N

N

Localized modes in a one-dimensional di-atomic chain of
coupled spheres
Anne-Christine Hladky, M. de Billy

» To cite this version:

Anne-Christine Hladky, M. de Billy. Localized modes in a one-dimensional di-atomic chain of coupled
spheres. Journal of Applied Physics, 2005, 98, pp.054909. hal-00124477

HAL Id: hal-00124477
https://hal.science/hal-00124477

Submitted on 25 May 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00124477
https://hal.archives-ouvertes.fr

(7))
.2
(7))
>
Y
on
o
co
- S —
50
oQ
P g

Localized modes in a one-dimensional
diatomic chain of coupled spheres

Cite as: J. Appl. Phys. 98, 054909 (2005); https://doi.org/10.1063/1.2034082
Submitted: 10 March 2005 - Accepted: 19 July 2005 « Published Online: 12 September 2005

Anne-Christine Hladky-Hennion, Guy Allan and Michel de Billy

LEINS
L A |
K ]
N\

View Online

<

Export Citation

ARTICLES YOU MAY BE INTERESTED IN

Experimental validation of band gaps and localization in a one-dimensional diatomic phononic

crystal
The Journal of the Acoustical Society of America 122, 2594 (2007); https://
doi.org/10.1121/1.2779130

An elastic metamaterial with simultaneously negative mass density and bulk modulus
Applied Physics Letters 98, 251907 (2011); https://doi.org/10.1063/1.3597651

Dispersion characteristics of a nonlinear elastic metamaterial
AIP Advances 4, 124308 (2014); https://doi.org/10.1063/1.4905051

Lock-In Amplifiers
up to 600 MHz

N/ Zurich
N\ Instruments 8%

J. Appl. Phys. 98, 054909 (2005); https://doi.org/10.1063/1.2034082

© 2005 American Institute of Physics.

98, 054909


https://images.scitation.org/redirect.spark?MID=176720&plid=1735779&setID=379065&channelID=0&CID=634322&banID=520641639&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=9c1ac18f5d6639d1702da7e8807e4ca243d2c309&location=
https://doi.org/10.1063/1.2034082
https://doi.org/10.1063/1.2034082
https://aip.scitation.org/author/Hladky-Hennion%2C+Anne-Christine
https://aip.scitation.org/author/Allan%2C+Guy
https://aip.scitation.org/author/de+Billy%2C+Michel
https://doi.org/10.1063/1.2034082
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.2034082
https://aip.scitation.org/doi/10.1121/1.2779130
https://aip.scitation.org/doi/10.1121/1.2779130
https://doi.org/10.1121/1.2779130
https://doi.org/10.1121/1.2779130
https://aip.scitation.org/doi/10.1063/1.3597651
https://doi.org/10.1063/1.3597651
https://aip.scitation.org/doi/10.1063/1.4905051
https://doi.org/10.1063/1.4905051

JOURNAL OF APPLIED PHYSICS 98, 054909 (2005)

Localized modes in a one-dimensional diatomic chain of coupled spheres
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This paper presents the propagation of waves along a one-dimensional “diatomic” chain made up to
welded spheres, i.e., with two steel spheres of different diameters alternating. First, a theoretical
analysis is presented, which gives the vibration modes of an infinite chain, leading to two
low-frequency branches, separated by a band gap. A theoretical analysis is then performed on a finite
chain, containing an even or an odd number of spheres. Depending on the parity of the number of
spheres in the finite chain and on the ratio between the masses of the spheres, it points out that
localized modes may appear in the band gap. The theoretical results have been validated by a
comparison between numerical and experimental results. Many applications of such systems can
therefore be found: acoustic filters, noise and vibration isolation, acoustic wave guiding, etc.

