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Abstract— Security issues become more and more important
during the development of mobile devices. In this paper we
propose first a brief overview of hardware and software attacks
related to embedded systems and second a comprehensive study
of existing solutions to protect programs and data exchanges
within these systems. Security primitives dedicated to the imple-
mentation of a secure architecture are also presented. Based on
this analysis of existing solutions and requirements an original
approach is proposed in order to mitigate the cost of security.
Constraints related to embedded systems are strong it is thus
mandatory to define new solutions, our proposition is outlined
through various security primitives (ciphering and hashing) with
features adapted to embedded systems.

I. INTRODUCTION

With the development of new wireless communication stan-

dards like WIFI and Bluetooth, the communications between

entities (cell phone, PDA) is becoming unavoidable. Some-

times sensible data is exchanged (e.g. credit card number);

so it is necessary to protect these transfers. Security is turning

into the main bottleneck for communicating entities especially

in embedded systems where performances are limited. More

and more systems are facing hardware and software attacks

[8]. Several solutions are proposed to protect the architec-

ture (secure architecture) and the data which is transferred

(cryptography). Architecture protection mainly corresponds

to the protection of data and program stored in the system

memory. Communication protection is related to the protection

of data exchanged over an insecure communication channel

(e.g. wire).

When a system is under attack, different goals are targeted, the

first kind of attack is the extraction of secret information, the

second one is trying to put the system out of order. Security

is based on five essential principles which are supposed to

guarantee the correct execution of both the program and the

communication:

• Confidentiality: only the entities involved in the execution

or the communication can have access to the data,

• Integrity: the message must not be damaged during the

transfer or the program must not be altered for the

execution,

• Availability: the message or the program must be avail-

able,

• Authenticity: the entity must be sure that the message

comes from the right entity or the system must trust the

program source code,

• Non-repudiation: the entities implied in the exchange

must not have the possibility to deny the exchange.

Cryptography corresponds to a partial solution to these issues.

The encryption of information is used for confidentiality. For

example, only the users with the encryption or the decryption

key are able to communicate together. The most popular cipher

algorithms are: RSA [1], ECC [2], AES [3], 3DES [4]. RSA

and ECC are asymmetric cipher algorithms. In this case the

key used to encrypt (public key) the message is different from

the key used to decrypt the message (private key). As the key

used to encrypt the message is public, everyone can send a

ciphered message to the entities which own the private key

to decrypt the message. AES and 3DES are symmetric cipher

algorithms. The key used to cipher must be secret because it

is the same key for encryption and decryption.

The hash of information is used to check the integrity of a

message by providing a signature which is unique for each

message. The most known algorithms are MD5 [5] and SHA

[6]. The robustness of the SHA family varies according to the

number of bits used for the coding of the signature. In addition,

non-repudiation, availability and authenticity are guaranteed

by communication protocols like IPSec for example [7].

More and more security tasks are assigned to embedded sys-

tems. Thus, it becomes interesting to add dedicated primitives

to these systems to allow an efficient implementation of the

requested algorithms for program and data protection. As

a consequence, various solutions are emerging to increase

the system protection. It is essential that these solutions

provide hardware architectures adapted to embedded systems.

Classical solutions from computer science do not answer the

problem. Many constraints are due to the application and

environment requirements (memory size, performance, power

consumption).

In the following sections we propose first a brief overview

of existing attacks towards embedded systems (hardware and

software attacks). Second, a state of the art of current solutions

to protect a system and to speed up cipher algorithms is

provided. Then, the outline of an original approach based



on configurable hardware to accelerate cipher algorithms is

presented.

II. HARDWARE ATTACKS

The main goal of hardware attacks depends on the wish

of the attacker. Two main opportunities can be targeted. The

first one is trying to get secret information like cipher keys.

