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Abbreviation used: UQPCR: Uracil-DNA-glycosylase-coupled quantitative real-time PCR 

 

Despite their enormous potential for phylogeographic studies of past 

populations, the impact of ancient DNA analyses, most of which are performed 

with fossil samples from natural history museum collections, has been limited to 

some extent by the inefficient recovery of ancient genetic material. Here we show 

that the standard storage conditions and/or treatments of fossil bones in these 

collections can be detrimental to DNA “survival”. Using a quantitative 

palaeogenetic analysis of 247 herbivore “fossil” bones up to 50,000 years old and 

originating from 60 different archaeological and palaeontological contexts we 

demonstrate that freshly excavated and non-treated, unwashed bones contain six 

times more DNA and yielded twice as many authentic DNA sequences than bones 

treated with standard procedures. This effect was even more pronounced with 

bones from one Neolithic site where only freshly excavated bones yielded results. 

Finally, we compared the DNA content in the fossil bones of one animal, a c. 

3,200 year-old aurochs, that were excavated in two separate seasons 57 years 

apart. Whereas the washed and museum-stored fossil bones did not permit any 

DNA amplification, all the recently excavated bones yielded authentic aurochs 

sequences. We established that during the 57 years, during which the aurochs 

bones were stored in a collection, at least as much amplifiable DNA was lost as 

during the previous 3,200 years of burial. This result calls for a revision of the 

post-excavation treatment of fossil bones to better preserve the genetic heritage of 

past life forms.  
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Introduction 

Our knowledge of past life forms stems mainly from fossils, the only witnesses of extinct 

species, the phylogenetic analyses of which were boosted by the discovery that DNA is 

sometimes preserved in fossils (1). In fact, water-soluble DNA has been shown to persist in 

fossil bones for up to as many as 130,000 years in temperate regions (2). The analysis of this 

ancient DNA has the potential to provide us with answers to archaeological, palaeontological 

and anthropological questions, when the classical approaches of these latter disciplines 

cannot. During bone fossilization, however, DNA is at least partially degraded and chemically 

modified. Little is known about the modifications of ancient DNA that lead to its 

preservation. Thus, ancient DNA analysis constitutes an enormous methodological and 

conceptual challenge for palaeogeneticists. Moreover, despite some spectacular achievements, 

the failure rate of palaeogenetic investigations is high, since DNA preservation is rare, i.e., 

numerous fossil samples are analyzed, but few sequences are obtained. For example, the 

success rate of DNA amplification declines with increasing average temperature in the area 

from which the fossils originate. Whereas 78% (3) and 62 % (52 to 71%) (4) of permafrost 

samples were reported to be successfully amplified, samples from regions with moderate 

temperature amplified with a 23 to 67% success rate (5) and from arid, hot climates with a 

mere 2 to 4% success rate (5). Temperature has indeed been identified as a key factor in DNA 

preservation (6), but cannot be the only one. All factors influencing chemical reactions (e.g., 

pH, Eh, irradiation, chemical composition of bone and soil, hydrology) may play a role in a 

complex fashion that is not as yet comprehended.  

It has been shown that bones are locally destroyed by bacteria and fungi (“microscopical 

focal destruction”) (7) and that diagenetic alteration is localized leaving discrete “fossilizing 

regions” where fossilization can occur (8). Long-term DNA preservation might be favored 

within various types of microenvironments with different biological and physicochemical 
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properties, so-called “molecular niches” (9), which have formed in the bones during 

fossilization. The particular conditions ruling in these niches must slow down DNA 

degradation processes (e.g., adsorption of DNA to apatite crystallites or clusters of intergrown 

bone crystals that are not affected by diagenetic changes, such as those described by Trueman 

et al. (10) and by Salamon et al. (11); complexation of DNA; low local chemical reactivity, 

particular local pH and ionic conditions etc. (9)). These microenvironmental conditions and 

the physico-chemical conditions prevailing in the macroenvironment in which the 

fossilization process takes place must be interdependent, suggesting that any drastic 

modification of the conditions outside the bones can affect the preservation of the DNA 

within them. Abrupt changes in the macroenvironmental conditions, such as those which 

occur during the excavation of fossils and their transfer to museums and natural history 

collections, might constitute such changes in the physicochemical conditions in the 

microenvironment and might thus have dramatic consequences on DNA preservation. 