© 2005 American Institute of Physics. [DOI: 10.1063/1.2034082]

I. INTRODUCTION

There is a growing interest in the study of the propaga-
tion of acoustic waves in periodic samples, such as aggre-
gates or multilayered structures, in particular, because there
can be frequency ranges in which waves cannot propagate: in
these systems, propagation of ultrasound or acoustic phonons
is forbidden due to the existence of band gaps.k8 This fact is
analogous to photonic band gaps for electromagnetic waves.
Therefore, it is possible to predict that such systems can be
applied for acoustic filters, noise and vibration isolation,
acoustic wave guiding, etc. Recently, the study of phononic
crystals is going further with the study of wave phenomena
such as localization,g_12 where the vibration amplitude is at-
tenuated along the structure. By introducing a defect in the
crystal, a narrow passband appears in the stop band.” Similar
studies have also been performed in disordered systems.13 In
multilayered structures on silicon substrates, localized sur-
face modes are observed in the structure depending on the
nature of the last layer.14 Bria and Djafauri—Rouhani15 have
presented a theoretical analysis of finite one-dimensional
phononic crystal structures, embedded between two sub-
strates, which can exhibit an omnidirectional reflection band.

To go further in the comprehension of vibrations in ag-
gregates and multilayered structures, the study of linear
chains of spheres has been proposed. A simplified model has
revealed the existence of allowed and forbidden frequency
bands.>”'*'° In a previous paper,17 a quantitative analysis of
the vibration modes in a finite set of identical coupled
spheres was presented, with the help of an analogy with
phonons in solid-state physics. Numerical modeling using
the finite element method'®" was compared with experi-
ments and a good agreement was observed. An interesting
extension of the previous work is to consider a “diatomic”
chain of spheres, with two spheres of different diameters
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alternating, made of the same material. This can lead to the
presence or not of localized modes in the band gap.

The work presented in this paper concerns the low-
frequency modes. The chain contains spheres that are welded
and the weld is supposed to be the same between two adja-
cent spheres. The theoretical formulation is presented, first in
the case of an infinite diatomic chain of spheres, leading to
two low-frequency branches, separated by a band gap. Vibra-
tion modes in a finite chain are then studied. In this case, an
even or an odd number of spheres in the chain is considered.
This study points out that localized modes may be observed
in the band gap, between the first two low-frequency
branches. In Sec. III B, experimental results on various
chains of spheres are compared to numerical results, con-
firming the theoretical analysis.

Il. THEORETICAL APPROACH

The vibration modes of a single sphere and of a one-
dimensional chain of identical spheres have been previously
studied in detail.'>'®>0-22 Here, it is extended to the case of a
diatomic chain of spheres, which means with spheres of al-
ternately large and small diameters, made up of the same
material. Many references present the case™?* of an infinite
diatomic chain, thus, only the main results are recalled in this
paper. A part of the investigated chain is shown in Fig. 1. The
spheres are referenced as type 1 and type 2, alternating. They
are characterized by their radius r; and r,, and their masses
m; and m,. On Fig. 1, m; is less than m,. The opposite
situation can also be envisaged. In this case, the sphere on
the left is the biggest one. The period of the structure is
defined by d, which is a little bit smaller than 2r;+2r, due to
the weld between adjacent spheres. The weld, characterized
by rw,17 is supposed to be the same between two adjacent
spheres. The first part of this section presents the case of an
infinite diatomic chain of spheres. The vibration modes of a
finite chain are presented in the second part.

© 2005 American Institute of Physics
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mass m;
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FIG. 1. Definition of the characteristic distances in a “diatomic” chain of
welded spheres (r, ry, d, and r,).

A. Case of an infinite diatomic chain of spheres

For the sake of simplicity, equations of motion are writ-
ten considering only the interaction between adjacent
spheres. Coupling constants between spheres are identical.
Due to the periodicity of the system, the wave number k is
introduced for designating the vibration modes. k belongs to
the first Brillouin zone, which is given by [-m/d, +7/d].
For each k value, vibration frequencies w exist that lead to
dispersion curves w(k). In that configuration, these curves
present two low-frequency branches, instead of one for the
“mono-atomic” chain. These branches are named “acoustical
branch” and “optical branch.” They are solutions to the fol-
lowing equation:B’24

mymyw* —2C(m, + my)w® + 2C*(1 - cos kd) =0, (1)

where C designates the coupling constant. This equation is
completely symmetric in m, and m,. The waves correspond-
ing to the lower branch (i.e., acoustical branch) are in phase.
In particular, at k=0, the corresponding frequency is equal to
zero: the structure is translating. The branch starts at the
origin and increases to (2C/m,)"? for kd=1r, considering
my<my.