The second one is to attack the system to turn it out of

order (i.e. denial of service attack). Below attacks which aim

to catch secrets are presented, then denial of service attacks

are detailed. Some attacks are difficult to classify, hardware

modification of the main memory is one of them. The goal of

this attack is to insert a malicious program. A similar attack

targets FPGAs through bitstream alteration.

When the attacker wants to decrypt information, he needs to

have the cipher key. A solution to get cipher keys is to listen to

side channels. This kind of attack is called side channel attack

and is declined in several forms [9]. The most known relies

on the power signature of the algorithm [11]. By analyzing

the algorithm signature it is possible to infer the round of the

algorithm. Moreover, a differential analysis combined with a

statistic study of the power signature can lead to an extraction

of the cipher key [11]. However it is necessary to make

assumptions on the value of the key to obtain a correct result.

These two methods are called SAP: Simple Power Analysis

and DPA: Differential Power Analysis [11]. Similar solutions

also work with electromagnetic emissions [12] (Differential

Electromagnetic Analysis). Instead of analyzing the power sig-

nature, the electromagnetic signature of the chip is analyzed.

A significant remark concerns the cost of such attacks. It is

especially cheaper than reverse engineering attack which needs

an electronic microscope to study the structure.

Temporal analysis or timing attack [13] is another way to catch

cipher keys. Temporal reaction of the system leaks information

which enables the extraction of cipher key or password.

Like with the DPA, it is necessary to make assumptions

concerning the information to be extracted. The knowledge

of the algorithm, so the branch instructions in the program

can also help to find a secret since a timing model of the

algorithm can be established [13]. Indeed, timing hypotheses

can be done as the program running on the target is often

known. Thus, thanks to statistic studies, information can be

extracted.

Fault injection [14] is the last way to obtain secrets through

side channel. However, like reverse engineering, the need of

material is more important than previous attacks. The injection

of a fault into a system through a memory corresponds to

a modification of a bit (laser or electromagnetic waves).

The knowledge of the implementation of the algorithm is

an important point to determine a secret. In most cases the

injection of a fault is done in the last round of an algorithm

[14]. The reason is that the mark of the fault is more visible

in the ciphered result.

The goal of the hardware attacks presented above, is to get

secret information from the chip. Denial of service attacks are

different and aim to put the system out of order. In autonomous

embedded systems, power is an essential concern. It is one of

the most important constraints on the system. As an example

with a cell phone or a PDA, the attacker can perform a large

number of requests which aim to activate the battery and to

reduce the system lifetime [15] [16]. In wireless communi-

cation systems, another attack leads to solicit the transmitter

antenna in order to have the same result as previously (lifetime

reduction). Increasing the workload of a processor is also an

issue to consume more battery. Indeed the workload is related

to power consumption, so an assailant may try to force the

processor to work harder [16] [15]. As a consequence the

lifetime will be affected. Other ways can be used to put a

system out of order. Taking the control of the temperature

regulation system is a solution. Through the control of the

regulation it is possible to increase the temperature and then

to activate the overheat security mechanisms [17].

The panel of attacks against a system is important and depends

according to several parameters: goal, budget and nature of the

system. Hardware attacks represent an important threat against

embedded systems but software attacks are also becoming

critical.

III. SOFTWARE ATTACKS

Like computer science (server and workstation), embedded

systems are more and more affected by virus and worms [8].

There is a difference between a virus and a worm. We can

consider that a virus needs the human help to infect a system

and to spread contrary to a worm which does not need any

human help. A worm is considered to be autonomous. All the

computer science concepts can be transposed to the embedded

system domain. The substitution of a program by a malicious

one is a threat for the security of the system. The malicious

program may try to get access to sensitive data or to shut down

the system. Concerning secret data, cipher keys are the most

sensitive as once the attacker knows the cipher keys, he has

access to all the information in plain. Encrypting memory and

protecting cipher keys correspond to classical solutions against

these attacks. However protections used in computer science

are not suited for embedded systems (less computing power

and memory). Thus various solutions dedicated to embedded

systems are emerging (e.g. bus or program monitoring) [18].