Therefore, we tested systematically the interdependence of DNA preservation and post-

excavation treatment by analyzing bones that had experienced different post-excavation 

preservation conditions. Here we show how detrimental to DNA survival standard post-

excavation treatments can be.  
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Results  

To analyze the influence of standard post-excavation treatments on the preservation of 

DNA within archaeological bones, called here “fossil bones”, we analyzed in parallel fossil 

bones from museum collections and freshly excavated bones that were kept after excavation 

under conditions that resembled as far as possible those in the sediment. To obtain such 

freshly excavated bones, two of us (EMG, MP) have collaborated closely during the last years 

with archaeologists and archaeozoologists to ensure that any fossils destined for ancient DNA 

analysis were handled in a specific way to prevent the growth of microorganisms that would 

destroy preserved biomolecules and/or their chemical degradation via oxidation and 

hydrolytic processes. To prevent dissolution and degradation of endogenous DNA and 

contamination by exogenous DNA we avoided the treatments normally used by 

archaeologists, such as washing, brushing, and treatment with consolidants and other 

chemicals. The fossil bones were excavated, handled (including the palaeontological analysis) 

and stored in an aseptic manner, thus reducing the risk of contamination with human, food-, 

pet-derived and environmental DNA. We will hereafter call these fossil bones “fresh” ones, as 

opposed to “old” fossil bones, which had been washed, handled and stored for many years in 

collections in a dry state at room temperature. 

We obtained evidence for the detrimental effect of standard excavation treatments with 

fossil bones when we compared the PCR amplification success rate from a large-scale study 

of 247 herbivore bones, from 600 to 50,000 years old, from various depositional contexts of 

60 different archaeological and palaeontological contexts in Northern and Southern Europe, 

the Near and Middle East and the Arabian peninsula (Table S1 and Pruvost et al., in 

preparation). We amplified the hypervariable region of the mitochondrial DNA using uracil-

DNA-glycosylase-coupled quantitative real-time PCR (UQPCR (12, 13)) and evaluated the 

PCR and cloning products obtained from at least two independent fossil bone extractions. We 
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found that 46% “fresh” fossils yielded authenticated amplification products, whereas 18% 

“old” fossils yielded these products (see table S1). The difference was statistically significant 

(p(Chi2)=0,001). Furthermore, using UQPCR we could measure the quantity of DNA 

molecules. We could estimate that the number of maximal 153 bp-long molecules that could 

be amplified was on average about six times higher in the “fresh” fossils than in the “old” 

ones (see table S1). Again, despite the wide variations in DNA quantity from various bone 

samples, this difference was statistically significant (p(t-test)=0.043). Interestingly, while it 

was possible to amplify the larger DNA fragments (201 bp) from 15% of the “fresh” bones, 

this was the case in only 4% of the “old” bones. To conclude, we have obtained clear 

evidence that DNA preservation is better in freshly excavated, untreated bones and that post-

excavation treatments and/or storage conditions are negatively influencing DNA preservation. 

Since taphonomic conditions drastically influence DNA preservation, one needs to analyze 

bones whose fossilization has occurred under comparable taphonomic conditions to clearly 

establish post-excavation conditions as the cause of DNA degradation.   

