
HAL Id: hal-00124415
https://hal.science/hal-00124415

Submitted on 15 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trusted computing - A new challenge for embedded
systems

Romain Vaslin, Guy Gogniat, Jean-Philippe Diguet, Alain Pegatoquet

To cite this version:
Romain Vaslin, Guy Gogniat, Jean-Philippe Diguet, Alain Pegatoquet. Trusted computing - A new
challenge for embedded systems. International Conference on Electronics, Circuits and Systems 2006,
Dec 2006, Nice, France. �hal-00124415�

https://hal.science/hal-00124415
https://hal.archives-ouvertes.fr


Trusted computing - A new challenge for embedded

systems

Romain Vaslin, Guy Gogniat, Jean-Philippe Diguet

LESTER UBS/CNRS FRE 2734

Centre de recherche

56321 Lorient FRANCE

Email:firstname.lastname@univ.ubs.fr

Alain Pegatoquet

WTBU - CSSD

Texas Instruments

821, avenue Jack Kilby - B.P 5

06270 Villeneuve-Loubet Cedex FRANCE

Email: a-pegatoquet@ti.com

Abstract— Security issues become more and more important
during the development of mobile devices. In this paper we
propose a thorough overview of processor-based solutions to
protect programs and data exchanges within embedded systems.
A discussion about the limitations of existing solutions is provided
and new directions are proposed.

I. INTRODUCTION

With the development of new wireless communication

standards like WIFI and Bluetooth, the communications

between entities (cell phone, PDA) is becoming unavoidable.

Sometimes sensible data is exchanged (e.g. credit card

number); so it is necessary to protect these transfers. Security

is turning into the main bottleneck for communicating

entities especially in embedded systems where performances

are limited. More and more systems are facing hardware

and software attacks [1]. Several solutions are proposed to

protect the architecture (secure architecture) and the data

which is transferred (cryptography). Architecture protection

mainly corresponds to the protection of data and program

stored in the system memory. Communication protection is

related to the protection of data exchanged over an insecure

communication channel (e.g. wire).

When a system is under attack, different goals are targeted;

the first kind of attack is the extraction of secret information,

the second one is trying to put the system out of order. The

encryption of information is used for confidentiality. The

most popular cipher algorithms are: RSA, ECC, AES, 3DES.

The hash of information is used to check the integrity of a

message by providing a signature which is unique for each

message. The most known algorithms are MD5 and SHA.

In addition, non-repudiation, availability and authenticity

are guaranteed by communication protocols like IPSec for

example.

More and more security tasks are assigned to embedded

systems. Thus, it becomes essential to add dedicated primitives

to these systems to allow an efficient implementation of the

requested algorithms for program and data protection. As a

consequence, various solutions are emerging to increase the

level of system protection. It is essential that these solutions

provide hardware architectures adapted to embedded systems

to meet the tight constraints on memory size, performance

and power consumption. In the following sections we propose

a thorough overview of processor-based solutions to protect

programs and data exchanges within embedded systems.

II. SECURE ARCHITECTURES: STATE OF THE ART

In order to fend off hardware and software attacks specific

mechanisms have to be defined. All security solutions are

built around assumptions concerning their potential threats.

Generally, the secure zone is composed of the processor core

and the ciphering and hashing dedicated blocks. Moreover side

channel attacks are mostly not addressed.

In section II-A the studies focus on the protection of program

memory and data memory. A monitor is used to protect the

operating system (OS). Using an OS, there is a need to track

if a task does not reach any secure information not belonging

to it. In certain circumstances, the user may wish to cipher

and/or hash the program in memory. Then if the program is

read in the memory, the cipher key will be necessary to decrypt

the data. As the cipher key is a secret and stored in the secure

zone, only a trust task must be able to decrypt the program and

to run it on the OS. The secrets stored on a chip are always

in the secure zone. It is one of the most essential postulate

when defining a secure architecture (the secret must not leave

the secure zone in a clear form). With an OS, the OS source

code will be stored in the secure zone since it is essential

that the OS kernel is not corrupted by a malicious entity. In

section II-A we focus on the principles of the OS and not

on the hardware engines to accelerate the computing of the

cryptographic tasks. Section II-B details the hardware engines

to efficiently implement encryption, decryption and hashing

functions for embedded systems.

