)) = 0by (10.6). Therefore, (X}, v""1Y,---Y,,)! is divisible by v ~m~*
in all cases. Hence, (X7 -+ X,,,v" Y7 ---Y,,). is divisible by v™~™. O

v

From the bialgebra pairing (, ), we get a morphism of algebras ¢’ : E,(g+) — V.*(g-)
defined by ¢'(a) = (a, —),, for a € E,(g+).
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10.6. COROLLARY.— The bialgebra pairing ( , ). is nondegenerate and the morphism of
algebras ¢’ induces an isomorphism

o Eu(gy) = Vi (g-) CVi(g-).

PROOF.— By Proposition 10.3 it is enough to check that the pairing (, ), satisfies Con-
dition (10.2). An easy computation shows that (10.2) is equivalent to (10.6-10.8). O

10.7. PROOF OF THEOREM 2.9. PART II.— By Corollaries 10.4 and 10.6 we have two
algebra isomorphisms ¢ : A, /ud; — VO(g-) and ¢’ : E,(g+) — V.2(g—). Composing ¢
with the inverse of ¢/, we obtain an algebra isomorphism

Xx=¢ 'o: A JuAdy — Ey(g4).

Let us check that y is a morphism of coalgebras. By definition of ¢, ¢’ and ¥,

(a, 9" (0)s = @(a)(b) = ¢’ (x(a)) (b) = (x(a), b), (10.9)

for all a € A, /uA, and b € V,(g_). (For the definition of ¥’ | see Section 9.7.) Using
(2.11) and (10.9), we obtain

(A’(x(a)),b1®@b2);, = (x(a ) biba)s,

a, U’ (b1b2))y

a, U’ (b1)P"_(b2))y
A(a), UL (b1)®‘I’/ (b2))w

= ((xex)(A b1®bz)

(
= (
= (
= (

for all @ € A;/uA; and by, by € V,(g—). Here A’ is the comultiplication in E,(g+)
and A is the comultiplication in Ay /uA, induced by A, ,. Since the pairing ( , ), is
nondegenerate, A’y = (x®x)A.

The bialgebra Ay /uA, is a (commutative) Poisson bialgebra with Poisson bracket
{, }v defined for ay,as € Ay by

{plar),p(az)}o = p (;) , (10.10)

u

where p: Ay — Ay /uA, is the projection. The bialgebra isomorphism x : Ay /uA; —
E,(g+) transfers this Poisson bracket to a Poisson bracket { , } on E,(g+). In order to
show that y is a morphism of Poisson bialgebras, we have to prove that {, }/ ={, }. It
suffices to check that {, }’ satisfies Condition (2.9).

The pairing of Lemma 9.5 pairs the bialgebras A, and A®°?. Consequently,

(a1a2 — a2a1, b)u,v = (a1®a2, Agl?v(b) — Au ”(b))u v

)
’
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for all a;,as € Ay and b € A_. The bialgebra A_ being cocommutative modulo u (see
Section 9.1), it follows that AP, (b) — A, ,(b) is divisible by u; hence,

_ AP (b _Auv b
(M,b) :(alm, ) ’()) . (10.11)

u u ’
By Section 8.1 applied to A_ and by (9.5), the isomorphism ¢_ : V,(g_)[[u]] — A— of
Section 9.1 induces the isomorphism ¥’ : V,(g—) — A_/uA_ of co-Poisson bialgebras.
Therefore,

Ay,p(b) — AP, (D) ~
(‘I’/_®\If/_)(5v (U’y)) = " : mod u A_ ®C[v][[u]] A (1012)

for vy € vg_ C V,(g—) and b € A_ mapped onto ¥’ (vy) under the projection A_ —
A_/uA_. Here, 6, : Vy(g—) — Vu(g-)®cy)Vo(g-) is the Poisson cobracket defined
by (2.5), where we have replaced u by v, and the Lie cobracket § of g by the Lie co-
bracket d_ of g_. By definition of g_ = (g3")*,

(11022, (y)) = —([1@22], ) (10.13)

for all 1,20 € gy and y € g_.
Combining (10.10)—(10.12), we obtain

({p(a1), p(az)}v, ¥ (vy))y = —(p(a1)@p(az), (¥ W' )(0,(vy))), (10.14)

for all ay,a2 € A4 and y € g_. It follows from (2.5), (10.9), (10.13), and (10.14) that

= (x~ {561#172}) v (vy)),
= ({x X H(x2)}, U (vy)),
=—(x~ (1‘1)®X Haa), (T@T)(0:(vy))),
—($1®$2,5v(vy));
—(m1®x2,v25_(y));
= ([$1,$2]avy);

({z1, 22}, vy),,

(10.15)

for all 1, 0 € gy and y € g_.
On the other hand, the Poisson bracket { , }’ induces the Poisson bracket (2.3) on
E,(g+)/vE,(g+) = S(g+). Consequently, for all z1, 22 € gy,

{z1, 22} = [p1,20] + ) X o™, (10.16)

m>1

where X,,, € g+. Let X% be the component of X,, in SP(g). In order to check Condi-
tion (2.9) for {, }/, it is enough to show that X% —0forallp=0,1and m > 1.
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For the case p = 0, we use the counits ¢ of the bialgebras involved. Since ¢ vanishes
on commutators in A, we have e({a1,a2},) = 0 in the quotient bialgebra A, /uA. The
map X being also a morphism of bialgebras, e({x1,22}') = 0 for all 1, 2 € g4. The map
e vanishing on SP(gy) for p > 1 and being the identity on S°(g; ), Formula (10.16) implies