The number of attacks targeting embedded systems increases

rapidly. For example a virus or a worm can be sent several

times on a same system to launch the antivirus. Scanning all

the system increases processor workload and thus decreases

the battery lifetime which can be critical for autonomous

systems. The concept of embedded systems extends the scope

of activity of the virus and the worms.

IV. SECURE ARCHITECTURES: STATE OF THE ART

In order to fend off previous hardware and software attacks

specific mechanisms have to be defined. All security solutions

are built around assumptions concerning their potential threats.

For example in Figure 1, the secure zone is composed of the

processor core and the ciphering and hashing dedicated blocks.

Ciphering and hashing protection methods are similar to the



Fig. 1. Architecture with a secure core and secure communication

ones used for protection of a memory or a communication over

a non-secure channel. In the following sections, the secure

architectures consider that the core and the blocks are in

a secure zone (i.e. cannot be attacked). Furthermore, these

architectures do not consider side channel attacks.

In section IV-A the studies focus on the protection of program

memory and data memory. Moreover, a monitor is used to

protect the operating system (OS). Using an OS, there is a

need for the system to track if a task does not reach any secure

information not belonging to it. In a same way, before running

a task, the OS must allow or not the task. In other words, is

there an external entity which has altered the original task? In

certain circumstances, the user may wish to cipher and/or hash

the program in memory. Then if the program is read in the

memory, the cipher key will be necessary to decrypt the data.

As the cipher key is a secret and stored in the secure zone, only

a trust task must be able to decrypt the program and to run it

on the OS. As shown in Figure 1, the secrets stored on a chip

are always in the secure zone. It is one of the most essential

postulate when defining a secure architecture (the secret must

not leave the secure zone in a clear form). The secrets may be

the cipher keys but also the boot program of the application

running on the chip. With an OS, the OS source code will be

stored in the secure zone since it is essential that the OS kernel

is not corrupted by a malicious entity. The solutions in section

IV-A are built based on these mechanisms. OS solutions are

generally associated with cryptography hardware engines and

specific OS primitives to use these engines. In section IV-A

we focus on the principles of the OS and not on the hardware

engines to accelerate the computing of the cryptographic tasks.

Section IV-B details the hardware engines to efficiently im-

plement encryption, decryption and hashing functions for em-

bedded systems. The (re)configurable architectures presented

in section IV-B may be used by the secure architectures of

section IV-A to speed up the work of cryptography primitives.

As shown in Figure 1, the blocks used for the security

of the memory are the same ones as the blocks used for

the security of the external communications. Cryptographic

hardware engines are preferred to software solutions since

performance are better. The last point highlighted in sec-

tion IV-B is related to the integration of the engines within

the architecture (coprocessors or accelerators).

A. Program and data security software-based solutions

1) Trustzone [19]: Trustzone is a solution proposed by

ARM. ARM considers that the complete secure solution is

not feasible and targets to secure only some parts of the

architecture and some data. Like other solutions, Trustzone

postulate is an architecture with a secure core and a secure part

within the memory (secure zones in Figure 2). An important

point is that Trustzone does not provide any mechanisms for

cryptographic issues. If a user wishes to cipher and/or hash

some data, he has to develop the corresponding software or

hardware security primitives.

The guiding principle of Trustzone is to add an extra mode

(secure mode) to those already known (user, superuser). A

monitor supervises all the operations of the OS and especially

when an application is switching from/to the secure mode.

The monitor allows or not the switching from one mode to

another. Once the application is running in the secure mode,

the user can have access to all the protected data and programs

stored in the memory. As an example the cipher keys and the

boot program are considered as sensible data. When the secure

mode is active, the monitor supervises all operations to be sure

that a task which is not allowed is not trying to catch illegal

information.

The most significant part of the work for the monitor is to

protect the accesses to data. Several hardware mechanisms

have been added to the architecture to support this feature. The

Trustzone architecture proposes cache memories and uses a

memory management unit to provide a more efficient solution.