A. Program and data security software-based solutions

1) Trustzone [2]: Trustzone is a solution proposed by

ARM. ARM considers that the complete secure solution is

not feasible and targets to secure only some parts of the

architecture and some data. Like other solutions, Trustzone

postulate is an architecture with a secure core and a secure

part within the memory. An important point is that Trustzone

does not provide any mechanisms for cryptographic issues. If a

user wishes to cipher and/or hash some data, he has to develop

the corresponding software or hardware security primitives.



The guiding principle of Trustzone is to add an extra mode

(secure mode) to those already known (user, superuser). A

monitor supervises all the operations of the OS and especially

when an application is switching from/to the secure mode.

The monitor allows or not the switching from one mode to

another. Once the application is running in the secure mode,

the user can have access to all the protected data and programs

stored in the memory. As an example the cipher keys and the

boot program are considered as sensible data. When the secure

mode is active, the monitor supervises all operations to be sure

that a task which is not allowed is not trying to catch illegal

information.

The most significant part of the work for the monitor is to

protect the accesses to data. Several hardware mechanisms

have been added to the architecture to support this feature. The

Trustzone architecture proposes cache memories and uses a

memory management unit to provide a more efficient solution.

Thus, some modifications have been performed to support the

new possibilities of the architecture. They enable the monitor

to be informed if an access to a protected data is done or not.

Some peripherals can also be included in the trust zone, thus

specific methods are required to protect the communications

with them. Concerning the external memory, ARM suggests to

cipher and to hash it. The attacker will not be able to interpret

the data and program because he does not have the cipher keys.

In a same way, the hash of the memory helps the architecture

to keep the integrity of the source program and data. Moreover,

since some peripherals are included in the secure zone, the

communications between the peripherals and the core require

new signals to exchange data.

2) XOM [3]: XOM is the acronym of eXecute Only

Memory. XOM wishes to completely secure an architecture.

XOM is supposed to be sure and claimed that hardware

solutions are more efficient than the software ones. So XOM

mostly relies on hardware mechanisms to ensure security. New

primitives are provided within the OS in order to handle key

and signature manipulation. The name of the OS extension is

XOMOS. The main features of XOM are: memory ciphering

and hashing, data and program partitioning, interruption and

context switching protection.

Each partition of the memory is associated with a secret key

to decrypt its content. The session key is obtained with the

XOM key table which establishes the connection between the

session key and the secret key of a specific partition of the

memory. The secret key is also encrypted with an asymmetric

encryption. The key required for the asymmetric decryption

is stored in the secure zone of the architecture. The signature

result of the hash algorithm is compared to the original one to

validate the integrity of the hashed message. In addition the

data stored in cache memory is associated with an identifier.

When a task wants to use a data, the identifier of the task must

be the same as the data one, in that case it means the task is

allowed to read and modify the data. This feature protects

the system from malicious programs which try to get illegal

information. XOM proposes hardware security primitives to

protect cipher keys and hash signatures which are essential to

guarantee the architecture durability.

The last point of the XOM solution concerns the preemption

within the OS which has similarities with the management of

the interruptions. The context must be saved. It is essential to

store and to protect the context in order to fend off an attack

who aims to change some register values. XOM ciphers and

hashes the switching context which is interesting for a solution

with an OS. XOMOS can be seen as an extension of a non-

secure OS which brings new security primitives (ciphering and

hashing).

All the protections added by the solution have a cost. The first

one results from the implementation of XOM in an existing

OS. A work is necessary on the kernel to add the instructions

which handle the security primitives. All this work is invisible

for the user of the kernel. A real overhead appears in the

cache management. The number of cache miss raises from

10 to 40%. This raise is due to the information added into

the cache to secure the data and their associated identifier. It

means some parts of the cache are used to store the identifier.

The protection of the context switching also brings an increase

of the number of cycles to store the context and to protect it.

3) AEGIS [4]: AEGIS is an OS solution like XOM.

As very often the memory and the cache memory are not

included in the trust zone. The components required to build

the security primitives are considered to be secure. The

main features of AEGIS are: generation of secret with PUF

(Physical Random Function), memory protection by ciphering

and/or hashing, variation of the level of kernel security.