0=c({z1,z2}) =clfwr, za]) + D e(Xm) o™ = > XD o™

m>1 m>1

Hence, Xf,g) =0 for all m > 1.
For p = 1, we use Lemma 10.5, (10.2), (10.15) and (10.16) in the following computation
holding for all 1, 2o € g4 and y € g _:

0= ({z1,22} — [mlaxQ] vy),,

Z (XD o) o™ + Z (XP) vy,

m>1 m>1;p>2
_ 1
= (X0, y)om
m>1

Hence, (XT(,%),@ =0 for all y € g_ and all m > 1. Therefore, XV =0forallm>1. 0o

10.8. REMARK.— Our definition of the Poisson bracket { , }’ gives a construction of
a Poisson bracket on FE,(gy) that is independent of [Tur91, Theorem 11.4]. We have
also proved that the topological dual V,?(g_) has a natural structure of a Poisson C[[v]]-
bialgebra.

10.9. REMARK.— There are similar versions of Theorems 2.3, 2.6, and 2.9 for the bialge-
bra Ay of Section 7.1. To state them, we need the bi-Poisson bialgebra S(gy). As an alge-
bra, it is the completion of S(g) with respect to its augmentation ideal Iy = B,,~; 5™ (g+):

= H S™(g+)-

n>0

The bi-Poisson bialgebra structure on S(gy) defined in Section 2.2 extends to a topolog-
ical bi-Poisson bialgebra structure on S(g4 ), where the comultiplication and the Poisson
cobracket take values in the completed tensor product

S(6) Bc S(e) = lim (S(0)/15 ©c 5(0)/ 75 ).

n

The natural projection q,, : Vi, (g+) — S(g+) of Section 2.4 extends to a bialgebra morphism
Vu(g+) — S(g+) that induces a canonical isomorphism of bi-Poisson bialgebras

Val(g+)/uVa(g+) = S(g+)-

o1



Similarly, the Poisson C[[v]]-bialgebra structure on Ey(g4) = S(g+)[[v]] extends uniquely
to a topological Poisson C[[v]]-bialgebra structure on E,(g.) = S(g-)[[v]]. The projection
Ey(g4) — S(g+) sending v to 0 induces a canonical isomorphism of bi-Poisson bialgebras

Ev(ng)/va(ng) - §(9+)-

Proceeding for A\+ as we did for Ay in Sections 8-10, we can prove that there is
an isomorphism of co-Poisson bialgebras Ay /vA; = V,(g+), an isomorphism of Poisson
bialgebras A, /uA; = E,(g+), and an isomorphism of bi-Poisson bialgebras A, /(u,v) =

§(9+)-

11. Exchanging g, and g_

Consider the Lie bialgebra g/, = g_ and its double ?’. By definition of the double, o’
contains g’ = (g, *)°°P as a Lie subbialgebra. Following Sections 5.3-5.4 for g/, , we obtain
three C][h]]-bialgebras Uy (g ) — Up(d') <= Up(g_). The aim of this section is to prove
the following addition to [EK96], [EK97]. Here, for a bialgebra A, we denote by AP the
bialgebra A obtained by replacing the comultiplication by the opposite comultiplication.

11.1. THEOREM.— There is an isomorphism of C[[h]]-bialgebras
Un(d') 2 U, (d)°P

sending Up(g'y) onto Up(g—)°P and Un(g' ) onto Up(g+)P.

Theorem 11.1 does not follow directly from the functoriality of Etingof and Kazhdan’s
quantization because in general there is no isomorphism between the triples (g,0,g9-)
and (g/,,0’,g"). Thus, in order to prove this theorem, we have to go back to the original
definitions of the bialgebras Uy (9), Up(g+), Un(g—) as given in [EK96]. This will be done
in Sections 11.2-11.4 below.

11.2. A BRAIDED MONOIDAL CATEGORY. Consider the double Lie bialgebrad =g, & g_
of g4 and let S be the category of U(?)-modules. This is a symmetric monoidal category:
the tensor product of two U(d)-modules is given by M®N = M ®c N on which U(?) acts
through its comultiplication, and the symmetry oy n : M®N — N®M by the standard
transposition m®n +— n®m. The category S has an infinitesimal braiding tys n : MON —
M ® N in the sense of Cartier [Car93] (see also [Kas95, Definition XX.4.1]). The morphism
tam,n is given by the action of the two-tensor ¢t = r + ro; = Zle (z; @ yi + y; @ x;) of
Section 5.3.

We now fix a Drinfeld associator @, as defined, e.g., in [Dri89], [Dri90], [Kas95, Sec-
tion XIX.8], [KT98, Section 4.6]. This is a series ®(A, B) in two non-commuting variables
A and B with coefficients in C and constant term 1, subject to a certain set of equations
(for details see the references above). Such a @ exists by [Dri90] and can be assumed to
be the exponential of a Lie series in A and B.
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From S and ® we construct a braided monoidal category C as follows: The objects
of C are the same as the objects of S. A morphism from M to N in C is a formal power
series ) .~ fnh", where f, € Homg(M, N) = Homy ) (M, N) for all n. The composition
in C is defined using the composition in § and the standard multiplication of formal power
series. The identity morphism of an object M in C is the constant formal power series
Y n>o fnh™, where fo = idj; and f, = 0 when n > 0. The category C has a tensor
product: on objects it is the same as on the objects of S; on morphisms it is obtained
by extending C|[[h]]-linearly the tensor product of morphisms of S. The unit object is the
same as in S, namely the trivial module C on which U(g) acts by the counit.

