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ABSTRACT. For any reduced decomposition i = (i1, is,...,in) of a permutation w and any
ring R we construct a bijection

f)i . ($1,$2,...,$N) — Pil(ail) Pw(l‘g) PZ'N(LEN)

from RY to the Schubert cell of w, where P;,(x1), Pi,(x2), ..., P;y(zN) stand for certain
elementary matrices satisfying Coxeter-type relations. We show how to factor explicitly
any element of a Schubert cell into a product of such matrices. We apply this to give
a one-to-one correspondence between the reduced decompositions of w and the injective
balanced labellings of the diagram of w, and to characterize commutation classes of reduced
decompositions.

MATHEMATICS SUBJECT CLASSIFICATION (1991): 20B30, 20G15, 05E15, 14M15, 15A23

KEY WORDS: symmetric group, reduced decomposition, flag variety, Schubert cell, factor-
ization of matrices, commutation class

RESUME. Etant donné un anneau R et une décomposition réduite i = (i1, 142,...,in) d’une
permutation w, nous construisons une bijection

R . (.1,‘1,332,...,.1,‘]\[) — Pi1($1)Pi2(332) PZ-N(a:N)

de RYN wvers la cellule de Schubert de w, ot Py, (x1), Pi,(x2),..., Py (xN) sont des matrices
élémentaires vérifiant des relations de type Coxeter. Nous montrons comment factoriser
explicitement tout élément d’une cellule de Schubert comme un produit de matrices P;(x).
Nous utilisons ces factorisations pour établir une bijection entre les décompositions réduites
de w et les remplissages injectifs équilibrés du diagramme de w et pour caractériser les

classes de commutation de décompositions réduites.

Mots-CLES : groupe symétrique, décomposition réduite, variété de drapeauz, cellule de
Schubert, factorisation de matrices, classe de commutation



1. Introduction and statement of main results

In this article we study matrix products obtained by multiplying certain elementary matri-
ces, investigated in [KR], in the order given by a reduced decomposition of a permutation w.
It turns out that such a matrix product differs from the matrix of the permutation w
only by the entries lying in the diagram of w. In this way, we get a parametrization of
the Schubert cell of w. Such parametrizations were previously known over the complex
numbers. Here we extend them to any noncommutative ring together with precise for-
mulas for the entries of the matrix products and determinantal formulas for the inverse
mappings. These formulas use planar configurations naturally associated to reduced de-
compositions. We also show that the linear parts of these parametrizations give exactly
all injective balanced labellings of the diagram of w, as defined in [FGRS], and that the
quadratic parts characterize the commutation classes of reduced decompositions. Thus,
these parametrizations provide a powerful algebraic representation of the diagram of a
permutation, an object which comes up in many constructions related to permutations
and Schubert varieties. One of the most interesting features of the objects we consider is
their triple nature: algebraic, combinatorial, topological. In our proofs we rely in turn on
each of these aspects.

Let us state our main results. Given a permutation w of the set {1,2,...,n}, recall
from [Mcd], Chapter I that the diagram D,,, first introduced by Rothe in 1800 (cf. [Mul],
pp. 59-60), is the subset of {1,...,n} x {1,...,n} consisting of all couples (w(k), j) such
that j < k and w(j) > w(k), or, equivalently, of all couples (i, j) such that

i<w(j) and j<w (). (1.1)

It is clear that the cardinality of D,, is equal to the number of inversions of w or, equiva-
lently, to the length ¢(w) of w with respect to the standard generating set s, ..., 8,1 of
the symmetric group S,,, where s; is the simple transposition (z,7 + 1).

Let M, be the matrix of the permutation w: this is the n x n-matrix defined by

(Mw)ij = 6 w(j) (1.2)

for all 1 <i,7 < n. Given a ring R and a permutation w € S,,, we define the subset C,
of the group GL,(R) of invertible n x n-matrices with entries in R as follows: a matrix
is in (), if it is of the form M,, + @, where @) is any matrix with entries @;; in R such
that QQ;; = 0 whenever (i,j) ¢ D,,. It is well-known that, when R is a field, the set C,, is
in bijection with the Schubert cell BwB/B in the flag variety G/B, where G = GL,(R)
and B is the subgroup of upper triangular matrices (see [Mcd], Appendix, (A.4)). By
extension, we call C,, the Schubert cell associated to w.

In [KR] the following invertible n x n-matrices P;(z), P2(x),..., P,—1(z) depending
on a variable x were defined: for 1 < i < n — 1 the matrix P;(x) is obtained from the
identity matrix by inserting the block

z 1
(7o)



on the diagonal such that x is the (i, i)-entry of P;(z). In other words, P;(x) is of the form

1 0 0000 -~ 0
0 1 0000 -~ 0
0 0 100 0 0
0 0 0z 1 0 0 (1.3)
0 0 01 0 0 0
0 0 00 0 1 0
00 «-0000 --- 1

As observed in [KR], Lemma 1, the matrices P;(z) (1 <1 < n—1) satisfy the following
Coxeter-type relations, where x, y, z are elements in a ring R:
Pi(x) Pj(y) = P;(y) Pi(x) (1.4a)
if |1 — j| > 2, and
P;(2) Piy1(y) Pi(2) = Pit1(2) Pi(y + 22) Piya(2). (1.40)

Relation (1.4b) is similar to, but different from the famous Yang-Baxter equation with
spectral parameters

Pi(z) Piy1(z + 2) Pi(2) = Piy1(2) Pi(z + 2) Pi1(x),

which is another deformation of the usual Coxeter relation. It is interesting to note that
the Yang-Baxter equation also leads to properties of Schubert varieties (see, e.g., [LLT]).

Before we state the first result of the paper, let us recall that a sequence (i1, i2,...,ixN)
of indices belonging to {1,...,n — 1} is a reduced decomposition of w € S, if w =
Sii Siy - - - Sin and if its length N is equal to the number of inversions of w.

1.1. THEOREM.— For any ring R and any reduced decomposition i = (iy,1i2,...,in) of the
permutation w € Sy, the map

]Di : (CEl,:EQ, .. .,:EN) — Pil(xl) Pi2(33‘2) PiN(ZL'N)

is a bijection from RN to the Schubert cell C,, C GL,(R).

Theorem 1.1 is known when R is a field (cf. [Sp], Lemma 10.2.6; see also [FZ], Propo-
sition 2.11). The proof we give for an arbitrary ring in Section 2.5 is based on Rela-
tions (1.4a—b) and on a matrix identity (given in Proposition 2.1), which is of independent
interest.

Let us illustrate this theorem with the permutation

1 2 3 4 5
w—(4 5 3 9 1)655. (15)
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It is of length 9 and the Schubert cell C, consists of all 5 x 5-matrices of the form

ai1 a2 aiz G4
az1 a2 a3 1

OO O O

az1 as2 1 0 (16)
1 0 0 0
0 1 0 0
The sequence i = (1,2,3,4,1,2,3,1,2) is a reduced decomposition of w. The matrix
Pi(z1,x2,...,x9) is of the form (1.6). Computing its entries a;; in terms of the variables
T1,T2,...,T9, We get
a1] = T3 + T2Zg + X126 + L1523, Q19 = T4 + T2T9 + T1X7 + T1X5Z9,
a13 = To + T1Ts, a4 = 1, (1.7)
as1 = Tg + T5Tg, 9o = X7 + T5Xg, ’
a23 = Ts, az; = g, az2 = T9g.
We see that each entry of P;(z1, o, ..., x9) lying in the diagram of w is the sum of some

variable z; and possibly of distinct monomials in the remaining variables (thus, it is a
substraction-free polynomial). Moreover, any monomial in the variables x; appears at
most once in the matrix.

These two features hold for Pi(z1, zo,...,xN), where i is any reduced decomposition.
They follow from Proposition 3.2, which exhibits a general formula for the entries of the
matrix Pi(x1,...,zy) in terms of the variables x4, ..., zN.

In Theorem 3.3 we shall give a formula for the inverse map Pi_1 : Cp — RYN. This
formula yields a factorization of any element of the Schubert cell C,, as a product of
matrices P;(z). There is such a factorization for any reduced decomposition of w. As an
application of Theorem 3.3, the matrix (1.6) is the product of the nine factors

ailr a3 aiq a2 a1z aiq
P3| —|a21 a3 1 Pyl — a2 a3 1 X
asz1 1 0 asz2 1 0

)l

The expressions appearing in the factorization (1.8) are, up to sign, minors of the ma-
trix (1.6). We shall give a sense to these minors over noncommutative rings as well.