The PUF is an hardware mechanism which provides an

unique secret associated to a chip. The propagation time

within the chip corresponds to the base of the PUF. PUF is

a random source used to create the secret which is based

on a sequence of multiplexer giving a bit as a result. The

fabrication process of integrated circuit (IC) is the source

of the uniqueness of the propagation delay. As each IC has

its own delay, the sequence of multiplexer makes the chip

unique and the result of the sequence is very difficult to

predict. Moreover, PUF is associated with a hash algorithm

to increase the complexity of the secret generation.

Memory protection is an important point as the memory

corresponds to a non-secure zone of the architecture. Thanks

to the secret obtained with the PUF, the data and memory are

ciphered and/or hashed. Furthermore, the memory security is

also obtained through the MMU which manages the security

levels of the workspaces (user and superuser, secure or not).

Each user can choose to cipher (or not) and to hash (or not)

the data. Thus AEGIS provides the mechanisms to choose

the level of security of a piece of program. For example the

boot program can be ciphered and hashed for more security.

AEGIS seems to be a very complete solution to protect

memory and program. The overhead is important in some

domains. The silicon surface is one of them as it is increased

by 1.9 [5]. The cpu core is the part which is the most

concerned by this raising. Moreover, the logic needed to

control the specific mechanisms contributes to the raise of

the area. The global performances of the architecture depend



on specific parameters like the size of the protected memory

and the cache memory. The workload varies according to

the chosen security primitives which means the processor

workload is directly linked with the security policy.

B. (Re)configurable hardware architectures

This section details main trends concerning hardware ap-

proaches to implement encryption, decryption and hashing

functions in an efficient way for processor-based embed-

ded systems. Hardware security engines can be subdivided

in three categories: coprocessors, accelerators and dedicated

processors. Coprocessors and accelerators can be divided in

two classes depending on their execution model since the

(re)configuration can be performed at design time or at run-

time.

1) Dedicated processors: A dedicated processor imple-

ments specific instructions dedicated to security primitives.

An analogy can be done with DSP through its multiplication-

accumulation instruction for digital signal processing. In most

cases, security processors are dedicated to one class of cipher-

ing algorithm (symmetric or asymmetric). Specific execution

units are added into the datapath. [6] and [7] propose proces-

sors with instructions for symmetric ciphering algorithms.

Specific instructions have been defined like logical operation

(xor-add) or data permutation. For processors dedicated to

asymmetric ciphering algorithms [8], specific instructions are

defined. For instance to efficiently compute the modular ex-

ponentiation used in ECC and RSA.

2) (Re)configurable architectures at design time: Architec-

tures (re)configurable at design time offer an higher level of

flexibility compared to dedicated processors since they provide

several modes of execution. [9] and [10] propose two hard-

ware accelerators in order to speed up ciphering operations.

Their architecture is fixed and controlled through configuration

registers. The main feature of [9] is its ability to run several

algorithms in parallel and to select the execution parameters

associated to each security primitive. [10] is a configurable

solution which allows the user to switch in different modes of

the AES algorithm. In both cases the architecture is dedicated

and optimized for an algorithm.

Another approach consists in specializing the architecture

during the compilation step to produce an efficient secure

architecture dedicated to the application. First solutions using

such a technology were not dedicated to security [11]. In [11]

the authors propose an architecture with the possibility to

choose the execution unit within the core of the processor.

The drawback with this approach is that the user is strongly

involved in the development process to identify the right

functionalities. An evolution of this solution in the domain

of digital signal processing is XiRisc [12]. The processor core

is fixed and connected to a reconfigurable coprocessor. After

analyzing the program, main characteristics are extracted to

implement some specific functionalities in the coprocessor.

The result for the architecture is some new instructions specific

for the application. With XiRisc the reconfiguration is done

when powering up the architecture. Such features are very

interesting for embedded systems and have been extended to

the security domain. The results obtained with this solution are

really interesting as for an implementation of DES algorithm,

the speed up of the algorithm is about 13 times with the

reconfigurable logic.