For any triple (L, M, N) of objects in C we define an associativity isomorphism ar, ps n
and a braiding car,n by

ar,M,N = q)(htL,M ® idy, hidp, ®tM,N) : (L®M) ®NiL® (M®N) (11.1)
and

h o
CM,N = OM,N eXp(gtM,N> TMN-—N®M, (11.2)

where oy, n is the transposition. For details, see [Kas95, XX.6].

The construction of C, Formulas (11.1-11.2), and ®(0,0) = 1 imply that the braided
monoidal category obtained as the quotient of C by the subclass of morphisms whose
constant term as a formal power series in h is 0 is nothing else than the category & we
started from. In this sense, C is a quantization of S.

11.3. DEFINITION OF Jj,. Following [EK96, Section 2.3|, we first define U(9)-modules
My =U(0) ®y(g.) C, where C is the trivial U(g+)-module. The Verma module My is a
free U(g+)-module on a generator 14 such that a - 14 = e(a)ly for all a € U(g4 ), where
¢ is the counit of U(gy). There is an isomorphism ¢ : U(d) — My ® M_ of U(9d)-modules
such that

p(l) =1, ®@1_. (11.3)

There are also U(0)-linear maps iy : My — MM, defined by iy (1y) = 1:®14.
In the braided monoidal category C of Section 11.2 consider the isomorphism

x=p8""o({d ®en, m ®id_)oa: (My@My)R(M_@M_) — (My@M_)@(MieM_),
where id. is the identity morphism of M4, e, v : My @M_ — M_®M, is the braiding,

« is the composition of the associativity isomorphisms
1

IM @M M_ M_

(My@My)@(M_®M_) (My@My)@M_)@M_

amy My v_®id_ l

(My®@(MioM_))@M-

and [ is the composition of the isomorphisms
-1
ANy @M _ My M_

(My@M_)®(Mi®M_) (My@M_)®M,;)@M_

apy M_ vy @id_ l

(My®@(M_©My))@M-_.
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Then, by [EK96, Formula (3.1)], the element J, € (U(0)®U(0))[[h]] determining the
comultiplication of U (0) in (5.3) is defined by

(p@@)(Jn) = x(14@14®1_®1_) = x(i+ @i )((1)). (11.4)

11.4. DEFINITION OF Up(g+). For any f € Home(M;®M_, M_) consider the endomor-
phism g4 (f) € Ende(M;®M_) defined as the following composition of morphisms in the
monoidal category C of Section 11.2:

MoeM_ "2 (MieM)eM- - Myo(MyoM.) S MieM_ .  (115)
where a = apr, am, v is the associativity isomorphism defined by (11.1). Conjugating
by the isomorphism ¢ of (11.3), we obtain the endomorphism ¢ 'u (f)e € Ende(U(0)).

Applying this endomorphism to the unit element in U(0)[[h]], we get the formal power
series

= e (He) @) € UE)[R]]-
By [EK96, Section 4.1], Uy (g ) is the image of the map f +— f* from Hom¢ (M, @M, M )
to Un(0) = U(0)[[A]].
There is a similar definition for Up(g_). For any g € Home (M ®@M_, M) define
p—(g) € Ende(My®M_) as the following composition of morphisms in C:

MyoM_ Y Moe(M_oM_) ° (MyoM_)oM_ "2 MoeM_.  (1L6)

Applying the endomorphism ¢~ 1u(f)e € Ende(U(0)) to 1 € U(d)[[R]], we obtain

9~ = (¢ u-(9)¢)(1) € UW)[[]].
By [EK96, Section 4.1], Uy (g—) is the image of the map g +— ¢~ from Home (M ®@M_, M)
to Up(d) = U(0)[[h]].

11.5. PROOF OF THEOREM 11.1.— By Section 2.1,
oL = (gl ) = (0°)"" = (o)

is isomorphic to g4 via the map —idg, . Let o' = g/, @ g_ be the double Lie bialgebra
of g/.. We have o' = g_ @ g, = g+ @ g as vector spaces. The following lemma is easily
checked.

11.6. LEMMA.— The endomorphism o of g+ @ g_ that is the identity on g_ and the
opposite of the identity on g1 is an isomorphism of Lie bialgebras o : 0 — 0" which fits in
the following commutative diagram of Lie bialgebras, where the horizontal morphisms are
the natural injections:

g- I U g+

ol el

gh=g- — o < g =(gP)"



The morphism o sends the 2-tensor r = 2?21 r;QY; € 090 to

d
o(r) = Z (—z;)Qy; = —r € V'R0,
i=1

Consequently, for the symmetric 2-tensor t = r + 91, we have o(t) = —t.
The Lie bialgebra isomorphism o : © — 9’ induces a bialgebra isomorphism o : U(?) —
U(?'), hence an algebra isomorphism between their quantizations (cf. Section 5.3):

o : Un(2) = UQ@)[[A] — U(@)[[h] = Un(?).