We therefore studied more comparable situations, i.e, bones that had been collected under 

various conditions from the same preservation site, Telleilat-Mezraa, a Neolithic site in 

Turkey. We compared the level of DNA amplification of the hypervariable region of 

mitochondrial DNA from two different fossil bone groups: the “old” ones had been excavated 

several years before, had been subsequently brushed with water, dried and stored under light 

exclusion conditions in collections at room temperature; the “fresh” ones originated from the 

same archaeological site, but had been recently excavated according to strict protocols 

designed to optimize recovery of biomolecular evidence. Here, the difference in the success 

rate was striking: it was possible to amplify DNA from five out of eight “fresh” fossil bones 

(with quantities of 39,965 to 1,634 molecules/g of bone) as opposed to zero out of eleven 

“old” fossil bones. Thus, when the analyzed bones came from the same preservation context 
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suitable post-excavation conditions were important for DNA preservation. The detrimental 

effect of post-excavation conditions on DNA preservation was more pronounced than when 

multiple bones from multiple sites were analyzed. Yet, these bones belonged to different 

individuals that had died in different ways and therefore had not experienced an identical 

fossilization history, which is presumably unique for each fossil assemblage from a single 

organism.  

Finally, we obtained final and conclusive evidence from the analysis of exceptional fossil 

material that shared the same diagenetic history but had experienced different post-excavation 

histories. We analyzed ribs from an individual aurochs excavated in two different campaigns, 

the first in 1947 (14) and the second in 2004. The fossil bones that were excavated in 1947 

from a deep karstic crevice in Pontvallain (Pays de la Loire, France) had been stored in the 

collections of the natural history museum of Le Mans (Musée Vert), France. In 2004, the 

crevice was reinvestigated and 120 additional bones and teeth were recovered. Direct skin-to-

fossil contact was carefully avoided, and the specimens were immediately stored at –20°C. 

The assemblage of the well-preserved bone fragments belonged to a single, adult individual. 

One of the “2004 fossil bone” pieces perfectly refitted a “1947 fossil bone” fragment of the 

hip of the aurochs (Figure 1). The genetic analysis of both types of fossils was carried out on 

the same skeletal elements (ribs) to minimize preservation differences due to anatomical and 

local geochemical differences. No PCR amplification of the bovine mitochondrial D-loop was 

obtained from the ten samples from the shafts of two ribs excavated in 1947, despite 

numerous attempts and a negligible inhibitory effect of the extracts. In contrast, the nine 

samples from the shafts of three ribs excavated in 2004 yielded, with a success rate of 100%, 

a 153 bp and a 201 bp amplification fragment of the bovine mitochondrial D-loop using 

UQPCR. The quantity of DNA that was amplified from the various extracts, varied from 1 to 

511 molecules/amplification reaction (average of 61 molecules/reaction  + 55.5). 
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From the fossil bones of the aurochs in Pontvallain we obtained an aurochs sequence that 

is identical to two of the sequences obtained from two older British aurochs fossils (7,500 and 

11,900 years (15); see Table 1). The phylogenetic position of the retrieved sequence proves its 

authenticity. Thus, our study demonstrates that ancient DNA that has been preserved for 

thousands of years in fossil bones can be degraded relatively quickly when the bones are 

removed from the preserving conditions of their original setting. This degradation is not the 

consequence of any differences in the fossilization process, but is clearly due to changes in 

the macroenvironment and/or the standard handling and storage procedures in natural history 

collections. We then analyzed whether the different post-excavation treatments of these bone 

samples had left any hallmarks of distinctive morphological changes using light microscopy 

and environmental scanning electron microscopy with backscattered electron detectors 

(ESEM), which makes its possible to characterize and quantify the histological changes that 

occur during bone diagenesis (16, 17). Under the light microscope, the fossil bones showed no 

signs of human or carnivore activity. ESEM analysis of bone sections revealed that the shape 

and distribution of internal porosity was very similar in all analyzed specimens, with no 

apparent difference in texture between the fossil bones recovered in 1947 and those in 2004 