The explicit formulas for the maps P; and Pi_1 will be expressed with the help of the
so-called pseudo-line arrangement of the reduced decomposition i. This is a configuration
of lines in a horizontal strip of the plane whose precise definition is recalled in Section 3.1.

Out of the formulas for P; and Pf1 it is possible to relate the parametrizations cor-
responding to two different reduced decompositions (see also Remark 6.2).

Fomin, Greene, Reiner, and Shimozono [FGRS]| constructed a one-to-one correspon-
dence between the reduced decompositions of a permutation w and what they call “injective

ais aiq
ass 1

Pi(a14) P> (

ag2 Aa23
aso 1

azi; a3
asq 1

X P1 (a23) PQ <

) Pl(a31)P2(a32). (18)
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balanced labellings” of the diagram of w. Theorem 1.2 below states that such a bijection
can be recovered from the linear part of our parametrization.

Let Qi(x1,...,zN) be the linear part of the matrix Pi(zy,...,2y), i. €., the matrix
obtained from P;(z1,...,xx) by removing all monomials in x1,...,zx of degree # 1. As
Pi(z1,...,xN) — M, is entirely supported by the diagram D,,, so is Q;(z1,...,2x). The
matrix Qi(x1,...,zy) provides each element of the diagram (which we view as a matrix)

with a label x;. Let us denote this labelling by L;. For simplicity, we replace each variable
x; in L; by its index 4. Such a labelling is injective in the terminology of [FGRS], i.e., each
integer 1,..., N appears exactly once as a label in Lj.
For the reduced decomposition i = (1,2,3,4,1,2,3,1,2) considered above, (1.7) im-
plies that
r3 Ty T2 I7
Tre I7 Ty 0

OO O oo

Qi(T1,...,m9) = | x5 29 0 0 (1.9)
0 0 0 O
0 0 0 O

which leads to the injective labelling (we indicate the nonzero entries of M,, with crosses)
4 2 1 X

7 5 X

9 x (1.10)

X 00 Oy W

X

The concept of balanced labelling of the diagram of a permutation we use (see Sec-
tion 4 for the definition) is different from, but equivalent, up to transposition, to the one
in [FGRS]. Under this equivalence, the bijection stated in the following theorem is the
same as the bijection in [FGRS].

1.2. THEOREM.— For any permutation w € Sy, the map i — L; is a bijection between
the set of reduced decompositions of w and the set of injective balanced labellings of the
diagram of w.

Note that this implies that the matrix P;(z1,...2y) is completely determined by its
linear part (see (4.2) for an explicit formula).

We now use the quadratic part of P;(z1,...xx) to get additional information on the set
R(w) of reduced decompositions of w. More precisely, let R; be the matrix (whose entries
are nonnegative integers) which is the coefficient of X2 in the expansion of P(X, X,...X)
as a polynomial in X. We have

P(X,X,...X)= M, +Qi(1,1,...,1) X + R; X* modulo X3. (1.11)
An equivalent definition will be given in Lemma 4.9. The matrix R; is a (noninjective)

labelling of D,,. We use this matrix to characterize the commutation classes in R(w). Let
us recall what these are.



By a well-known theorem of Iwahori-Tits (see [Bo|), any two reduced decompositions
of w can be obtained from each other via a finite sequence of 2-moves and 3-moves. A
2-mowe on a reduced decomposition i consists in replacing two adjacent indices 7,7 in i by
Jj, ¢ under the condition |i — j| > 1. A 3-mowve on i consists in replacing three adjacent
indices 7, j,7 in i by 7,4, j under the condition |i — j| = 1. Two reduced decompositions i
and j are said to belong to the same commutation class if they can be obtained from each
other via a sequence of 2-moves. Commutation classes have recently come up in relation
with dual canonical bases for quantum groups (see [BZ], [LZ]).

1.3. THEOREM.— Two reduced decompositions i and j of a permutation w belong to the
same commutation class if and only if R; = R;.

The paper is organized as follows. In Section 2 we establish a matrix identity from
which we derive Theorem 1.1. In Section 3 we produce explicit formulas for the parametriza-
tion P (Proposition 3.2) and for the inverse map P, ' (Theorem 3.3). We deal with bal-
anced labellings and prove Theorem 1.2 in Section 4. Section 5 is devoted to the proof of
Theorem 1.3; we also give a characterization of the labellings R;. In Section 6 we consider
a partial order on the set C(w) of commutation classes of reduced decompositions of w,
due to Manin and Schechtman; the poset C(w) has a unique minimal element and a unique
maximal element, which we describe explicitly.

The paper [BFZ] by Berenstein, Fomin, and Zelevinsky was a source of inspiration to
us, despite the fact that we deal with different questions and different parametrizations.
We thank Robert Bédard for pointing out Lemma 10.2.6 of [Sp] and for showing us the
experimental data he collected on the posets C(wy) of Section 6.

2. A Matrix Identity

Let w be a permutation of the set {1,...,n} and M, be its permutation matrix. We
complete M, with stars at all places (w(k),j) such that j < k and w(j) > w(k). As we
saw in the introduction, the pattern formed by these stars is the diagram D,,.

Replace the stars by elements a1, ...,ay of a ring R in the following order: start with
the first column from bottom to top, then the second one again from bottom to top, and
so on. We get a matrix My(aq,...,ayn) whose entries are either 1, 0, or aq,...,ay. By
definition, the Schubert cell C,, is the set of all matrices M, (aq,...,ay) when ay,...,an
run over R. Observe that M, (0,...,0) = M,,.

We now create a sequence (ji,...,jn) of integers by labelling the entries in the dia-
gram of w (considered as an n x n-matrix) in the following way: the upper entry of the j-th
column gets the label j; the entry immediately below gets the label 7+ 1, and so on. Then
(j1,---,Jn) is the sequence obtained by reading the labels from bottom to top in each
column, one column after the other, starting with the first column. We call (ji,...,7n)
the canonical sequence of w.

We now express the matrix My, (ay,...,ay) as a product of N matrices of type P;(x),
as defined in the Introduction.



2.1. PROPOSITION.— Let w be a permutation and (ji,...,jn) be its canonical sequence.
Then
My (ay,...,an) = Pj(a1) Pj,(az) -+ Pjy(an).

The proof is postponed to Section 2.6.

2.2. EXAMPLE.— In order to get the canonical sequence for the permutation (1.5), we
label its diagram as explained above. We get the labelling

1 2 3 4
2 3 4
3 4

from which we see that the canonical sequence is (3,2,1,4,3,2,4,3,4). Applying Proposi-
tion 2.1, we have

as g ag ag 1
as a5 ar 1 0
ar a4 1 0 0 = P3 (al) Pg(ag) P1 (a3) P4(a4) P3(a5) Pg(a(;) P4(a7) P3(a8) P4(a9).
1 0 0 0 O
0 1 0 0 O

Let us derive a few consequences from Proposition 2.1. The following corollary has
been observed in [Lal, p. 305 (see also [Pa]).

2.3. COROLLARY.— The canonical sequence (ji,7ja,...,jn) of the permutation w is a
reduced decomposition of w.

PROOF.— Set a1 = --- = ay = 0 in the matrix identity of Proposition 2.1. On the
left-hand side, we get the permutation matrix M,,. As for the right-hand side, observe
that P;(0) is the matrix of the transposition s;. The matrix identity thus implies that
W = S, Si, - - - Siy- The decomposition of w we get in this way is reduced because its length
is equal to the number of inversions of w. O

2.4. COROLLARY.— Let K be a field and let ay,...,an be variables. If My (aq,...,ay) =
P, (f1)..-P;, (fr) where f1,..., fr belong to an extension of the field K(ay,...,an), then
k > N. If, in addition, k = N, then (i1,...,in) is a reduced decomposition of w.