For the definition of the comultiplication A} of Uy (d") we follow Section 11.2 and
construct a braided monoidal category C’, using now the double Lie bialgebra ?' = o(?),
the same Drinfeld associator ® as above, and the two-tensor ¢ = ¢(¢). The morphism o
induces a canonical isomorphism C = C’ of braided monoidal categories.

We also need Verma modules for d’. Following Section 11.4, they are defined by
My = U(') @u(q,) C. As a U(gh)-module, M. is free on a generator 1. There is
an isomorphism ¢’ : U(d') — M/ @M’ defined by ¢'(1) = 1/, ®1”_. The homomorphism
o : 0 — 0 induces canonical algebra isomorphisms U(gs) = U(g%), hence canonical
isomorphisms

My =U() QU(gs) C= U(D/) ®U(g'¥) C= M:,F

Using these isomorphisms, we henceforth identify o’ with o, M’ with M_, M’ with M,
¢ U@Q) - M, @M’ with the isomorphism of U(d)-modules ¢’ : U(d) — M_®@M,
determined by
/
O'(1)=1_®1,. (11.7)

By (5.3) the comultiplication A}, of the bialgebra U, (d") = Up(d) is given for a € U(0d)[[R]]
by
Aj(a) = (J;) " Ala) Jy,

where A is the standard comultiplication and J} is the element in (U(d")QU(?"))[[h]] =
(U(@)®U(0))[[R]] defined, according to (11.4) and using the above identifications, by

(@) () = X' (1-®1-©1,014) = X'(i-©i4 ) (¢'(1)) (11.8)

where x’ is obtained from the morphism x of Section 11.3 by exchanging M, and M .
Consider the U(?d)-linear automorphism v of U(d) defined by

v= (") err, Mo, (11.9)

where cpry o 0 M @M — M _®M, is the braiding. The morphism v is the right
multiplication by the invertible element w = v(1) € U(0)[[h]]:

v(a) = aw (11.10)
for all a € U(0d)[[h]]-
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11.7. LEMMA.— We have w =1 mod h and

J, = A(w) L exp(ht/2)(Jh)21 (wBW).

ProOOF.— By (11.2), (11.3), (11.7), and (11.9) we have

w = (") 7" (exp(ht/2)(11®1.)),,
() M1_®1.)=1 mod h.

Let us compute J;. Below we shall prove that

em ey M gmy (e v ®cn v )x(14®i-) = X' (i-®ig )emy v, (11.11)

where ey gr, v e, 1 (M_@M)Q(M_-@My) — (M_@My)®(M_®M,) is the braid-
ing. Then, (11.9), (11.11) and the naturality of the braiding imply

(") ') X (i—@iy)'v = () T'@(¢) X (i—®iy)en, v
= ((¢)'®(¢") Nem_eny Mo (ear - ®car, )X (i4®i_ )
= Cy(v), U(D)(((p/) ®(¢")~ 1)(CM+,M7®CM+7M7)X(2+®Z—)9"
(

= cu(e),u() (V@) (e @ x(i+®i- ).
(11.12)
Let us apply both sides of (11.12) to the unit in U(d)[[h]]. By (11.8) and (11.10), we obtain
for the left-hand side

I
—~

()" o)X (i-®ip)¢) (w)
(@) ()T ()X (i—®iy)¢’) (1)
(w)J}.

() () N (i-2is)e'v) (1)

[
> b

For the right-hand side, using (11.2), (11.4), (11.10), and the symmetry of ¢, we obtain

(cv@).u@Vev) (™ ee™ x(i+ @i )¢) (1) = cue)ue) (v8V)(Jr))
= (exp(ht/2)Jp(wOwW)),,
= exp(ht/?)(Jh)gl(w@)w).

Putting both computations together, we obtain the desired formula for J;.

Let us prove (11.11). By a well-known result of Mac Lane’s, any braided monoidal
category is equivalent to a strict braided monoidal category. It is therefore licit to omit
the associativity isomorphisms in the computations. To simplify notation, we replace in
the braidings the subscripts M1 by £+ and we omit the tensor product signs. With these
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conventions, x = idy®c; —®id_ and x' = id_®c_ ;®idy. In C we have the following
sequence of equalities implying (11.11) and justified below:
Ct o~ (4 —@cq )x(14®i2) =y 4 (cq,—®cy ) (id 4 ®cy _®id_)(iy ®i)
= (ld-®c- 4 ®idy )ty (e 4 @c ) (i+@i-)

= (id,®67,+®id+)0++777(i+®7:7) (1113)
= (id_®c_7_|_®id+)(i_®i+)0+’_
= X' (i-®i4 )y -

Here, the first and the last equalities hold by definition of x and x’. The second one
is a consequence of the equality

et~ (4, @y ) (Idy ®cy —®id_) = (Id-®c_ 4 ®idy ey ——(c4 4®c- —), (11.14)
which holds in any braided monoidal category. This equality follows from the identity
0901030901030 = 050103020103, (11.15)

which holds in Artin’s braid group on four strands By, where o1, 09, 03 are the standard
generators of By.
The third equality in (11.13) is a consequence of

Ct 4+ = id4®id4 . (11.16)

Since both sides of (11.16) are U(d)-linear, it suffices to check this equality on the genera-
tor 1.®14 of My ®M,. Now, by (11.2) and the vanishing of ¢(1-®1.), we have

C:I:,:I:(1:|:®1:|:) = (eXP(ht/2)(1i®1i))2l =(1:®14)9 = 1:®14.