[13] have considered a similar approach for security applica-

tions. By exploiting the Xtensa architecture of Tensilica [14],

the authors show that the performances of security primitives

(ciphering, protocol) are strongly improved (65% for MD5 and

75% for AES). The improvement is due to the coprocessor

connected to the Xtensa architecture. Like XiRisc, the largest

part of the design is done at compilation time. The analysis is

performed during compilation and the reconfiguration is done

at power-up. Specific tools for the architecture are required to

build an efficient solution (compiler, linker or simulator).

3) (Re)configurable architecture at runtime:

(Re)configurable architecture at runtime is an interesting

alternative since the datapath can be adapted dynamically

in order to provide the right security primitives depending

on the requirements (e.g. hashing, ciphering). Compared to

previous solutions this approach offers the highest level of

flexibility and provides very efficient solutions. As detailed

hereafter this solution is very interesting for embedded

systems, unfortunately no work has been reported in the

security domain. However in this section a description

of this technology is still provided as we believe similar

secure architectures should appear in a near future. The

base of this approach is to reconfigure a coprocessor during

the program execution when the logic is unused. In [15]

the architecture core is fixed and the coprocessor can be

dynamically reconfigured. As the previous solutions, a work

is necessary to adapt the program of the application in order

to take benefit of the coprocessor. The main difference comes

from the reconfiguration model. If the logic associated to a

specific instruction is not loaded into the coprocessor when

required then the reconfiguration is performed dynamically.

The reconfiguration only affects the datapath and not the

ALUs within the coprocessor (coarse grain reconfiguration).

The reconfiguration helps minimizing the silicon area of

the chip to improve the cost and the power consumption

and to provides efficient execution patterns to speed up

the execution. In [16], it is shown that the reconfigurable

coprocessor speeds up the architecture by 190 for a specific

application (EEMBC).

A similar approach is proposed in [17] where the authors

define a complete reconfigurable core for the processor. The

instruction set of the architecture is fixed but the core of

the processor has different configurations for the ALU. The

reconfiguration of the block is done at runtime depending on

the instructions to be executed. The decision to reconfigure

(or not) comes from the pipeline stages: fetch, the cache trace

and eventually the prefetch. An interesting point concerns

the compilation. For this architecture there is no need for a

special compiler as the instruction set of the architecture is

not modified for each application. The processor dynamically



configures its datapath to increase its performances. Similar

concepts can be considered for the security domain in order

to build a processor-based solution relying on a dynamically

reconfigurable datapath (coarse or fine grain).

4) Limitations of existing solutions: Hardware solutions

presented above are not always targeting embedded systems

which involve very tight power consumption and small silicon

area. Using an hardware accelerator [9] [10], leads to high

performances but at the cost of power consumption which can

be prohibitive in some cases.

In the case of configurable architecture [13] several remarks

can be done. This approach is strongly adapted to embedded

systems as it minimizes the power thanks to configurable

features and improves the performance due to specific in-

structions. The most important concern is related to the

development process which can be tedious in order to define

the right instructions. It is essential that the architecture

supplier provides an efficient compiler which can identify and

exploit specific instructions. For architectures like [15], when

extended to the security domain, the difficulty will rely mainly

on the definition of the reconfigurable datapath (granularity,

flexibility). The users must have a deep understanding of the

architecture and its basic datapath in order to extend and

optimize the execution units.

Reconfiguration of the ALUs interconnections leads to very

flexible architecture. The user has the ability to build efficient

ALUs by configuring the datapath. However, if no tools are

provided with the architecture, this task may be tedious since

the user has to know the ALUs implemented in the logic to

develop his own security functions. Datapath reconfiguration

is interesting since it corresponds to an efficient tradeoff be-

tween flexibility, reconfiguration time and performance. Block

reconfiguration provides an higher flexibility but at the cost of

reconfiguration time (issue of granularity vs. efficiency). This

disadvantage is mitigated by the fact that the system becomes

simpler to develop since it is mainly based on security IPs,

thus the designer does not need to have a deep knowledge

of the security cores. Coarse grain coprocessors based on

datapath reconfiguration are more complex to develop as the

designer needs to defined all the execution patterns that will be

implemented in the datapath. To propose a relevant solution the

number of configurations needs to be limited. In practice some

cryptographic algorithms are mainly used: MD5 and SHA for

hashing, 3DES and AES for symmetric algorithms, RSA and

ECC for asymmetric algorithms. The goal should be to define

a (re)configurable architecture dealing with these algorithms.