PrROOF.— If k < N, then the degree of transcendence of a1, ...,ay would be < N, which
is not possible. Assume now that £k = N. Then fi,..., fi are algebraically independent
and aq,...,an belong to the ring generated by fi,..., fr. Thus we may set f; = 0 for all
i=1,...,N and we get M, (as,...,an) = P;,(0)...P;, (0), where ay,...ay belong to the
ground field K. The right-hand side of the previous identity is a permutation matrix M,
with n nonzero entries, whereas the left-hand side is a matrix of the form M, + @), where
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all entries of () not in the diagram of w vanish. In particular, M,, and ) have disjoint
supports. Counting the number of nonzero entries in M,, + ), we see that necessarily
Q =0 and M,, = M. It follows that (i1,...,in) is a reduced decomposition of w. O

2.5. PROOF OF THEOREM 1.1.— By Proposition 2.1, the theorem holds for the canonical
reduced decomposition (ji,...,jn). Now one passes from (ji,...,jn5) to (i1,...,in) by
a sequence of 2-moves and 3-moves. Relations (1.4a—b) show how the matrices P;(z) are
affected under such moves. We conclude immediately that

My(a1,...,an) = Pj (a1) Pj,(az) --- Pjy(an) = Pi,(a}) Pi,(a3) - - Py (a)y),

where ay +— aj, is an endomorphism of the free ring generated by ai,...,ay. This endo-
morphism is a product of Jonquieres automorphisms, hence it is an automorphism. Recall
that a Jonquieres automorphism is an automorphism that sends some variable to the sum
of itself and of a polynomial in the other variables, and fixes the remaining variables
(see [Co], p. 342). We may then conclude that the matrices P;, (a1) P;,(a2) -+ P;\ (an)
parametrize the Schubert cell C, as well. 0

2.6. PROOF OF PROPOSITION 2.1.— We proceed by induction on the length N of w.
Suppose that N = 1. Then w is a transposition s;. The only element of D, being (3, j),
the canonical sequence of w is (j) and the identity M, (a1) = Pj(a1) holds trivially.

Suppose now that N > 1 and that we have proved the proposition for all permuta-
tions w’ € S, of length < N. Let (4,7) be the position of the entry ay in the matrix
Mw(al, ey aN).

Claim 1: j <n and w(j 4+ 1) = ¢. This follows from the definitions of D,, and of the
canonical sequence. See Figure 2.1.a.

Claim 2: If w' = ws;, then D, is obtained from D,, as follows: first remove the
element (i, j) € D,,, then exchange the jth and the j + 1st columns. This claim is easy to
prove (see Figures 2.1.a—c). As a consequence, D,,s has one element less than D,,, and the
length of w’ is N — 1.

Claim 3: By definition of the canonical sequence (ji,...,jn) of w, we have jy = j,
INn—1=J+1, jn_2 =7j+ 2, and so forth, as long as we are in the jth column of D,,. Let
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w’ = ws; as in Claim 2 and let (j,...,j%_;) be its canonical sequence. Then j/. = j, for
all  =1,..., N — 1. The proof of this claim uses Claim 2 and the fact that the columns
lying left to the jth column are the same in D,, and in D, (see Figures 2.1.b and 2.1.c).

Claim 4: Let w’ = ws; be as in Claim 2. The matrix M, (a1,...,an—1) is obtained
from M, (ay,...,an) by first replacing ay by 0, then by exchanging the jth and the j+ 1st
columns. This follows from Claim 2.

Claim 5: Given any matrix M, the j + Ist column of the matrix product M P;(ay) is
equal to the jth column of M, and the jth column of M Pj(ay) is the sum of the j + 1st
column of M and of the jth column of M multiplied by ay; all other columns of M Pj(ay)
and M are the same.

Claims 3-5 and the induction hypothesis imply that

Mw(al, .. .,GN) = Mw/(al, .. .,aN_l)Pj(aN) = PJ{ (al) - -Pj;\]_l(aN_l)Pj(aN)
= Pj(a1) -+ Pjy_, (an-1)Pjx(an).

3. Factorizations in a Schubert cell

The aim of this section is to give explicit formulas for the parametrizations P; and for the
inverse maps Pi_l.

3.1. PSEUDO-LINE ARRANGEMENTS. Following [BFZ], Section 2.3, we define a pseudo-
line arrangement as the union of a finite number of intervals, called pseudo-lines, smoothly
immersed in a bounded horizontal strip of the plane such that

(i) each vertical line in the strip intersects each pseudo-line in exactly one point,

(ii) each pair of distinct pseudo-lines intersect at one point at most, such a intersection
being transversal (we call the intersection of two pseudo-lines a crossing point),

(iii) no three pseudo-lines meet at a point and no two crossing points lie on the same
vertical line. (See Figures 3.2 and 3.3 for two examples of pseudo-line arrangements.)

We consider pseudo-line arrangements up to isotopy in the space of pseudo-line ar-
rangements.

A path on a pseudo-line arrangement is a subset that projects bijectively onto the
horizontal projection of the pseudo-line arrangement. Thus a path is composed of parts of
one or more pseudo-lines. A path is admissible if the only allowed changes of pseudo-lines
are at crossing points where the left tangent of the path has a bigger slope than the right
tangent (see Figure 3.1 for an allowed change of pseudo-lines).

Figure 3.1. Allowed change of pseudo-lines in an admissible path

Let us label the left and right ends of the pseudo-lines in a pseudo-line arrangement
by the integers 1 to n from bottom to top, where n is the number of pseudo-lines. Any

9



reduced decomposition (iq,...,iy) of a permutation w € S,, gives rise to a pseudo-line
arrangement with n pseudo-lines, according to the following rules:

(a) to the transposition s; we assign the pseudo-line arrangement with a unique cross-
ing point, which sits on the pseudo-lines whose left (and right) labels are i and i + 1 (see
Figure 3.2);

(b) if D’ is the pseudo-line arrangement of (i1,...,ixy 1) and D" is the pseudo-line
arrangement of (iy), then the pseudo-line arrangement we assign to (i1, ..., 4y) is obtained
by placing D" to the right of D’ in the horizontal strip and gluing together the i-th left
end of D" and the i-th right end of D’ for all i =1,...,n.

The pseudo-line arrangement of a reduced decomposition has the following properties:
(i) If the right label of a pseudo-line is k, then its left label is w(k).

(ii) The number N of crossing points is equal to the length of the reduced decompo-
sition.

Figure 3.2. Pseudo-line arrangement of the transposition s;

Given a reduced decomposition i of length N and its pseudo-line arrangement I, we
label the N crossing points of I' from left to right by labels 1, ..., x5 considered in this
order. We define the weight of a path in I' as the product from left to right of the labels
of the crossing points where the path switches from a pseudo-line to another. If a path
consists of one pseudo-line (without any pseudo-line change), we agree that its weight is 1.

We use these definitions to describe the entries of the matrix Pi(x1,...,zn).

3.2. PROPOSITION.— For all1 < i,j < n, the (i, j)-entry of the matriz Py(x1,x2,...,xN) =
P (x1)--- P, (zn) is equal to the sum of the weights of all admissible paths with left label
i and right label j in the pseudo-line arrangement of i.

ProOOF.— If i = (i) is of length one, then we immediately see from Figure 3.2 that Propo-
sition 3.2 holds for the entries of P;(z1) = P;(x1). The case of a reduced decomposition i
of length > 1 follows by induction on the length of i from the previous case and from the
formula giving the entries of a product of matrices. O
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Apply Proposition 3.2 to Figure 3.3 in order to recover Formulas (1.7).

Figure 3.3. Pseudo-line arrangement of the reduced decomposition (1,2,3,4,1,2,3,1,2)

Our next task is to give a formula for the inverse map Pi_1 : Cp — RYN, where i is
a reduced decomposition of w. To the k-th crossing point (counted from left to right) in
the pseudo-line arrangement of i we associate subsets I, Ji of {1,...,n} and a sign e
as follows. Considering the two pseudo-lines intersecting at this point, we define by Tj
the union of their parts lying below the crossing point. We call T} the k-th roof of the
pseudo-line arrangement. A roof has a left and a right slope. A pseudo-line will be called
efficient for Ty, if it intersects transversally both the left and the right slopes of Tk.

We set e = + (resp. ¢ = —) if the total number of pairwise intersections of the
efficient pseudo-lines for T}, is even (resp. is odd). In other words, €j is the sign of the
permutation represented by the pseudo-line arrangement consisting only of the pseudo-
lines that are efficient for T;. The set I (resp. Ji) is defined as the set of left labels
(resp. right labels) of the efficient pseudo-lines for T} to which we add the left label (resp.
right label) of the left slope (resp. right slope) of T). (See Remark 3.10 for an alternative
definition of I}, and Jj.)