This proves (11.16). The fourth equality in (11.13) holds by naturality of the braiding.
a

11.8. COROLLARY.— Let o, : Up(d) — U,(0') be the algebra isomorphism defined by
ou(a) = o(wtaw) for all a € Uy(d). Then o, is a bialgebra isomorphism Uy ()P =
Un(d).

PRrOOF.— We have to check that
hOw = (0u®0y,) AP, (11.17)
It follows from Lemma 11.7 that, for all a € U(9)[[A]],
(0w AP (@) (W) = (W Lew ™) ;a1 Ale) (Jn)ar (wEw)
= () TA) T exp(ht/2)A(a) exp(—t/2)A W) ;.

The 2-tensor ¢ being invariant, A(a)t = tA(a), hence A(a)exp(ht/2) = exp(ht/2)A(a).
Therefore,
(W ew™ AP (a)(wew) = (J;) " A(w) T Aa)Aw) Ty

= (Jn) AW aw) gy,
= A} (waw).

This implies (11.17). O
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We now complete the proof of Theorem 11.1 by establishing that the bialgebra iso-
morphism o, : Up(0)°? — Up(d’) sends Up(g+) onto Up(gly). We give the proof only
for g/, . The proof for g’_ is similar.

For f € Home (M @M’ , M’ ) consider the endomorphism i/, (') € Ende (M. @M')
defined as the following composition of morphisms in C’:

+® +®

MieM. 25 rem)eM! 2 MMl eM’) 2 it (1118)
Here id) is the identity morphism of MY, i/, : M| — M/, ®M/ is the analogue of i  :
M, — M, ®M,, and o’ is the corresponding associativity isomorphism. Conjugating by
the isomorphism ¢’ : U(d') — M, @M’ , we obtain the endomorphism (¢')™* 1/, (f')¢’ €

Ende/ (U(?')), hence the formal power series

()" = (@)L (f)e') (1) € UE)[[A].

By definition, Up(g/,) is the image of the map f' — (f)" from Home (M, @M’ , M)
to Up (") = U(?')[[h]]. Under the above identifications, the morphism (11.18) in C’ becomes
for f € Home(M_®@M, M, ) the composition of morphisms in C

i ®1d+( d_®f

pw(f): M_@M, M_@M_ YoM, - M_@(M_@M,) — M_@M,. (11.19)

Therefore, the submodule o~ (Uy(g',)) of U,(?) is the image of the map

fefo= () ulhHe) @)

from Home(M_®@M, M) to Up(d) = U(0)[[h]], where ¢ : U(d) — M_®M, is defined
by (11.7).

Let us compare the map f — f_ with the map g — ¢~ of Section 11.4. We shall
prove below that

ey v p—(9) = p(9ear, ar)erts v (11.20)

for all ¢ € Home(My®M_, M, ). It follows from (11.9), (11.10), (11.20), and from the
definitions of ¢~ and of f_ that

(9enr ) = () 'ulgenr, ar )@ (1)
= (vp™! CMJr M_ M(QCM+ poJen vt (1)
(Vso p—(g)pr")(1)
v )(ufl)

V(w 1(@ n—(9)p)(1))

v(iw g )—u) oy w=0,(97).

Consequently, 0., (Un(g-)) = Un(g,)-
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It remains to prove (11.20). We use the simplified notation introduced in the proof
of (11.11). By functoriality of the braiding in C, we have

(l-®idy)eq, - =cqp ——(idy®i_) and c4 —(g@id_) = (ld_®g)cy— — (11.21)
for g € Home (ML ®@M , M,). Therefore, by definition of pu,
crplgey D)oy - = i (id-®(gei ) )a(i-@idy ey, -

= c__hl_ (id_®g)(id_®cjr’1_)a(i_®id+)c+’_
= (g@id_)c;t _(id-®ci" )acy —_(id ®i_).

Since p(g9) = (g9®id_)a~t(idy®i ), it suffices to observe that by the general properties
of braided categories and (11.16),

acy  =acy (idy®@c )= (id ®cy, ey . al. (11.22)

This completes the proof of (11.20) and Theorem 11.1. O

We end this section by computing the universal R-matrix R}, of Up(?’) in terms of the
universal R-matrix Ry, of Uy, (?) and the invertible element w € Uy, ().

11.9. LEMMA.— We have R} = (0,®0,)(Rp)21-
PROOF.— By (5.6) and Lemma 11.7 we have
Rj, = (J3)a1 exp(ht/2) Jy
= (w'@w™")J, texp(—ht/2)A(w) exp(ht/2) A(w) ™" exp(ht/2)(Jh)21 (wBW).

As observed in the proof of Corollary 11.8, A(a) commutes with exp(ht/2) for any a €
Ui (9). Hence,

b= (Wtew )y exp(ht/2)(Jn)a1(wew) = (™ @w ™) (Rr)a1 (wew).

12. Proof of Theorem 2.11

The aim of this section is to identify the bialgebra A_ of Section 9. As an application,
we prove Theorem 2.11.