Thus, some modifications have been performed to support

the new possibilities of the architecture. They enable the

monitor to be informed if an access to a protected data is



done or not. Some peripherals can also be included in the

trust zone, thus specific methods are required to protect the

communications with them. In Figure 2, the secure and share

zones correspond to an example. Concerning the external

memory, ARM suggests to cipher and to hash it. The attacker

will not be able to interpret the data and program because he

does not have the cipher keys. In a same way, the hash of

the memory helps the architecture to keep the integrity of the

source program and data. Moreover, since some peripherals

are included in the secure zone, the communications between

the peripherals and the core require new signals to exchange

data.

Fig. 2. Secure architecture of Trustzone [19]

2) XOM [20]: XOM is the acronym of eXecute Only

Memory. XOM wishes to completely secure an architecture.

Moreover XOM is supposed to be sure and claimed that

hardware solutions are more efficient than the software ones.

So XOM mostly relies on hardware mechanisms to ensure

security. New primitives are provided within the OS in order

to handle key and signature manipulation. The name of the

OS extension is XOMOS. The main features of XOM are:

memory ciphering and hashing, data and program partitioning,

interruption and context switching protection.

Each partition of the memory is associated with a secret key to

decrypt its content (the session key in Figure 3). The session

key is obtained with the XOM key table which establishes

the connection between the session key and the secret key

of a specific partition of the memory. The secret key is also

encrypted with an asymmetric encryption. The key (private key

in Figure 3) required for the asymmetric decryption is stored

in the secure zone of the architecture. The use of the hash

solution is classic. The signature result of the hash algorithm is

compared with the original one to validate the integrity of the

hashed message. In addition the data stored in cache memory

is associated with an identifier. When a task wants to use a

data, the identifier of the task must be the same as the data one,

in that case it means the task is allowed to read and modify the

data. This feature protects the system from malicious program

which tries to get illegal information. XOM proposes hardware

security primitives to protect cipher keys and hash signatures

which are essential to guarantee the architecture durability.

The last point of the XOM solution concerns the preemption

within the OS which has similarities with the management of

the interruptions. The context must be saved. It is essential to

Fig. 3. XOM architecture [20]

store and to protect the context in order to fend off an attack

who aims to change some register values. XOM ciphers and

hashes the switching context which is interesting for a solution

with an OS. XOMOS can be seen as an extension of a non-

secure OS which brings new security primitives (ciphering and

hashing).

All the protections added by the solution have a cost. The first

one concerns the implementation of XOM in an existing OS. A

work is necessary on the kernel to add the instructions which

help for the use of the security primitives. All this work is

invisible for the user of the kernel. A real overhead appears in

the cache management. The number of cache miss raises from

10 to 40%. It depends on the kernel operation. This raise is

due to the information added in the cache to secure the data.

Data are associated with the identifier of the task. It means

some parts of the cache are used to store the identifier. The

protection of the context switching also brings an increase of

the number of cycles to store the context and to protect it.

3) AEGIS [21]: AEGIS is an OS solution like XOM.

Figure 4 shows the secure computing model of AEGIS.

AEGIS is based on a postulate concerning the threats. The

grery parts in Figure 4 corresponds to secure zones that

are supposed to be protected by default. As very often the

memory and the cache memory are not included in the

trust zone. The components required to build the security

primitives, are considered to be secure. The main features of

AEGIS are: generation of secret with PUF (Physical Random

Function), memory protection by ciphering and/or hashing,

variation of the level of kernel security.

The PUF is an hardware mechanism which provides an

unique secret associated to a chip. The propagation time

within the chip corresponds to the base of the PUF. PUF is

a random source used to create the secret which is based

on a sequence of multiplexer giving a bit as a result. The

fabrication process of integrated circuit (IC) is the source of

the uniqueness of the propagation delay (each IC has its own

delay). The sequence of multiplexer makes the chip unique

and the result of the sequence is very difficult to predict.