In order to state Theorem 3.3, we need the following two conventions. Given a n x n-
matrix M and subsets I, J of {1,...,n}, we denote by M s the submatrix of M consisting
of the entries M;; of M such that ¢ € I and j € J. For a p x p-matrix A = (Ai;)1<i,j<p,
we set

Al =) (-1)7 ALo)A2.0(2) - - Ap.op): (3.1)

oESy

This coincides with the determinant of A when the ring R is commutative.
We now give a formula for the inverse bijection Pfl : Cyp — RN

3.3. THEOREM.— Let i = (iy,i2,...,in) be a reduced decomposition of a permutation
w € S, and let M be an element of the Schubert cell C,. Then for any k such that
1 <k < N, the k-th component of P, (M) = (z1,...,2x5) € RN is given by

Tk = €k |MIk:aJk|' (3'2)
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For example, consider the roof Ty (labelled z4) in Figure 3.3. The left label of its
left slope is 1 and the right label of its right slope is 2. The roof T; has two efficient
pseudo-lines: one connects 2 to 4, the other connects 3 to 3, from left to right. It follows
that the index sets are Iy = {1,2,3} and Jy = {2,3,4}. We have ¢4 = — because the
two efficient pseudo-lines intersect exactly once. Proceeding in the same way for the other
roofs, we recover the factorization (1.8).

3.4. PROOF OF THEOREM 3.3: PRELIMINARIES. We shall prove Theorem 3.3 in two steps:
first, in the case when the ring R is commutative (see Section 3.6); then in the case of a
general ring R (see Section 3.9).

In view of Theorem 1.1, it is enough to check (3.2) when M = Pi(x1,...,zn). We
start with the following construction.

Let us concentrate on the kth crossing point (counted from left to right) in the pseudo-
line arrangement I' of i. This crossing point is labelled by zx. Out of I' we form a new
pseudo-line arrangement IV by keeping only the two pseudo-lines intersecting at the kth
crossing point of I' and the pseudo-lines that are efficient for the kth roof T). The pseudo-
line arrangement IV has m pseudo-lines with m < n. The labels of the crossing points of I
form a subset {y1,...,yn} of {z1,...,2n} (we assume that the labels yq, ...,y appear
in this order when we sweep I from left to right). Observe that the label x; belongs to
this subset: we denote by p the integer such that x; = y,. The configuration I" is the
pseudo-line arrangement of a reduced decomposition j. The corresponding permutation
in S,,, will be denoted by w’'.

From the reduced decomposition j = (j1,...,75m) and the labels yq,...ya of the
crossing points of IV, we can form the matrix product Pj,(y1)--- Pj,, (ym) € GLy(R).
Removing the last row and the last column in each matrix P;, (y¢) appearing in the previous
product, we get (m—1) x (m—1)-matrices P;,(y;). Let us form the (m—1) x (m—1)-matrix

My =Pj(y1) - Pja (Ynr)- (3.3)

We claim the following, which relates the matrix M} to the submatrix M;j, ; of M =
Pi(z1,...,xN), as defined above.

3.5. LEMMA.— For all k=1,...,N, we have My = My, j, .

PROOF.— As a consequence of the definitions of I, Ji, and of Proposition 3.2, the
submatrix Mj, j, is the (m — 1) x (m — 1)-matrix obtained from the m X m-matrix
Pj (y1) - - - Pj,, (ynm) by removing its last row and its last column, in view of the following
observation: if £ is a pseudo-line that is efficient for the roof 7}, formed by two pseudo-lines
(1, {5 that are efficient for the roof T}y, then ¢ is efficient for 7). Figure 3.4 gives graphical
evidence for this observation.

12



Figure 3.4

It therefore suffices to check that the operation of simultaneously removing the last
row and the last column of a matrix commutes with the product of matrices. This is of
course not true in general. Nevertheless, it works for the product P, (y1) - -« Pj,, (yar)-

Indeed, there is exactly one integer p such that y, = xj. It is clear from the definition
of IV that we have j, = m — 1 for the corresponding index j,. Hence P;, (y,) = Pr—1(zk)
is of the form

0
Pj, (yp) .
0 )
1
0 e 0 1 0

where the entries of the last row and of the last column are all 0, except the (m,m — 1)-
and the (m — 1, m)-entries, which are equal to 1.
By contrast, if ¢ # p, then j, < m — 1, which implies that P;,(ye) is of the form

sz (yﬁ)

where now the only nonzero entry in the last row and in the last column is the (m, m)-entry.
In view of these facts, the equality M = My, 5, will then be a consequence of the
following matrix identity holding for any triple (A, B,C) of (m — 1) x (m — 1)-matrices:

0 0 0 *

A ; B ; C ; ABC ;

0 0 0| = *

0 1 0 *

0O --- 0 0 1 0O --- 010 0 0 0 1 * x *x 0
where ABC' is the product of the matrices A, B, C. O
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3.6. PROOF OF THEOREM 3.3: THE COMMUTATIVE CASE. Assume that the ring R is
commutative. Then we may take the determinants of both sides of (3.3) and we get

| M| =P, (yo)l - .. [Pja (yns)]- (3.4)

We saw in the proof of Lemma 3.5 that P; (y,) = Prn—1(2x) € GLy,(R). Consequently,
?jp (yp) is a diagonal matrix whose diagonal entries are 1, except for the last one which
is yp = wp. It follows that |P; (y,)| = xx. If £ # p, then |P;,(ye)| = |Pj, (ye)| = —1.
The computation of these determinants, together with (3.4) and Lemma 3.5, implies that
|Mj,.J,.| = €, for some ¢ = =+.

In order to complete the proof of (3.2), it remains to check that e = ;. Each factor
|Pj,(ye)| = |Pj,(ye)| with p # £ corresponds to a crossing point of I that is not the top
of the roof T} in I'. Therefore, ¢ is the parity of the number of such crossing points. The
latter can be divided into two sets: the crossing points that lie on the slopes of the roof T}
and the crossing points that do not. By the very definition of efficient pseudo-lines, the
crossing points that lie on T}, come in pairs. It follows that ¢ is the parity of the number of
the crossing points of IV that do not lie on T}; now, the latter are exactly the intersection
points of pairs of efficient pseudo-lines. This proves that ¢ = . O

For the noncommutative case, we shall need the following lemma, which is of indepen-
dent combinatorial interest. In order to state it, we shall need the concept of a traverse
of a matrix A: this is any nonzero monomial Ay ,;1)A42 ,(2)---A ) occurring in the

right-hand side of (3.1).

p,0(p

3.7. LEMMA.— Let 0 € S,, such that o(1) = m and o(m) = 1, and Q be any m x m-
matriz whose support lies in the diagram of o. Let A be the matriz obtained from My, + @
by deleting its last row and its last column. Then any traverse of A is of the form

Alale

A LA

o(41),g24 o (j2),43  + - “Lo(Gp—1):Jp

with j1 > Jo > ... > jp—1 > Jp = 1.

Lemma 3.7 is illustrated in Figure 3.5 below: overlining and underlining certain entries,
we show two examples of traverses of the matrix obtained by removing the last row and
the last column.

PROOF.— The lemma clearly holds if m = 1. Assume m > 1 and the lemma holds for
any m’ < m and any ¢’ € Sy, such that (1) = m’ and o(m’) = 1.

Consider o € S,,, matrices () and A as in the statement of the lemma. Let j be such
that o(j) =m — 1 (we have 1 < j < m).

(a) Take any traverse of A. Assume that it contains the (m — 1, j)-entry (this is the
case of the traverse depicted in Figure 3.5 with underlined entries). Suppressing the m—1st
row and the jth column of A (and of M, + @), we are reduced to a similar case in S, 1,
which allows us to use induction.

(b) If the traverse does not contain the (m —1, j)-entry (this is the case of the traverse
depicted in Figure 3.5 with overlined entries), it necessarily contains the (m — 1, 1)-entry
which is an entry of ), hence of A. We claim that it also contains all the entries in position
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(0(2),2), (¢(3),3),...,(c(j—1),5—1). Indeed, the only nonzero entries of A in the o(2)th
row are in the first and second columns. Since the traverse already contains the (m—1,1)-
entry, it has to contain the (o(2),2)-entry. Similarly, the only nonzero entries of A in the
0(3)th row are in the first, second, and third columns. Since the traverse already contains
entries in position (m — 1,1) and (0(2),2), it has to contain the (o(3),3)-entry. This
argument works up to the o(j — 1)th row; it shows that the traverse contains the entries
indicated in the claim.