Let us apply the constructions of Sections 6-7 to the Lie bialgebra g/, = g_ of Sec-
tions 5.2 and 11. We obtain a C[[u, v]]-bialgebra U, ,(g/,) containing a Cflu|[[v]]-bialgebra

Aun(gly).
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12.1. EXCHANGING u AND v. Any CJ[[u,v]|]-module M gives rise to a C[[u,v]|]-module
7(M) defined as follows. As a vector space 7(M) = M, but the action of u, v is different:
the new action of u is defined as the multiplication by v and the new action of v is defined
as the multiplication by w. Clearly, 7(7(M)) = M. Similarly, exchanging the actions of u
and v, we transform any C[u][[v]]-module M into a C[v][[u]]-module 7(M).

For the Lie bialgebra g/, = g_, we obtain a C[v][[u]]-bialgebra A, , (g’ ) and a C[[u, v]]-
bialgebra U, . (g/,.) by

Apu(0y) =7(Auw(@y)) and U, u(gy) =7(Uuo(gy)). (12.1)
It is clear that A, .(g/,) C Uyu(gl,).

12.2. THEOREM.— There is an isomorphism of Cl[u, v]|-bialgebras
0 Uuw(8-)"P — Uypu(gly)

sending AZ onto Ay . (gl.)-

PROOF.— After extending the scalars from CJ[[h]] to C[[u,v]] and exchanging u and v,
the CJ[[h]]-bialgebra isomorphism o, : Up(0)°°P = Up(?’) of Theorem 11.1 gives rise to a
C|[u, v]]-bialgebra isomorphism

0~ Uy (0)P — Uy (0') (12.2)

sending Uy, (g- )P onto Uy, (g) and Uy, (g+)°? onto U, (g”). The isomorphism o~
is given by a +— &(@™taw), where 7 : Uy »(g—) = U,u(g,) is the algebra isomorphism
induced by extension of scalars from the algebra isomorphism o : Up(d) = Up(d') of
Section 11.5, and where w is the invertible element of U, ,(d) = U(9)[[u, v]] coming from
the element w € Uy (0) = U(0)[[h]], cf. Section 4.6. As a consequence of Lemma 11.7, we
have

w=1 mod uv. (12.3)

The bialgebra U, ,,(d') contains a universal R-matrix
R, ., € Uyo(?') ®c(fuv]] U, (d)

defined in the same way as the element R, , € Uy ,(0) ®C[[u,v]] Uu.»(0) in Section 6. As an
immediate corollary of Lemma 11.9,

R;,v = (0-;®0-’(;)(Ru,v)21- (124)

We have to show that o~ maps A_ onto A, . (g’ ). We first describe A, ,(g’,) following
Sections 5.5 and 6.6. To begin with, we need a CJ[h]]-linear isomorphism o’ : Ux(g’_) —
U(g")[[h]] such that o’ (1) =1 and o’ = id modulo h, and a C-linear projection 7’ :
U(g’ ) = Ul g’ )= Ca@g" that is the identity on U'(g’ ). We choose them in such a way
that the following squares commute:

Un(g) —— U(gs)l[A] Ulgy) —— Ulgy)
”“l , al "l | ol (12.5)
Un(g) —— U(gD)[AI], Ug.) —— Ulg.)
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where oy : Uy (g4 ) — U(gs)[[P]] has been chosen in Section 6.6 and 7, : U(gy) — U'(gy)
in Section 9.1.

For any y € g_, let o(y) be the corresponding element in g/, and (o(y), —)": U(g") —
C be the C-linear form extending the standard evaluation map (o(y), —)’ : g¢_ — C and
such that (o(y),1)’ = 0. Following Section 5.5, given y € g_, we define a C[[h]]-linear
form f! .+ Un(gL) — C[[R]] for a € Un(g_) by

fow(a) = (o(y), 7" a’ (a))". (12.6)

By extension of scalars, we obtain a C|[u, v]]-linear form f:’f(y) : Uyw(g-) — Cllu,v]]. By
Lemma 6.5, the element

pil—(}v'(/f(y)) = (1d®ﬁ(y))(R;v) S Uu,v(gil—) (127)

is divisible by uv. Let (y1,...,yq) be the basis of g_ dual to the basis (z1,...,24) of g4.
In view of Section 6.6, A, (g/,) is the Clu][[v]]-submodule of U, ,(g/.) generated by the
elements

fflf(y1))k1 o 'p;(f;(yd))kd’

where k runs over all finite sequences of nonnegative integers.
Therefore, A, .(¢)) = 7(Au(g))) is the C[v][[u]]-submodule of U, . (g, ) generated
by the elements

Fow)™ - Py (Fo(a) (12.8)

where k runs over all finite sequences of nonnegative integers.
In view of the definition of A_ (see Section 9.1), in order to prove that o~(A_) =
Ay u(gl,), it suffices to check that for all y € g_

50— (@) = =P+ (Fl): (12.9)

where p_ is defined by (6.2) and g, : Uy (g+) — C[[u,v]] is the C[[u,v]]-linear form
extended from the linear form g, : Up(g4+) — CJ[h]] defined by (9.1).

