Generalization properties of finite size polynomial Support Vector Machines
Résumé
The learning properties of finite size polynomial Support Vector Machines are analyzed in the case of realizable classification tasks. The normalization of the high order features acts as a squeezing factor, introducing a strong anisotropy in the patterns distribution in feature space. As a function of the training set size, the corresponding generalization error presents a crossover, more or less abrupt depending on the distribution's anisotropy and on the task to be learned, between a fast-decreasing and a slowly decreasing regime. This behaviour corresponds to the stepwise decrease found by Dietrich et al.[Phys. Rev. Lett. 82 (1999) 2975-2978] in the thermodynamic limit. The theoretical results are in excellent agreement with the numerical simulations.