Suppress Columns 1,2...,j — 1 and Rows o(1),0(2),...,0(j — 1) in the matrices
M, + @ and A. What is left is a similar matrix of smaller size (Figure 3.6 shows the
matrix obtained by suppressing these rows and columns in the example of Figure 3.5 with

overlined entries), which allows us to apply the induction hypothesis. O
Xk k% * % % x 1
x * x 1 0 0 0 0 0 O
x x+ x 0 x x x 1 0 0
x x x 0 * x % x 1 0
x x 1.0 0 0 0 0 0 0
x x 00 x 1 0 0 00
* « 001 00 0 O0O0
x 1. 000000 OO
* 00 00 01 0 O0O0
10 0 00 0 0O OO0 O

Figure 3.5

*
=] %

*I

*
O~ O ¥
S O O =

1 0
Figure 3.6

3.8. THE MATRICES II;. In order to prove (3.2) when the ring R is not commutative, it
will be useful to label the crossing points of the pseudo-line arrangement I' of the reduced
decomposition i = (iy,...,iy) with double-indexed variables x,; where 1 < r < s < n.
More precisely, we label the kth crossing point of I' with the variable z,, s, , where r;, < s
are the left labels of the two pseudo-lines intersecting at the k-th crossing point. Since
two pseudo-lines intersect in at most one point, the variables x,, s, labelling the crossing
points are distinct. Observe also that the only variables z;; coming up as labels for the
crossing points of T' are the ones with indices 7, j such that i < j and w1(3) > w1(j).
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We set,
II; = Pi1 (:cT‘1S1) o 'PiN ('TTNSN)' (35)

Alternatively, II; can be defined by induction on the length of i according to the following
rules:
(a) if i = () is of length one, then IT; = P;(x; i+1);
(b) ifi = (i1,...,in_1,in) is of length N > 1, define i’ = (i1,...,ixy _1); if we set
w' =8; ...8y_,, then
I = My Py (T (i)’ (i +1))-

It follows from the definition of I; and of Proposition 3.2 that each entry of II; differing
from 0 or from 1 (equivalently, in the diagram of w) is a sum of monomials of the form

ZajazTasas - - - Lag_1aqs (3.6)
where a; < az < ...aq-1 < aq4. Moreover, if it is the (i, j)-entry of II;, we have

ap =1 and a, =w(j). (3.7)

3.9. PROOF OF THEOREM 3.3: THE GENERAL CASE. It is enough to prove (3.2) when
the matrix M € C,, is of the form M = II;. Then (3.2) is equivalent to

Lrys,y = €k |M1k:Jk|' (3'8)

(1 <k < N). Start as in Section 3.4. Lemma 3.5 implies that the matrix M, j, is of
the form M, + () considered in Lemma 3.7 for some o € S,,. We use this to prove the
following claim.

Claim: Any monomial in any traverse of My, s, is of the form Zc c,@cocq - ey 1e4)
where ¢; < co < ... < ¢;—1 < ¢;. Indeed, by Lemma 3.7, we know that any traverse
of My, s, is of the form My j, My () jo Mo(js).js - - Mo, where M, , stand for the
entries of Mj, j, . The latter is a submatrix of II;. Therefore, by (3.6) and (3.7), we have

Ma(ju),jqul = § :xa1a2$a2a3 s Tag_1aq

where the summation is over some a; < a2 < ...aq-1 < a4 such that a1 = o(j,) and

agq = 0(Jut1). Similarly, for My, .y .., We have

Mo'(ju+1)=ju+2 = Z Lb1boLbobg + + + Lby_1 b,

with by = 0(ju+1) and b, = 0(jyt2). Therefore, by = a4, which shows that the product
Mo (5)jusr Mo is of the form (3.6). This argument extends to the whole product
My jy Mo (51).5: Mo ()35 - - Mo(j,_1).5,» Which proves the claim.

The above claim implies that the determinant |Mj, ;| is of the form

(Ju+1)sJut2

|M1kaJk| = E : T Xeicaeses -+ - Tep_rers
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where the indices are increasing: ¢ < ¢o < ... < ¢;_1 < ¢;. By the proof in the commuta-
tive case (see Section 3.6), we know that |My, j, | = exzy, s, modulo the ideal Z generated
by the commutators of the variables z;;. Now, it is clear that

g +TeicoTeges -+ - Tey 10y, = EkTrys, Mmod L
c1<ce<...<cp_1<cCe

implies
E T XeicoTeges - - Loy 100 = EkTrysy -
c1<co<...<cr_1<¢C
This proves (3.8), hence Theorem 3.3, in the general case. O

3.10. REMARK.— The sets of indices I, and J; entering the statement of Theorem 3.3 can
be recovered from the matrix Pi(x1,...,zy) as follows. Take the entry of P(z1,...,2n)
whose linear term is zp. We denote by ®; the homogeneous polynomial of highest degree
in this entry. Let Vi be the set of those variables x1,..., x5 that occur in ®;. Then I}
(resp. Ji) is the set of indices of the rows (resp. of the columns) of Q;(z1,...,xxN) where
the variables in Vj appear.

4. Balanced labellings

The purpose of this section is to prove Theorem 1.2. To this end, we need the definition
of a balanced labelling of the diagram D,, of a permutation w € S,,.

Given an element (i,j5) of D,,, we call arm (resp. leg) of (i,j) the subset of D,
consisting of all elements (i, k) with k& > j (resp. of all elements (h,j) with h > i). The
hook of (i,j) is the union of {(i,7)}, of its arm and of its leg. An injective labelling L
of D,, by the integers 1,2,..., N is said to be balanced if for any element of D,,, whose
label we denote by a, the number of labels > a in the leg is equal to the number of labels
< a in the arm.

This definition of a balanced labelling of a diagram extends the concept of balanced
tableau introduced by Edelman and Greene [EG] for the Ferrers diagram of an integer
partition. An injective balanced labelling in our sense is equivalent, up to transposition,
to the definition given by Fomin et al. in [FGRS], Section 2.

In the introduction, we associated a labelling L; of the Rothe diagram D,, to any
reduced decomposition i of w.

4.1. PROPOSITION.— The labelling L; s injective and balanced.

PrROOF.— (a) From Proposition 3.2 it is clear that each variable x1,..., zy, where N is
the length of w, appears in the linear part Q;(z1,...,xy) of the matrix Pi(zq,...,2n)
and that distinct variables appear in distinct entries of Qi(x1,...,zy). Since D,, has N

elements, it follows that the labelling L; is injective.

(b) We shall show that L; is balanced by constructing for each element (i, j) of D,, a
one-to one correspondence between the labels in the leg of (7, j) that are greater than the
label of (i, j) and the labels in the arm of (7, j) that are smaller than the label of (i, j).
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Let a be the label of (i,7) in L;. Let (¢/,7) be an element of the leg of (7,j) with
label b with b > a. By definition of the leg, we have i’ > i. Let us consider the pseudo-line
arrangement I' of i with its crossings points labelled from left to right by z; up to zx.
By Proposition 3.2 and the definition of L;, the variable x, labels the intersection of the
pseudo-line with left label ¢ and of the pseudo-line with right label j. Similarly, the variable
xp labels the intersection of the pseudo-line with left label i/ and of the pseudo-line with
right label j. Since b > a, the crossing point labelled x; lies to the right of the crossing
point labelled x, on the pseudo-line with right label j. Since the left labels i and i’ verify
i/ > i and since pseudo-lines intersect in at most one point, the pseudo-line with left
label 7' must intersect the pseudo-line with left label 7 in a point, labelled, say, by z.., lying
left of the crossing point labelled x, on the pseudo-line with left label i (see Figure 4.1,
which shows the only possible configuration). It follows that ¢ < @ and w=!(i") = j’ > j.
Therefore, to any label b > a of an element (¢’, j) in the leg of (4, j) we assigned an element
(i,5") = (i,w 1(i")) in the arm of (i, 7) with label ¢ < a.