A regulation system is required to limit the variation in the



Fig. 4. Security model of AEGIS [21]

result of the sequence since the result sent by the PUF must

always be the same (required for cryptography). Moreover,

PUF is associated with a hash algorithm to increase the

complexity of the secret generation.

Memory protection is an important point as the memory

corresponds to a non-secure zone of the architecture. Thanks

to the secret obtained with the PUF, the data and memory are

ciphered and/or hashed. Furthermore, the memory security is

also obtained through the MMU (Memory Management Unit)

which manages the security levels of the workspaces (user

and superuser, secure or not). Each user can choose to cipher

(or not) and to hash (or not) the data. Thus AEGIS provides

the mechanisms to choose the level of security of a piece of

program. For example the boot program can be ciphered and

hashed for more security.

AEGIS seems to be a very complete solution to protect

memory and program. The overhead is important in some

domains. The silicon area is one of them. It is increased

by 1.9 [37]. The CPU core is the part which is the most

affecteded by this overhead. Moreover, all the logic needed

to control the specific mechanisms contributes to raise the

area. The global performances of the architecture depend on

certain parameters like the sizes of the protected memory

and the cache memory. The workload varies according to

the chosen security primitives which means the processor

workload is directly linked with the security policy.

B. (Re)configurable hardware architectures

This section details main trends concerning hardware ap-

proaches to implement encryption, decryption and hashing

functions in an efficient way for processor-based embedded

systems. Hardware security engines can be subdivided in

three categories: coprocessors, accelerators and dedicated pro-

cessors. A coprocessor is implemented in the datapath of a

processor contrary to an accelerator which is connected as a

peripheral through a bus. A coprocessor is accessible through

registers like an ALU. A dedicated processor is a processor

with specific security features (e.g. hardware hash engine).

Coprocessors and accelerators can be divided in two classes

depending on their execution model since the (re)configuration

can be performed at design time or at runtime.

1) Dedicated processors: A dedicated processor imple-

ments specific instructions dedicated to security primitives.

An analogy can be done with DSP through its multiplication-

accumulation instruction for digital signal processing. In most

cases, security processors are dedicated to one class of cipher

algorithm (symmetric or asymmetric). Specific execution units

are included in the datapath. [22] and [23] propose processors

with instructions for symmetric cipher algorithms. Specific

instructions have been defined like logical operation (xor-add)

or data permutation. For processors dedicated to asymmetric

cipher algorithms [24], specific instructions are defined to

efficiently compute the modular exponentiation which is an

essential operation (ECC and RSA).

2) (Re)configurable architectures at design time: Architec-

tures (re)configurable at design time offer an higher level of

flexibility compared to dedicated processors since they provide

several modes of execution. [26] and [25] propose two hard-

ware accelerators in order to speed up ciphering operations.

Their architecture is fixed and controlled through configuration

registers. The main feature of [26] is its ability to run several

algorithms in parallel and to select the execution parameters

associated to each security primitives. [25] is a configurable

solution which allows the user to switch in different modes

of the AES algorithm [3]. In both cases the architecture is

dedicated and optimized for an algorithm.

Another approach consists is specializing the architecture

during the compilation step to produce an efficient secure

architecture dedicated to the application. First solutions using

such a technology were not dedicated to security [27]. In [27]

the authors propose an architecture with the possibility to

choose the execution unit within the core of the processor.

The drawback with this approach is that the user is strongly

involved in the development process to identify the right

functionalities. An evolution of this solution in the domain

of digital signal processing is XiRisc [28]. The processor core

is fixed and connected to a reconfigurable coprocessor. After

analyzing the program, main characteristics are extracted to

implement some specific functionalities in the coprocessor.

The result for the architecture is some new instructions specific

for the application. With XiRisc the reconfiguration is done

when powering up the architecture. Such features are very

interesting for embedded systems and have been extended to

the security domain. Furthermore, the results obtained with

this solution are really interesting as for an implementation of

DES algorithm, the speedup is about 13 times compared to a

non reconfigurable solution.