(see Figure 2). Histological traits were identical in all samples and they all showed extensive 

bacterial attack. Neither type of fossil bone showed any cracking or exfoliation, either on the 

surface or at the sections. The absence of any such alterations indicates that there were no 

differences in the weathering stages, in the humidity/dehydration or dryness, or in compacting 

or deformation between the two types of fossil bones (see Figure 2B, D). No traits of specific 

preparation and/or conservation treatment (e.g. chemical solutions to clean the fossils or act as 

preservatives/consolidants (18)) were detectable. The elemental composition as revealed by 

wavelength and energy dispersive X-ray spectrometrical analysis (WDS and EDS, 

respectively) provided homogeneous spectra of the calcium and phosphate composition in 
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both the 1947 and the 2004 fossil bones. In summary, there is no microscopic indication that 

samples obtained from excavations in 1947 and those from 2004 underwent different 

diagenetic processes that may suggest differences in their taphonomic history. Nor are there 

microscopic differences between the two types of fossil bones that could be attributed to 

particular treatments or conditions during storage of the fossil bones after their excavation 

from the site of Pontvallain in 1947. 

 

Discussion 

DNA preservation occurring in post-mortem bone must be influenced by many different 

parameters. Approximately three different preservation phases can be distinguished. During 

the first diagenetic phase, the bone undergoes bacterial putrefaction. This is a rapid, complex 

and multi-component process. We estimate that the putrefaction phase can cause a fifteen-fold 

decrease in the quantity of amplified DNA, since we were able to measure 1.5 x 106 

molecules/g of fresh bone and only 1 x 105 molecules/g of bones from a recent (c. 20 year-

old) bone that had completed the putrefaction phase. This bone was a naturally and manually 

defleshed humerus from the carcass of a Batina zebu.  

If, at the end of the putrefaction phase, the conditions are favorable for long-term 

preservation of organic matter, the bone will enter diagenetic phase 2 and DNA degradation 

will continue mainly on a chemical basis. One of the major DNA degradation pathways is 

depurination (19). This degradation reaction probably follows a first-order kinetics model in 

which [A]/[A0] = e–kt, where [A]/[A0] is the fraction of remaining material, k the degradation 

rate and t the time. We estimated the fraction of remaining material by comparing the quantity 

of PCR amplifiable DNA contained in both, (i) the recent post-putrefaction bones, and (ii) the 

fossil bones from the 3,200 year-old Pontvallain aurochs. From the freshly excavated fossil 

bones of the latter, we amplified 100-fold less than from the post-putrefaction bones, i.e., an 
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average of 2,547 + 5,835 mitochondrial DNA molecules per gram of bone. This indicates that 

the degradation rate of DNA in the aurochs bones during burial was about 90% per 2,000 

years.  

The fact that we did not obtain any PCR product from other ribs belonging to the same 

individual but which has been unearthed 57 years ago and subsequently stored in the natural 

history collection, indicates that at least 99% of the DNA was degraded during this period, 

which corresponds to diagenetic phase 3. This means that the degradation rate was at least 70 

times faster during the 57 years after excavation than during the ~3,200 year-long burial 

phase. The corresponding degradation rate of 90% per 30 years is comparable to that 

described for recent fox teeth, which had been autoclaved after the animal’s death and 

conserved during the first 30 years in a museum (20) and for which a DNA degradation rate 

of 90% per 15 years can be estimated. The slower DNA degradation rate of 90% per 2,000 

years estimated for the buried aurochs bones from Pontvallain compares well with the 

depurination rate of DNA in solution obtained by Lindahl and Nyberg (19) applied to a 150 

nucleotide-long molecule at a temperature of 5 – 10°C (temperature in the burial environment, 

measured during excavation) and at neutral pH (see calculations in Material and Methods). 

According to Lindahl and Nyberg’s measurements (19), however, an increase of 15°C in the 

average temperature (which we assume to be around 20-25°C in a museum) would be enough 

to accelerate the degradation rate 16 times. Furthermore, additional modifications of the pH 

and the ionic strength could further raise the DNA degradation rate to 70-fold. A decrease in 

the pH from 7.4 to 6.4 increases the depurination rate 3.3 times (19). Washing of the aurochs 

bones, which were buried in sediment of pH 7.5, with tap water, which today typically has a 

pH of around 5.5, is likely to decrease the pH but to an unknown extent, since the mineral part 

of the fossil bone has probably retained some of the buffering capacity of the bioapatite of 

fresh bone. A decrease in the salt content as a consequence of washing could also be 
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responsible for an increase in the DNA degradation rate since depurination is seven-fold faster 

when the concentration of NaCl is decreased from 0.1 M to 0 M (19). Finally, washing of the 

fossil bone could have dissolved the most soluble parts of the DNA. Thus, the rapid 

degradation of DNA observed in the aurochs bones after their excavation is compatible with 

the effects of the standard washing procedures for fossil bones that are routinely used by 

archaeologists and palaeontologists, combined with an elevation in temperature in the storage 

room.  