Proceeding in a similar way, to any label ¢ < a of an element (i, j') in the arm of (i, )
one assigns an element (w(j’),j) in the leg of (7, j) with label b > a. These two maps are
inverse of each other. 0

Figure 4.1

So far we have a map i — L; from the set R(w) of reduced decompositions of w to
the set of injective balanced labellings of D,,. The fact thas this map is bijective may
be deduced from [FGRS], Theorem 2.4. For the sake of completeness, we shall give a
self-contained proof of this fact after a few preliminaries.

Fix a permutation w € S, of length N > 1 and an injective labelling L of the Rothe
diagram D,, of w. Let (i,j) € D,, be the element with label N. We assume that L is
balanced. This assumption implies the following lemma.

4.2. LEMMA.— (a) We have w(j + 1) = 1.

(b) If (k,j) € Dy, for some k < i, then (k,j+ 1) € D,,.

(c¢) If ay is the label of (k,j) € Dy, with k < i and by is the label of (k,j + 1), then
ar > bg.

PROOF.— (a) Since N is the greatest label, there is no greater label in the leg of (i, 7).
The labelling L being balanced, there is no smaller label in the arm of (4, 7). This means
that D,, does not contain any element (7, j’) with j° > j. If we had w(j+1) > 4, then, since
(i,7) € Dy, we would have w1(i) > j; as w (i) # j + 1, we would have w—1(7) > j + 1,
which would imply (i,j + 1) € D,, and contradict our hypothesis on (i, j).
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We now show that w(j+1) < i is impossible as well. Indeed, by (1.1), the assumption
(i,7) € D,, implies that (w(j 4+ 1),j) € Dy. The arm of (w(j + 1),j) is empty by (1.1).
By the assumption on L, there is no label in the leg of (w(j 4+ 1), ) that is greater than
the label of (w(j+1),7). But w(j+1) < i implies that (4, j), which has the greatest label,
is in the leg of (w(j 4+ 1), 7). This is a contradiction.

(b) In order to show that (k,j + 1) € D,,, we have to check that k£ < w(j + 1) and
j+1 <w (k). The first inequality follows from k < i and Part (a). Let us prove the
second inequality: (k,j) € D, implies that j < w~!(k). So it is enough to check that
w1(k) # j + 1. This follows from k # i and j + 1 = w 1(i) (Part (a)).

(¢) Suppose Statement (c) is not true. Then there is a maximal k£ < i such that
ar < br. Assume that there are exactly p labels > a; in the leg of (k,j). Since N > ay,
we have p > 1. By the assumption on the labelling L, there are p labels uq,..., up,
all < ag, in the arm of (k,j). Since u; < ap < by for all ¢ = 1,...,p, then uy,...,u,
are the labels < by in the arm of (k,j + 1), hence there are p labels > by in the leg
of (k,j 4+ 1). Assume that these labels are by,,...,b,,. By Part(a), they label ele-
ments (i,7 + 1) of D, such that ¥ < ¢ < 4. Then for any ¢ = 1,...,p, we have
ap; > bn, > bp > ap by the maximality of k. The label N together with ap,,...,an,
form p+1 labels > ay, in the leg of (k, j), which is in contradiction with the definition of p.

O

Let w’ = ws;, where again (4, j) is the element of D,, with label N.

4.3. LEMMA.— The permutation w’ is of length N — 1. Moreover, the Rothe diagram D,
is obtained from D,, by first removing the element (i,j), then by exchanging the jth and
the 7 + 1st columns.

PROOF.— Lemma 4.2 (a) shows that we are in the situation of Figure 2.1.a. Lemma 4.3
follows. O

In view of Lemmas 4.2 and 4.3, out of the labelling L we get an injective labelling L’
of D,, by removing the label N and by exchanging the jth and the j + 1st columns. As
a consequence of Lemma 4.2 (c), we get the following result, which is crucial for the proof
of Theorem 1.2.

4.4. COROLLARY.— The labelling L' of D, is balanced.

4.5. PROOF OF THEOREM 1.2. It it clear when w is of length 1, i.e., when w is a simple
transposition s; for some 1 < j <n —1.

To a permutation w € S, of length N > 1 and an injective balanced labelling L of D,,,
we assign a reduced decomposition i of w as follows.

Let (i,j) € Dy, be the element with label N. As above, we introduce the permutation
w' = ws;, which is of length N — 1 (Lemma 4.3), and the labelling L' of D,, obtained
from L by removing the label N and by exchanging the jth and the j + 1st columns. The
labelling L’ is balanced by Corollary 4.4.

Starting the same procedure with the couple (w’, L’), we get a new couple (w”, L"),
where w” = w's; is a permutation of length N — 2, the integer j’ is the number of the
column in which the highest label N — 1 of L’ appears, and L” is the balanced labelling
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of D, obtained from L’ by removing the label N — 1 and by exchanging the j'th and the
7’ + 1st columns.

Iterating this procedure, we get a sequence of permutations wy,wy_1,WN_32, ..., Wy,
where w; is of length 7 for alli = 0,..., N, and a sequence of integers jn, IN—1,JN—2,-- -, J1
with wy = w, wy—1 = W', wy_2 = w"” and jy = j, jn-1 = j', jy—2 = j”, such that
w; = W;—185,, hence w; = 55,85, ...55, forallt=1,..., N. In particular,

W= WN = 5j,5j5 +++Sjn>

which implies that (ji, jo, ..., jn) is a reduced decomposition of w. We denote this reduced
decomposition by r(L).

This defines a map r from the set of injective balanced labellings of D,, to the set
R(w) of reduced decompositions of w. It is easy to check that r is a two-sided inverse to
the map i +— L; of Theorem 1.2. O

Figure 4.2 shows how r(L) is obtained using the above procedure when we start from
the following injective balanced labelling of w = 246531 (the crosses indicate the entries
of the permutation matrix M,,):

X .
I 4 8 6 X (4.1)
X ..
9 x
X

In each labelling of Figure 4.2 we underlined the greatest label. The integer j that appears
when we pass from one labelling to one with one label less is written over the corresponding
arrow. The last labelling is empty because it is the labelling of the identity permutation.
For this example, we get (L) = (1,2,3,2,4,3,5,4,3).

1 3 7 5 2 . 1 3 5 7 2 . 1 3 5 2 7
4 8 6 3 4 6 8 4 4 6 5
— — —
9
1 3 5 2 . . 1 3 2 5 . . 1 3 2
4 6 . . .|l s |1. 4 . . . ] 4 4 2
— — —
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1 2 3 . . . 12 . . .. 1

Figure 4.2

4.6. REMARK.— The bijection of Theorem 1.2 is the same as the one described for the
longest permutation wy € S, in [EG] and, up to transposition, for general w in [FGRS].

4.7. REMARK.— The matrix Pi(z1,...,zy) can be recovered from the labelling L; as
follows. If we denote the (k, £)-entry of L; by v(k, £), then the (i, j)-entry of Pi(z1,...,2n)
for (i,7) € D,, is given by

> Towiie)der) - - - To(wiia)n) To(wiin) o) (4.2)

where the sum runs over all indices such that k > 1, j = jo < j1 < ... < jr = w™(4),

w(j) = w(jo) > w(j) > ... > w(ix) = 4, and v(w(jr),jr-1) < ... < v(w(jz),j1) <
v(w(j1),jo)- See Figure 4.3 for a graphical interpretation of the conditions on the indices j,,.

Figure 4.5

4.8. AN EXTENSION OF THEOREM 1.2.— Transposing from [FGRS|, we say that a la-
belling of D,,, with not necessarily distinct labels, is balanced if each hook is balanced in
the following sense: we say that a hook is balanced if the corner label remains unchanged
after we have rearranged the labels in the hook so that they weakly increase upwards and
from left to right. When the labels are distinct, this definition coincides with the one we
gave at the beginning of this section. We also say that a labelling is row-strict if the labels
in each row are distinct. Then the following extension of Theorem 1.2 holds: the set of
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row-strict balanced labellings of D,, coincides with the set of linear parts of the matrix
products Pi(z1,za,...,xy) for all reduced decompositions i = (i1, i2,...,iyx) of w and all
totally ordered variables 1 < 29 < ... < zp, the equality x;p = xx41 being permitted
only if 7 > Tht1-

Let us end this section by showing how to recover the labelling R;, defined by (1.11),
from the labelling L;.