On the other hand, in the upper branch (i.e., oprical
branch), the motion of two adjacent spheres is out of phase.
The branch starts at [2C(1/m,+1/m,)]"? for k=0 and de-
creases to (2C/m;)"? for kd= . The value of C is fitted with
the help of the frequencies at k=0 and k=/d. Taking ac-
count of the masses, the parameter C is enough to make the
fitting.

In the stop band, for @ between (2C/m,)'? and
(2C/m;)"2, real frequency w” exists for complex values of k,
with real part equal to =7/d: the motion is attenuated along
the chain, the vibrations amplitude decreases from one
sphere to the other. Corresponding modes are named local-
ized modes.** Notice that the stop band width is proportional
to the quantity m;"?—m;"?,

The propagation of plane acoustic waves in such infinite
and periodic structures is studied with the help of the finite
element method,lg’19 using only the mesh of one unit cell,
thanks to the Bloch-Floquet relations. Due to the symmetry
of the structure, an axisymmetrical model is used that only
requires bidimensional elements. The unit cell is meshed and
divided into elements connected by nodes. In this study, iso-
parametric elements are used, with a quadratic interpolation
along the element sides. The calculation provides dispersion
curves from which results of physical interest can be easily
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FIG. 2. Numerical results of the first branches of the dispersion curves of an
infinite “diatomic” chain of steel spheres in the first Brillouin zone, with
reduced scale. Diameter of the steel spheres: 10 and 8 mm, alternating. The
marks are numerical results of a set of two welded spheres.

extracted: identification of propagation modes, cutoff fre-
quencies, passbands, and stopping bands.?"* Figure 2 pre-
sents the lowest branches of the dispersion curve of an infi-
nite diatomic chain of steel spheres, the diameters of which
are, respectively, 10 and 8 mm, and the masses are 4.08 and
2.09 g. The weld between spheres is characterized by r,,
=0.8 mm. The equation of each branch can be determined
with the help of Eq. (1). The first and last values of the
acoustical and optical branches are equal to (2C/m,)"?,
(2C/my)"2, and [2C(1/m;+1/m,)]""?. A stop band appears
between 55.0 and 77.2 kHz. For k=/d, the lower value
corresponds to (2C/m,)"? and the upper value corresponds
to (2C/m;)"?. Thus, one can deduce the value of C=6.2
X 10° N/m. For given masses m,; and m,, if the weld be-
tween adjacent spheres increases, the value of C increases,
too (for r,=1 mm, C=8 X 10° N/m).

Higher branches related to other modes (Rayleigh,
breathing, and whispering Gallery) are not reproduced on
Fig. 2. They are approximately flat: in that case, frequencies
of the Rayleigh modes are quite different for the 8-mm
sphere and for the 10-mm sphere. This frequency difference
considerably limits the coupling between spheres. There
could be coupling between two neighboring identical
spheres, but the intermediate sphere acts as a plug, thus
branches are flat.

B. Case of a finite diatomic chain of spheres

Let us study the vibration modes of a diatomic finite
chain. The chain contains N spheres, with alternate spheres
of type 1 and type 2. If N is even, it is written as N=2p: the
first sphere of the chain is type 1 and the last one is type 2. If
N is odd, it is written as N=2p+1 and the first and the last
spheres of the chain are both of the same type. In the follow-
ing calculation, we suppose that the first sphere of the chain
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on the left is type 1. m; can be smaller or not than m,. Let us
designate by u, the vibration amplitude of the sphere s of
type 1, and v, the vibration amplitude of the sphere s of
type 2.

1. Even number of spheres in the chain

When N is even, writing the equations of motion gives a
system, the size of which is N:

m; 0 0 o0 u;

0 my 0 0 v,
w? :

0 0 - m 0 u,

0 0 0 my U,

=cl :+ =+ -~ ;| (2)

Solving the system gives the N discrete frequencies of the
corresponding mode. The resonance frequency 0 is always a
solution to the system. The calculation of the corresponding
eigenvector gives an identical vibration amplitude along the
chain (u,=v, for any s), the N spheres are all translating. One
can notice that w,..=[C(1/m,+1/m,)]"? is always a solution
to the system. Its position is in the stop band described in
Sec. IT A, thus it is referenced as a localized mode. The cal-
culation of the corresponding eigenvector shows that the vi-
bration amplitude is decreasing from one extremity of the
chain to the other. Considering m,>m, its normalized vi-
bration amplitude is 1 on the smallest sphere at one end of
the chain (m;), then the amplitude is m,/m, for the next two
spheres, is m%/ m% for the next two spheres, etc., and finally is
mf /m5 for the last sphere at the other end (m,). The vibration
amplitude is greater on the extremity of the small sphere
(m,), and much smaller on the other extremity (m,).