Each algorithm can be associated to a dedicated coprocessor

with specific instructions.

Both solutions provide interesting features, thus defining an

architecture corresponding to a compromise between these two

approaches needs to be evaluated. Moreover, it is essential

to keep in mind that tools allowing the efficient use of the

architecture are mandatory (compiler, simulator) to provide a

comprehensive solution.

III. CONCLUSION

Hardware approaches within secure embedded systems

represent a very interesting solution to increase the protection

of programs and communications while reducing the cost of

security. Standard solutions from computer science are not

directly suitable and must be adapted to embedded systems

domain. Furthermore embedded systems are facing more and

more attacks tacking benefit of the constraints related to their

domain. It is thus necessary to define new techniques to

protect these systems.

In this paper we have proposed a state of the art of emerging

technologies used in order to increase the protection of

these systems at the software and the hardware levels.

We have also defined some rules in order to improve the

performance of the security primitives. It is thus essential to

provide new hardware engines (ciphering/hashing hardware)

adapted to embedded systems constraints before building a

complete secure architecture (core, memory). (Re)configurable

solutions provide some interesting features that should be

better analyzed in order to promote the flexibility, the

efficiency but also the programmability.

REFERENCES

[1] D. Dagon, T. Martin, and T. Staner, Mobile Phones as Computing
Devices: The Viruses are Coming!, IEEE Pervasive Computing, 2004

[2] ARM trustzone http://www.arm.com
[3] XOM project: http://www-vlsi.stanford.edu/ lie/xom.htm,
[4] AEGIS project:

http://publications.csail.mit.edu/abstracts/abstracts05/suh/suh.html,
[5] G. Edward Suh et al, Design and Implementation of the AEGIS Single-

Chip Secure Processor, 32nd Annual International Symposium on Com-
puter Architecture, 2005

[6] Rainer Buchty, Nevin Heintze, and Dino Oliva, Cryptonite A Program-
mable Crypto Processor Architecture for High-Bandwidth Applications,
2004

[7] Lisa Wu, Chris Weaver and Todd Austin, CryptoManiac: a fast flexible
architecture for secure communication, ISCA ’01: Proceedings of the 28th
annual international symposium on Computer architecture, 2001

[8] Hans Eberle et all, A Public-Key Cryptographic Processor for RSA
and ECC, ASAP ’04: Proceedings of the Application-Specific Systems,
Architectures and Processors, 2004

[9] HoWon Kim and Sunggu Lee, Design and Implementation of a Private
and Public Key Crypto Processor and Its Application to a Security
System, 2004

[10] Alizera Hodjat, Ingrid Verbauwhede,High-throughtput programmable
cryptoprocessor, 2004

[11] Rahul Razdan and Michael D. Smith, A high-performance microarchi-
tecture with hardware-programmable functional units, Proceedings of the
27th annual international symposium on Microarchitecture, 1994

[12] Bocchi, M. De Bartolomeis et all, R., A XiRisc-based SoC for embedded
DSP applications, Custom Integrated Circuits Conference, 2004

[13] Nachiketh R. Potlapally, Srivaths Ravi, Anand Raghunathan, Ruby B.
Lee and Niraj K. Jha, Impact of Configurability and Extensibility on IPSec
Protocol Execution on Embedded Processors, VLSID ’06: Proceedings of
the 19th International Conference on VLSI Design, 2006

[14] Tensilica http://www.tensilica.com/
[15] Jeffrey M. Arnold, S5: The architecture and development flow of a

software configurable processor, ICFPT 2005 : International Conference
on Field-Programmable Technology, 2005

[16] Ricardo E; Gonzalez, stretch: a software configurable processor archi-
tecture, 2005

[17] Adronis Niyonkuru and Hans Christoph Zeidler, Designing a Runtime
Reconfigurable Processor for General Purpose Applications, IEEE Com-
puter Society, 2004