4.9. LEMMA.— The (i,j)-entry of Ry is the number of labels in the arm of (i,j) in L;,
smaller than the label v(i,j) of (i,7); equivalently, it is the number of labels in the leg
of (i,7) in Ly, greater than the label v(i,j).

PROOF.— The labelling R; counts the quadratic monomials in P;(x1,...,2zx), hence, by
Proposition 3.2, the efficient pseudo-lines in the pseudo-line arrangement of i. One then
argues as in Part (b) of the proof of Proposition 4.1 so as to conclude that each efficient
pseudo-line produces a label in the arm that is smaller than the label in the (7, j)-position,
and a label in the leg that is greater than it; conversely, such labels come from efficient
pseudo-lines. O

Applying Lemma 4.9 to the labelling L; given by (4.1), we get

01 2 1 0
Ri=| Y10 (43)
0

4.10. REMARK.— Recall that the code (also called the Lehmer code) of a permutation
o € Sp is the vector (ci,...,¢,) € NP such that ¢; = card{j | j > ¢ and o(j) < o(4)}.
The integer c; is also the number of elements in the 7th column of the diagram D,. The
code function is a bijection between S, and the set of vectors (c1,...,¢,) € NP such that
ci<p—1,c2<p—2,...,¢, <0.

Lemma F4.9 states that each row of R; is the code of the permutation induced by the
natural order on the labels in the corresponding row in L;. Similarly, one interprets the
columns as codes of permutations, the inversions being now counted with respect to the
reverse order on labels: e.g., ¢ = (1,2,0,0) codes the permutation 314 2.

5. Characterizing commutation classes of reduced decompositions
The purpose of this section is to prove Theorem 1.3. Recall the matrices II; of Section 3.8.

5.1. THEOREM.— Two reduced decompositions i and j of a permutation w belong to the
same commutation class if and only if IT; = 1I;.
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PrROOF.— (a) If i and j differ by a 2-move, then Relation (1.4a) and the definition of II;
and II; imply that II; = II;. This can also be seen using the pseudo-line arrangements of
i and j (which are isotopic as configurations in the plane) and Proposition 3.2. It follows
that, if i and j belong to the same commutation class, then II; = II;.

(b) Let i and j be reduced decompositions of w such that II; = IT;. We wish to show
that i and j belong to the same commutation class. We shall proceed by induction on the
length of w.

If w is of length 1, then it has exactly one reduced decomposition, hence exactly one
commutation class and there is nothing to show.

Suppose that i and j are of length N > 1. Consider their pseudo-line arrangements
denoted by I'; and I’y respectively. Let us concentrate on the leftmost crossing point of I';
and the two pseudo-lines intersecting at this point. Their left labels are necessarily of the
form 47 and i; + 1, where i, is the first index in i. By definition of II;, the double-indexed
variable x;, ; 11 appears in the matrix II;, hence in the matrix II;. This means that in I
the pseudo-line L with left label i1 and the pseudo-line L’ with left label i; 4+ 1 intersect
each other. Let C' be the union of the connected components of the plane deprived of T
situated above L and under L', to the left of their joint intersection. See Figure 5.1.

Figure 5.1

We claim that there is no pseudo-line of I'j crossing C'. It follows from the claim that
I'; can be isotoped to a pseudo-line arrangement whose leftmost crossing point is labelled
by i, i,+1. Equivalently, one can pass through a sequence of 2-moves from j to a reduced
decomposition k with first index ki = i1. By Part (a), we have IIy = II; = II;.

Let i’ and k’ be the reduced decompositions obtained respectively from i and k by
removing the first index i1 = k1. The equality II; = Iy implies Il = IIy/. Since i’ and k’
are of length N — 1, we may appeal to the induction hypothesis and conclude that i’ and
k' belong to the same commutation class. So do i and k, hence i and j.

We now prove the claim. Suppose that some pseudo-line L” of T'j with left label r
(necessarily # i1,4; 4+ 1) crosses the region C. Then it must necessarily intersect L and L’
to the left of the intersection of L and L’. There are two cases: either » < i; or » > 41 + 1.

Suppose that » < i;. The intersection of L” with L produces a crossing point with
label x,;, whereas the intersection of L’ with L’ produces a crossing point with label
Ty, +1 (see Figure 5.2). By Proposition 3.2 the matrix II; contains simultaneously the
monomials z,;,+1 and x,; 2, i, +1. Therefore, the matrix II; must contains the same
monomials. Since the pseudo-lines L, L', L” intersect pairwise in I'j, they must intersect
pairwise in I';. Because the crossing point labelled x;, ;, 41 is the leftmost in I'j, the crossing
point labelled x,;,+1 comes before the crossing point labelled z,;, (see Figure 5.3). By
Proposition 3.2 this implies that the quadratic monomial x,;,z;, ;,+1 cannot appear in
the matrix II;, which leads to a contradiction.

The case 7 > iy + 1 is treated in a similar way (see Figures 5.4 and 5.5). m
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Figure 5.2. The area C in I'y when r < iy

Figure 5.53. The leftmost part of I'; when r < iy

Figure 5.4. The area C in I’y when r > i + 1

Figure 5.5. The leftmost part of T'y when r > i1 + 1

The previous proof also shows that the following holds.

5.2. COROLLARY.— For two reduced decompositions i and j of w, the following conditions
are equivalent:
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(i) i and j belong to the same commutation class.

(ii) their pseudo-line arrangements are isotopic as configurations in the plane.
(iii) their pseudo-line arrangements have the same efficient pseudo-lines.

(iv) the matrices II; and Ilj have the same quadratic part.

As a consequence, the matrix II; is completely determined by its quadradic part.

5.3. PROOF OF THEOREM 1.3. If i and j belong to the same commutation class, then
IT; = II; by Theorem 5.1. It follows that these matrices have the same number of quadratic
terms in each entry; hence, so have the matrices P(X,..., X) and Pj(X,..., X). In view
of (1.11), we get R; = R;j.

Conversely, if we know Rj, then, since quadratic terms of P; correspond to efficient
pseudo-lines, and since efficient pseudo-lines give smaller labels in the arm in the matrix L;,
we know how many labels in the arm of any hook are smaller than the corner label. Since
a permutation is determined by its code, this in turn implies that we know the relative
order of the labels in each row of the diagram. Hence we can determine the labels that are
smaller than a given corner label, hence the efficient pseudo-lines. Therefore, if R; = R;,
then i and j have the same efficient pseudo-lines, which by Corollary 5.2 implies that i and
j belong to the same commutation class. O

5.4. COROLLARY.— A reduced decomposition i of w is in the same commutation class as
the canonical sequence of w if and only if the labelling R; consists of zeroes only.

Proor.— By Proposition 2.1, if j is the canonical sequence of the permutation w, then

the matrix Pj(x1,...,2,) has no quadratic monomials. Therefore, R; = 0. We conclude
with Theorem 1.3. O
5.5. CHARACTERIZATION OF THE MATRICES R;.— If ky,..., ks are the labels in a row

of R;, then (ky, ..., k) is by Lemma 4.9 the code of a permutation in Sy, which we call the
row permutation of this row. Similarly, we have a column permutation (the code being
interpreted with respect to the decreasing order on integers). Thus, to each matrix Rj,
we associate a bipermutation matriz with support in the diagram of w, whose (i, j)-entry
consists of the couple (a, 3), where a (resp. (3) is the corresponding digit of the ith row
(resp. jth column) permutation of R;. From this, we define a graph whose vertices are
the entries of the bipermutation matrix, with edges u — v if either u, v are in the same
row and u = (a, ) and v = (e + 1,), or u, v are in the same column and u = («, 3)
and v = (/, + 1). An example of a labelling R;, corresponding to (1.10), is given in
Figure 5.6 together with its bipermutation matrix and its graph.

Figure 5.6
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5.6. THEOREM.— The mapping i — R; defines a bijection from the set of commutation
classes of reduced decompositions of w onto the set of labellings of D, by natural numbers
such that

(i) the kth element in each row (resp. each column) is < £ — k, where { is the length
of the row (resp. the column), and

(ii) the previously described graph has no cycles.