Let us prove (12.9). First observe that, since 0 = —id on g and 0 =id on g, we
have

(o(y),o(z)) = —(z,y) (12.10)
for all x € g4 and y € g_. It follows from (9.1), (12.5), (12.6), and (12.10) that

fowy(ow(@)) = (o(y), 7" o’ (0,(a)))’
= (0(y),omyay(a))
= —(rrai(a),y) = —gy(a)

o~ o~

for all y € g_ and a € Ux(g+). By extension of scalars, we obtain

fowy(o5(a)) = =gy(a) (12.11)
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forally € g_ and a € Uy, »(g+)-
As a consequence of (6.2), (12.4), (12.7), and (12.11),

P;(ﬂ(y)) = (1d®f¢77(y))(R;,v)
= (id® 5 () ((%@’%)(R“’”)ﬂ)

= ([, ®1d)(05®0=)(Ru.0)
= 3 (Tl )73 210) (Run))
_ —05((§y®id)(Ru,v))

= —o5(p-(9y))-

This proves (12.9) and completes the proof of Theorem 12.2. O

12.3. PROOF OF THEOREM 2.11.— Under the bialgebra isomorphism A" = A, (g, ) of
Theorem 12.2, the nondegenerate bialgebra pairing ( , ), , of Lemma 9.5 and Corollary 9.9
gives rise to a nondegenerate bialgebra pairing A, . (g+) X Ay (g'.) — Cl[u, v]]. The second
assertion in Theorem 2.11 follows from (9.18) and (12.3). O

Appendix. Biquantization of the trivial bialgebra

Let g4 be a d-dimensional Lie bialgebra with basis (z1,...,24) and with dual basis
(y1,-.-,Ya).- Assume throughout the appendix that g is the trivial Lie bialgebra, i.e.,
with zero Lie bracket and cobracket:

[zi,z;]=0 and d(z;)=0 (A.1)

for all 7 and 7 = 1,...,d. We now give a complete description of the biquantization
A, »(g+) and of the pairing (9.9) under the hypothesis (A.1).
The dual Lie bialgebra g_ = (g7} )P is also trivial, whereas the double Lie bialgebra
0 =g, ®g_ isnot: it follows from (5.1) and (5.2) that the Lie bracket of 0 is equal to zero,
but not its Lie cobracket, which is given by 6(u) = [u®1+ 1®u, r], where r = Zle T; QY;.
We first determine the bialgebras Uy (9) and Uy (g4 ) of Section 5. Since 0 is a trivial
Lie algebra, we have

Un(2) = UQ@)[[A] = S(0)[[A]]- (A.2)

This is not only an isomorphism of algebras, but also of bialgebras. Indeed, since Uy () is
commutative, it follows from (5.3) that its comultiplication is the standard one: Aj, = A.

In order to determine the subbialgebras Uy, (g+) of Ux(0), we need Sections 11.2-11.4,
whose notation we use freely. Consider the braided monoidal category C of Section 11.2.
We claim that the associativity isomorphims are trivial:

ar,mN = idrgmen (A.3)
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for any triple (L, M, N) of objects in C. Indeed, since the Lie algebra 9 is abelian, the
morphisms t7, s ® idy and id; ® tar,n coming up in (11.1) commute with one another.
Now, the Drinfeld associator ®(A, B), being the exponential of a Lie series in the variables
A and B, is equal to 1 if A and B commute. This proves (A.3).

On the Verma modules M, the braiding cpz, .as_ is given by

evy v (14®1-) = exp(ht/2)(1-®14)

in view of (11.2) and the symmetry of ¢. Since 0 is abelian, we have

exp(ht/2) = H exp(h(z;®y;)/2) exp(hray /2).
Now, ro1(1_®14) = Zle yil_®z;11 = 0. Therefore

ey v (14®10) Hexp (2;®y;)/2)(1_®14). (A.4)

Let us give a formula for the isomorphism ¢ : U(®) — M ®M_ of (11.3). Since
0 = g4 @ g as Lie algebras, any element of U(?) = S(0) is a linear combination of
elements of the form ab, where a € S(g4+) C S(0) and b € S(g—) C S(). We have

p(ab) = bl ®al_. (A.5)

Indeed, using Sweedler’s notation, the definition of M4 as modules, and the commutativity
of U(d) = S(v), we have
plab) = Aab)(1; 1)

= D b l+@abe)l-
(a)(®)

=D bwaml+@abel-
(a)(®)

= Z b(l)e(a(l)) 1+®a(2)5(b(2))1_
(a)(b)

= (Z b(1)€(b(2))1+>®<z 8(@(1))61(2)17)

(b) (a)
= bl ®al_.

It follows that, for a € S(g4) and b € S(g_),

p(exp(ab)) = exp(b@a)(11®1-). (A.6)
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A.1. PROPOSITION.— Uj(g+) = S(g+)|[[h]] as bialgebras.

PROOF.— We prove this for U, (g ). There is a similar proof for Uy (g_).

By Section 11.4, Uy (g4 ) is the image of the map f +— fT from Home (M, ®@M_, M_)
to Un(d) = Ud)[[h]]. We claim that this image is exactly the submodule U(g4)[[h]]
of U(9)[[h]] consisting of the formal power series with coefficients in U(g4) C U(0). Indeed,
an element f € Home(My®@M_,M_) is of the form f = Y ,o, fi h* where the maps
fi: My®@M_ — M_ are U(d)-linear. Since M;®M_ is a rank-one free module generated
by 1, ®1_, the map f; is determined by the element a; 1_ = f;(1;,®1_) € M_, where q; is
a well-defined element of U(g4). The claim will be proved if we show that f* =", a; h'.