In [29] the authors have considered a similar approach for

security applications. By exploiting the Xtensa architecture

of Tensilica [30], the authors show that the performances of

security primitives (ciphering, protocol) are strongly improved

(65% for MD5 and 75% for AES). The improvement is due

to the coprocessor connected to the Xtensa architecture. Like

XiRisc, the largest part of the design is done at compilation



Fig. 5. Architecture with a coprocessor and an accelerator

time. The analysis is performed during compilation and the

reconfiguration is done at power-up of the architecture. Spe-

cific tools for the architecture are required to build an efficient

solution (compiler, linker or simulator).

3) (Re)configurable architecture at runtime:

(Re)configurable architecture at runtime is an interesting

alternative since the datapath can be adapted dynamically

in order to provide the right security primitives depending

on the requirements (e.g. hashing, ciphering). Compared to

previous solutions this approach offers the highest level of

flexibility and provides very efficient solutions. As detailed

hereafter this solution is very interesting for embedded

systems, unfortunately no work has been reported in the

security domain. However in this section a description

of this technology is still provided as we believe similar

secure architectures should appear in a near future. The

base of this approach is to reconfigure a coprocessor during

the program execution when the logic is unused. In [31]

the architecture core is fixed and the coprocessor can be

dynamically reconfigured. As the previous solutions, a work

is necessary to adapt the program of the application in order

to take benefit of the coprocessor. The main difference comes

from the reconfiguration model. If the logic associated with

a specific instruction is not loaded into the coprocessor when

required then the reconfiguration is performed dynamically.

The reconfiguration only affects the datapath and not the

ALUs within the coprocessor (coarse grain reconfiguration).

The reconfiguration helps minimizing the silicon area of

the chip to improve the power consumption and to provide

efficient execution patterns to speed up the execution. At

design time dedicated tools are required to define specific

instructions and the logic of the architecture. In [38], it is

shown that the reconfigurable coprocessor speeds up the

architecture by 190 for a specific application (EEMBC). If

the application is implemented with instruction reliing on the

coprocessor, interesting results can be obtained.

A similar approach is proposed in [32] where the authors

define a complete reconfigurable core for the processor. The

instruction set of the architecture is fixed but the core of

the processor has different configurations for the ALU. The

reconfiguration of the block is done at runtime depending on

the instructions to be executed. The decision to reconfigure

(or not) comes from the pipeline stages: fetch, the cache trace

and eventually the prefetch. An interesting point concerns

the compilation. For this architecture there is no need for a

special compiler as the instruction set of the architecture is

not modified for each application. The processor dynamically

configures its datapath to increase its performances. Similar

concepts can be considered for the security domain in order

to build a processor-based solution relying on a dynamically

reconfigurable datapath (coarse or fine grain).

4) Limitations of existing solutions: Hardware solutions

presented above are not always targeting embedded systems

which involve very tight power consumption and small silicon

area. Using an hardware accelerator [26] [25], leads to high

performances but at the cost of power consumption which can

be prohibitive in some cases.

In the case of configurable architecture [29] several remarks

can be done. This approach is strongly adapted to embedded

systems as it minimizes the power thanks to configurable

features and improves the performance due to specific in-

structions. The most important concern is related to the

development process which can be tedious in order to define

the right instructions. It is essential that the architecture



Fig. 6. Architecture proposed

supplier provides an efficient compiler which can identify and

exploit specific instructions. For architectures like [31], when

extended to the security domain, the difficulty will rely mainly

on the definition of the reconfigurable datapath (granularity,

flexibility). The users must have a deep understanding of the

architecture and its basic datapath in order to extend and

optimize the execution units.

As shown in Figure 5, reconfiguration of the ALUs intercon-

nections leads to very flexible architecture. The user has the

ability to build efficient ALUs by configuring the datapath.