One can easily understand the presence of this mode in
the stop band using a transition from the mono-atomic chain
of spheres to the diatomic chain of spheres. We consider an
infinite chain with identical welded spheres, regularly spaced
at a distance d’. Dispersion curves are drawn in the first
Brillouin zone, which is given by [-#/d’,+m/d’]. In a pre-
vious paper,17 we have shown that the vibration modes of a
finite chain can be deduced from the dispersion curves of an
infinite chain, thanks to a quantification of the wave number.
For the first low-frequency branch, the corresponding values
of k are k=s7/2pd’, where 2p is the number of spheres in
the chain and s=0,...,2p—1. One can notice that a mode is
placed in the middle of the Brillouin zone, for s=p. For the
mono-atomic chain of spheres, if we use a double periodic-
ity, the curve is duplicated due to Brillouin-zone folding.
Thanks to the quantification of the wave number, the mode
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FIG. 3. Frequencies of the first modes of a chain with an even number of
spheres (N=2p), diameter=10 and 8 mm, alternating. The vertical lines
correspond to the stop band limits (55.0 and 77.2 kHz).

previously located in the middle of the Brillouin zone is now
at the boundary of the Brillouin mode, where the curve is
duplicated. The transition from the mono-atomic chain to the
diatomic chain opens the gap. Therefore, a vibration mode
appears in the stop band.

To confirm the existence of a mode in the stop band,
different diatomic chains of spheres, with various even num-
ber of spheres, have been meshed. As previously, the small-
est sphere is 8 mm in diameter, the biggest sphere is 10 mm
in diameter. The vibration modes are calculated using a
modal analysis.19 In Fig. 2, numerical results of a set of two
welded steel spheres (10 and 8 mm) are presented (black
dots). The set of two spheres is supposed to have both free
ends. One mode is at the origin, one other mode is localized
in the stop band. Figure 3 presents the position of the low-
frequency modes in the frequency range (f<<100 kHz), for
various diatomic chains of spheres (8 and 10 mm in diam-
eter), with an even number of spheres (2<N=<12). These
modes are calculated with the help of the finite element
method. The vertical lines correspond to the stop band limits.
For a chain made of N spheres, N modes are obtained. There
is always one mode for f=0 and one mode at the same po-
sition in the stop band (66.8 kHz). The distribution of the
other modes on the acoustical branch and on the optical
branch is also plotted.

The normalized displacement in the chain direction is
drawn for different values of N (Fig. 4) at the frequency of
the localized mode (66.8 kHz). The extremity of the chain
with the smallest sphere is always on the left. It clearly
shows that the displacement is decreasing along the chain,
which is a classical characteristic of a localized mode.

2. Odd number of spheres in the chain

In that case, we suppose that the first and the last spheres
of the chain are type 1. When N is odd (N=2p+1), writing
the equations of motion gives a system, the size of which
is N:
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FIG. 4. Normalized displacement in the direction of the chain for N=2, 4, 8,
and 12 spheres at the frequency of the localized mode. The smallest sphere
is on the left.

my 0 0 0 0 U
0 m, 0 0 O vy
w2 :
0 0 -m 0 0 u,
0 0 0 m 0 || v,
0 0 0 0 mg up+l
1 -1 0 0 0 0 u,
-1 2 -1.0 0 0 v,
=C :
0 2 -1 0 u,
0 0 -1 2 -1\ v,
0 0 0 -1 1 o1

3)

Solving the previous system gives the vibration modes of the
finite chain.

For N=3, the resonance frequencies are 0, for which the
three spheres have the same vibration amplitude, (C/m;)"?

J. Appl. Phys. 98, 054909 (2005)

and [C(1/m,+2/m,)]"?. Depending on the ratio m,/m;,
these last two modes can either or not be in the stop band
described in Sec. II A.