By (11.5), (A.3) and (A.5) we have

fr= (¢’1u+(f)90)(1)
= (¢ "(idy®fi) a(iy@id_)p) (1) B’

120
= ; (o7 (id+ @f;) (i+-@id_)p) (1) A
= ; (¢~ (id1 @ f;) (i3 ®id_)) (11 @1_) A
= 22: Hidr®fi) (14 @1 @1) A
120
= Z e 1(1y®a;1_)h' = Z a; h'.
i>0 i>0

The fact that Uy (g+) = U(g+)[[h]] is a subbialgebra of U(2)[[h]], hence has the standard
product and coproduct, follows from the obvious fact that U(g4 ) is a subbialgebra of U(9).

The Lie algebras 0 and g4 being abelian, we have U(g+) = S(g+). Consequently, Uy (g+) =
S(g+)[[h]] as bialgebras. O

A.2. COROLLARY.— The bialgebra A, is the subbialgebra of S(g.)[[u,v]] consisting of the
formal power series 37, <o Qm.pnu™0™ such that ., € @ Sk(gy) for allm > 0.

PrROOF.— By (6.1), Proposition A.1 and Lemma 4.7, we have U, ,(g+) = S(g+)[[u, v]]-
We conclude in view of (7.1) and of Proposition 3.8. O

Similarly, the bialgebra A_ of Section 9.1 is the subbialgebra of S (g—)[[u, v]] consisting
of the formal power series Zm’n>0 bm.n u™v™ such that by, , € @;_, S*(g_) for all n > 0.

In order to determine the subalgebras A, ,(g+) and A_ defined in Sections 6.6 and 9.4,
we have to make explicit the element R, , € U, (g+) @’C[{u,v]] Uuw(g—) of Section 6. Let
Jn and Ry, be the elements of (U(?)®@cU())[[h]] given by (11.4) and (5.6), respectively.
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A.3. LEMMA.— We have Jj, = exp(hr/2) and Ry, = exp(hr).

PROOF.— By (11.4), (A.4) and (A.5), we have

(e@¢)(Jn) = x(14®1,®1_®1_)
= exp(hto3/2) - (1,01 _®1,®1 )
= exp(hra3/2) - (1,01 _®1,®1 )

d
hn n
=S (> 1emeyel) (ie1-eliel)
n>0 i—1

2nn!
K d
- 1+®<Z onpl Z Ty @i, 1 Qyyy "'yz‘n1+)®1f
n>0 1150yt =1
" d
= (90®80)(Z 2l Z Tiy o Tip, DYy v 'yin>
n>0 Y denin=1
= (¢@¢)(exp(hr/2)).
Formula (5.6) implies
1 ht h
Ry, = (J, )21 exp(;) Jp = exp((—Tm +7r+ro; + 7“)5) = exp(hr).
O
A.4. COROLLARY.— We have
uo™ d
R, = exp(uvr) = Z o Z Xiy - Ti, QYiy - Yi, -
n>0 i1yemin=1

From R, , we get maps p1 : U, ,(9-) — Uuw(g+) and p— : Uy ,(g4) — Unw(g-) asin
Section 6. Formula (5.10) defines a C[[h]]-linear form f, : Un(g—) = S(g-)[[h]] — C[[h]],
where we may take a— = id and 7_ : U(g—) = S(g—) — Ul(g-) = C @ g_ the natural
projection. It follows that the map fy : Uy.s(g—) = S(a_)|[[u,v]] — C[[u,v]] of Section 6.4

)

is given for b= 3", <o bm,nu™0" € S(g-)[[u, v]] by

Fo(®) =D (@, m(bym,n)) um™v™. (A7)

n>0
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A.5. LEMMA.— We have v~1! p_i_(fx) =wux for all x € g,
PrROOF.— By (6.2), (A.7) and Corollary A.4 we get

pi(F) = (1d®J2) (Ru.s)

um o™ d B
Z n! Z fo(Yi, - v, ) iy - x4,

n>0 Y dg,enin=1
u"v™ d
= . > ey, Ty,
n>0 T dlenin=1
d d

O

A.6. COROLLARY.— A, ,(g+) consists of the formal power series ) . < Gm.nu™v" such

that am.n € @y S*(g4) for all m > 0, and for all n > 0 there exists N with ap,, = 0
for allm > N.

Similarly, the bialgebra A_ consists of the formal power series ) o by pu™0"

such that by, € @p_,S"(g-) for all n > 0, and for all m > 0 there exists M with
bm.n = 0 for all n > M. Together with Corollary A.6, this implies that

A_= A, .(9-).

Let us describe the bialgebra pairing ( , )y : Auo(g4) X A — C[[u,v]] defined
by (9.9). By (2.11) and Corollary A.6, it suffices to compute (uz,vy), , when z € g4 and
y € g—. The following result shows that the pairing (, ), is the standard one.

A.7. LEMMA.— We have (ux,vy)y, = (z,y) for allz € g+ andy € g_.
PrROOF.— By (9.9), (A.7), and Lemma A.5 we have

(uz, vy = (p3'(uz)) (vy) = v fulvy) = v 0 (2, 7(y)) = (z,y).
O

A.8. REMARK.— The reader may check, using (A.4) and (A.6), that the invertible element
w € Up(0) = S(0)[[h]] defined by (11.10) is given by

=1

N

w = exp<
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