However, if no tools are provided with the architecture, this

task may be tedious since the user has to know the ALUs

implemented in the logic to develop his own security functions.

Datapath reconfiguration is interesting since it corresponds to

an efficient tradeoff between flexibility, reconfiguration time

and performance. Block reconfiguration provides an higher

flexibility but at the cost of reconfiguration time (issue of

granularity vs. efficiency). This disadvantage is mitigated by

the fact that the system becomes simpler to develop since it

is mainly based on security IPs, thus the designer does not

need to have a deep knowledge of the security cores. Coarse

grain coprocessors based on datapath reconfiguration are more

complex to develop as the designer needs to defined all the

execution patterns that will be implemented in the datapath.

Both solutions provide interesting features, thus defining an

architecture corresponding to a compromise between these two

approaches needs to be evaluated. Moreover, it is essential

to keep in mind that tools allowing the efficient use of the

architecture are mandatory (compiler, simulator) to provide a

comprehensive solution. Next section addresses this issue and

proposes the outline of a configurable processor-based solution

dedicated to security primitives.

V. CONFIGURABLE COPROCESSOR-BASED ARCHITECTURE

A. Toward a compromise between flexibility and programma-

bility

The main objective of our approach is to combine both

1) the implementation simplicity through the use of an

architecture with (re)configurable functional blocks and 2)

the flexibility where interconnections between ALUs can be

(re)configured within a functional block. Obviously com-

promises are necessary since both points are not entirely

compatible. To propose a relevant solution the number of con-

figurations needs to be limited. In practice some cryptographic

algorithms are mainly used: MD5 and SHA for hashing,

3DES and AES for symmetric algorithms, RSA and ECC for

asymmetric algorithms. The goal is to define a (re)configurable

architecture dealing with these algorithms. Each algorithm can

be associated to a dedicated coprocessor (as shown in Figure 6)

with specific instructions.

The proposed coprocessors could be used within systems like

in section IV-A to speed up the cryptographic primitives. Thus,

blocks ciphering and hashing of the entire memory could be

achieved more efficiently. Three coprocessors can be run in

parallel to take benefit of the potential parallelism between

cryptographic operations (memory hashed and ciphered). The

cost of one coprocessor will be low due to common ALUs

sizes between algorithms. For each cryptographic family the

flexibility will be limited through the use of a coarse grain

configurable ALUs. Various examples will be presented in

section V-B with the hash coprocessor.

It is important to define an architecture which can be pro-

grammed efficiently which constrains the flexibility of the

architecture. The use of the coware LISAtek tool suite [33]

in interesting in order to build a processor-based system and

the associated compiler. It will enable the designer to quickly

develop an architecture but also to produce all the tools

required for its use in order to exploit the possibilities of the

architecture [34].

B. Coprocessor dedicated to hash case study

In order to demonstrate our ideas an hash coprocessor

is considered. We aim to build a coprocessor for the MD5

algorithm and SHA family (SHA-1 and SHA-2). Within these

algorithms, two specific stages are performed during the exe-

cution. The first one is the message preparation and the second



Fig. 7. Hash hardware dedicated coprocessor

one is the hashing of the prepared message as illustrated

in Figure 7 (Part 1: message preparation, Part 2: message

hashing). It appears natural to divide the architecture in two

dedicated blocks. The message filter is configured depending

on the selected hash algorithm (datapath size, message size).

Concerning the part 2, a deeper analysis of the hash algo-

rithms is required to find similarities. Due to the complexity

of the algorithms, the number of specific ALUs may increase

since it becomes more difficult to find similarities. However,

it is possible to extract some common functional blocks from

algorithms as in Figure 7. A minimum memory (1024 bits) is

required to store some data before the hashing step especially

for SHA-512 and SHA-384 which need an important amount

of memory (before starting to hash, a message of 1024 bits is

required).