Analytical solutions of the system have been calculated
for N=5. The first resonance frequency is 0, for which the
five spheres have the same vibration amplitude. The four
other w? solutions are: Cla+2—-(a?+4)"%]/2; C[3a+2
—(2+4)'2172, Cla+2+(a?+4)*]/2, and C[3a+2+(a?
+4)21/2 with a=m,/m,. Once again, depending on the
value of the mass ratio «, two of these modes can either or
not be in the stop band. For N greater or equal to 7, system
(3) has been numerically solved. Many cases have been
tested and lead to the following conclusions:

(1) If m;>m,, [the first (type 1—m,) and the last (type
1—m,) spheres are the biggest ones], then no vibra-
tion modes appear in the stop band.

(ii)  If m;<m,, [the first (type 1—m,) and the last (type
1—m,) spheres are the smallest ones], then two vibra-
tion modes may appear in the stop band, depending
on the mass ratio m,/m;.

o If 2<m,/m,, then two vibration modes appear in the
stop band. Each of these two modes is localized at
each extremity of the chain, particularly if the chain is
long.

o 1If 3/2<m,/m; <2, then two vibration modes appear
in the stop band only if the chain contains five spheres
or more, there are no modes in the stop band for N
=3.

o If 4/3<my/m;<3/2, then two vibration modes ap-
pear in the stop band only if the chain contains seven
spheres or more. There are no modes in the stop band
for N=3 and N=5.

e More generally, if (p+1)/p<m,/m;<p/(p—1), then
two vibration modes appear in the stop band only if
the chain contains 2p+1 spheres or more.

It means that, when the chain contains an odd number of
spheres, localized modes can appear only if the first and the
last spheres are the smallest ones. If the mass ratio is much
greater than one, then two vibration modes appear in the stop
band, whatever the number of spheres in the chain. If the
mass ratio is close to one, then two vibration modes appear
in the stop band only if the chain is long enough.

To confirm the existence of two modes or no mode in the
stop band, various diatomic chains of spheres, with an odd
number of spheres, have been meshed. As previously, the
biggest sphere is 10 mm in diameter, the smallest sphere
8 mm in diameter. Thus, the mass ratio is equal to 1.95. The
vibration modes are calculated using a modal analysis.19 Fig-
ure 5 presents the position of the modes in the frequency
band for various diatomic chains of spheres, with an odd
number of spheres, when the smallest sphere is at both ex-
tremities [Fig. 5(a)] or the biggest sphere is at both extremi-
ties [Fig. 5(b)]. These modes are calculated with the help of
the finite element method. For a chain made up of N spheres,
N modes are obtained. There is always one mode at the ori-
gin. When the biggest sphere is at both extremities of the
chain, no mode appears in the stop band. When the smallest



054909-5 Hladky-Hennion, Allan, and de Billy

@ Acoustical Optical

branch branch
-~ 14
[22d
212 1
Q 3 a A A& A Y I YY)
5 10
L A 4 a aa | a aa m
° a s Aa 4 a
é j—s A A a A m
551 o
20 . . . .

0 20 40 60 80 100
Frequency (kHz)

(b) Acoustical Optical

branch branch
™ 14
£ 12 1
2 10} 4 4 4 s A A &AL
& gt & & s AAaa Q)wo
? 4 A A & A A A
IS SN s 2 [POO
g 2} s s |OO
Z 0 . r . r

0 20 40 60 80 100
Frequency (kHz)

FIG. 5. Frequency of the first modes of a chain with an odd number of
spheres (N=2p+1), when a small sphere (diameter=8 mm) is at each ex-
tremity (a), when a big sphere (diameter=10 mm) is at each extremity (b).
The vertical lines correspond to the stop band limits (55.0 and 77.2 kHz).

sphere is at both extremities of the chain, there are two
modes in the stop band (for N greater than 5) and one can
notice that, as the chain becomes longer, the two modes in
the stop band become closer. For a chain made up of three
spheres with two small spheres at the extremities, no local-
ized modes are obtained, according to the previous model of
the chain of atoms (mass ratio=1.95). It also shows the dis-
tribution of the other modes on the acoustical branch and on
the optical branch.