PROOF.— Let us show that R; satisfies the two conditions: for the first one, it is an
immediate consequence of the reminder at the beginning of Section 5.5; for the second
one, note that the labels in L; define a total order which is compatible with the graph.
Therefore, the latter has no cycle.

Conversely, let R be a labelling of D,, satisfying (i) and (ii). The graph having no
cycle, we can find a compatible labelling of D,, by the numbers 1,2,..., N = ¢(w). This
labelling is balanced by construction. Therefore, it comes from a reduced decomposition
of w, and so does R. O

5.7. REMARK.— In analogy with (4.2), we can express the matrix II; in terms of the
bipermutation matrix described previously or, equivalently, of the associated graph. In-
deed, denote by > the partial order on the entries of D,, induced by this graph. Then, for
(i,4) in D,,, the (i, j)-entry of II; is given by

Z Lw(jr)w(ie—1) * * - Tw(jz),w(j1) Lw(Gi),w(5o)>

where the sum runs over all indices such that £ > 1,
J=do<i<...<jr=w (@), w()=wlo)>w()>...>wl) =1,

and (w(j1), jo) > (w(ja), 1) > - = (W(jk), Jr—1)-

6. The poset structure of the set of commutation classes

Let w € S,, be a permutation of length N and R(w) be the set of reduced decompositions
of w. Recall that i, j € R(w) belong to the same commutation class if they can be obtained
from each other by a sequence of 2-moves. We denote by C(w) the set of commutation
classes in R(w). Manin and Schechtman [MS] put a partial order on C(w): it is the reflexive
and transitive binary relation <. generated by

(cooyi+lai+1,000) <e (ooayiyi+ 1,4,..0)

for all 1 <i < N — 1. (That this order is well defined may be proved by considering the
sum of the indices in the reduced decompositions.)

By [MS], [BZ], [LZ], the poset C(w) has a unique minimal element. We show that
it is the commutation class «,, of the canonical sequence (ji,...,jn) of w, as defined in
Section 2.

6.1. PROPOSITION.— We have a,, <. [ for any element 3 of C(w).
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PrOOF.— Leti=(...,4,i+1,4,...)and j= (...,i+1,4,i+1,...) be reduced decomposi-
tions of w differing by a 3-move. This means that the respective pseudo-line arrangements
I'; and I'y differ only locally as shown in Figure 6.1. Let £ < ¢ < m be the left labels
of the three pseudo-lines appearing in the parts of I'; and I'; shown in Figure 6.1. From
Proposition 3.2 it is clear that all entries of the matrices II; and II; of Section 3.8 are the
same, except the (k,w~!(m))-entries. The pseudo-line with left label ¢ is efficient for the
roof of I'; whose top is labelled by zx,,; but the same pseudo-line is not efficient for the
corresponding roof in I';. Therefore, II; has one quadratic monomial less than II;, namely
Tke Tem, and the only change when passing from the labelling R; to the labelling R; is that
one label of R; diminishes by 1.

Fix an element 3 € C(w) represented by a reduced decomposition i of w. Suppose
it is not in the commutation class of a,,. Then R; # 0 by Corollary 5.4. This means
that the pseudo-line arrangement I'; of i has a pseudo-line L that is efficient for some roof
of T'y, as in the left part of Figure 6.1. We take L such that the triangle formed by L and
the slopes of the roof is not crossed by any other pseudo-line (we may call this a region
of minimal area; such regions always exist when there is an efficient pseudo-line). Let us
move L in order to get the configuration shown in the right part of Figure 6.1. For i, this
amounts to make a 3-move (...,4,7+ 1,4,...) — (...,i+ 1,4,i+ 1,...) as well as some
2-moves. It follows from the definition of the partial order in C(w) that the commutation
class of the new reduced decomposition j we have obtained by performing these moves is
smaller than the commutation class of i for <.. By the above discussion, the total sum of
the labels in R; is less than the total sum of the labels in R;. We iterate this procedure
until we get a labelling R = 0 for which we apply Corollary 5.4. In this way, we have
found a sequence of classes [y, 31,...,08, such that B = By >. 81 >c ... >¢ Bp = ay.

d

Figure 6.1. Effect of a 3-move on a pseudo-line arrangement

6.2. REMARK.— As observed in the previous proof, a 3-move as in Figure 6.1 (from left to
right) suppresses the monomial 2 ¢, and all its multiples from the matrix IT;. A 2-move
does not change the matrix II;. Note that one can also easily describe the effect of 2-
and 3-moves on the matrix Pj(x1,...,zy), thereby describing the polynomial change of
parametrizations of the Schubert cell C',,. A 2-move in position k, k + 1 of i interchanges
the variables xy and x4 in Pi(z1,...,2x). A 3-move s,s+1,s+— s+1,s,s+1 in position
k —1, k, k + 1 interchanges the variables zx_; and x4 in Pi(x1,...,zy) (hence also in
the balanced labelling L;), and suppresses the monomial xj_; 241 and its multiples.

The poset C(w) has a unique maximal element (see [BZ], [LZ], [MS]). Let us describe it.
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Let wo be the longest element of S,,, defined by wg(i) =n+1—iforalli=1,...,n. If
i= (i1,...,in) is a reduced decomposition of w, then i* = (n—iy,...,n—iy) is a reduced
decomposition of wowwy. It is clear that the map i — i* from R(w) to R(wowwy) is a
bijection and preserves the commutation classes. It therefore induces a bijection 3 — g*
from C(w) to C(wowwy). Let w,, be the element of C(w) such that w}, = augww, is the
minimal element of C(wowwy).

6.3. PROPOSITION.— We have 8 <. w,, for any element 3 of C(w).

PROOF.— The definitions of <. and of the involution * imply g <. v = v* <. *. Hence
B <. wy is equivalent to w} = yyww, <c 8%, which follows from Proposition 6.1. O

As an application, we characterize the fully commutative permutations, i.e., the per-
mutations w such that the set C(w) consists of a single element (see, e.g., [BJS], [Fa], [St]).
By Propositions 6.1 and 6.3, w is fully commutative if and only if o, = wy,.

By Theorem 1.3 the labelling R; defined for any reduced decomposition i depends
only on the commutation class 3 of i. We denote it by Rg.

6.4. THEOREM.— For any w € S,, the following statements are equivalent.
(i) The permutation w is fully commutative.
(11) The labelling Rg for any commutation class B € C(w) consists of zeroes only.
(iii) The labelling R, for the maximal element w,, consists of zeroes only.
(iv) There is no efficient pseudo-line in any pseudo-line arrangement of w.

PROOF.— (i) = (ii): Since cardC(w) = 1, we have § = a,,, hence Rg = R,, = 0 by
Corollary 5.4.

(ii) = (iii): Clear.

(iii) = (i): In view of Theorem 1.3, R,,, = 0 = R,,, implies w,, = o,; hence w is
fully commutative.

(ii) < (iv): By Proposition 3.2, given a reduced decomposition i and its pseudo-line
arrangement I', the quadratic terms in Pj(z1,...,%,) are in one-to-one correspondence
with the efficient pseudo-lines in T'. 0

Figure 6.2 shows the poset C(wq) for wy = 4321 € Sy. Each commutation class
is represented by its smallest reduced decomposition for the lexicographic order. Each
3-move is represented by an arrow going from the smaller class to the bigger class for the
partial order <.. The extremal classes a,, and w,,, consist of two reduced decompositions.
The classes in the middle row have four reduced decompositions each. The four remaining
classes are of cardinality 1 (see Figure 1 in [BZ], §9).

When wy =54321 € S5, the set R(wy) has 768 elements and C(wy) has 62 elements
(see [Kn| p. 35, where A,, denotes the number of reduced decompositions of wy € S,,, and
B,, the number of commutation classes). Robert Bédard showed us (private communica-
tion) that the poset C(wg) can be drawn on the surface of a 2-dimensional sphere S?. In
other words, its geometric realization is homeomorphic to S2.

It would be interesting to determine the topology of the poset C(wg) when wy is the
longest element of S, for n > 6.
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(1,2,1,3,2,1)

/! AN
(1,2,3,2,1,2) (2,1,2,3,2,1)
T T
(1,3,2,1,3,2) (2,1,3,2,1,3)
i 7
(3,2,1,2,3,2) (2,3,2,1,2,3)
AN /
(3,2,1,3,2,3)

Figure 6.2. The poset C(wq) for wg =4321¢€ S,
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