A paramount element of the architecture is the block for the

equation computation (selection of the right equation among

the available equations). A thorough analysis is required to

find the similarities between all the equations of the whole

hash algorithms. Work presented in [35] can be used since the

authors show that similarities can be found for certain hash

algorithms (MD5, SHA-1). This work leads to the definition

of a configurable functional block for the computation of the

equations. With [10], it is possible to extend the work of

[35] to the whole SHA-2 family. In Table I, some similarities

between the equations are presented. The minimization of

the coprocessor can be performed based on these similarities

in order to minimize the power consumption. Equations in

Table I highlight that it is possible to find similarities at a

coarse grain for the ALUs. In [35] the authors propose a

customizable function depending on the hash algorithm. The

proposed approach can be extended to all the algorithms within

our hash coprocessor.

The concepts of functional block can be further extended

since the selected hash algorithms have similarities which

allows to create other blocks like buffers scheduler, constants

equation SHA-1 SHA-2 MD5

(x ∧ y) ⊕ (x̄ ∧ z) x x x

x ⊕ y ⊕ z x x

(x ∧ y) ⊕ (x ∧ z) ⊕ (y ∧ z) x x

rotmx ⊕ rotnx ⊕ rotlx x x

(x ∧ y) ⊕ (y ∧ z̄) x

y ⊕ (x ∨ z̄) x

TABLE I

SUMMARY OF EQUATIONS FOR DIFFERENT HASH ALGORITHMS

scheduler and a message scheduler. The proposed architecture

is presented in Figure 7. Each one of the scheduler provides

inputs to the equations block. The supervisor controls all

the schedulers of the architecture and is in charge of the

general management thanks to the information given by the

configuration register. The register contains data which are

read by the general manager to configure the architecture to

correctly execute the right hash algorithm. The result for the

user is just a value to write into the configuration register.

C. Discussion

This section outlines a configurable coprocessor-based ap-

proach which must be pursued to obtain more results and to

extend it to others coprocessors (symmetric and asymmetric ci-

phering). Certain similarities concerning asymmetric ciphering

can already be defined as the modular exponentiation operation

is used in both computation (RSA and ECC).

Two approaches also need to be further explored. The first one

concerns the grain of the ALUs. Finer grain for the ALUs may

be identified to better reduce the area required to implement

the algorithms. APIs may be also developed to manage the

configuration of the coprocessor. The user should be able to

use these APIs to configure the coprocessor. The goal is to

mitigate the work required to use the configurable coprocessor.

The second point that needs to be explored, is the implementa-

tion of different modes for an algorithm. For example with an

AES ciphering, a fault tolerance mode may be implemented

[36]. It is also important to define the mechanisms in order to

be able to dynamically adapt the configurable coprocessor in

order to adapt its datapath depending on the requirements and

the constraints on the system.

VI. CONCLUSION

Hardware approaches within secure embedded systems rep-

resent a very interesting solution to increase the protection

of programs and communications while reducing the cost of

security. Standard solutions from computer science are not

directly suitable and must be adapted to embedded systems

domain. Furthermore embedded systems are facing more and

more attacks tacking benefit of the constraints related to their

domain. It is thus necessary to define new techniques to protect

these systems.

In this paper we have proposed a state of the art of emerging

technologies used in order to increase the protection of these

systems at the software and the hardware levels. We have also

defined some rules in order to improve the performance of the



security primitives. It is thus essential to provide new hardware

engines (ciphering/hashing hardware) adapted to embedded

systems constraints before building a complete secure architec-

ture (core, memory). (Re)configurable solutions provide some

interesting features that should be better analyzed in order to

promote the flexibility but also the programmability. It is also

important to study fine grain techniques in order to fend off

some specific hardware attacks.

Finally we have presented the outline of our approach to build

hardware engines required for a secure architecture. We have

focused on the ciphering and hashing architecture for embed-

ded systems. Future work will target a more precise evaluation

of our approach to evaluate the achievable performances and

the efficiency of the programmability.
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