The displacement in the chain direction is drawn for
various numbers of spheres in the chain (Fig. 6) at the fre-
quency of the localized modes [for N=5 at 66.4 and
72.3 kHz—Fig. 6(a), for N=11 at 66.2 and 67.7 kHz—Fig.
6(b), and for N=27 at 66.8 and 67.2 kHz—Fig. 6(c)]. One
displacement is starting on the left side, the other is starting
on the right. They only appear if the smallest sphere is at
both extremities. As the chain becomes longer, these plots
clearly show that the motion is localized on the small sphere
at each extremity. The displacement is slowly decreasing
when the chain is short.

lll. EXPERIMENTS
A. Experimental setup and description of the samples

To generate the vibration modes of a diatomic chain,
longitudinal broadband transmitters excited by short ultra-
sonic pulses are used. The transmitted temporal signal is vi-
sualized on the screen of an oscilloscope and the power spec-
trum of the windowed average signal (typically 500-us
length in time) is then calculated. Sometimes, unexpected
peaks are observed in the experimental spectra. They are due

J. Appl. Phys. 98, 054909 (2005)
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FIG. 6. Normalized displacement in the direction of the chain for 5, 11, and
27 spheres at the two frequencies of the localized mode. The small sphere is
at each extremity. One mode is starting on the left, the other is starting on
the right.

to the propagation of a shear component which confirms that
the longitudinal transducers are not perfectly polarized espe-
cially on the periphery of the piezoelectric sensor. No glue
was used at the contact points between the transmitters and
the samples. The static strength applied at the extremities of
the samples does not affect the position of the peaks but
only—as expected—the amplitude of the signal. So nonlin-
ear effects have not been pointed out with this kind of ex-
periments.

The fabrication of the samples is quite delicate. They
were made up of spheres welded with a spot welding pro-
cess. A very high intensity goes through the pilled beads and
at each contact point a circular roll appears around the weld-
ing area, the radius of which is designated by r,. This dis-
tance characterizes the coupling between the spheres and it
was experimentally verified that—for samples used in the
experiments—the coupling was the same at each contact
point. Various samples were made with steel calibrated
spheres of 6, 8, and 10 mm to check the theoretical conclu-
sions drawn in Sec. II.

B. Experimental results on a finite set of spheres

In this section, the experimental results are presented
and compared with the numerical results. They are con-
cerned with a one-dimensional chain made up of two differ-
ent spheres alternating. The frequency spectra of the trans-
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FIG. 7. Experimental frequency spectrum for a chain of four spheres whose
diameters are 8 and 10 mm, alternating. The vertical lines correspond to the
stop band limits (55.0 and 77.2 kHz).

mitted signal are analyzed and the positions of the main
peaks are compared with the numerical calculations. The in-
fluence of the number of spheres in the sample is more spe-
cifically investigated. The study is mainly limited to the first
low-frequency modes.

1. Case of an even number of spheres in the chain
(mass ratio=1.95)

An example of experimental frequency spectrum is
given in Fig. 7 for a chain made up of four spheres
(10/8/10/8). The biggest sphere is 10 mm and the smallest
sphere is 8 mm in diameter, giving a mass ratio equal to
1.95. We may distinguish three peaks at low frequency.
These peaks are associated to the modes of the acoustical and
optical branches. One mode is at a zero frequency and is not
reproduced. Table I presents a comparison between the ex-
perimental and the numerical values of the low-frequency
modes (in kHz) for two chains: (10/8) and (10/8/10/8).
There is a reasonably good agreement between numerical
and experimental results considering that the frequency reso-
lution of the experimental setup is 2 kHz. Discrepancies may
be due to the measurement of the distance r,, or to a slight
misalignment of the beads during the welding process. It is
interesting to notice that, as expected by the theory, one
mode appears in the stop band (55.0-77.2 kHz for r,
=0.8 mm).

We experimentally notice that in the power spectrum, the
amplitude of the peaks which corresponds to the optical
branch is systematically smaller than the amplitude of the
modes associated to the acoustical branch.

TABLE I. Comparison between experimental and numerical values of the
low-frequency mode (in kHz) for different chains with an even number of
spheres. Stop band spreads out between 55.0 and 77.2 kHz. The frequency
in bold type corresponds to the localized mode. Mass ratio=1.95.