Bone is a very heterogeneous tissue with unevenly distributed biological and 

physicochemical properties and bacterial attack will not be homogeneous. Furthermore, local 

differences in physicochemical properties should also influence long-term DNA preservation 

and, indeed, we and others (21) have observed local heterogeneity in DNA preservation 

within a bone. We were able to ascertain that the differences in DNA preservation observed 

with the Pontvallain aurochs bones were not due to such local heterogeneity in DNA 

preservation, since the preservation of DNA proved to be similar within each series of bone 

samples from each category (three “fresh” and two “old” ribs) and different between 

categories.  

Whatever the exact causes, our results show very clearly how detrimental to the 

preservation of DNA in fossil bones standard treatments are. When classifying the 247 

“fossil” herbivore bones analyzed, which all experienced differences in the diagenetic phases 

1 and 2, into two categories according to the post-excavation treatment (“standard” versus 

“special”), the PCR success rate for the bones excavated under special conditions was twice 

that of those treated “normally”. Moreover, these standard excavation and storage conditions 

reduce the quantity of DNA by a factor of about six. This is particularly detrimental when the 

quantity of DNA contained in the bones is already low, as in the case of most fossil bones. In 

fact, treatments that result in a six-fold reduction in the DNA quantity would cause the failure 
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of PCR amplification in 3 of the 15 PCR-positive fossil bones excavated under special 

conditions (see table S1). This would be sufficient to reduce the percentage of PCR-positive 

bones amongst the “fresh” bones to a level not significantly different from that observed in 

the bone sample excavated under standard conditions. Thus, the average decrease in the 

quantity of amplifiable DNA could be sufficient to explain the difference in the PCR success 

rate. 

The effect of the post-excavation treatment was found to be even more pronounced in 

bones preserved in the same burial site (Telleilat-Mezraa). These bones had undergone a 

different diagenetic phase 1 and a similar diagenetic phase 2 and had then experienced a 

different post-excavation phase 3. Here we observed a striking difference in the PCR success 

rate amongst the “fresh”, recently excavated fossil bones (63%) compared to the ones 

excavated under standard conditions (0%). 

Finally, when we compared the fossil bones from the same animal and the same burial site 

(the aurochs from Pontvallain), which had experienced differences in diagenetic phase 3 only, 

we also obtained a spectacular result with a 0% amplification success rate in the case of the 

“old” fossil bones and a 100% amplification success rate in the case of the “fresh” fossil 

bones. This is ultimate proof of the detrimental effect of standard post-excavation treatments 

of fossil bones on the “survival” of amplifiable DNA. 

In conclusion, even if amplification results from collection fossil bones can be obtained, 

fewer fossil bones will yield PCR results and less DNA will be retrieved. This effect will be 

the more pronounced the less DNA is preserved in the fossil, thus leading to a North-South 

gradient of suitability of fossils for palaeogenetic studies, for which fossils from permafrost 

areas and cold caves are more suitable than those from hot and dry climate zones. Our finding 

has major implications for palaeogenetic studies, which are a key to the study of extinct 

species and populations and can reveal the mechanisms leading to extinction. We propose that 
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recently excavated and untreated fossil material should be preferred to fossil material that has 

been washed, treated with chemicals and stored for a long time in regular museum collections. 