Numerical Experimental
Number of spheres (kHz) (kHz) %
2 66.8 62 7.2
Oo
4 332 36 8.4
0000 66.8 70 4.7

90.9 94 3.4
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TABLE II. Comparison between experimental and numerical values of the
low-frequency mode (in kHz) for different chains with an odd number of
spheres, with a small sphere at each extremity (a), or with a large sphere at
each extremity (b). Stop band spreads out between 55.0 and 77.2 kHz. The
frequency in bold type corresponds to the localized modes. Mass ratio
=1.95.

Numerical Experimental
Number of spheres (kHz) (kHz) %
(a) 3 53.6 56 4.5
000 79.0 80 1.3
5 28.9 30 3.8
00000 61.4 62 0.9
72.3 72 0.4
92.9 92 0.9
(b) 3 38.3 40 4.4
000 88.1 90 2.1
5 25.1 26 3.6
00000 46.2 46 0.4
83.5 80 4.1
94.2 94 0.2

2. Case of an odd number of spheres in the chain
(mass ratio=1.95<2)

Table II presents a comparison between the experimental
and the numerical values of the low-frequency modes for
different chains with an odd number (N=3 and 5) of spheres,
with a small sphere (8 mm in diameter) at each extremity
[Table II(a)] or with a large sphere (10 mm in diameter) at
each extremity [Table II(b)]. Once again, r,, is equal to
0.8 mm. The mode at zero frequency is not reproduced in the
table. There is a very good agreement between numerical and
experimental results (less than 4.5%). As expected localized
modes appear for N=35 only if there is a small sphere at both
extremities.

3. Case of an odd number of spheres in the chain
(mass ratio=4.60>2)

Table III presents a comparison between the experimen-
tal and numerical data for two samples made up of three steel
spheres of 6 and 10 mm in diameter, such that the mass ratio
is equal to 4.6. The contact between spheres is characterized
by r,=0.6 mm. The results confirm that for the sample
(6/10/6) [Table IlI(a)] two modes are detected in the stop
band (47.4-102.7 kHz) and that no mode exists in the stop

TABLE III. Comparison between experimental and numerical values of the
low-frequency mode (in kHz) for different chains with an odd number of
spheres (diameter=10 and 6 mm), with a small sphere at each extremity (a),
or with a large sphere at each extremity (b). Stop band spreads out between
47.4 and 102.7 kHz. The frequency in bold type corresponds to the localized
modes. Mass ratio=4.6.

Numerical Experimental
Number of spheres (kHz) (kHz) %
(a) 3 714 70 2
000 88.0 82 6.8
(b) 3 33.1 32 32
000 109.9 104 53
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FIG. 8. Experimental frequency spectrum for a chain of three spheres whose
diameters are 6 and 10 mm, alternating. The vertical lines correspond to the
stop band limits (47.4 and 102.7 kHz). (a) Chain 6/10/6 and (b) chain
10/6/10.

band for the sample (10/6/10) [Table III(b)]. Figure 8 pre-
sents the corresponding experimental frequency spectrum. It
clearly shows two peaks in the band gap in the first case [Fig.
8(a)] and no peak in the band gap in the second case [Fig.
8(b)]. These experimental observations are in agreement with
the theoretical calculations and confirm the previous conclu-
sions obtained from the numerical calculations.

IV. CONCLUSION

In this work, the vibrational response of finite one-
dimensional periodic structure to an ultrasonic longitudinal
pulse has been numerically and experimentally investigated.
In particular, one-dimensional “diatomic” chains made up of
welded spheres, i.e., with two steel spheres of different di-
ameter alternating have been analyzed in terms of frequency
spectrum and the influence of the parity of the number of the
spheres in the chain is underlined. The possibility to generate
sonic stop bands and passbands was demonstrated. Under
certain conditions on the ratio between the mass of the two
spheres, we have numerically and experimentally verified the
existence of localized modes. This study lets us give a co-
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herent physical interpretation of the number and existence of
these so-called localized modes. All these results should con-
tribute to the analysis of the elastic wave propagation in pe-
riodic systems such as finite aggregates or granular media.
This work also suggests that such samples may be used as
frequency filters to decouple resonators from their substrate,
with an appropriate number of layers and appropriate mass
ratio.

In the future, this investigation should be extended to
two- and three-dimensional periodic, inhomogeneous, and fi-
nite lattice. The variations of the amplitude of the localized
modes with the length of the samples should be analyzed and
the influence of the boundary conditions on the frequency
response could be investigated, too.
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