Furthermore, excavation, preparation and conservation protocols and storage conditions for 

fossil bones in collections should be revised if genetic information is to be preserved and 

retrieved. If, at a given archaeological or palaeontological site, palaeogenetic results are to 

retain their potential to answer archaeological, palaeontological and biological questions, a 

selected number of the fossils should not be subjected to any treatment but instead stored in 

the cold - at least in a cold room but preferably in a freezer and ideally in a cryobank - in 

small aliquots to avoid repeated freezing and thawing cycles of the same sample. This 

approach calls for a close collaboration between palaeogeneticists, palaeontologists, 

archaeologists, conservation managers and curators. 

 

Materials and Methods 

Samples, fossil excavation and storage procedure. The aurochs bone samples (here called 

“fossils”) used for this study originate from a palaeontological site in France (Pontvallain, La 

Sarthe). Moreover, the results of a study of 247 bovine and equine bones c. 600 to c. 50,000 

years old and originating from France, Germany, Switzerland, Spain, Georgia, Armenia, 

Turkey, Syria, United Arab Emirates, Bahrein are discussed. The specimens examined 

included both bones excavated using standard archaeological and palaeontological field 

procedures, and bones excavated under strict protocols designed for bones destined for DNA 

analysis. (Table S1 summarizes provenance, contexts and treatment of the specimens.) 

We analyzed samples of five rib shafts (diaphyses) from the skeleton of a c. 3,200 year-old 

aurochs buried in a crevice in Pontvallain (La Sarthe, France), two excavated in 1947 and 

three in 2004. The climatic conditions in this geographic region correspond to a moderate, 

oceanic climate type with an annual rainfall of 678 mm (between 45 and 70 mm per month) 
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and temperatures range from 4°C to 19°C throughout the year. The temperature in the crevice 

was between 5-10°C. The fossils excavated in 1947 were kept in a dry state in cardboard 

boxes and drawers in the museum of Le Mans. Environmental records kept since 1995 in the 

museum show that the mean temperature during the year varies between 15 and 25°C and the 

relative humidity between 40 and 60%. The storage conditions of the bone collection before 

1995 were not controlled, but were rather those of basic, uninsulated stores typical for fossil 

bone collections in the past and where temperature possibly fluctuated between 0° and 40°C, 

and relative humidity between 20 and 90%. The fossil bones newly excavated in 2004 were 

subjected to strict protocols, that is, specimens were handled with gloves, were not washed, 

brushed or treated with consolidants or other chemicals and were immediately frozen at –20° 

surrounded by their sediment. The circumstances of recovery and subsequent handling of this 

skeleton are discussed in detail in the Results and Discussion section. 

Eight of the fossil bones from the Turkish Neolithic site of Telleilat-Mezraa were 

excavated in 2002 using this strict protocol. Eleven “old” fossil bones from this site had been 

excavated between 1992 and 2003. These old bones were excavated according to standard 

archaeological field procedures, and had been brushed in water, sundried and then stored in 

cardboard boxes, first in Turkey (with fluctuations in temperature from 0°C to 30°C) and then 

in Southern Germany. The climate in the area of Telleilat-Mezraa is characterized by an 

average temperature of 16.7°C (average high temperature of 23.9°C and average low 

temperature of 9.3°C), annual precipitation of 21.3 mm and mean humidity of 56.2% (weather 

station of Bireçik, Turkey). 

Samples from the diaphysis of the unburied humerus from a Batina zebu that had died 

naturally and undergone putrefaction was collected from the surface in Muscat in North Oman 

in 1983. This specimen was already naturally putrefied and almost totally defleshed (remnants 
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of flesh were removed manually) and was stored in the bone collection of the University of 

Tübingen, Germany.  

A fresh cow bone was obtained from a butcher and frozen at –20°C until analysis. 

Dating of the aurochs bones from Pontvallain. 14C dating of one bone sample gave an 

uncalibrated radiocarbon age of 3204 +/- 56 years. Radiocarbon dating was performed on 

extracted pure collagen (C/N ratio of 2.8) by the Physical Institute of the University of 

Erlangen/Nürnberg, Germany 

Taphonomic analysis of the aurochs bones from Pontvallain. The aurochs bones from 

Pontvallain were analyzed to identify any possible pre-burial treatment such as boiling, 

burning or digestion and any post-excavation (conservation) treatment with glue, resins, 

varnish, consolidants, or washing with alkaline, acidic or peroxide solutions, formol, alcohol 

or acetone as previously described (18). We carried out surface analysis of the fossil bones 

avoiding any such treatment and using both a binocular microscope (0.7x to 80x Leica MZ 

7.5) and environmental scanning electron microscopy (QUANTA 200 Environmental 

Scanning Electron Microscope). The analysis of the fossils was thus possible without any 

additional preparation as described (18). The elemental composition of the samples and the 

identification of inclusions and mineralization was analyzed using wavelength dispersive X-

ray and energy dispersive X-ray spectrometry (WDS and EDS, respectively). 

DNA extraction. All pre-PCR work was carried out in a physically isolated work area in a 

part of the building (basement) where no other DNA work was done. The cleaning and 

powdering steps were performed in an area dedicated to work on fossil bones that was 

separate from the laboratory where DNA was extracted. For the fossil aurochs bones from 

Pontvallain excavated in 1947 and those excavated in 2004, the middle parts of the rib shafts 

were analyzed. The fossil bones were cut and the surface removed in a UV-irradiated glove 

box. They were then ground to a fine powder in a freezer mill (Freezer Mill 6750, Spex 
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Certiprep®). Further processing of the bone powder was performed in a laboratory dedicated 

to ancient DNA work (“fossil laboratory”) as previously described (12, 13 and supporting 

information). Blank extractions were carried out for each extraction series. 

DNA amplification. PCR amplification, experiments with modern DNA and experiments 

with amplified and cloned DNA were carried out in three different laboratories that were not 

in the same part of the building as the “fossil laboratory”. To reduce the number of potential 

sources of error-prone sequences, we used the quantitative real-time PCR approach, UQPCR 

(13). Thus, for each fossil extract and PCR amplification we (i) quantified the target 

molecules present in a given fossil extract, (ii) diluted the fossil extract to abolish its 

inhibitory power as evaluated by the amplification of an external reference DNA, and (iii) 

destroyed with uracil-N-glycosylase (UNG) potential previous PCR and cloning products, 

thereby avoiding carry-over contamination. All PCR amplifications were performed in the 

Light Cycler® (Roche Applied Science) in individual glass capillaries using UQPCR as 

described (13 and supporting information). Reamplifications were never performed. 

Quantification of the target molecules in the extracts was performed as described (13). 

A total of 29 PCRs (9 with primer pair BB1/2 and 20 with primer pair BB3/4) were 

performed on 10 independent extracts from samples of the shafts of two different ribs of the 

aurochs that had been excavated in 1947. Nine extracts from nine samples of the shafts of 

three different ribs of the aurochs that had been excavated in 2004 were amplified in 48 PCRs 

with primer pair BB3/4, and 12 PCR amplifications with primer pair BB1/2.  

Authentication of the ancient DNA sequence of the aurochs of Pontvallain. (i) The nine 

DNA extractions from the rib samples of the aurochs from Pontvallain excavated in 2004 

were amplified in 60 reactions using UQPCR (13) with two primer pairs from the 

hypervariable control region of bovine mitochondrial DNA and yielded a PCR product. Blank 

extractions, performed with each fossil extraction, never yielded any amplification products. 
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Negative controls, performed for each PCR amplification, were always negative. (ii) The 

initial quantity of target molecules and the quality of the results were assessed as described 

(12, 13) and was on average 761+715 molecules per gram of fossil powder from rib 1, 

2,675+3164 molecules per gram of fossil powder from rib 2 and 4,926+9744 molecules per 

gram fossil powder from rib 3 of the aurochs from Pontvallain (based on the assumption that 

one cell contains 1,000 mitochondrial genomes). Sequences of amplification products 

obtained from a small number of starting molecules were compared with those starting from 

100 authenticated mitochondrial molecules and found to be identical. (iii) For each fossil 

extract, the inhibitory effect was assessed on the basis of the decrease in the PCR efficiency 

and the amplification delay of modern genomic bovine DNA. The inhibiting extracts were 

diluted until the inhibition of the amplification reaction was abolished, i.e., in general 1:2. (iv) 

Prior to each PCR amplification, the products of previous PCR amplifications as well as 

cloned DNA were destroyed and deaminated cytosines were eliminated with UNG (13). (v) 

Sequencing was carried out directly on the PCR product itself and on several clones of the 

PCR products: 29 PCR products (20 BB3/4 and 9 BB1/2) and 34 clones (25 BB3/4 and 9 

BB1/2) were sequenced. Identical B. primigenius sequences were obtained, except for one 

clone from the BB3/4 products, which showed a mutation (A -> G in position 16043). (vi) 

The PCR amplifications were repeated in a different laboratory (Genoscope, Evry, France) 

and identical sequences were obtained. (vii) A deer bone from the same excavation site 

yielded a Cervus elaphus sequence that showed two mutations when compared to the C. 

elaphus sequence that had previously been published (22). (viii) No contamination by cloned 

products was observed as assayed for by amplifying the PCR-positive extracts with primers 

hybridizing to the cloning vector on either side of the cloned fragment (13). 

Calculation of the depurination rate of DNA. We used the classical Arrhenius formula to 

determine the reaction rate (k):  
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k=A e-Ea/RT 

where R is the universal gas constant, T is the absolute temperature, and A is the Arrhenius 

constant, which relates to the geometric requirements of the reaction and must be determined 

experimentally. The activation energy Ea for the depurination reaction is 130 kJ/mol (19) and 

A can be estimated from data in Lindahl and Nyberg (19) to be 2,46 x 1011 s-1 at pH 7.4. The 

depurination rate k at 37°C and pH 7.4 is 3 x 10-11 s-1 (20) and therefore can be calculated to 

be 4 x 10-12 s-1 at 25°C, 2.5 x 10-13 s-1 at 10°C, and 9 x 10-14 s-1 at 5°C. Assuming that one 

depurination event in a DNA target molecule within the region to be amplified is sufficient to 

prevent amplification, the inactivation rate of one strand of a 150 nucleotide-long DNA 

fragment at 10°C and pH 7.4 would therefore be 1.2 x 10-3 yr-1. Using these parameters and 

the first order decay formula [A]/[A0] = e –kt (see Results and Discussion) it can be estimated  

 that 90% of the DNA molecules would be inactivated in 1,900 years.  
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Legends to Figures: 

 

Figure. 1: The hip of the fossil B. primigenius specimen from Pontvallain showing a bone 

fragment excavated in 1947 and a bone fragment excavated in 2004 perfectly fitting at the line 

of breakage (arrow). 

 

Figure 2: Scanning electron microphotographs from cross sections of two different fossil 

bone fragments from the aurochs’ ribs recovered from Pontvallain in 1947 (A, B) and in 2004 

(C, D). A and C: magnification 40 x, B and D: magnification 400 x.  

 

Table 1: Bovine DNA sequences of the mitochondrial D loop: European consensus 

sequence (23); African consensus sequence (24); Indian consensus sequence (24); British 

Pleistocene aurochs sequences (D740, D812, CHWF, NORF, CPC98, TP65) (15); PVL04, 

sequence obtained from the aurochs of Pontvallain (this study).  
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The sequences of the 3,200 year-old Bos primigenius and Cervus elaphus sequences will 

be deposited pending acceptation of the manuscript. 



 
 
Fig. 1. The hip of the fossil B. primigenius specimen from Pontvallain 
showing a bone fragment excavated in 1947 and one excavated in 2004, 
perfectly fitting at the line of breakage (arrow) 



 
 
Fig. 2 Scanning electron microphotographs from cross-sections of two 
different fossil bone fragments from the aurochs ribs recovered from 
Pontvallain in 1947 (A and B) and in 2004 (C and D) (A and C, x40; B and 
D, x400) 
 


